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Abstract

Transmission-line equations for a uniform coaxial structure whose center
f.\ conductor has impedance are derived rigorously. These equations reduce to the

usual transmission-line equations for coax when the impedance of the center
conductor becomes small. In the more general case, the effect of the impedance
of the center conductor is to modify the L and the C of the usual transmission-
line equationmns.

The center conductor impedance of anm equivalent uniform line is calculated
approximately for the case where the center conductor is a row of conducting
disks separated by homogeneous dielectric. An outline of a more exact analysis

of the disk line is also given.
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I. Introduction

It is of interest, at this time, to measure the impedance per unit length
of a structure that, to a first approximation, can be considered a uniform
circular cylinder.

One technique for making such a measurement has been suggested by Carl
Baum. He proposes to enclose a length of the test cylinder within a hollow
circular cylindrical tube, and to measure the transmission-line characteristics
(say B(w), the propagation constant, and Z(w), the transmission-line impedance)
of the cylinder-tube structure. If we also measure the transmission-line
characteristics of the structure made up of the same outer tube and a dummy
test cylinder, resembling the cylinder under study but having zero impedance
per unit length, and, furthermore, assume elementary transmission-line theory
to be strictly applicable, we have more than enough information to determine
the impedance per unit length of the test cylinder.

Alternatively, it may be possible to calculate, in some simple manner, the
inductance or capacitance per unit length of the test cylinder-tube configuration.
For example, if the test cylinder can really be accurately approximated by a
uniform circular cylinder, the inductance or capacitance calculation is elementary.
When such calculations are possible, the measurements with a dummy test cylinder
would be unnecessary. There would be enough information to determine the
impedance per unit length of the real cylinder without any extra measurements.
It would still be necessary to assume, of course, that elementary transmission-
line theory is strictly applicable.

The primary purpose of this note is to develop some way to estimate the
range of validity of the above measurement technique. The main limitation on
the validity would seem to be the assumption that elementary transmission-line
theory is strictly applicable. Therefore, we will study the full wave solution
of a certain idealized cylinder-tube configuration (a circular coaxial system)
and determine under what conditions the fdrmulas for the cylinder's impedance
per unit length, in terms of easily measured quantities, go over into the simple
formulas that are the result of the transmission-line assumption. Because of
their immediate practical interest (and because they are simpler), we will
concentrate quite a bit of attention on test cylinders .whose impedance per unit

lengfh is purely reactive.



Oue important kind of test cylinc.r can be modelled as a row of closely -
spaced paraliel disks, separsted by homogeneous dielectric material. A secondary .
purpose of the present note is to sketch an analytical treatment of such a
structure. In Section IV, we will develop an approximate uniform reactive
cylinder, equivalent to the disk line, by using some heuristic arguments. A

more exact approach te the analysis of such a line is outlined in Section V.



II. Transmission-Line Solution for a Uniform Line

Consider the transmission structure shown in figure 1. Elementary

transmission-line considerations lead us to the equations

dr _ .

i 1wC0V 2.1)
av _ _ o
37 = iwLoI Zi(w)l (2.2)

where CO and LO are certain constants, depending on the geometry of the trans-

mitting structure but not on w or Z,, and Zi(w) is the impedance per unit length

i
of the inner conductor. It follows in an elementary fashion that

Bz(w) = szoCo + iwCoZi(w) (2.3)
and
iwl ~Z, (w)
2% () = o ¥ s (2.4)
o

Elementary transmission~line theory also leads us to state that
L C, = H.E, (2.5)

Thus, by defining Bo(w) as the value of B(w) when Z, is zero, i.e.,

i

2 .2 -
Bo(w) = WU e, (2.6)

we can rewrite equation (2.3) as

82 (w) = Bg(w) + 10C_Z, () (2.7)

1
If Zi(w) were zero, Z would be equal to (Lo/Co)ﬁ’ which we will write as

Zo' With this . notation, equation (2.4) becomes



Zi = impedance per unit length of conductor 1.
5 = capacitance per unit length between conductors 1 and 2.
. = inductance per unit length between conductors 1 and 2.

Figure 1. A uniform transmission structure with inner conductor impedance.



Zi(w)

wC (2.8)
(o]

2, . 2.

72 °(w) = ZO + i

By rearranging equations (2.7) and (2.8) we can arrive at some formulas

for Zi(w) in terms of quantities measured with Zi present (B(w) and Z(w)) and
o’ Co)‘

Because of equations (2.5) and (2.6), just one number (together with the value

quantities determined primarily by the geometry of the line (Bo(w), Z

of w) is sufficient to determine all quantities of the second, geometry dependant,

type. Some formulas for Z, are

i
82w-s% W)
Zi(w) =i———0 (2.9)
o
= iwCo{Zz - zz(w)} (2.10)
- 1{12} - @I’ w - 82w} (2.11)

The technique for measuring Zi(w) mentioned in the introduction would
involve the use of one of the above formulas. In the next section we will see
how these formulas are altered, for the special case of circular coax, when a
full wave treatment of the problem is considered, rather than the elementary

transmission-line treatment we have considered in this section.



IITI. Wave Solution for a4 Uniform L:ine

Consider the special transmission structure that is defined by the inner
conductor being a circular cylinder of radius "a" and the outer conductor being
a circular cylinder of radius "b". We will consider the propagation of the
lowest T™ mode. This mode goes over into the usual TEM mode as the impedance
of the inner conductor approaches zero, and this mode will be the only propagating
mode at the frequencies of interest. It is an axially symmetric mode, and,
employing the usual notation for cylindrical coordinates ([1], p. 51), the only
field components present will be Eo(p,z), Ez(p,z), and H¢(p,z). Two relevant

components of Maxwell's equations may be written
P q y

3H, (0, 2)

Y = imeoEp(p,z) (3.1)

aEp(p,z) BEZ(D,Z)

oy - 5 = 1wuoH¢(p,z). {(3.2)

Let us integrate these equations with respect to p between the limits a and b.

The result is

b b
g% J H¢(p,z)dp = iwe J Ep(p,z)dp (3.3
a a
5 b b b
35 JaEp(p,z)dp = iwy JaH¢(p,z)dp + Ez(p,z) . (3.4)

Let us make the identifications

b
v(z) = f E (p,2)dp (3.5)
a P
I(z) = 2vaH¢(a,z) (3.6)
E_(a,2) = Z,1(2) (3.7)



Then, recalling that Ez(b,z) is zero, equations (3.3) and (3.4) mav be written as

3§§Z) = 16C_FV(2) (3.8)
wW(z) oL
=~ 1(2) - 2,1(2) (3.9)
where
o S— (3.10)

o € in(b/a)

5
o = 3m In(b/a) (3.11)
are the usual coaxial transmission-line inductance and capacitance per unit
length, while
H¢ (a,2)
F =a In(b/a) - - (3.12)
H¢(o,z)do
a
Since, for a single mode, H¢(p,z) has the same z~dependance as H¢(a,z), F is
independant of z. Thus, by defining an inductance and capacitance per unit

length through

Q
m
9!
o]

(3.13)

L = LO/F, (3.14)

we can write some transmission-line equations, for the V and I we have defined,

in the forms

ol .
"a-z: = iwCV (3”15>



%J-\i= iwLI -~ 2.1 (31.16)
aZ L

iy noting that

2 2 _ .2
wLC = w Loco = Bo(w) (3.17)
L
L 1 o) 1 2
=== = 77, (3.18)
C F2 Co F2 o}

we can use the similarity of form between equations (2.1), (2.2) and (3.153),
(3.16) to say, from equations (2.9), (2.10), and (2.11), that

Bg(w)-Bz(w)
—-———% (3.19)

Z; (w) = 1% wC F
(o]

»n

Z

lo

N

1w F; - Zz(w)$ (3.20)
° {g

Z2 %.
1{[;‘21 - Zz(w)} [Bg(w) - Bz(m):]} (3.21)

It is clear that these equations reduce to the more elementary equations

of the previous section if F is equal to unity. This will be true if Zi is very

small, since in that case
H¢(p,z) = (a/o)H¢(a,z), (3.22)

and substituting equation €3.22) into equation (3.12) leads quickly to the result
that F is unity.

We must now determine how F changes as Zi increases, and thus find out
how much we can trust equations (2.9), (2.10) and (2.11).

For the mode we are interested in, the three field components may be

written in the forms

10




ip /1—(u/ﬁoa)2 7

Ez(p,z) = EO{YO(ar)JO(ap/a) - Jo(ar)Yo(ap/a)}e © (3.23)
H¢(p,z) iwsoa iBo/l-(a/Boa)z z
Eo =-— {Yo(ar)Jl(ap/a) - Jo(ar)Yl(ap/a)}e (3.24)

5 iBo/l—(a/Boa)2 z

Ep(p,z) = - %? /Bg-az/a EO{YO(ar)Jl(ap/a) - Jo(ar)Yl(ap/a)}e

(2.25)

where the usual notation for Bessel functions ([2], Chap. 9) has been used, and
we have already satisfied the condition that Ez(b,z) be zero. Note that, in

writing the above equations, we have used the notation
r = b/a.

The o of equations (3.23), (3.24), and (3.25) must be determined from the
impedance condition at the inner cylinder, i.e.,

2maH, (a,z) iweo(Zﬂaz) Yo(ar)Jl(a)—Jo(ar)Yl(a)

L e e
Z, Ez(a,Z) ) a Yo(ar)Jo(a)-Jo(qr)Yo(a) (3.26)

In this note we are primarily interested in reactive Zi, and so we will

write

Sr
z, = —Et— | (3.27)

, 2
-iwe ma
o
where Sr is the elastance per unit length of the inner cylinder normalized to
the free space elastance per unit length of that cylinder. Note that this
elastance notation is mainly a matter of convenience; Sr could actually be a
function of frequency without disturbing any of the following arguments. Now,

from equations (3.26) and (3.27), we can rewrite the o equation in the form

5 Yo(ur)Jl(a)-Jo(ar)Yl(a)

a” =25 ¥ @03, 0-I_@oT, @) (3.28)

11



Now let us see what F is. From equations (3.12) and (3.24) it follows that

Yo(ar)Jl(a)—Jo(ar)Yl(a)

alnr
F = . (3.29)
{(a/a) Yo(ar)Jo(a)-Jo(ar)Yo(a)
and thus, making use of equation (3.28),
02 Inr
F = -Z—Sr— (3.30)

So we see that for each value of r and Sr we must solve equation (3.28)
{possibly by an iteration based on the equation resulting from taking the square
root of both sides of that equation), and then compute F from equation (3.30).

A rather pleasant way to compute the Bessel function cross products in equation

(3.28) is given in the appendix, where it is shown that

T
) Yo(ar)Jl(a)-Jo(ar)Yl(a) 9 kgl k 331
Yo(ar)Jo(a)—Jo(ar)Yo(a) r2—1 oo ‘
k£1 (T, /k)
where
T1 =1 ' (3.32)
2
-1
T, = =5 (3.33)
r
and
2 2,2 T
_r =1 o (rm-1) | k-1
Terr =72 )T Z k(k-l)} (3.34)

From the appendix it also follows that, as o approaches zero, the right
hand side of equation (3.31) approaches (1/ln r). Thus, for small S, (which
corresponds to small o), equation (3.28) gives a2 = (2 Sr/ln r}, and thus
equation (3.30) leads to F = 1, as we would hope. The values of F for several
other values of Sr and r are given in table 1, along with the corresponding

values of @ and «?. This data is also presented graphically in figures 2, 3,




4, and 5.

In Table 2 and figure 6 we give some data on (ab/a) vs. (a/b) for a few
values of Sr' Thislinformation is presented as a matter of interest. If there
were no center conductor, (ab/a) would be the first root of Jo(x), i.e.,
2.4048. We approach this value more rapidly, as (a/b) approaches zero, if Sr
is large.

Table 1 enables us to tell if the Sr we calculate from some measurements,
by the technique described in the introduction, is low enough for the technique
to be accurate (i.e., low enough for F to be close to unity). Another way to
look at this data is given in figure 7, where the maximum Sr that keeps F
greater than .99, .95 and .9 is plotted vs. (a/b).

We note from equations (2.9) and (3.19) that what we actually compute,
when we use equation (2.9), is not Zi(w) but FZi(w). But F is itself a function
of Zi (and r). We may recover Zi from FZi by using the data of table 1. The
result is a corrected version of equation (2.9) which, for the case where Zi
is equal to i(Sr/wsoﬂaz), we have displayed graphically as figure 8. By using
figure 8, a measurement of the propagation constant of the line is enough to
give us an accurate value of Sr’ without the approximation involved in assuming
elementary transmission-line theory tec be strictly applicable.

Before closing this section, it might be well to say again explicitly
why we have gone to the trouble of tabulating F in various ways. The reason is
that, for the coaxial line, 1 - F is a measure of the error incurred by using
equations such as (2.9), (2.10), and (2.11) rather than the accurate relations
(3.19), (3.20), and (3.21). Thus ! - F should also be a measure of the error
due to using elementary transmission-line formulas when the measurement setup
is almost, but not exactly, coaxial. The fact that 1 - F .is a measure of the
error for the coaxial case is clear, and rigorous, when one uses equation (2.9)
instead of Equation (3.19) for, denoting the approximate Zi by-zi, we have,

from equations (2.9) and (3.19),

=1-F.

But, even if one of the other formulas for Zi were used, 1 - F can still be

used to get a first order estimate of the relative error in Zi in the coaxial



Table 1. Correction factor vs. relative elastance for various a/b.

a/h = i
S w - uz F S o az F
r r
.01 .08954 .00802 .92297 Ll 020242 04097 47171
.02 12157 .01478 .85071 .2 .22300 .04973 .28626
.03 .14294 .02043 .78405 .3 .23029 .05303 .20352
.04 .15854 .02513 .72340 4 ,23396 05474 .15754
05 (17042 .02904 .66878 .5 .23615 .05577 .12841
.06 .17973 .03230 .61983 .6 .23761 .05646 .10833
.07 .18718 .03504 .57624 .7 .23865 .05695 .09367
.08 19324 .03734 .53737 .8 .23%43 ,05733 .08250
.09 .19823 .03930 .50270 .9 .24003 .05761 .07371
L0 20242 04097 47171 1.0 .24052 .05785 .06660
a/b = .2
S o az F S o az F
r t
.01 .10981 .01206 .97035 1 030453 09274 .74630
.02 15298 .02340 .94165 .2 .37846 .14323 .57631
.03 18458 .03407 .91392 .3 .41543 (17258 46294
.04  .20999 .04410 .88715 40 (43718 .19112  .38450
05 .23134 .05352 .86134 .5 45132 ,20369 .32783
.06  .24974 .06237 .83648 .6 46120 .21271 .28528
.07 .,26586 .07068 .81258 .7 46846 ,21946 ,25228
.08 .28017 .07850 .78959 B8 J47401 0 22469 ,22601
.09 .29298 ,08584 .76751 .9 47839 .22885 .20462
.10 30453 .09274 .74630 1.0 .48193 .,23226 .18689
a/b = .3
S o a2 F S o az F
r r
01 .12782 .01634 .98359 .1 .37593 .14132 .85073
.02 .17929 .03214 .96752 .2 49297 ,24302 .73149
.03 .21779 .04743 .95179 .3 .56333 .31734 .63677
04 .24944  ,06222 .93639 4 .61064 .37288 .56117
05 .27663 .07652 .92131 .5 .64451 41539 ,50012
.06 .36059 .09036 .90656 .6 .66986 .44871 .45019
07 .32209 .10374 .89213 .7 .68947 47537 .40881
.08 .34159 ,11668 .87802 .8 .70506 49711 .37406
.09 .35945 ,12921 .86422 .93 L71772 51512 .34455
.10 .37593 .14132 .85073 1.0 .72821 .,53029 .31922

14



Table 1 (Continued)

a/b = .4
S o az F S
r T
.01 .14698 .02160 .98972 W1
.02 .20679 .04276 .,97958 .2
.03 .25197 .06349 .96959 .3
.04 ,28947 .08379 .95973 A
.05 .32200 .10368 .95002 o5
.06 .35095 .12316 .94044 .6
07 .37716  .14225 .93100 o7
.08 .40118 .16094 .92170 .8
.09 .42339 .17926 .91252 .9
10 44408 ,19720 .90348 1.0
a/t = .5
S o az F S
T b
.01 .16929 .02866 .99324 .1
.02 .23860 .05693 .98654 2
] .03 .29124 ,08482 .,97991 .3
.04 .33517 .11234 .97335 A
.05 .37348 .13949 .96684 .5
.06 .40776 .16619 ,96040 .6
.07 .43897 .,19269 .95403 .7
.08 .46772 .21876 .94771 .8
.09 49445 .24448  ,94146 .9
.10 .51948 .26986 .93527 1.0
a/b = .6
S o az F S
r r
.01 .,19743 ,03898 .99553 .1
.02 .27858 .07761 .99108 .2
.03 .34043 .,11589 ,98667 o3
.04 ,39222 ,15383 .98228 s
.05 .43754 19144 ,97793 .5
.06 .47824 ,22871 .97360 .6
.07 51541 ,26565 .96930 o7
.08 .54979 ,30227 .96503 .8
.09 .58185 .33855 .96079 .9
.10 .61198 .,37452 .95658 1.0

15

o

44408
.59830
.69983
77374
.83035
.87516
.91355
.94152
. 96674
.98819

o

.51948
71124
.84427
. 94594
1.02738
1.09451
1.15096
.19917
.24083
.27719

[T S PRy

[0

.61198
.84690
.01549
.14861
.25859
.35193
43262
.50331
1.56588
1.62174

=t =t e et et

2
o

.19720
.35797
48977
.59867
.68947
.76590
.83458
.88646
.93459
.97651

2
a

.26986
.50586
71279
.89480
1.05551
1.19795
1.32471
1.43801
1.53966
1.63121

2
a

37452

71724
1,03123
1.31932
1.58404
1.82772
2.05239
2,25993
2.45198
2.63002

F

.90348
.82000
.74795
.68570
.63176
.58483
.54488
.50766
47575
44739

F

.93527
.87659
.82344
.77529
.73162
.69197
.65588
.62297
.59289
.56533

.95658
.91596
.87796
.84243
.80917
.77804
. 74887
.72152
.69585
67174



Table 1 (Continued)

afb = .7
S o az F S o 2 F
r T
.01 23646 .05591 .99714 .1 .73823 .534499 ,97191
.02 .33392 11151 .99428 .2 1.,02947 1.05982 .94503
.03 .40839 16678 .,99144 .3 1.24356 1.54643 .91929
.04 .47089 .22174  ,98862 4 1,41656 2.00665 .89465
.05 52573 .27639 ,98580 .5 1.56274 2.44217 .87106
.06 57508 .33072 .98300 .6 1.68956 2.85460 .84847
07 .62028 .38475 .98021 .7 1.80131 3.24543 ,82683
.08 .66217 43846 ,97743 .8 1.90159 3.61606 .80610
.09 70134 49188 .97467 .9 1.99199 3.96779 .78623
.10 .73823 54499 ,97191 1.0 2.07409 4.30183 .76718
a/b = .8
S o az F S o az F
r r
.0l .29918 .08951 .99867 .1 .9388¢9 .88151 ,98352
.02 42268 17866 ,99667 .2 1.31690 1.73423 ,96746
.03 .51725 .26754 ,99501 .3 1.59977 2.55927 .95181
04 .59677 .35613 .99335 4 1.83240 3.35769 .93656
.05 66665 44442 ,99170 .5 2.03237 4.13051 .92170
.06 72967 .53242 ,99006 .6 2.20878 4.87873 .90721
07 . 78748 .62013 .98842 .7 2.36713 5.60328 .89310
.08 .84116 70755 ,98678 .8 2.,51099 6.30510 .87934
.09 .89144 .79467 .98513 .9 2.64292 6.,98503 .86592
.10 .93889 .88151 .98352 1 2,76477 7.64395 85285
a/b = .9
S o az F S o az F
r r
0l .43553 .18968 .99926 .1 1,37268 1.88426 .99263
.02 61570 .37909 .,99852 .2 1.93413 3.74087 .98535
.03 75380 .56821 .99778 .3 2.,36016 5.57034 .97816
.04 .87009 75705 .99704 4 2,71535 7.37312 ,97104
.05 «97243 94561 .99630 5 3.02484 9.14964 .96401
.06 1.06485 1.13390 .99557 .6 3.30158 10.90042 .95706
.07 1.14974 1.32191 ,99483 .7 3.55329 12.62589 .95019
.08 1.22867 1.50963 .99410 .8 3.78503 14.32648 .94340
.09 1.30272 1.69708 .99336 .9 4.00033 16.00263 .93669
10 1.37268 1.88426 .99263 1.0 4.20176 17,65478 .93006
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S

r
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10

.01
.02
.03
.04
.05
.06
.07
.08
.09
.10

.01
.02
.03
.04
.05
.06
.07
.08
.09
.10

o

.26338
.37205

45517

.52500
.58631
64156
.69220
.73918
.78315
.82461

o

.22172
.31303
.38275
44123
.49249
.53860
.58079
.61987
.65638
.69075

o]

.13398
.18816
.22886
. 26244
.29140
.31704
.34012
.36115
.38048
.39839

2
o

.06937
13842

.20718 -

.27562
.34376
41161
.47915
.54639
.61333
" .67998

2
o

.04916
.09799
.14650
. 19468
.24255
.29009
.33732
.38423
.43084
47713

2
o

.01795
.03541
.05238

.06887

.08492
.10051
.11568
.13043
14477
.15871

Table 1 (Continued)

F

.99777
.99556
.99335
.99114
. 98895
.98676
. 98458
.98241
. 98025
.97809

F

.99665
.99333
.99001
.98672
. 98344
.98018
. 97694
.97371
. 97049
.96730

F

.98609
.97242
.95901
.94583
.93291
.92022
.90777
.89555
.88357
.87181

a/b = 3/4

[7,]

a

.82461
1.15348
1.39754
1.59661
1.76636
1.91494
2.04726
2.16657
2.27515
2.37470

SOSWoOo~~NNOTULLE LD EFE R

—

a/b = 2/3
S o

r

1 .69075
2 .96104
3 1.15830
.4 1.31661
.5 1.44946
6 1.56395
7 1.66438
8 1.75361
9 1.83365
0 1.90603

a/b =1/3
S o

.39839
.52812
.60903
.66516
.70639
.73789
. 76267
.78264
+79904
.81275

oWV~ WNDEF R

17

2
o

.67998
1.33052
1.95311
2.54916
3.12002
3.66699
4,19126
4.69401
5.17631
5.63922

2

a

47713

.92359
1.34166
1.73346
2.10095
2.,44595
2.77017
3.07513
3.36228
3.63294

2
o

.15871
.27891
.37092
44244
.49899
.54448
.58167
.61253
.63846
.66055

F

.97809
.95692
.93646
.91668
.89757
.87911
.86125
.84399
.82730
.81115

.96730
.93621
. 90666
.87857
.85186
.82646
.80229
.77929
.75738
.73652

F

.87181
. 76605
.67917
.60759
.54820
.49847
45645
.42058
.38968
.36285



81

Figure 2.

Correction factor vs. relative elastance for thin inner conductors,
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Figure 3.

Correction factor vs. relative elastance for thick inner conductors.
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Table 2. ab/a vs. a/b for a few values of relative elastance.

Sr = ,01 Sr = ,1
a/b ab/a a/b ab/a
0 2.4048 0 2.4048
s | 8954 .1l 2.0242
.2 53491 2 1.5227
3 L4261 .3 1.2531
A .3675 A 1.1102
.5 .3386 .5 1.0390
.6 .3291 .6 1.0200
7 .3378 .7 1.0546
.8 .3740 .8 1.1736
.9 .4839 .9 1.5252
S = .02 s = .2
r r
alb ab/a a/b ab/a
0 2.4048 0 2.4048
.1 1.2157 .1 2.2300
.2 . 7649 .2 1.8923
.3 .5976 .3 1.6432
A .5170 4 1.4958
.5 4772 .5 1.4225
.6 4643 .6 1.4115
.7 4770 o7 1.4707
.8 .5284 .8 1.6461
.9 .6841 .9 2.1490
S = .05 S = 1.0
r _ r
a/b ab/a a/b ab/a
0 2.4048 0 2.4048
.1 1.7042 .1 2.4052
.2 1.1567 2 2.4097
.3 .9221 .3 2.4274
4 .8050 4 2.4705
.5 L7470 5 2.5544
.6 .7292 .6 2.7029
.7 7510 o7 2.9630
.8 .8333 .8 3.4560
.9 1.0805 .9 4.6686
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Figure 8. A corrected version of equation (2.9).
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case. For example, if equation (2.11) were used instead of equation (3.21), we

- )
2,2, zﬁ—zz 2
=1 - f{—2%

have

ZZ-FZZ2
Q

or, if 1 - F = §,
1

ziJE. zi-z2 2
Za21-F
z

§—ZZ+2622—5222

=5 —L—— 4 0¢s?)

2
1-(2/2)
All relevant quantities in the final expression are easily obtainable from

measurements or the tables, and so we can quickly determine if equation (2.11)

is adequate in any given case.
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IV. Uniform Line Equivalent of a Disk Line

‘. Consider the transmitting structure shown in figure 9. The center
"conductor" of this structure is made up of a row of uniformly spaced metallic
disks, separated by a homogeneous dielectric. This structure is an idealized
model of a structure that is of practical importance. Let us see what can be
done toward an analytical treatment of this structure. In this section, we
will briefly derive an approximate Zi for the row of disks, based on some rather
handwaving arguments, and present some numerical data on this approximate Zi'
In the next section, we will outline a more exact approach.

If the disks of figure 9 are close together, compared to their radii,
then between each pair of disks the dominant electric field will be along the
z-axis, and will vary very little with z. Thus, approximate equations for the

fields between the disks are

Ez(o,Z) & EoJo(neoo) (4.1)
H (p,2) .
. |

" Eo = Z, Jl(nsop) | (4.2)

where

I
N
fo—
i
3=
m] =
o

(4.3)
(o]
n? 2 ele (4.4
, g
e e B, T uw HoEg (4.5)

If equations (4.1) and (4.2) were good approximations all the way out to
p = a (and these approximations improve as A/a decreases) then, from the

definition of Zi’ we could say immediately that

J (nB_a)(8/4)
= S (4.6)

"' | Zi 21Ta(->i/Zl)Jl (nBoa)
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Figure 9. A disk line.
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|

where the Ez field at p = a, which is nonzero only between the disks, has been
averaged over a full A period of the structure.

In order to make use of the tables of the previous section, it would be
more useful to write an equivalent Sr from the above Zi' It is not hard to

see that this equivalent Sr is just

2 Jo(nsoa)
S, = Zi(-iweowa ) = we _aZ, EEI?EEZET (8/4) 4.7)
= L8 g(ng,a) (4.8)
n
where
xJo(x)
gx) = zjzzgy (4.9)

We have tabulated g(x) in table 3 and drawn it in figure 10. From this
data, and the tables of the previous section, one can determine the approximate

behavior of a disk line.
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Table 3.

"

.

....... .,
- O W 0 O~ W P W N

et et

=
(VS T ]

1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3

Auxiliary function for computing the effective Sr of a disk line.

g(x)

.99875
.99499
.98871
.97987
.96842
.95431
.93746
.91778
.89515
.86944
. 84050
.80812
.77210
73217
.68802

.63929

.58551
.52619
.46068
.38821
.30783
.21826
.11831
.00578
-.12167
-.26729
-.43547
-.63228
-.86635
-1.15047
-1.50438
-1.96026

~2.57446_

X g(x)
3.4 -3.45543
3.5 ~4,84230
3.6 ~7.38680
3.7 -13.71950
3.8 ~59.65653
3.9 28.76085
4.0 12.02695
4.1 7.71519
4.2 5,70348
4.3 4,51535
4.4 3.71329
4.5 3.12136
4.6 2.65488
4.7 2.26790
4.8 1.93307
4.9 1.63288
5.0 1.35538
5.1 1.09183
5.2 .83547
5.3 .58064
5.4 32219
5.5 .05512
5.6 -.22588
5.7 -.52684
5.8 -.85503
5.9 -1.21974
6.0 -1.63340
6.1 -2.11338
6.2 -2.68515
6.3 -3.38804
6.4 ~4,28652
6.5 -5.49469
6.6 -7.23590
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6.7
6.8
6.9
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

g(x)

-10.01623
-15.28040
-29.46685
-224.28387
42.,20694
19.55293
12.74061
9.40301
7.38477
6.00505
4.98063
4.17215
3.50275
2.92625
2.41286
1.94218
1.49931
1.07265
.62560
.23053
-.20197
-.65372
-1.13472
-1.65708
-2.23631
-2.89335
-3.65791
-4.57423
-5.71214
~7.18939
-9.22252
-12.25929
-17.40078
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Figure 10. Auxiliary function for computing effective Sr of a disk line.
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V. an Exact Appros - ‘or a Disk line

Since the line whose idealized model is given as figure 9 is of more than
passing practical interest, it may be helpful to have available a more exact
analysis of such a structure than can be obtained by assuming an 'equivalent"
uniform line, as we did in the previous sectiom.

A structure quite similar to that of figure 9, the iris-loaded circular
waveguide, has received quite a bit of attention in the literature because of
its use in linear accelerators. All we need to do here is to make some slight
changes in the available analyses of iris-loaded structures. The result will
be an infinite determinantal equation (to be truncated and evaluated numerically)
for the determination of the propagation constants of the various modes that
can exist in the disk line.

We will follow closely the analysis of the iris-loaded line by Walkinshaw

{3] (a previous, bestter known, paper by Walkinshaw gave an approximate analysis

of the iris~loaded guide; reference [3] gives a shorter, more accurate analysis).

For the sake of simplicity, we will treat only the case of infinitesimally thin
disks (8 = 4). '

In the outer (a < p < b) region of the disk line, we will write the fields
in the form ’

o 2mm

F (a_jr,m/a) i(B+ =)z
11 _ o' 'm A )
Ez {p,z) = ZE: e T CRTR) e (5.1)
o' m
M=o
- : oy 2T
HII(D Z) - ive a 2 fE Fl(um’rsp/a) el(8+ A )Z (5 2)
o P o a F (¢ ;r,l) '
= m [» m
where
r = b/a (5.3)
o 2 2
my . g2 . 2m
(a ) = Bo (B + A ) (5.4)
and
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‘. Fo(am;r,p/a) Yo(ocmr).]o (amp/a) - Jo(amr)Yo(amp/a) (5.5)

Fl(am;?,p/a) Yo(amr)Jl(amp/a) - Jo(amr)Yl(amp/a) (5.6)
Equations (5.1) and (5.2) are the forms established by Floquet's theorem
and the boundary condition on EZ at the surface p = b,
In the inner (p < a) region, we will choose a form for the fields that is
finite on the z-axis and has zero radial field on the disks. Such a form; in

the basic region (-4/2 < z < A/2) (note that in the region (N - %)A < z < (N + L))

we must multiply each BS and DS coefficient by elNBA) is:
- J (y_o/a) - J (ylp/a)
(1) - E : 0''s 2nsz 2 : 0''s . ,2s8=1 "
Ez (p,2) = BS SACR) cos n ) + Ds SO sin( X nz) (5.7)
... ‘s=0 o 's =1 o''s

[=<] @

(1)
H " (p,z) B J,(y p/a) D J,(y'p/a)
To P z 'i 1 s cos (2252 4 E =L s sin<2*2'l 1z)  (5.8)

1 1} ]
iwe JO(YS) A Yo JO(YS)
; s8=0 s=1

where
Y (2 2
s\ _ a2 _ (27s
<a > =& A (5.9)
y'.2 2
s\" _ .2 2s=-1
(32) =88 -&Ln (5.10)

By matching the two representations for Ez on the p = a surface, we obtain

the relations

BA= ) eC (5.11)

1
7B84= ] ec (5.12)
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where
872 2rsz L(a+ %ﬂ)z
om = ) os( A )] dz
F-n/2
= 2()™° st B+(2"§/A) ; (5.14)
o Ce+(2mm/A)]"-(2ms/A)
and
a2 . i (a+
Ssm = J , sin x TZ)e dz
-0/2
= 21(=)™S o5 (B 8+ (2mm/4) (5.15)

27 [pe(2mm/8)1P-[n(2s-1/0) 7

Now we must also match the two representations for H¢ on the p = a

surface. These matching equations take the form

BOA 9 JI(YO) e Fl(am;r,l)
Y "3 (v ) - @ F (@ ir,b) Com (5.16)
o oo —— B0 m’?
B A 2 I &) _ Z _eEFl(am;r,l) . 517
2y g I Grg) L a F (o 3r,1) “sm :
DA I ) gy FilpimD)

. — = E . ML (5.18)
2v J ) a F (e sr,l) “sm

m=—x

or, making use of equatioms (5.11), (5.12), and (5.13),

-]

e ¢ (At ——2 ==
Z m sngs Jo(vs) @ Fo(am;r,l)

m=-

s = 0,1, (5.19)
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o

1 .
1""m
S s 3%——-?—-——————7——— =0 sel2,e (5.20)
" m sm YS JO(YS) O"m Fo(am9r91)

= -0

We may give these equations a little more presentable appearance by multiplying

the first set by

(=)°
24 sin(BA/2)

the second set by

ON
2iA cos(BA/2) '

- . . (O . .
and defining new variables eé by eé z (=) e - The truncated version of equations

equivalent to (5.19) and (5.20) may then be written in the form

N
z M e' = 0 8 = o,l’aa.ZN (5.21)
sm m
m==N
‘. where
P S AN -
sm (AB+2ﬂm)2-(ns)2 Tz J (T) o Fo(am;r,l)
and

(Ef 8, - (is—)z (5.23)

a T Yo A .

The propagation constant, B, is determined by setting the determinant of
the set (5.21) equal to zero (there are several roots of course; we are interested
primarily in the smallest one). The accuracy increases as we increase N, If N
is zero we return to the approximation of the previous section (for § = 4).
Walkinshaw efféctively says that, in the case of the iris-loaded guide, we get
about one part in a thousand error in 8, if A/a is not too large, when N is one.
There should be no great difficulty in obtaining very accurate values of 8 in the
present case, should it become desirable to do so.

The present analysis can be readily extended to the case where the disks

have finite thickness. It just gets about twice as messy.
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VI. Ceonclusion

The main result of this note is that, with the tables and curves of
Section III, we have available a way tc tell whether the impedance per unit
length, measured and calculated by the simple techniques of Sections I and II,
is really the impedance per unit length of the structure under test.

The tables and curves of Section III could be extended, in some future
note, to include complex values of Zi’ rather than the pure imaginary values of
Zi that we have examined here. The same development, including equation (3.28)
and equations (3.31) to (3.34), would hold in the more general case (Sr andra
would be complex). It is believed that, for the test structures that are
presently of interest (which have a dominantly imaginary Zi) the present data

should be sufficient.

A secondary result of the note is the beginning of an accurate analysis of
a digk line. Should it become necessary, it would be straightforward to carry

out numerical work, based on the present analytical work.
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‘. Appendix
An Algorithm for Two Bessel Function Crossproducts

In this appendix we will develop expressions that are well suited to

numerical evaluation for the two Bessel function crossproducts used in the note

Bo(u,r) = (W/Z)[Yo(ar)Jo(a) - Jo(ar)Yo(a)j = (n/Z)Fo(a;r,l) (A»lz

By (,r) = (@n/D)LY (@r)I @) = I (@)Y, (@] = (n/2)F, (asx,1) (A.2)

From the multiplication theorem for Bessel functions ([2], p. 363),

setting (ar) = x, we get

© 2.k k
B Geor) = 3 ] LRMELEID 1y 61 6o - 3 GoY, (0] (a.3)

k=0

The first term in this series disappears. The crossproducts within the series

satisfy the difference equation for Bessel functions; i.e., if
{
¢ = (ﬂ/Z)EYO(X)Jk(X) - I, 01, ()] (A.4)
we have
c - 2k e, =-¢ (A.5)

with

¢, = (l/x) = (1/ar) 7 (A.6)
¢, = (2/x%) = @/a’c?) (4.7)
and we can write
. B ( ) = OZO (___r—l/r)kgli ([- 8)
o a,r = £ 5 k' Cko Lo
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in a similar manner it follows that

"o 2.k K
_an (1-1/x") "(x/2)
Bl(a,r) =57 kéo T [Yo(x)3k+l(x) - Jo(x)Yk+1(xﬂ (A.9)

] E (r—l/r)k-l ak-l (4.10)
T L2 &-DT '

Now let us define some new coefficients through

r-l/r k"’l ak"l
'I.‘k = gr( 5 )] DT Sk (A.1D)
thus
B =L T 1 (A.12)
1Y 2 k '
r° k=1
and
2 « T
B (a,r) =S58 [ & (A.13)
2r° k=1

while, from equation (A.11) and the difference equation for Cr? it follows that

s ) P D M = A1)
T2 |k Z k(k-1) ‘

with

T1 =1 (A.15)
r2-1
Tz = r2 (A.16)

Expressions (A.12) and (A.13) are easy to evaluate, with even a desktop
computer. The Tk's are generated from equation (A.l4), using equations (A.l5)
and (A.l6) to get started. Equations (A.12) to (A.16) make up the algorithm we

have been aiming at.
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k-1

Note that, if o = 0, Tk = (]l - 1/r2)

1 - r2
Bl(o,r) = _2 Z a5
: 1 r

r k=

2 © 2 k-1
r-1 r =1 1
B,(0,r) = = Zl (——2 ) cx=lnr

2r" k=
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, and so

k-1
1) -1



References .
1941,

[1] Julius Adams Stratton, Electromagnetic Theory, McGraw-Hill, New York,

[2] Milton Abromowitz and Irene 4. Stegun, editors, Handbecok of Mathematical

Functions, National Bureau of Standards, AMS-535, 1964,

[3] w. Walkinshaw, "Notes on 'Wave Guides for Slow Waves'," Journal of Applied
Physics, vol. 20, p. 634 (1949).

40



