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Abstract

In this report, the space-time domain magnetic field integral equation

is used to investigate the transient behaviors of an infinite cylindrical

antenna with a biconical feed. The formulation, and numerical methods are

presented, and the difficulty in dealing with the source term is pointed out.
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I. Introductiono Certain EMP simulators have the radiating elements in the form of a

cylindrical antenna with a biconical wave launcher as shown in Fig. 1. The

effect of the junction between the biconical section and the cylindrical

section on the behavior of the transient radiation field have been studied by

some workers [1]-[3]. So far, however, there is no rigorous study of this

problem. Methods [2], [3], using the geometric theory of diffraction, are

valid only for very early times. In this note, we present the study of this

problem using the space-time domain magnetic field integral equation (MFIE)

with a proposed numerical procedure for obtaining the solution.

The direct space-time domain integral equation methods have recently

been studied more thoroughly [4], [5], [6]. They offer advantages over the

space-frequency domain methods with Fourier inversion insofar as the early

time accuracy and savings in computational time are concerned. The newly

developed singularity expansion method [7], although having many advantages,

is not particularly suitable for early time computation. Most space-time

domain integral equation methods are devoted to the problems of both radiating

and scattering from thin wiresand yield extremely reliable results. These

methods usually employ the electric field or the magnetic vector potential

formulation. Bennett and Weeks [4] studied the scattering by finite bodies

using the magnetic field formulation. Here, we study the MFIE as applied to

the radiation problem; this has not yet been reported elsewhere. It turns out

that the difference between the scattering case and the radiating case, i.e.

the source term, causes many problems in this study.

The mathematical fonuul.ationwill be outlined in the next section, and

the proposed numerical procedures described in section III. In section IV,

we detail the problems associated with the source term, using the cylindrical

antenna as the example.
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Figure 1. Cylindrical antenna with a biconical wave launcher.
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II. Mathematical Formulation

The space-time domain MFIE has been derived elsewhere [6]. In this

rotationally symmetrical case, we have

~~inc

I

(g’,T)
J(r,t) = %6 x &.—

Source
a~ $’ ,r:r,lds’

——

where J(r,t) is the surface current density on the surface of the antenna at——
inc

the position r and time t, E is the z-directed excitation electric field in—

the source region, iiis the outward-directednormal to the surface at position

5
/
denotes the principal value integral over the indicated surface. The

quantities c and c have the usual meaning of dielectric constant and velocity

of light in the medium and

llr-r’l,-Lt-;= —— (2)

0
is the retarded time between ehe observation and source points.

We have to choose a coordinate system for this problem. Although the

spherical coordinate system is best suited to the biconical section, it is

not particularly convenient for the cylindrical section. On the other hand,

the cylindrical coordinate system is suitable for the rotationally symmetrical

structures and this is chosen for this problem.

There are three parts to this problem: the interaction of the current

densities within the cylindrical section, within the biconical section and

between these two sections. The basic methods of solution are the same for

these parts, and they differ only in the details of the geometry. We shall,

therefore, concentrate on the cylindrical case. Due to the rotationally

symmetrical excitation, the surface current density is $-independent, and is

given by

\

21T
J(z,t) = (2T)-1 J(r,t)*2d@,——
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do which, when (1) is

following integral

J(z,t) = -

+

.

specialized to the cylindrical coordinates, satisfies the

equation:

&a H‘b 2Einc(z’,T) Cos $’—
m a~ dz’d$’

O -b
/(z-z’)2+4a2 sin2($’/2)

2a2 IT‘2

-Ij [/

1 +~a
7T

1
~ ~ J(z’,T)

0 ‘1 (z-z’)2+4a2 sin2($’/2)

sin2($’/2)
.-1- 0 —dz’d~’, (3)

(z-z’)z+4a4 sinA($’/2)

where 2b is the gap width, a is the radius of the cylinder, and z = L1 to L2

is the length of interest along the antenna.

The corresponding equation in the space-frequency domain as given by Latham

and Lee [8], is
.

f

b ‘2
J(z,u) = (ma)-l Y(z - z’,u)E‘nc(z’,o)dz’ - 2

I
K(z - Z’ ,u)J(z’,u)dz’(4)

-b
‘1

where

~ua2 T
Y(2 - Z’,u) ==

I

exp[iuc‘lLz-z’)2+4a2 sin2($’/2)] ~os ~,d4,,

o
0 &)2+4a2sin2($’/2)

and

I
‘m

K(z
exp[iuc‘1/(z-z’)2+4a2 sin2($’/2)] d$,-Zl,u)=$; .

0
/{z-z’)2+4a2 sin2($’/2)

In Appendix A, we show that (3) can be obtained by taking the inverse Fourier

transform of (4) with zero initial conditions. We also show that it is possible

to have alternative forms of integral equations which involves double integrations

containing the time convolution at the expense of the $’ integration in (3). It

is concluded that (3) is superior than,the other forms and will be considered in

this note,

In the present problem, we consider only a cylindrical antenna of infinite

extent. Therefore, we do not include the reflections from the ends of the antenna.
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111. Numerical Procedures for a Cylindrical Antenna

Equation (3) can be solved by means of numerical methods. The unknown
inc

J(z ,t) is expressed in terms of the given excitation electric field E ,

and the surface current density on the antenna at time prior to t, which are

known. It is seen that the solution procedure involves no matrix inversions.

The solution can be carried out step-by-step, i.e., in a time-marching manner.

It has to be pointed out here that the evaluation of the source term, i.e.,

the first term on the right hand side of (3) is very complicated and we devote

the next section to describe this term. For the moment, we assume that the

source term 1s evaluated in some convenient manner and concentrate on the

scattered term, i.e., the second term in (3).

The antenna along the z-direction can be marked in increments Az in

length. The time increment At is defined by

At =~Az, (5)

The half circumference, i.e., from $’ = O to n, is divided into m+ 1 points,

so that

and the chord between two neighboring points is

2a sin(A@/2) = Az. (6)

This sampling scheme is illustrated in Fig. 2.

We follow the usual numerical method by taking the quantity J(z’,T)

constant over a cell, i.e., over a range of Az and A$. The scattered term

over this cell is thus equal to the product of this J value and the kernel in

the double integral over this cell. Denoting the scattered field produced

from the source in the region z’ = Z1 - Az/2 to Z1 + Az/2 and $’ = @l - A@/2

to $1 + A$/2 by J“(z/zl,@l), we have the following expression
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Figure 2. Sampling scheme for a cylindrical antenna.
In this case m = 6 and A+ = IT/6.
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Z1+AZ/2
( J(Z1,T,)

[

AL

zl-Az/2 [(z-z’)2+4a2 sin2($’/2)]3’2

J(q,T1)-J(zl,yAt)
+

/
sin2($’/2)dz’d$’.

cAt[(z-z’)2+4a2 sin2(@’/2]]

Integratingwith respect to z’, we get

4#@/2

[ 1/
z-zl+Az/2

@l-A@/2
(z-z,+Az/2)2+4a2 sin2(@‘/2)

J.

z-zl-Az/2 Id$‘~(z-zl-Az/2)2+4a2sin2($’/2)

. $,+A$/2
L

+~
nAZ {(J 21 ,Tl) - J(Z1,T1 - At)}J1 si112(4’/2)

$1-A$/2

1

-1 z-zl+Az/2
-1

z-zl-Az/2
‘. tan

2a sin($’/2) - ‘an 2a sin($’/2)
/

The quantity T1 is definedby

-1/(2 - 21)2 + 4a2 sin2($l/2).
‘l=t-c

The two single integrals in (8) can be conveniently integrated numerically.

For z - Z1 = (i - l)Az and $1 = (k - 1)A4, we denote

JIT: ~=+‘k-1’2)A@(i-1/2)Az
?

(k-3/2)A$ ~[(i-1/2)Az]2+4a2 sin2($’/2)

(i-3/2)Az

I

d$’,

L (i-3/2)Az]2+4a2 sin2(4’/2)

(7)

(8)

(9)
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~a2 (k-1/2)A$
T;k=—

/

~in2 $’
{
tan-l (i-1/2)Az

9 ‘A’ (k-3/2)A$ Z 2a sin(@’/2)

_ tan-l (i-3/2)Az

I2a sin($’/2) ‘$”

equation (8) becomes

T:kJ(z~$Tl) + T:,k{J(z@ - At)].Jsc(z/zl,$ll = , - J(Z1,T1

(lo)

(11)

In the special condition that Z1 = z and $ = O, i.e., at the singular
1

cell, the integrand in the first term of (7) is singular but is integrable.

We use the method of auxiliary integral [5] for this evaluation, This me{:hod

enables the singular part be subtracted out which is analytically integrable;

the rest of the integration is carried out numerically. Let

2a2 A$/2 z+Az/2
s =—

If

sin2(@’/2)
‘n dz’d$’

0 z-Az/2 [(z-z’)2+4a2sin2($’/2)]3’2

2a2 A$/2 z+Az/2
.—

fJ

sin2(@’/2)[cos(@’/2)+cosos($’/2)] dzld$!
Tr

o z-Az/2 [(z-z’)2+4a2 sin2($’/2)]3/2

= s:+ Sb,

where
2a2 A4/2 z+Az/2

sa=~
H

sin2($’/2)cos($’/2)
dz’d$’

o z-Az/2 [(z-z’)2+4a2 sin2($t/2)]3’2

4a2 A4/2 z+Az/2
=—

~j

sin2($’/2)cos($’/2)
T 3/2 dz’d$’

o z [(z-z’)2+4a2 sin2($’/2)]

. & log

[

4a sin(A$/4) + ~ + ~4a sin(A$/4)12
2a~ Az Az

1

@

and
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~a2 A$/2 z+Az/2
Sb _

/1

si.n2($’/2)(l-cos(@’/2))
IT dz’db’

o z [(z-z’)2+4a2 sin2($’/2)]3’2

This integrand vanishes when $’

numerically. The quantity T; ~
9

At the singular cell, the

as z
1
= z and +1 = 0,

Az
d+‘

Az2+16a2 sin2($’/2)

and hence the integration can be carried out

is then defined by

T: , = Sa+ Sb.

(7) is not singular. In fact,

The solution of (3) in the discretized form, is written as

J(z,t) = (1 - T; ~ - T; 1)-1
{
Source Term - T: ~J(z,t - At)

? * ?

+i~z ~f’2[(T: ~+ T:k)J{z - (i - l)Az, Ti,k}
9 9==

- T; ~J{z - (i - l)Az, Ti,k - At}]
*

+ ~ ! [(T: ~+ T: ~)J{z + (i - l)Az, Ti ~}
i=2 k=2 9 9 ?

- T: ~J{z + (i - l)Az, Ti,k - At)] ,
Y

where

T e-c -q(i - 1)Az]2 +4a2 sinz[(k - l)A$/2].
i,k =

It has to be pointed out that Ti k may not be a multiple of At, i.e., the
P

value J[z t (i - ~)Az, ~i,~ may not be at a sampled point and inter-

polation (or extrapolation) has to be used. In this case, we use a simple

t-wise linear interpolation (or extrapolation).

10
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In Table 1, we tabulate the values of T; ~ and Ti ~ for the case Az = 0.02,

9 9
a = 0.1, A$ = Tr/6.

Table I.
1 2
‘i,k’ ‘ijk

values for a = 0.1, Az = 0.02 and A$ = n/6

4

1 2 3 4 5 6 7
i

1.184(-1) 7.248(-2) 4.042(-2) 2,901(-2) 2.381(-2) 2.139(-2) 2.067(-2) +T:k
1 ——— .-—— —— ___ __ ___ _ ___ 9—-— — ___ -.

8.333(-2) 3.070(-4) 6.238(-4) 8.911(-4) 1.095(-3) 1.223(-3) 1.267(-3) +T:k
9

0 3.234(-2) 2.979(-2) 2.454(-2) 2.121(-2) 1.946(-2) 1.892(-2)
2 --— —-— _,--- _ ____ ——— -—- _ ___

o 1.763(-4) 5.074(-4) 7.961(-4) 1.013(-3) 1.248(-3) 1.194(-37

o 8.409(-3) 1.507(-2) 1..615(-2)1.565(-2) 1.511(-2) 1.491(-2)
3 -——- .——— -.. --- — ——— —.-—— r- ———

0 7.215(-5) 3.216(-4) 60015(-4) 8.270(-4) 9.693(-4) 1.018(-3)

@
0 2.918(-3) 7.281(-3) 9.626(-3) 1.046(-2) 1.068(-2) 1.071(-2)

4 -—— .-—— — -—_ _ ___ _ ___ _ ___ _ _ -—-

0 3.583(-5) 1.981(-4) 4.260(-4) 6.319(-4) 7.686(-4) 8.160)-4)

0 1.301(-3) 3.797(-3) 5.739(-3) 6.805(-3) 7.279(-3) 7.409(-3)
5 ---— —-- -- --- -. .—- —- ——- — ——— —-. ———

0 2.097(-5) 1.285(-4) 3.018(-4) 4.744(-4) 5.953(-4) 6.383(-4)

The values in Table I are written in the form of magnitude (power of 10).

E.g. 1.184(-1) = 1.184x10-1.
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IV.

As far as we are

time domain MFIE for a

for the radiation ‘case

Source Term for a Cylindrical Antenna

aware, there have not been any attempts to use the space- 0

radiation problem. The evaluation of the source term

has found to be troublesome and we report this in more

detail here. We shall, however, compare this term with Wu~s result [9] for

an infinitely long cylindrical antenna with a delta gap when the excitation

electric field is a time step.

When we have a time step excitation electric field, i.e.,

Efnc
(z,t) = EoU(t)f(z), (13)

the time derivative of E
inc

, as occurs in the source term of (3), is a delta

function in time,

The function f(z) specifies

term now is

3Einc(z,t)
at

= Eod(t)f(z).

the space-distributionof the source. The source

~tnc
caE w b

(Z,t) =-+
1~

6(T)f(z’)
o -b

Cos q)’
dz’d$’. (14)

~z-z’)2+4a2 sin2($’/2)

It is interesting to observe that with this MFIE formulation, the time step

excitation electric field excites the antenna in a time delta function manner,

i.e., a “one-pass” process. After this impulse passes an observation poinC,

the current density at this point is substained only by the interaction of

current densities at other points, with the contributions given by the scattered

term. In the EFIE formulation, the time step excitation electric field

contributesto the current density continuously. It is now clear that the

evaluation of this MFIE source term is more critical than the EFIE.

For a delta gap, i.e., f(z) = 6(z), (14) becomes

eaEo ~
Jinc(z, t)=-—

1
i6(t -: 22 + 4a2 sin2($’/2]) Cos +’

‘TrO d$’.(l5)

z2+4a2 sin2($~/2)

\

o
12
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To carry out the integration, the 6-function is first treated as a function in

$’* This is done using the following property:

()dp(xo) -1
d[p(x)] = dx 6(X- Xo),

(16)
dp(x )

p(xo) = o and dxo +0.

The d-function in (15) is thus rewritten as

c z2+4a2 sin2($o/2)
6(t -$ Z2 +4a2 sin2($’/2)) =

2
6(+’ -$o) (17)

sin $0

where $0 is the value of $’ so that the argument of the left hand side vanishes,

i.e.,

Q
Now (15) becomes

-1=.sin(@o/2) = (2a) (18)

E. 1-2 sin2($o/2)
= - .—

Zona 2 sin($o/2) cos($o/2) “
(19)

The quantity Z is the intrinsic impedance of the medium. At the very early
o

time, i.e., ct + z, sin($o/2) + O and cos($o/2) + 1

J
inc

(z, t)+- &02sint@ /2)
o 0

At this very early time, the total surface current density J is contributed

13
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only from the source Eerm. The total current, being 2maJ, is

I(z,t) = -
2 -1/2

Eo2aZ~1[(ct)2 - z ] . (20)

Apart from the amplitude of the electric field -Eo, this is identical to Wu’s

result.

For a finite gap, the obvious step from the numerical point of view

to divide the source region into cells. The method is similar to that

outlined in the last section and quantities similar to T: ~ are defined.

When z’ = z and +’ = O, the integrand is singular but int~grable, and the

method of auxiliary integral is used.

is

One serious drawback of this method is the fact that the retarded time

may not be a multiple of At. As the d-function has zero time width, this

would produce a “miss’!phenomenon. One could, of course, introduce the

criterion that if T < \At/21, the 6-function is considered to be present.

However, this introduces discretization errors which are large for this present

purpose. In fact, computation shows that these errors are of the same order

as the scattered term and the resultant accuracy is doubtful.

Another way is to utilize the d-function integration property to reduce

the source

introduces

term.

With

d-function

term to a single integral with a defined trajectory. This method

no discretization error and gives more insight into the source

a uniform source distribution, f(z’) = 1 in (14). Using the

property as given by (16), the &-function is rewritten as

d(t - ; AZ - 2’)2 +4a2 sin2($’/2)) =d(z- Zo)clz - 2.1-~~(z - 2.)2 + 4a2 sin2($’/2),

where,
. / . . .

t -:&-

or,

[z - Zol =

2.)’ +4aL sinA($’/2) = O,

= si~(@’/2]. (21)

Equation (14)becomes
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~inc
aE

~
(z, t)=-fi ‘d+’,

o 1=-201
and from (21)

~inc aE
(Z, t)=-=!

I

Cos $‘
Zo?l’ d~’.

/(ct)2-4a2 sin2($’/2)

The integration limits are subject to the following conditions

(22)

(23)

(24)

For a given value of t, (21) and (24) define the trajectory along which the

6-function contributes to J‘nc(z, t), This is illustrated in Fig. 3. When

the observation point is outside the source region, the integration is fran

$’ = 4A to $B as shown in Fig. 3(a). When the observation point is within

the source region, the integration is from $t = $A to $B plus from ~~ = ~
c

to $B, as shown in Fig. 3(b). At ct = 2a, $B = n.

The evaluation of (23) is straightforward when the observation point

is outside the source region. The :Lntegrationlimits are from $A to $B, als

shown in Fig. 3(a). When the observation point is inside the source region,

the denominator of the integrand, i.e., Iz ‘Zol, could vanish If ct #2i~. 9
it is integrable. As shown in Fig. 3(b), the integration is from $A to $B

plus that from $C to ~B, The point B is such that Z. = z, It is convenient

to carry out the following transformation

sin 0 = (2a/ct)sin($’/2), (25)

and (23) becomes

Jinc E

I

Tr/2
(z, t)=-&

l-2k2 sin2g

o
‘L =d’

(26)

15
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Figure 3. Trajectories of d-function contribution to an observation

(a) The observation point is outside the source region,

(b) the observation point is inside the source region, and

(c) the case ct = 2a.

point,
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0 where

k= et/2a

and eL is the lower limit of integration corresponding to

‘L
= sin‘1[k-l sin(@L/2)1

where $L is either $A or $C. Equation (26) is in the form of elliptic integrals

and can be readily evaluated except for the special case k = 1.

One interesting case is when ct + O. In this case, the range of the

angle $’ in (14) is very small. Equation (14) can now be looked upon as the

contribution from a plane semi-circumferencewith radius et, as is given by

Fig. 4.

CE n b
o

lim Jinc(z, t) = -—
1~

d(t -
TfCt+()

Pt/c)(cos $’/pt)dS’
o -b

EE
o= _—
/1

a(t -
IT @)(cos 4’/pt)*Ptdptdet

E.
=-— ,

Z.

This result has also been obtained by some other means.

The case that k = 1, i.e., ct = 2a, occurs when the contribution comes

from, among other parts, the point diametrically opposite the observation

point. This is illustrated in Fig. 3(c). In this case, the integrands in

(23) or (26) are not integrable, and as ct + 2a, the integral tends to infinity

asymptotically as h[l/(1-k2)l. Thus, within the source region, the current

density could be infinite at this particular instance of time. However, this

type of asymptotic behavior is integrable and would not give rise to infinite

values to the scattered terms at later time.

For the scattered term, the integration across cells with this logarithmic

singularity is difficult, This singularity is expressed as a function of t,

17
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Figure 4. The case ct + O.

(a) The trajectory of contribution arid

(b) Che planar trajectory of ccmtribution approximation.
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and we have to convert the integrated parameters, i.e., z’ and $’, as time

parameters, l’hisprocess is tedious, time consuming and offers sources of

inaccuracy. 37hisprocedure has to be applied for each individual cell because

each cell has different(z’,$’-time)relationships. Because of the singularity

nature, this procedure is necessary and cannot be easily approximated.

19
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v. Infinite Biconical Antenna and Cylindrical Antenna with a Biconical Feed

In the previous two sections o, we detail the formulation and treatment for

an infinite cylindrical antenna. Here, we point out the same for an infinite

biconical antenna. The space-time domain MFIE, in the cylindrical coordinates,

is

w
Jr(z,t) = - ~

~1

~Einc(z’,T) Cos $’
—— dud+’

-m Source
~[(z-z’)2+4zz’ sin2(@’/2)]T+(z-z’)2

‘*[. L: {[:-z?,2+4zzf si;,,,,,,+(z.z,z]~l,

+
1 12.—

[(2-2’)2+422’
2caT

sin2($’/2)]T+(z-z’) }

o Jr(Z’,T)2ZZ’T sin2($’/2)dz’d$’, (27)

where 00 is the angle of the biconical antenna, as shown in Fig. 5, Jr is the

radially directed surface current density,

T = tan200,

and

The

‘rt-c= ‘l{[(z - Z’)2 + 422’ sin2($’/2)]T i-(z - Z’)2]

method of solution of (27) is similar to that of (3), as outlined

in section 111 and IV. However, in the present case, the coefficient of
n

sin&($’/2) involves z’ and this makes the singular integration much more

difficult. Reasonable approximation has to be introduced to reduce the

complexity of the integration.

Of particular interests is the source term. This term is strongly

dependent on the source geometry assumed. For a point source, i.e., the

electric field is applied only at the vertex, the source term contributes a

singularity to the current density,which can be seen from (27); this is clearly

o

20



., 4

Figure 5. The infinite biconical antenna. “
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not a suitable model. One could truncate part of the vertex and model the

source as a small cylindrical region, similar to that outlined in Ehe last
e

sectfon. This model has the same property as that outlined in the last section

and the logarithmic singularity nature makes the evaluation of the scattered

term complicated. Other models, such as a spherical feed, complicate the

overall geometry and also have similar kind of trouble.

This process of formulation and numerical method can be extended to

infinite cylindrical antenna with a biconical feed. However, the problem

the

lies on the satisfactory modeling of the source region and the likely occurence

of the singular values of the current density.

22
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VI. Conclusions

We have presented the space-time domain MFIE

of solution, with the infinite cylindrical antenna

and the numerical procedures

as a specific example. The

method is a step-by-step time marching technique and involves no inversion of

matrices. However, numerical results have not been presented, due to difficulties

inherent in this type of formulation.

The main difficulties in the solution can be summarized as:

(1) The source term is strongly dependent on the source geometry. 1,s

pointed out in section V, all the possible source geometries have

a certain kind of

are the ones with

and the ones with

of these have the

singularity problem. The most realistic geometries

the vertex of the biconical section truncated,

a spherical feed in place of the vertex. Both,

singularity described below.

(2) If the source region is in the form of a circular cylinder with

radius a, then, at ct = 2a, the current density within the source

regioh is infinite. This singular current density is integrable and

does not contribute to further singular values of the current density

at later time. AS pointed out, however, the evaluation of the

scattered term with this singular current density is critical, the

procedure is tedious and the accuracy is not reliable.

(3) This above trouble arises from the time step excitation electric

field, as its time derivative is a delta time function. One alternative

is to use a narrow pulse, such as a Gaussian pulse, to represent the

6-function. However, this suffers some disadvantages. Such a pulse

can not be integrated as conveniently as the &-function and hence

discretization error is large and is comparable to the value of the

scattered term. This error can be reduced by taking a “slow” pulse,

but this leads to an inaccurate representation of the excitation

waveform.

(4) It is worth noting that in the scattering problem using space-tiine

domain MFIE [4], the source term is relatively easy to handle. ‘It

has been pointed out, however, that the current density may exhibit

instabilities and the solution may grow with time. This may be

attributed to the numerici~lprocedure used.
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In view of the above difficulties resulting from this initial investigation

into the feasibility of using the space-time domain MFIE in solving this type of o

simulator problems, it is strongly recommended that such formulations should

not be used. In the following, we briefly outline the alternative method of

solution -- the electric field formulation.

In applying the space-time domain Hal16n integral equation to solving thin

wire problems [5], the source term presents no difficulty at all, neither does

the scattered term give rise to instability. The equation is of the following

form

T

/J
‘2

I(z’,t-lz-z’l/c) dz’d$’
-n ‘1 8r2~(z-z’)2+4a2 sin2(@’/2)

1 I
‘2
Einc ,=—

2Z0 L (z ,t - IZ - z’1/c)dz’

1

+ fl(ct - z) + f2(ct + z), (28)

where the current I(z,t) is z-directed ‘nc is o, a is the radius of the wire, E

the excitation electric field, fl and f2 are two functions to take care of the

effects of the reflections of the current by the ends of the antenna. For an

infinitely long wire, fl = f2 = O. It is observed that the source term, i.e.,

the integral on the right hand side of the equation, involves the electric

field directly. This has nicer property than the (a/aT)Einc quantity of the

MFIE, and (28) would not give rise to the type of singularity the MFIE gives.

For a thick wire, (28) is not appropriate and we use the space-time

domain EFIE, which has been applied to the scattering problem by Davis et. al.

[6]. The equation is
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and

T = t-c -1/~- r’1.—

Here, the source term contains E‘nc(~,t) and again, this has nicer property—

than the MFIE,

of (3).

From the

behaved source

The numerical process in solving (29) would be similar

above description, the electric field formulation has a

to that

bei:ter-

term than the MFIE. The evaluation of this term is less critical

and discretization process of solution can be applied with higher accuracy.

It is suggested that future investigation into this problem be made using the

space-time domain EFIE.
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Appendix A.

Alternative Forms of Space-Time Domain MFIE

In this appendix we show that the inverse Fourier transform of (4) into

the space-time domain yields two triple integrals with respect to z’, +’ and

t’. Taking different orders of integration, various forms of integral equations

are obtained, which have their own physical interpretations. We shall judge

their relative merits from the point of

The integrands of (4) consists of

and hence the inverse Fourier transform

i.e.,

view of numerical evaluation.

products

contains

of two functions of frequency,

convolution integrals in time,

J(z,t) = (ra)
-1

((y(z - z’,t - tf)E‘nc(zf,tf)dt’dz’
JJ

-2
//
K(z - Z’,t - t’)J(z’,t’)dt’dz’. (A.1)

The integration limits are determined by initial conditions and causality.

It can be readily shown that

Y(2 - z~,t) = -a2(Zoc)
-1 3

(
‘R-l -1

T COS $’6(t - C R)d$’, (A.2)

and

K(z - z’,t) =

where

~(t-c-LR) ‘O

J

n -1
(4m)-la& R 6(t-c-lR)d~’,

o
(A.3)

R= 4(Z - z’)’ + 4a’ sinz($’/2). (A.4)

We shall consider the following cases arising from taking different orders of

integration.

Case 1. Integrating (Al) first with respect to t’, we obtain (3). This

equation describes the contribution to J(z,t) from E‘nc(z’,T) and the values

of J(z’,T) from all the points on the surface of the antenna.
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Case 2. Integrating (Al) first with respect to $’, we obtain an integral

equation describing the contribution to J(z,t) from rings of current dens~Lties

on the antenna. The integration limits are either for all time up to t w:Lth

a restricted range of z’, or for the whole length of the antenna with a

restricted range of t’.

To carry out this $’ integration, we make use of (16), such that

d(t -c ‘lR) = 6($’ - $o)cR(a2 sin $.)-l.

where

sin ($./2) = (2a)-1 cztz - (z - 2’)2.

It is the condition

(A.5)

(A.6)

O S sin2(~o/2)< 1

0 that restricts the integration limits on t’ and z’. Equation (Al) can now

be written as:

J 1-

-1 A
t-c-lIz-z‘/

J(z,t) = a(Zom)
-A t ~-lR+(Z-Z’)

2

2a2-[c2(t-t’)2-(z-z’)2] aE‘ncj;;,t’) dttdzl

Lz(t-t’)z-(z-z’)zAaz-[cz(t-t’)z-(z-z ‘)2]

‘2 t-c-l/z-z’]

[ 1
1/2

-(C?T)-l
II

Cz(t-t’)z-(z-z’)z

‘1 t-c-%X(2-Z’)
2 4a2-[c2(t-t’)2-(z-z’)2]

[

1

1
+ (t-i’) +

“J(z’,t’)dt’dz’
(t-t’)z

(A,7)

This equation is more involved than (3). The integration limits with respect

0

to t’ are functions of z’. This is more complicated numerically and requires

{
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more computer memories.

Alternatively, (A.7) can be,expressed as:

f[l~

-1 t z- c2(t-t’)2-4a2

//

Z+c(t-tl)
J(z,t) = a(Zon) +

c) Z-c(t-t’)
z+ C*(t-t’)*-Aa*,., 1Il(z’,t’)dz’dt’

tIIJJz- c2(t-tt)2-4a2 Z+c(t-t’)
-(CT)-l

/[
+. 112(z’,t’)dz’dt’,o Z-c(t-tt)

z+ c2(t-t’)2-4a2
(A,8)

where Il(z’,t’) is the integrand of the first double integral in (A.7), and

12(z’,t’) is of the second one. The z’ integration of the first double

integral in (A.8) is limited to the gap, and the second is limited to the

antenna. Equation (A.8) is even more complicated than (A.7). Furthermore,

the t’ integration is from O to t, i.e., it changes with increasing t and

requires large computer memories at large value of t.

Case 3. Integrating (Al) first with respect to z’, we would obtain integral

equations similar to (A.7) and (A.8) with similar complexities.

It is concluded that (3) is most appropriate for the numerical solution o

and hence is treated exclusively in the text.
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