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n conductor has impedance

usual transmission-line

Abstract

equations for a uniform coaxial structure whose

are derived rigorously. These equations reduce

center

to the

equations for coax when the impedance of the center

conductor becomes small. In the more general case, the effect of the impedance

of the center conductor is to modify the L and the C of the usual transmf.ssion-

line equations.

The center conductor impedance of an equivalent uniform line is calculated

approximately for the case where the center conductor is a row of conducting

disks separated by homogeneous dielectric. An outline of a more exact analysis

of the disk line is also given.
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I. Introduction

o

0

It is of interest, at this time, to measure the impedance per unit length

of a structure that, to a first approximation, can be considered a uniform

circular cylinder.

One technique for making such a measurement has been suggested by Carl

Baum. He proposes to enclose a length of the test cylinder within a hollow

circular cylindrical tube, and to measure the transmission-line characteristics

(say B(u), the propagation constant, and Z(u), the transmission-line impedance)

of the cylinder-tube structure. If we also measure the transmission-line

characteristics of the structure made up of the same outer tube and a dummy

test cylinder, resembling the cylinder under study but having zero impedance

per unit length, and,’furthermore, assume elementary transmission-line theory

to be strictly applicable, we have more than enough information to determine

the impedance per unit length of the test cylinder.

Alternatively, it may be possible to calculate, in some simple manner, the

inductance or capacitance per unit length of the test cylinder-tube configuration.

For example, if the test cylinder can really be accurately approximated by a

uniform circular cylinder, the inductance or capacitance calculation is elementary.

When such calculations are possible, the measurements with a dummy test cylinder

would be unnecessary. There would be enough information to determine the

impedance per unit length of the real cylinder without any extra measurements.

It would still be necessary to assume, of course, that elementary transmission-

line theory is strictly applicable.

The primary purpose of this note is to develop some way to estimate the

range of validity of the above measurement technique. The main limitation on

the validity would seem to be the assumption that elementary transmission-line

theory is strictly applicable. Therefore, we will study the full wave solution

of a certain idealized cylinder-tube configuration (a circular coaxial system)

and determine under what conditions the formulas for the cylinder’s impedance

per unit length, in term of easily measured quantities, go over into the simple

formulas that are the result of the transmission-line assumption. Because of

their immediate practical interest (and because they are simpler), we will

concentrate quite a bit of attention on test cylinders whose impedance per unit

length is purely reactive.

3
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,

Oile.@por&ant kind of test cylini:r ~an be modelled as a row of closely

spaceu paraliel disks, separsted by homogeneous dielectric material.. A secondary
o

purpose of the present note is to sketch an analytical treatment of such a

structure. In Section IV, we will develop an approximate uniform reactive

cylinder, equivalent to the disk line, by using some heuristic arguments. A

more exact approach to the analysis of such a line is outlined in Section V.
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II. Transmission-Line Solution for a Uniform Line

Consider the transmission structure shown in figure 1. Elementary

transmission-lineconsiderations lead us to the equations

dI
z = ‘*cov

~=iuL1 ‘
dZ

- Zi(u)I
c1

(2!.1)

(:!.2)

where C and Lo are certain constants$ depending on the geometry of the trans-
0

mitting structure but not on u or Zi, and Zi(u) is the impedance per unit length

of the inner conductor. It follows in an elementary fashion that

62(0)=U“2LOC0+ iuCoZi(u) (2!.3)

and

iuLo-Z.(u)
Z2(U) =- ~uc= (2!.4)

o

Elementary transmission-line theory also leads us to state that

LOCO = Voso.

l%us, by defining @o(u) as the value of 6(w) when Zi is zero, i.e.,

6:(U)= 2u peso,

we can rewrite equation (2.3) as

62(U)= 6:(U)+ iucozi(tl.o

(2!.5)

(~!.6)

(2!.7)

%If Zi(u) were zero, Z would be equal to (Lo/Co) , which we will write as

20, With this.notation, equation (2.4) becomes

5
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impedance per unit length of conductor 1.

capacitance per unit length between conductors 1 and 2.

inductance per unit length between conductors 1 and 2.

‘,,

A uniform transtnissianstructure with inner conductor impedance.
,.
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Zi(k))
Z2(LJ=Z~+i —

b)c (2.8)
o

By rearranging equations (2.7) and (2.8) we can arrive at some formulas

for Zi(w) in terms of quantities measured with Zi present (B(u) and Z(u)) and

quantities determined primarily by the geometry of the line (Be(u), Zo, Co).

Because of equations (2.5) and (2.6), just one number (togetherwith the valu,e

of u) is sufficient to determine all quantities of the second, geometry depen,dant,

type. Some formulas for Zi are

&d-f32(u)
Zi(u) =i

UC
o

= iwCo{Z~ - Z2(0J)}

= i{[Z~ - z2(dl[@ - 82(U)]}+

(2.9)

(2.10)

(2.11)

The technique for measuring Zi(u) mentioned in the introduction would

involve the use of one of the above formulas. In the next section we will see

how these formulas are altered, for the special case of circular coax, when a

full wave treatment of the problem is considered, rather than the elementary

transmission-line treatment we have considered in this section.



111. Wave Solution for a Uniform L~ne

Consider the special transmission structure that is

conductor being a circular cylinder of radius “a” and the

defined by the inner

outer conductor being

a circular cylinder of radius “b~’. We will consider the propagation of the

lowest TM mode. This mode goes over into the usual TEM mode as the impedance

of the inner conductor approaches zero, and this mode will be the only propagating

mode at the frequencies of interest. It is an axially syuunetricmode, and,

employing the usual notation for cylindrical coordinates ([11,P- ~1)~ the only

field components present will be Ep(p,z), Ez(p,z), and H4(P,Z). Two relevant

components of Maxwell’s equations may be written

3H,(P,z)
‘+ = iu~oEP(p,z)

mp(p,z)

az -

Let us integrate these equations

The result is
.

aEz(p,z)

ap = iwu H (p,z).
04

(3.1)

with respect to p between the limits a and b.

a J
b

s aH4(’’z)dp = ‘U’o ‘aEp(p’z)dp

Iab
\
b b

E (p,z)dp = iw
Gap aH@(p’z)dp + ‘z(p’z)~a

Let us make the identifications

/

b
v(z) z

aEp(p’z)dp

L(z) z 2~aHO(a,z)

Ez(a,z) = ZiI(z)

(3.3)

(3.4)

(3.5]

(3.6)

(3.7)

8
.



Then, recalling that Ez(b,z) is zero, equations (3,3) and (3.4) may be written as

where

31(Z)
— = iuCoFV(z)az

av(z)= iwL

az
Q I(z)
F

- ZiI(z)

c 2Tr
o ‘< ln(bla)

!J
Lo = ~ ln(b/a)

(3.8)

(3.9)

(3.10)

(3.11)

are the usual coaxial transmission-line inductance and capacitance per unit

length, while

H+(a,z)
F = a In(b/a) b .

j

(3.12)

H$(P,z)dp
a

Since, for a single mode, H+(P,Z) h= the same z-dependence as H@(a,z), F is

independent of z. Thus, by defining an inductance and capacitance per unit

length through

C = COF (3.13)

L= Lo/F, (3.14)

we can write some transmission-line equations,for the V and I we have defined,

in the forms

aI
z= ‘Ucv (3,!15)



. .

f~ynotirtgtlult

2
M2LC =uLC

00
= B:(w)

.

(3.16)

0

(3.17)

(3.18)

we can use the similarity of form between equaeions (2.1), (2.2) and (3.15),

(3.16) to say, from equations (2.9), (2.10), and (2.11), that

1
f3:(Ld)-82(LJ

‘i(u) = i UCOF
1

(3.19)

(3.20)

(3.21)

It is clear that these equations reduce to the more elementary equations

of the previous section if F is equal to unity. This will be true if Zi is very

small, since in that case

H4(P,Z) = (a/p)H@(a,z), (3.22)

and substituting equation (3.22) into equation (3.12) leads quickly to the result

that F is unity.

We must now determine how F changes as Zi increases, and thus find out

how much we can trust equations (2.9), (2.10) and (2.11).

For the mode we are interested in, the three field components may be

written in the forms

10
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0

0

2
ifio/l-(u/Boa) z

EZ(P,Z) = Eo{Yo(ar)Jo(c,p/a)- Jo(ar)Yo(ap/a)}e

H+(P,Z) iwcoa i60J1-(a/f30a)zz
=

E -—{Y (ar)Jl(ap/a)-Jo(ar)Yl(ap/a)}ea o
0

if30J1-(a/60a)2
Ep(p,z) = -~ /f3~-a2/a2Eo{Yo(ar)Jl(ap/a) - Jo(ar)Yl(ap/a)}e

where the usual notation for Bessel functions ([2], Chap, 9) has been used,

we have already satisfied the condition that Ez(b,z) be zero. Note that, in

writing the above equations, we have used the notation

r % b/a.

(2,.23)

(3.24)

z

(3.25)

and

The a of equations (3.23), (3.24), and (3.25) must be determined from the

impedance condition at the inner cylinder, i.e.,

1
2~aH@(a,z) iuEo(2na2) Yo(ar)Jl(a)-Jo(ar)Yl(a)

—=

‘i Ez(a,z) = - 1Yo(ar)Jo(a)-Jo(c%r)Yo(a)I
(~,26)

a

In this note we are primarily interested in reactive Zi, and so we will

write

Zi =
-iu1r7ra2‘o

where Sr is the elastance per unit length of the

the free space elastance per unit length

elastance notation is mainly a matter of

function of frequency without disturbing

from equations (3.26) and (3.27), we can

of that

(3.27)

inner cylinder normalized to

cylinder. Note that this

convenience; Sr could actually be a

any of the following arguments. Now,

rewrite the a equation in the form

C12 1yo(ar)J1(a)-Jo(ar)yl(a)=2sa
r Yo(ar)Jo(a)-Jo(ar)Yo(a’)1

(3.28)

11



Now let us see what F is. From equat:ons (3.12) and (3.24) it follows chat

oa In r yo(ar)Jl(a)-Jo(ar)Yl(a)
F=

(a/a) I 1Yo(ar)Jo(a)-Jo(ar)Yo(a) ‘
(3.29)

and thus, making use of equation (3.28),

F
ci2In r=

2s
r

(3.30)

So we see that for each value of r and S= we must solve equation (3.28)

(possibly by an iteration based on the equation resulting from taking the square

root of both sides of that equation), and then compute F from equation (3.30).

A rather pleasant way to compute the Bessel function cross products in equation

(3.28) is given in the appendix, where it is shown that
CD

I 1
1 T~Yo(ar)Jl(a)-Jo(ar)Yl(a) = 2 k=L

a Yo(ar)Jo(a)-Jo(ar)Yo(a)
r2-1 ~

~ (Tk/k)
k=1

where

‘1=1

r2-1
T2=7

and

r2-11 a2(r2-1) ‘k-1
‘k+l=~ ‘k- 4 “m

1

(3.31)

(3.32)

(3.33)

(3*34)

From the appendix it also follows that, as a approaches zero, the right

hand side of equation (3.31) approaches (l/In r). Thus, for small Sr (which

corresponds to small a), equation (3.28) gives a2 = (2 Sr/in r), and thus

equation (3,30) leads to F = 1, as we would hope. The values of F for several

other values of S= and r are given in table 1, along with the corresponding
2values of a and a , This data is also presented graphically in figures 2, 3,
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0 4, and 5.

In Table 2 and figure 6 we give some data on (ah/a) vs. (a/b) for a few

values of Sr. This information is presented as a matter of interest. If there

were no center conductor, (ah/a) would be the first root of JO(X)> i.e.>

2.4048. We approach this value more rapidly, as (a/b) approaches zero, if Sr

is large.

Table 1 enables us to tell if the Sr we calculate from some measurements,

by the technique described in the introduction, is low enough for the technique

to be accurate (i.e., low enough for F to be close to unity). Another way to

look at this data is given in figure 7, where the maximum Sr that keeps F

greater than .99, .95 and .9 is plotted vs. (a/b).

We note from equations (2.9) and (3.19) that what we actually compute,

when we use equation (2.9), is not Zi(U) but FZi(~)~ But F is itself a function

of Zi (and r). We may recover Zi from FZi by using the data of table 1. The

result is a corrected version of equation (2.9) which, for the case where Zi

is equal to i(Sr/ucofla2), we have displayed graphically as figure 8. By using

figure 8, a measurement of the propagation constant of the line is enough to

give us an accurate value of Sr, without the approximation involved in assuming

elementary transmission-line theory to be strictly applicable.

Before closing this section, it might be well to say again explicitly

why we have gone to the trouble of tabulating F in various ways. The reason is

that, for the coaxial line, 1 - F is a measure of the error incurred by using

equations such as (2.9), (2.10), and (2.11) rather th{lnthe accur:)tcrelatior,s

(3.19), (3.20), and (3.21). Thus 1 - F should also be a measure of the error

due to using elementary transmission-line formulas when the measurement seturl

is almost, but not exactly, coaxial. The fact that 1 - F .isa measure of the

error for the coaxial case is clear, and rigorous, when one uses equation (2.9)

instead of Equation (3.19) for, denoting the approximate Z -i by Zi, we have,

from equations (2.9) and (3.19),

Zi-zi
—=
z 1 - F.
i

But, even if one of the other formulas for Z< were used, 1 - F can still be

o
J.

used to get a first order estimate of the relative error in Z. in the coaxial.
1

1,3
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Table 1. Correction factor vs. relative elastance for various a/b.

a/h= .i

2
c1Sr F Sr acl. F

.01

.02

.03

.04

.05
● 06
.07
.08
.09
.10

.08954

.12157

.14294

.15854

.17042

.17973
,18718
,19324
.19823
.20242

.92297

.85071

.78405

.72340

.66878

.61983

.57624

.53737

.50270

.47171

.1 .20242

.2 .22300

.3 .23029

.4 .23396

.5 .23615

.6 .23761

.7 .23865

.8 .23943

.9 .24003
1.0 .24052

.00802

.01478

.02043

.02513

.02904

.03230

.03504

.03734

.03930
● 04097

.04097

.04973

.05303

.05474

.05577

.05646

.05695
,05733
.05761
.05785

.47171

.28626

.20352

.15754

.12841

.10833

.09367

.08250

.07371

.06660

a/b = .2

F Sr Fa

.01 .10981

.02 .15298

.03 .18458

.04 .20999

.05 .23134

.06 .24974

.07 .26586

.08 .28017

.09 .29298

.10 .30453

.01206

.02340

.03407

.04410

.05352

.06237

.07068

.07850

.08584

.09274

.97035

.94165

.91392

.88715

.86134

.83648

.81258

.78959

.76751

.74630

.1

.2

.3
●4
.5
.6
●7
.8
.9

1.0

.30453

.37846

.41543

.43718

.45132

.46120

.46846

.47401

.47839

.48193

.09274

.14323

.17258

.19112

.20369

.21271

.21946

.22469

.22885

.23226

.74630

.57631

.46294

.38450

.32783

.28528

.25228

.22601

.20462

.18689

a/b = .3

a’ 2
aSr a F Sr Fa

.01 .~~782

.02 .17929

.03 .21779

.04 .24944

.05 .27663

.06 .3G059

.07 .32209

.08 .34159

.09 .35945

.10 .37593

,01634
.03214
.04743
.06222
.07652
.09036
.10374
.11668
.12921
.14132

.98359

.96752

.95179

.93639

.92131

.90656
,89213
.87802
.86422
.85073

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0

.37593

.49297

.56333

.61064

.64451

.66986

.68947

.70506

.71772

.72821

.14132
“.24302
.31734
.37288
.41539
.44871
,47537
.49711
.51512
,53029

.85073

.73149

.63677

.56117

.50012

.45019

.40881

.37406

.34455

.31922

14
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Table 1 (Continued)
i

90
alb = .4

Sr C12 FF s=a (%

.44408

.59830
,69983
.77374
.83035
.87516
.91355
.94152
.96674
.98819

a

.51948

.71124

.84427

.94594
1.02738
1.09451
1.15096
1.19917
1.24083
1.27719

a

.61198

.84690
1.01549
1.14861
1.25859
1.35193
1.43262
1.50331
1,56588
1.62174

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.14698

.20679

.25197

.28947

.32200

.35095

.37716

.40118

.42339

.44408

.02160

.04276

.06349

.08379

.10368

.12316
,14225
.16094
.17926
.19720

.98972

.97958

.96959

.95973

.95002

.94044

.93100

.92170

.91252

.90348

.1

.2

.3

.4

.5

.6

.7

.8

.9
1*O

.19720

.35797

.48977

.59867

.68947

.76590

.83458

.88646

.93459

.97651

.90348

.82000

.74795

.68570

.63176

.58483

.54488

.50766

.47575

.44739

alb = .5

1122
a a FSr F Sr

.1

.2

.3

.4
●5
.6
.7
.8
.9

1.0

.26986

.50586

.71279

.89480
1.05551
1.19795
1.32471
1.43801
1.53966
1.63121

.93527

.87659

.82344

.77529

.73162

.69197

.65588

.62297

.59289

.56533

.01
●O2
.03
.04
.05
.06
,07
.08
.09
.10

.16929

.23860

.29124

.33517

.37348

.40776

.43897

.46772

.49445

.51948

.02866

.05693

.08482

.11234

.13949

.16619

.19269

.21876

.24448

.26986

.99324

.98654
●97991
●97335
.96684
.96040
.95403
.94771
.94146
.93527

a/b = .6

2
a a (X2 Fs= F Sr

.19743 ‘.03898

.27858 .07761

.34043 .11589

.39222 ,15383

.43754 .19144

.47824 .22871

.51541 ,.26565

.54979 .30227

.58185 .33855
,61198 .37452

.01

.02

.03

.04

.05

.06

.07

.08

.09
,10

.99553

.99108

.98667

.98228

.97793

.97360

.96930

.96503

.96079
,95658

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0

.37452

.71724
1.03123
1.31932
1.58404
1.82772
2.05239
2.25993
2.45198
2.63002

.95658

.91596

.87796

.84243

.80917

.77804
,74887
.72152
.69585
.67174

15
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Table 1 (Continued)

a/b = .7

2
a 2Sr

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

s
r

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

s=

.01

.02
● 03
.04
.05
.06
.07
.08
.09
.10

F s=cl a

.73823

F

.23646

.33392

.40839

.47089

.52573

.57508

.62028

.66217

.70134

.73823

.05591

.11151
,16678
.22174
.27639
.33072
.38475
.43846
.49188
.54499

,99714
.99428
.99144
.98862
.98580
.98300
.98021
.97743
.97467
.97191

.1

.2
●3
.4
.5
.6
*7
.8
.9

1.0

.54499
1.05982
1.54643
2.00665
2.44217
2.85460
3.24543
3.61606
3.96779
4.30183

.97191

.94503

.91929

.89465

.87106

.84847

.82683

.80610

.78623

.76718

1.02947
1.24356
1.41656
1.56274
1.68956
1.80151
1.90159
1.99199
2.07409

a/b = .8

u
2

a F Sr a
2

CX F

.29918

.42268

.51725

.59677

.66665

.72967

.78748

.84116

.89144

.93889

.08951

.17866

.26754

.35613

.44442

.53242

.62013

.70755

.79467

.88151

.99867

.99667

.99501

.99335

.99170

.99006

.98842

.98678

.98513

.98352

.1

.2

.3

.4

.5

.6

.7

.8

.9

.1

.93889
1.31690
1.59977
1.83240
2.03237
2.20878
2.36713
2.51099
2.64292
2.76477

.88151
1.73423
2.55927
3.35769
4.13051
4.87873
5.60328
6.30510
6.98503
7.64395

.98352

.96746

.95181

.93656

.92170

.90721

.89310

.87934

.86592

.85285

a/b = .9

a a2 F Sr 2
a a F

.43553

.61570

.75380

.87009

.97243
1.06485
1.14974
1.22867
1.30272
1.37268

.18968
● 37909
.56821
● 75705
.94561

1.13390
1.32191
1.50963
1.69708
1.88426

.99926

.99852

.99778

.99704

.99630

.99557

.99483

.99410

.99336

.99263

.1

.2

.3

.4
●5
.6
.7
,8
.9

1.0

1.37268 1.88426
1.93413 3.74087
2.36016 5.57034
2.71535 7.37312
3.02484 9.14964
3.30158 10.90042
3.55329 12.62589
3.78503 14.32648
4.00033 16.00263
4.20176 17.65478

.99263

.98535

.97816

.97L04

.96401

.95706

.95019

.94340

.93669

.93006
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0 Table 1 (Continued)

a/b = 3/4

a’ 2
a Fs= F Sr ac1

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.26338

.37205

.45517

.52500

.58631

.64156

.69220

.73918

.78315

.82461

.06937

.13842

.20718

.27562

.34376

.41161

.47915

.54639

.61333

.67998

.99777

.99556

.99335

.99114

.98895

.98676

.98458

.98241

.98025

.97809

.1 .82461

.2 1.15348

.3 1.39754

.4 1.59661

.5 1.76636
,6 1.91494
.7 2.04726
.8 2.16657
.9 2.27515

1.0 2.37470

.67998
1.33052
1.95311
2.54916
3.12002
3.66699
4.19126
4.69401
5.17631
5.63922

.97809

.95692

.93646

.91668

.89757

.87911

.86125

.84399

.82730

.81115

a/b = 2/3

2
a

2
aSr a F Sr a F

.01 .22172

.02 .31303

.03 .38275

.04 .44123

.05 .49249

.06 .53860

.07 .58079

.08 .61987

.09 .65638

.10 .69075

.04916

.09799

.14650

.19468

.24255
● 29009
.33732
.38423
.43084
.47713

.99665

.99333

.99001

.98672

.98344

.98018

.97694

.97371

.97049

.96730

.1 .69075

.2 .96104

.3 1.15830

.4 1.31661

.5 1.44946

.6 1.56395

.7 1.66438

.8 1.75361

.9 1,83365
1.0 1.90603

.47713

.92359
1.34166
1.73346
2.10095
2.44595
2.77017
3.07513
3.36228
3.63294

.96730

.93621

.90666

.87857

.85186

.82646

.80229

.77929

.75738

.73652

0

alb = 1/3

u’ cl’Sr F Sr a F‘v.

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.13398

.18816

.22886
,26244
.29140
.31704
.34012
.36115
.38048
.39839

.01795

.03541

.05238

.06887

.08492

.10051

.11568

.13043

.14477

.15871

,98609
.97242
.95901
.94583
.93291
.92022
.90777
:89555
.88357
.87181

.1 .39839

.2 .52812

.3 .60903

.4 .66516

.5 .70639

.6 .73789

.7 .76267

.8 .78264

.9 .79904
l.O .81275

,15871
.27891
.37092
.44244
.49899
.54448
.58167
.61253
.63846
.66055

.87181

.76605

.67917

.60759

.54820

.49847

.45645

.42058

.38968

.36285

.>
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Table 2. ah/a vs. a/b for a few values of relative elastance.

Sr = .01

a/b ah/a

o
*1
.2
.1
.4
.5
.6
.7
.8
.9

2.4048
.8954
.5491
.4261
.3675
.3386
.3291
.3378
.3740
.4839

Sr = .02

a/b ah/a

o
.1
.2
.3
,4
.5
.6
.7
.8
.9

2.4048
1.2157
.7649
.5976
.5170
.4772
,4643
.4770
.5284
.6841

s= = .~5

a/b ah/a

o
.1
.2
.3
.4
.5
.6
.7
.8
.9

2.4048
1.7042
1.1567
.9221
.8050
.7470
.7292
● 7510
.8333

1.0805

SE= .1

a/b ah/a

o
.1
.2
.3
.4
.5
.6
.7
.8
.9

2.4048
2.0242
1.5227
1.2531
1.1102
1.0390
1.0200
1.0546
1.1736
1,5252

sr=.2 .

a/b ah/a

o
.1

.2

.3

.4

.5

.6

.7
,8
.9

2.4048
2.2300
1.8923
1.6432
1.4958
1.4225
1.4115
1.4707
1.6461
2.1490

Sr= 1.0

a/b ah/a

o
.1

.2

.3

.4

.5

.6

.7

.8

.9

2.4048
2.4052
2.4097
2.4274
2.4705
2.5544
2.7029
2.9630
3.4560
4.6686

.

●

22
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case. For example, if equation (2.11) were used instead of equation (3.21), we
.

have

or, ifl-FE6,

=6’
1

i-0(62)
l-(z/zo)2

All relevant quantities in the final expression are easily obtainable from

measurements or the tables, and so we can quickly determine if equation (2.11)

is adequate in any given case.

26
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4D
IV. Uniform Line Equivalent of a Disk Line

Consider the transmitting structure shown in figure 9. The center

“conductor” of this structure is made up of a row of uniformly spaced metallic

disks, separated by a homogeneous dielectric. This structure is an idealized

model of a structure that is of practical importance. Let us see what can be

done toward an analytical treatment of this structure. In this section, we

will briefly derive an approximate Z~ for the row of disks, based on some rather

handwaving arguments, and present some numerical data on this approximate 2..
1

In the next section, we will outline a more exact approach.

If the disks of figure 9 are close together, compared to their radii,

then between each pair of disks the dominant electric field will be along the

z-axis, and will vary very little with z. Thus, approximate equations for the

fields between the disks are

where

Ez(p,z) = EoJo(n#30P) (4.1)

(4.2)

(4.3)

T12=E/E. (4.4)

i32~012LIEo 00 (:4.5)

If equations (4.1) and (4.2) were good approximations all the way out to

P = a (and these approximations improve as A/a decreases) then, from the

definition of Zi, we could say immediately that

Jo(~f30a)(6/A)
Zi =

2na(-i/Zl)Jl(nBoa)
(4.6)

27
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4

where the EZ field at p = a, which is nonzero only between the disks, has been

0
averaged over a full A period of the structure.

In order to make use of the tables of the previous section, it would be

more useful to write an equivalent S~ from the above Zi. It i.s not hard to

see that this equivalent Sr is just

Jo(nBoa)
Sr = Zi(-iuco7ra2)= ucoaZ

1 2J1(n60a)
(d/A) (4.7)

(4.8)

where

XJO(X)

~(x) = ~J@ (4.9)

We have tabulated g(x) in table 3 and drawn it in figure 10. From this

data, and the tables of the previous section, one can determine the approximate

behavior of a disk line.
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Table 3. Auxiliary function for comnuting the effective S- of a disk line. &

x

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

“ 2.9

3.0

3.1

3.2

3.3

g(x)

.99875

.99499

.98871

.97987

.96842

.95431

.93746

.91778

.89515

.86944

.84050

.80812

.77210

.73217

.68802

.63929

.58551

.52619

.46068

.38821

.30783

.21826

.11831

.00578

-.12167

-.26729

-.43547

-.63228

-,86635

-1.15047

-1.50438

-1.96026

-2.57446

x

3.4

3.5

3.6

3.7

3.8

3*9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

‘ 5.4

5.5

5.6

5.7

5.8

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6

g(x)

-3*45543

-4.84230

-7.38680

-13.71950

-59.65653

28.76085

12.02695

7.71519

5.70348

4.51535

3.71329

3.12136

2.65488

2.26790

1.’93307

1.63288

1.35538

1.09183

.83547

.58064

.32219

.05512

-.22588

-.52684

-.85503

-1,21974

-1.63340

-2.11338

-2.68515

-3.38804

-4.28652

-5.49469

-7.23590

30

x

6.7

6.8

6.9

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9.0

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

g(x)

-10.01623

-15.28040

-29.46685

-224.28387

42.20694

19.55293

12.74061

9.40301

7.38477

6.00505

4.98063

4.17215

3.50275

2.92625

2.41286

L.94218

1.49931

1.07265

.62560

.23053

-.20197

-.65372

-1.13472

-L.65708

-2.23631

-2.89335

-3.65791

-4.57423

-5.71214

-7.18939

-9.22252

-12.25929

-17.40078
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1

v. A:lExact Appro::‘i “f:ra Disk r~[ne

Since the line whose idealized model is given as figure 9 is of more than
o

passing praczical interest, it may be helpf’d to have available a more exact

analysis of such a structure than can be obtained by assuming an ‘tequi.valent”

uniform line, as we did in Lhe previous section.

A structure quite similar to that of figure 9, the iris-loaded circular

waveguide, has received quite a bit of attention in the literature because of

its use in linear accelerators. All we need to do here is to make some slight

changes in the available analyses of iris-loaded structures. The result will

be an infinite determinantal equation (to be truncated and evaluated numerically)

for

can

[3]

the determination of the propagation constants of the various modes that

exist in the disk line.

We will follow closely the analysis of the iris-loaded line by Malkinshaw

(a previous, better known, paper by Walkinshaw gave an approximate analysis

of the iris-loaded guide; reference C3] gives a shorter, more accurate analysis).

For the sake of simplicity, we will treat only the case of infinitesimally thin

disks (6 = A).

In the outer (a < p < b) region of the disk line, we will write the fields
o

in the form

m

x Fo(am;r,m/a) i(~+~)z .
E~l(P,Z) = e

m Fo(am;r,l) e
m=-m

m
em Fl(am;r,p/a) i(f++y) z

H~l(P,Z) = -iusoa
x ~ Fo(am;r,l) e
m=-~

(5.1}

(5.2)

where

(5.3)

am2 “

()
—= 6: - (@ +*)2
a

(5.4)

and

32
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4

(B
Fo(am;r,p/a) E Yo(amr)Jo(amp/a) - Jo(anr)Yo(amp/a)

Fl(am;r,p/a) ~ yo(amr)Jl(amp/a) - Jo(amr)Yl(amp/a)

(5.5)

(5.6)

Equations (5.1) and (5.2) are the forms established by Floquet’s theorem

and the boundary condition on E~ at the surface p = b.

In the inner (p < a) region, we will choose a form for the fields that is

finite on the z-axis and

the basic region (-A/2 <

we must multiply each Bs

has

z<

and

zero radial field on the disks. Such a form; in

A/2) (note that in the region ((N- %)A < 2 c (N + ~)A)

Ds coefficient by eiN$A) is:

co

JO(Y p/a)
w

~(1)

x
z (p,z) = ‘s J (; )

z

Jo(y’p/a)
~) + Ds J &Cos( 2s-1

sin(—
A rz) (5.7)

S=o 0s
s=1 0s

#)
@ (P,z) m Bs J1(ysp/a)

z

m Ds J1(y~p/a)
2“:’) + z~ Job:)

=
Cos (— 2s-1

9)

-ius ~ Jo(Ys) sin(~ ITZ) (5.8)
S=o S=l

where

Ys 2

()
2

=
T B: - (*)

Y; 2

() 62 2s-1—=
a o - (~T)2

(5.9)

(5.10)

By matching the two representations for Ez on the p = a surface, we obtain
the relations

BOA=! eC
m omm=..rn

(5,11)

~BsA=~ eC
m smm----w

(5,,12)
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where

1
A/2 i($+ *) z

c = 2m:z)e
Cos(— dz

SIU
‘-A/2

. Z(-)m+ssin(~) f3+(2nm/A)

[6+(2TUI/A)]2-(21TS/A)2

,

(5.L3) o

(5.14)

and

1
A/2

2s-1
i(~+ *) z

s = sin(~ mz)e dz
sm

-A/2’

‘6A= 2i(-)m+s COS(~)
8+(2nm/A)

~6+(2nm/A)]2-[r(2s-l/A)]2
(5.L5)

Now we must also match ehe two representations for H, on the p = a
T

surface. These matching equations take the form

m

z e Fl(am;r,l)BOA 7 Jl(yo) = ~
JO(YO)

c
Y. am Fo(am;r,l) om

m=--

o
(5.16)

co

BSA z Jl(YS)

x

em Fl(am;r,l)
— =

~~ Jo(Ys)
c

~Fo(am;r,l) sm
(5.17)

m=-~

m

yn2 ‘1%) .
z

em Fl(am;r,~)

2Y‘ Jo(Y;)
s

~Fo(am;r,l) sms m.-

(5.18)

or, making use of equations (5.11), (5.12), and (5.13),

51 2J(Y)~ls
~ Fl(am;r,l)

eC
- ~ Fo(am;r,l)1

=0
m Sm YS Jo(Y~)

s = o,l,”””~ (5*L9)

m=-~

“o
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so

o where

ii

/ Jl(Y~) ~ Fl(am;r,l)
eS

Im sm~Jo(y~) ‘~ Fo(am;r,l) = 0 s = 1’2’”””@
(5.20)

m=-Q

We may give these equations a little more presentable appearance by multiplying

the first set by

(-)s
2A sin($A/2)

the second set by

(-)s
2iA cos(@A/2) ‘

and defining new variables e~ by e; s (-)m em. The truncated version of equations

equivalent to (5.19) and (5.20) may then be written in the form

and

N

~ M~me~=O S=(),l, *O.2N
m=-N

A6+27Tm

1

~2 J#’~) ~ Fl(am;r,l)
M= .— -—
sm

(AB+2mm)2-(~s)
2 r2 Jo(l’~) am Fo(am;r,l)~

(5.21)

(5.22)

(5.23)

The propagation constant, 6, is determined by setting the determinant of

the set (5.21) equal to zero (there are several roots of course; we are interested

primarily in the smallest one). The accuracy increases as we increase N. If N

is zero we return to the approximation of the previous section (for 6 = A).

Walkinshaw effectively says that, in the case of the iris-loaded guide, we get

about one part in a thousand error in B, if A/a is not too large, when N is one.

There should be no great difficulty in obtaining very accurate values of 1?in the

present case, should it become desirable to do so.

The present analysis can be readily extended to the case where the disks

have finite thickness. It just gets about twice as messy.
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VI. Conclu=f.on

The main result of this note is that, with the tables and cumes

3ection 111, we have available a way tc tell whether che impedance per

length, measured and calculated by the simple techniques of Sections I

is really the impedance per unit length of the structure under test.

of

unit

and II,

The tables and curves of Section III could be extended, in some future

note, to include complex values of Z~~ rather than the pure imaginary values of

Zi chat we have examined here. The same development, including equation (3.28)

and equations (3.31) to (3.34).,would hold in the more general case (Sr and o.

would be complex). It is believed that, for the test structures that are

presently of ineerest (which have a dominantly imaginary Zi) the present data

should be sufficient.

A secondary result of the note is the beginning of an accurate analysis of

a disk line. Should it become necessary, it would be straightfofiard to carry

out numerical work, based on the present analytical work.
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Appendix

4

0
An Algorithm for Two Bessel Function Crossproducts

In this appendix we will develop expressions that are well suited to

numerical evaluation for the two Bessel function crossproducts used in the note

Bo(a,r) = (n/2)[Yo(ar)Jo(a) - Joy] = (m/2)Fo(a;r,l) (A.1)

Bl(a,r) = (aTr/2)[Yo(ar)Jl(a) - Jowl] = (a~/2)Fl(a;r,l) (A.2)

From the multiplication theorem for Bessel functions ([2], p. 363),

setting (ar) = x, we get

~ (1-1/r2)k(x/2)k [yo(x)Jk(x)Bo(a,r) =:
k: - Jock]

k=O
(A.3)

The first term in this series disappears. The crossproducts within the series

satisfy the difference equation for Bessel functions; i.e., if

‘k ~ (n/2)[Yo(x)Jk(x)- Jock]

we have

2k
Ck+l = YCk - ‘k-l

with

c1 = (l/x) = (1/ar)

C2 = (2/x2) = (2/azr2)

and we can write

Bo(a,r) = r-1/r
f (T)k $ Ck.

k=1 .

(A.4)

(A.5)

(,4.6)

(A.7)

(A.8)



n

In a similar manner it follows that

j. t’-’/r:\JK/’JK [Yolk+, 1
0

Bl(a,r) =% - Jo(x)Yk+l(x) (A.9)
=

thus

k-l k-l
=: j (*) —

k=l
(:-1)! ‘k

Now let us define some new coefficients through

k-1 ~k-l
r-1/r

‘k
= ar(~) —(k-l): Ck

(A.10)

(All)

(A.12)

and

$-L f ‘k
Bo(a,r) = — r

(A.13)
2r2 k=l o

while, from equation (All) and the difference equation for c , it follows thatk

r2-1

!

cx2(r2-1) ‘k-1
‘k+l=~’k - 4 “ k(k-1) I

(A.14)

with

r2-1T2=Y
r

(A.16)

Expressions (A.12) and (A.13) are easy to evaluate, with even a desktop

computer. The Tk’s are generated from equation (A.14), using equations (A.15)

and (A.16) to get started. Equations (A.12) to (A.16) make up the algorithm we

have been aiming at.
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k-1
Note that, if a = O, Tk = (1 - I/rz) , and so

# ,1,(*r-’=‘Bl(O,r) = ~



- - .-.
i
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