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A Detector Geometry for Measuring Both the Gamma Flux and Ope Camponent of the
Gamma Current T ,

I. Introducticn

As discussed in Sensor and Simulation Notes (SSN) IX and X, it is desirable
for nuclear EMP purposes to measure not anly the gamma-ray flux, v, blf.t also the
gamma-ray current, Y, since this latter parameter can be correlated with the
Compton current density in the air. The previous notes on this subject have des-
cribed possible detectors for measuring one or more vector camponents of the :
gamma current, cne device using the Compton diode technique and the other using
the SEMIRAD technique. These devices would be classed as insensitive detectors
applicable in the higher ranges of interest. ~In this note we shall describe a .
possible detector geometry for measuring a vector component of the gamma current,
and, if desired, the gamma flux. If sensitive detectors (such as flyors or semi-
conductors) are used in this geometry, then we may have a low level y detector.

The first element of the detector geametry we are considering consists of
a sphere of radius r_constructed, with uniform density, of a materdial with y-ray
mean free path ry (ndrmally a function of the y-ray energy). Since we will con-
sider only single scattering of the Y rays, i.e., exponential attemuation of the
vy rays through this spherical attenuator, r, can be considered to be based on the
total scattering cross section of Y rays in the material. We may be able to
improve our results (based on the above assumption) tq include the effects of
multiple scattering of the Y-rays (or buildup) by calculating ry from an "effec-
tive" cross section (e.g., an energy loss cross section). - '

The second element of this detector geometry consists of an array of iso-
tropic gamma detectors distributed over the surface of the spherical attenuator.
The characteristic dimensions of the individual detectors are assumed to be small
compared to r,. By this assumption we are confining the individual detectors to
a thin layer on the spherical surface. We also assume that there are sufficient
numbers of these detectors so that we may think of detector density distribution
functicns or of sensitivity per unit area of the spherical surface. Alternatively
we could have some sort of continuous detector on the spherical surface whose

sensitivity per unit area we could vary. For;small discrete detectors perhaps
semiconductor detectors would be appropriate.—*

. Referring to figure 1A we §ee a cross section of such a detector. In order
to measure a vector component of Y, we weight the signal by the cosine of the .
angle, 6, between a gamma ray, v(®), and a given axis, say the z ads, by chéosiﬁg
some appropriate distribution function for the gamma detectors so that a factor of
cos © will appear in the net signal output. This is obtained by suming and/or
differencing the electrical outputs of the individual detectors on the spherical
surface. From symmetry considerations we can establish some general characteris-
tics of the required distribution of the individual detectors. First. the dis- -
tribution should be symmetric about the axis determining the partlcule,:r component

1. Tne possible use of semiconductor detectors for this application was s
by Mr. James Doyle of EGEG, Santa Barbara. PP S suggested
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of ; which we wish to measure (the z axis in this cage). §econd, §ince cos 6, the
desired angular dependence of the electrical output, is agtlsynnetrlc about 6 = /2,
the detector distribution must be effectively antisymmetric about--the (x,y) plane
(also labeled the (P,¢) plane). This can be accomplished by using detectors with

‘oppositive (positive and negative) sensitivities, in opposite positions with respect

to the (x,y) plane, and electrically adding together (iq payallgl) all the.detector
outputs. An alternate method is to make the detector distribution symmetric about
the (x,y) plane but electrically add the detector outputs for'p031tlve or negative
z separately and then subtract the two resulting signals. This last method has the
advantage that the two resulting signals can also be electrically added in an
attempt to measure the gamma flux (i.e., hopefully the response may be 1pdependent
of 6 for the sum of these two signals), and therefore, in this note we will follow
the latter method. However, any results for the differential signal using this
method can be directly converted to the case of an antisymmetric detector distpi—
bution and a single electrical signal by simply reversing the sign of the sensi-
tivity of the detectors for either positive or negative z (but not both).

The ideal case for this detector, as for the Compton diode in SSN IX, is
for v >>r , i.e., we assume that no gamma rays can penetrate the spherical attenua-
tor. Witd this assumption we can then use a geometrical construction to find a
detector distribution which will satisfy our requirement of having the differential
output proportional to cos & and which will, in addition, make the common mode
output independent of 6. Having used this simplified case to obtain a detector
distribution function we can then investigate the effects of a finite r /r, assum-
ing exponential attenuation of the gamma rays through the spherical attenuator.
These results can also be compared to the analogous results for the Compton diode
of SSN IX. :

II. Thick Spherical Attenuator

Consider the case in which we assume that Y(8) does not penetrate through
the spherical attenuator, i.e., ro>>r,. Referring to figure 1 again we can find
an appropriate detector distribution for cur purposes. Suppose we look at the
sphere from a vantage point on the positive z axis. As indicated we assume that
unidirectional gamma rays, Y(8), are uniformly incident on the sphere at an angle
8 with the z axis. The x axis is then (arbitrarily) defined so that the direction
of the gamma rays is parallel to the (x,2) plane.

If, for conceptual purposes, we replace the gamma rays by a plane light
source from the same direction we would see, as indicated in figure 1B, that only
part of the sphere corresponding to regions Ay and Az was illuminated. Of course,
what we are "seeing" is not a spherical surface but a plane surface, or better,
the projection on a plane surface which we can take to be the (x,y) or (p,9)
plane as indicated. Even though we do not see all of the illuminated portion
of the sphere, we can still mentally project this area onto the (f,$) plane. If
we project the boundary of the illuminated spherical surface (which defines the
(x',y") or (p',¢') plane) onto the (p,9) plane we obtain ah ellipse with semi-
major axis ry, semiminor axis rycos 8, and area'ﬂro2 cos 6. This ellipse forms
the boundary of region Az. If we can make the electrical output of the detector
array proportional to the area of this ellipse we will have the desired result,
i.e., an output proportional to cos 6.



Suppose then we choose our detector distribution function so that the number
of detectors or sensitivity per unit area as projected on the (p,¢) plane is a con-
stant. Since we have required that the detector distribution be symmetric with N,
respect to the (p,¢) plane then the detector distribution as projc::'ctef_j on the (p,¢) .
plane is the same for the projections from each hemisphere. Cbnmder:mg only the
uniform projected distributions on the (p,¢) plane we can now determine the 6 depen-
dence of the sensitivity of the detector array.

For region A, in the (p,¢) plane we have two identical sets of detectors,
one for positive and one for negative z, which give identical outputs because
both sets (consisting of isotropic detectors) are illuminated by the yrays. When
we difference the outputs of the detectors on the two hemispherical surfaces, the
signals corresponding to region Aj will cancel leaving only the signal correspond-
ing to region Az. Since the density of detectors as projected onto region Az is
a constant and the output of each of the detectors is the same, then the differen-
tial signal will be proportional to the area of region Az and, therefore, propor-
tional to cos 6 as desired.

Since we now have a detector distribution which gives us the desired
differential output let us look at the sum of the outputs from the detectors
on the two hemispheres. In this case, the signals from the two sets of detectors
projected onto region Ay do not cancel. Instead, the double signal compensates
for the lack of a signal from region Aj because the projected detector distribu-
tion is the same in both regions. Thus, the sum of the signals from the two
hemispheres is independent of 6. Therefore, with a relatively simple detector
distribution function we can measure both one vector component of ¥, in this
case y,, and the gamma flux, Y. The units in which these are measured depend
on the“manner in which the sensitivity of the individual detectors depends on <

the energy of the gamma rays. .

For use in subsequent sections of this note we will now put the results
of the previous analysis in a more formal mathematical form. Consider a normali-
zed density function, n(p), which gives the detector distribution as projected on
the (p, ¢) plane with normalization condition that the average value of n{p) be
unity. Thus

2n 1
A ’
- 5»02 =H§ J n(p) r “adeds (L)
o o
or 1 }
1=2 J n(p)pdp (2)
o]

Note that n(e) is independent of ¢ because of the symmetry of the detector
distribution about the z axis. If from our previous analysis we constrain
n(p) to be a constant, independent of p, then equation (2) is solved if

n(p) = 1 (3)



For convenience now define two distribution functions:
z m
nl(p) 1 )

which applies for the detectors projected from positive z and
nz(p) = - nl(o) = -1 (5)

which applies for the detectors projected from negative z. Thus, when con-
sidering the differential signal we can add the contributions of the two hemi-
spheres using n, (p) and n,(p) directly because of their opposite signs. However,
when considering the commén mode signal we need only take the magnitudes of the
n's and again add the contributions to obtain the correct results.

Next we can analytically describe the boundary which separates the three
regions of interest on the (p,¢) plane since it is an ellipse with semimajor
axis r, and semiminor axis rgeos®. Thus, if (¥, y1) and (pl, ¢l) describe the
elliptical boundary

X y
1 2 1.2 _
(r cose) + (;:0 =1 (8)
o) o)
and
R TR ¢1 (7
7 rbpl Sln¢l
then
cos2¢l 2 .2
plz — 5 + pl sin (bl = 1 (8)
cos“ 6
or
2 [cosz¢l(l—cosze) 2 2 J
P + cos"¢, + sin“¢, |= 1 (9)
1 00526 1 1
op , ) ~-1/2
Py = 1 + cos ¢1 tan“e (10)

since Py is assumed positive.

If we have a sensitivity per unit area, S,, (coulombs per square meter per
unit of the incident gamma rays) as projected on the (p,¢) plane (i.e., the unit
area is in the (P,¢) plane) we can calculate gamma sensitivities. Thus, for the
differential signal, using standard convention,

S

Syie(® = 52 Af n (P)dA + jnl(o)dA ‘ f n,(p)dA an
3 A2 A2



Since from equation (5) n, and », are of opposite sign the contributions from
A2 cancel. Thus

, 2T (l+cos;2¢1:anz6)'-]'/2
T
_ o
Sdif(ﬁ) = 8= J‘ 5 nl(p)odod¢ (12)
o o
For convenience we can gefine
r
_ o
Sdif(e) 'SA“—T fdif(e) (13)
so that 27 (1+coéz¢tan29)'l/2
£ 4 (O %J J n (p)odpds (14)
o) o

From equations (14) and (2) we can see that for 6 = 0

£...(0) =1 (15)

dif
It is not until this point that we are constrained to choose a functional
dependence for nl(p). Using the choice of equation (4) we have
2m t§l+cosz¢tan28)-l/2
_ 1

However, as discussed before, this double integral represents an ellipse of
major axis 1.0 and minor axis cos 8. Thus

- 1 -
fdif(e) = = (mcos8) = cos 6 17
For the common mode sensitivity we have
Seomt®? = Sp j ny(p) dA+ jnl(p)dA+ J(-nz(p))dA (18)
Ag By Ay
but again from equation (5)
Soom® = 84 | | nl(p)dA+jnl(p)dA+ J n, (p)dA 19)
As A Ay
By rotating ¢ through 7 radians we can match A2 point for point with Al' Thus
Seom'® = Su j n, (p)dA+ fnl(p)dm Inl(o)dA (20)
A by &
which combines into one integral over the whole circular area as
zn 1
- 2 :
Seom'® = Spry jo jonlmpdpdcp (21)
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Defining

N 2
Sccn# 6 = SA™, fcom(e) (22)
we have
1 2n 1 1
faon(® =5 [ [ mededede =2 modedp (23)
o o) O

Thus from equation (2)
= 2n
féom(e) 1 (24)

Note that this last result did not depend on the functional form of nl(p) but
only on the general symmetry conditions which we have required. We ofily need
the particular functional dependence of equation (4) for the desired differen-
tial signal.

We have now solved for the necessary detector distribution function,
but only assuming that r >>r_ . Let us then use this detector distribution
function and determine tBe effect of finite ro/ry on £;..(6) and £ oom®)
which describe the performance of this detector geomet¥y in nondiménsional
form. As expected,the analysis will be more complex as will be the results.

III. Transformation of Coordinates

To include the contribution of the gamma rays which penetrate the
spherical attenuator to the response of the detector array we will assume an
exponential attenuation of the gamma rays. To do this conveniently we will
need to express the thickness of the spherical attenuator in the direction of
the gamma rays. As illustrated in figure 1A, we define a new coordinate system,
the (»', y', z') system, where the z' axis is parallel to the assumed direction
of travel of the gamma rays. Thus, if we can transform the detector distribu-
tion function from the (x,y) or (p,¢) plane to the (x',y') or (p',4') plane we
can use the thickness of the spherical attenuator in the z' direction to compute
the contribution (to the output of the detector array) of the gamma rays which
pass through the attenuator.

To transform the projected detector distribution function from the (p,¢)
plane to the (P',¢') plane let us determine the detector distribution function
on the spherical surface. This basically involves transforming a unit area
on the (P,9) plane to the spherical surface. On the (p,$) plane define an
incremental area, da, (normalized) as

da = pdpd¢ (25)

This area is the projection (along a line parallel to the z axis) of an incre-
mental area, das, from the spherical surface of

pdpd¢

daS = —T—_COS es~|-

(26)

where es is the polar angle from the z axis to a point on the spherical surface.
7



we only need the polar angle, Bs’ and the azimuthal angle, §, to describe any

point on the spherical surface. ;
Given the distribution functions, n,(p) and n2§p) , on “E:he (ps¢) plane .
(from equations (4) and (5)), the manner o% transforiiing the incremental areas,

and the fact that the surface area is increased a factor of two in going from
the circle in the (p,¢) plane to either of the hemispherical surfaces, we
have a detector distribution function, Ngs for the spherical surface as

da _
2 nl(p) ags = 2 coseS ]
n (8 = (for O 5_65 <_-§-) 27
s s
da - -
2 nz(p) —is = 2 (-—l)(-coses) = 2 cosf
(for'—;- <8 <)

However, we should recognize that if we are using the differencing scheme for
the detectors on the two hemispheres the distribution function is always posi-
tive, but note that due to the present mathematical manner of defining n. (e}
and n,(p), n_ is given by one simple analytic function over the range 0<6_< 7.
Convefiiently; the average value of n_ is 1.0 over the hemisphere corresponding
to positive z and -1.0 over the hemi%phere corresponding to negative z, i.e.,

w/2 T
- 1 = - e in 6 e
1 j ns(es)smesdes j ns( S)sm Sd < (28)

© /2 "".

Now that we have transformed the detector distribution function to (6 _,¢)
coordinates on the spherical surface, let us transform the distribution function
to (6 ',¢') coordinates where 6 ' is the polar angle from the z' axis (as in
figur@ 1A) and ¢' is the azimutRal angle in the (p',¢') plane (as in figure 24).
As illustrated in figure 2B, a point (6_,¢) or (6_',4¢') on the spherical surface
determines a geometric construction from which 65 (contained in n_) can be related
to 6" and ¢'. Each of the angles 6, 6_, and 0 ' are great circular arcs on the
sphe%ical surface and each of the angleg ¢ and F-¢' are angles between pairs of
the great circular arcs. Figure 2A also gives a projection of this geometric
construction on the (p',9') plane. From figure 2B, using the law of cosines for
an oblique spherical triangle”, we have

coso_ = ooses' cosé + sines‘ sin® cos (mw-¢') (29)

or

oS 6 coses' cosf - sines' sin® cos ¢’ (30)

8

2. DBurington, Mathematical Tables and Formulas, Third Edition, (1958), p. 23.
~
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Thus, equation (27) can be changed to give ns'(es‘,¢‘) in the.new spherical
coordinates as

t toa1y = 1 L ol 1 o '
ng (E)S s0') = 2 {coseS cosé - sing,' sing cos¢} (31)

Note that the detector distribution function in the new spherical coordinates is
no longer independent of the azimuthal angle,¢'.

Now let us project the detector distribution function as in equation (31)
onto the (p',¢') plane. The incremental area, da', in the (p',¢') plane is

da' = p'dp'd¢' (32)

which is a projection (along a line parallel to the z' axis) of an incremental
area, da_', from the spherical surface of

[ p'dp'd¢'
das = COSBS (33)

Including the factor of two in the areas between the hemispherical surface and
the circular surface (as before) we then have
ns|(93|’¢') da8| nsf(es"¢')

n'(e',0") :
L 2 da' 2 COSG'S (3u)
(for 0<6.' < 7/2)
and 1
1 t L} 1 1 ' '
ot ot = g (BS 5¢') das . Ng (BS . ¢') 359
nz p 2 2 da_ = 2 Cosesl
(for =/2 f_es' <)
Thus
sin 6 '
nl'(p',¢‘) = cos 6 - Sin.e -:c—o-?—e——' COS¢' (36)
s
(for 0 < 8 ' < 7/2)
and
sing '
nzl(p',¢r) = -cos¢ + sing 5T cos¢' (37)
T8

(for n/2 < 8" < =)
Now we can remove eS‘ from the previous equations by

sing_ ' = o' (38)

10



o

and

. + -p'2 (for 0 < 8' < /2)
coses' = (39)
- Vl—p'2 (for /2 ies' < m)
Thus
t .
nl'(o',¢') = cosb - sin6 - cos ¢!
2 (for 0 <8 ' < w/2) (40)
1-p S
and
1
nteet, ety = - cos® - sin® =2~  cos¢! (41)

1—9'2 (for ©/2 < e 'em

Now that we have transformed the detector distribution to the (p',¢') plane
we can also find, for later use, the projection oh the (p',4') plane of the inter-
section of the Sphemcal surface with the (p,¢) plane. By symmetry one can obtain
this curve by changing the variables in equation (10). Thus

ol' = 1+ cosz¢l' tanze:l-:l'/2 (42)

as illustrated in figure 2A.,

This result can also be obtained by setting either n 'or n,' equal to zero.
In other words,.-when we calculate the common mode 51gnal ana need to take the
absolute value of N.' and n,' (as discussed in Section II) equation (42) will
be needed to break Up the ifitegral over the (p',¢') plane so that signs can be
placed to make the contributions always positive. For the differential signal
we will not need equation (42) for a boundary because nl and n2' can be both
positive and negative. ‘

Iv. General Spherical Attenuator

With the detector distribution function in the (p',9¢') coordinates we
can calculate f (9) and f (8) by appropriate integrals. For positive z!
all detectors d(%i’ectly "see e gama rays. However, for negative z' the
gamma rays are attenuated by an amount determined by the thickness of the
attenuator in the direction of the gamma rays. Corresponding to a (p',%")
the spherical thickness, Az', is

82" = 2 1y ¥ 1p'? (43)

The shadowed detectors will then give a contribution,to the output of the
detector array, which is weighted by a factor _4z' .
r’Y
A. Differential Signal.
Using the definition of equation (13) for f
of equation (14) shifted to the (p',¢') plane, and mc?lging the contribution for
finite ry/ry, we have

11
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27 1
£600) = -11; j fﬁ‘('p',¢')o'dp'd¢'
o Q

o Yoyl

o
J j ny'(p'50") e—QF; =07 prgptas
o © '

(44)

+

El e

If we had not defined our detector distribution function so that the differential
signal is obtained by adding all the contributions, instead of subtracting them,

we would have had more terms to equation (44) because of the necessity of splitting
up the region of integration in the (p',¢') plane. (This would have also made the
integration limits more complex.) Using equations (40) and (41) and rearranging
terms then

2% 1 r ) EE——
£f...(8) = cos & ;-j' J‘ (l—e-zi‘-2 l‘prz)o'dp’d¢'
dif o Y
o ©
_ 21 1
1J j 22 Y2 2 ‘
-siné = (1+e " PPy L2—  cos¢! do'de'  (45)
o L s

If in the second double integral we integrate first over ¢' the only term dependent
on ¢' (i.e., cos ¢') will make tHe integral zero because of the limits of 0 and
2w. Thus,

27 1

r f———T
£...(0) = cosg = (e 10" g (48)
dif b ® 3 Y p'dp de
(o} Q

This is an important result in that under our assumption of first order scattering
the differential signal still maintains the desired cos 6 dependence.

Let us then rewrite equation (46) as

fdif(e) E fdif(O) cos 6 47>
where 2T 1
.2 Yo i
faif(0) = 7 J J(l-e_zF; =07y prgprag (48)
o o

This is solved in 35N IX (equations (16) and (19) through (27)) except in that note it

describes fCOm for a Compton diode which we might call £, Thus,
.D.
1"‘72 Ty oL (5 20
fdifm)‘l‘i‘ig fle, t T v ¢ Ty (43)

Asymptotic expressions for this result were also derived in SSN IX. Thus, for

12
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2 551 we have 5
r be
e1 - = [ X
fdif(O) =1~ 3 o (50)
o
and for — <<
T
! 4 o (51)
fdif(O) =-3--P—Y'

For comparison with the results for the differential signal of the Compton

diode we obtain from equation (55) of SSN IX r
6 O S G D M M o Ry

q0)) =l"-2" FI +Ll-ro + ro er -5 +—2‘ro e Y

}_l

faif

=<

C.D.
(52)

The results of equations (49) and (52) are plotted in figure 3.
B. Common Mode Signal.

Using the definition of equation (22) and the absolute values of n,' and n,'
from equations (40) and (41) we can now compute £ (6). However, we will have
to break up the surface integrals in the (p',¢') nghe into the three regions
illustrated in figure 2A because n,' and n,' change sign, in some cases, between
these regions. Remember that the %oundary line between these regions is a
projection of the great circle (on the spherical surface) along which the detector
distribution function is zero. In the following analysis we will assume that
0 £ 8 272 so that we know the sign of the distribution functions. The results
apply for 0 £ & £ 7 if we use the symmetry relation

fcom("-e) = fcom(e) (53)

which arises from the symmetry of the detector distribution function on the
sphere, i.e., from equation (27)

'ns(w_es)l = ,ns(es)| (54)

Therefore, we can set up the expression for the common mode angular
dependence as

Al Jf

fam(m'-;_Ji , 1 (P, 9tetdetde! + 3 (= (T, 0T))pdetde!
1 A
r
1 1 252 1-p'2
+ < j m e, 8M)eldetde! + 2 ) Jnx(eT,0e Ty p'de'de!
Ay’ A |
r r
L 22 ¥1-p12 2877 o2
= '(—n2'(p',¢'))e Y praptaersl J ) (' (01,80)e Ty e'de'ds¢
'

& 13 A3 (55)
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For convenience define the first three of the above integrals as Il and the second
three as I Then

- 2°
o 1.
r2
- l ! t
I, =3 ‘S [cose - sine ./"""‘ ,Cos¢'] p'dp'dg'
% (l+cos ¢! tan® 8) 1/2
1
+ L !
T [-cose + sing 1;it_77 cos¢'lp'de'de’
i P
T T (1+cos? ¢'tan 9) -1/2
~-1/2
2T (1+cos?¢'tan?6)
l p' 1 1 1 !
+tF [cos® - sin® —  cos¢'l p'de'dé (56)
o) 1—0'2

Collecting similar terms in the integrands together and combining the integrals
over the second terms in the integrands we have

= Cosef J p'de'de’ - cose J J 'do'd¢’

‘lli.z

7 (1l+cos ¢'tan2671/2 5 (1+cos?¢'tan )-1/2
27 (l+cosz¢’“canze)-l/2 211
cos® " 31n9
= p'de'de! - ‘g cos ¢' dp'de’
o o X
T
5 1
+ 28ine p'2 cos ¢' dp'de! (57)
v By
- % (l+coszqt»'*canze)—l/2



il

In this last representation the first two integrals cancel one another because
by shifting ¢' in one of the integrals by #, the form of the two integrals
becomes the same. As before (equation (17 )} the third integral (exclusive of
coefficients) equals mcos 6. On integrating over ¢' the fourth integral
vanishes because of the symmetry of cos¢'. Thus

i
= 1
2, g 2 2 > 9’2 cos¢' de'd¢’ (58)
Il = cos” U + sin ?J‘ 7512
z % (1+cos? ¢' tan? 8)"L/2

To solve this integral first divide the integral over ¢' to give two
equal integrals so that
r 1

I1 = c0526 + sin® -J j mrg- cos¢' dp'de! (59)

o (l+cos ¢! tan 8) ~1/2

Equation (42) for the boundary between regions in the (o' »$') plane can be
rewritten as

cosszl' = co't29 [}- 2 -] (60)
pl
or
sinz¢l' =1- cot26 i 9 -1
pl
B 2
n!
= 1 - cot’e [ER (61)
pte

Then interchanging the order of integration

1 arc sin [l—cot26( )I 1/2
I, = cos20+ §ind j p12 cos¢! d¢'dp'
ie? 2 172
] @arc sin[l-cot? 9(-———5 )]
= cos® 6+ sme - sin¢’ de!
cos @ o

16
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.v

2 2
= 00529 + sineiS 0 2 [l-—cot2 e(l 0 )31/2 dp'
,, _at '
"cose 1-p o]
1
2 1201 rrt? 8) st 2
- 00529 + sine-l%j ] : [ p' (1l cot2 )-cot e]l/2 dp'
V10! 1
cos 8 1-p P
1
1
= c0529 + % 0 (O'z—cosze)l/%ﬂp' (62)
Viopr?
cosé

¥ = Vl_p'2 (63)

Yy = ~p'de! : (64)
we have sine

I, = cos%e + -% (sin26~\02)l/2 dy (65)

o ;

Next letting

Y = § sin 6 (66)
we have 1

Il = C0829 + sin2e % S\W/E:-E2 dg (67)

o}

However, this last integral (neglecting coefficients) represents the area of a
quadrant of a unit circle, i.e., "/4, Therefore

I, = cos’® + gine = 1 (68)
Since I, represents that part of fCO (8) due to the unshielded detectors this
result 1s not unexpected (as in equa@ion (24)) and serves as a check on our
distribution function transformations.

The second three integrals of equation (55) represent that part of
fcom(e) due to the shielded detectors. Combining these integrals we have
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27w r
1§ . ' —2-2V1-p1?
I,== [cose + sing —&—  cos¢'l e 7 p'dp'de’
z T) : 7 Y
o o) 1-p'
3r 1 ~—5
22 [ o’ o V1-pt?
_ < 6 + <ind 1 TantAa!
“S [cos sin yﬁQ cos¢'l e r, p'de'd¢ (69)
T (arcos?é'tan’ 07

In the first of these integrals the ‘second term gces to zero when integrated
over ¢'. The limits on ¢' in the second integral can be shifted by 7 for con-
venience, cnanging the sign of the second term in the integrand. Thus we are
left with three basic integrals: '

21 1
I, = cose = 221512
2 T COsSY T e I‘Y PP 5tdptde!
o o
T 1
2 .,'1
' r
2.2 % 12
- cos® = S e ZPY 1-e p'dp'de’
- % (l+0082¢'tan26)-l/»2
7 A v ——
+ ain 2 A o'? R A B
sin o+ | _Fe=my COS¢' e D dp'd¢ (70)
J Y 1-p' Y
- % (l+¢052¢'tan26)-1/2

Define these terms, in sequence, as 13, Iu, and Is.

In evaluating f;. f(O) in equations (48) and (49) we have already evaluated

13. Thus
27 1 "
f\ ~
- _9_‘1{ - 12
13=c088%-b\) J leY 'lpp'dp'dt#'
[o) o)
2 . 2 r
T ir T O
= cos Ll x iy 4+ L _l\l e'z"“ ¢71)
2 ry oy 2 r'O} Y
« I




Next we have

T .
1-p!
I p'de'd ¢! (72)
.‘lI

(l+cos ¢’tan 8)” -1/2

Dividing the integral over ¢' at ¢' = 0 to give two equal integrals, and inter-
changing the order of integration (using e ion (60)) we have

—
1 arg cos(coté —L—%r)

Yo TopTZ
I, = - cosf = e-ng Vi pp'dqb'do'
y m Y
cosB ©
1
!/\
4o 220 V1,12 ¥1-p'
= -cosb — e r, P arc cos (cote—-—p—r) p'dp' (73)
‘cose

Using the substitutions of equations (63) and (64)

ijle

e'z?';' v arc cos (cot%f.:_%— pdy (74)

_ Yy
IL+ = -cosé® =

O &

and using the substitution of equation (66)

1
f\ r

o . '
e—Z(Tsme)grc cos | 0596 :i £dg (75)

13

i

i
' S —— 1
g ! {—sinzeaz'

This last form may or may not be the most convenient. However, it is similar
in form (for comparison) to the next result.

in%e &
ki)

Finally, we have

Tl
2 r
t 22 Y 112
I, = sin® 2 | 0 coset e V1P e (e
¥ T “?72 -1/2
-5 (1+cos™¢'tan”6)
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We can Follow precisely the steps used in equations (59) through (62) in solving
for I, because no integration is performed over ¢'. Thus

1
r
_E_f o' (o'2-cos? 1/2e'2§2Vl“°'2

-cos” 8) Y

de'! (77)

I |
ST S 1-p
cos
Using the substitutions of equations (63) and (64) we have

sin®
4 sﬁ 2, 2\1/2 -2£O—lp
, 15 = -T;% (sin®6-y7) e 'r, dv (78}

Then using the substitution of equation (66) we have

1 r
~ O .
I, = sinze% J Vi-& 25 sin® & (79)
[e}

Combining the results of equations (68}, (71}, (75), and (79) we have
the results for the common mode signal. Including the symmetry condition
expressed in equation (53) we have

; | !r' 1 {* ? _229.
f (8 =1 +,cosb - X =X e p
cam 2 \rv \ r‘o 2 To Y
Fl r
] L’ - _9_ . .
~jcos 8 stGFj c 2<PY sin6)g are cos [cosB! £ caE
‘ 0¥ f‘Jl-s:i.nzeé;2
1 _\/,.....,. ro
) 7 -2(==sin®)E
+ sine %J -8 ey aé (80)
o)

This now applies over the region 0 < 6 < 7, Figures 4 and 5 illustrate the
dependence of f m( 8} on r'o/r' and 6 , respectively. In figure 4 we include
the result for The Compton®didde (SSN IX, equations (26) and (27))which is

r 2 r r 2 rO
1"y Yy, l[ Y -2

£ =]l -Z—] +]—+F]— e ‘v (81>
comC.D. 2 (ro) (ro 2 (ro Y

Note that this is precisely the result for f difm) in equation (49).

The results of equations (49) and (80) and figures 3, 4, and 5 can now be
used to determine how large we should make r /r_ if we wish, for example, to
prevent a significant fraction of the differéntial or commen mode signal from
coming from "shielded" detectors.
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V. Summary .

Based on the results of the previous sections we can canclude that by
placing isotropic gamma detectors in a rather uncomplicated dis?ribution.around
the surface of a spherical attenuator and by appropriately summing and differenc-
ing the outputs of the detectors, we can obtain signals proportional to both the
gamma flux and one component of the gamma current. Assuming exponential attenua-
tion of the gamma rays through the spherical attenuator, the differential signal
maintains its cos® dependence on the direction of the incident gamma rays, independ-
ent of r_/ry. However, the common mode signal is not independent of 6 for all r/ry.
To make This signal independent of 6 we need either large or small r /rY (compared
to one). In general it seems better to make r /vy, >>1.0, minimizing the signal from
"shielded" detectors because ro/r ig a function of the gamma-ray energy. Thus
for large r /r. the differentidl gignal is independent of this parameter (see
equation (ug))yeliminating an unwanted extra dependence of the differential signal
on the gamma-ray energy.

The basic sensitivity of the detector array depends on the type of detectors
used so there should be a fairly wide range of sensitivities possible. The
dependence of the sensitivity of the detector array on the gamma-ray energy
(assuming r /rY>>l,O) 1s also governed by the choice of the individual detector
elements.

Of course, there are other problems associated with making a practical
device of this nature so we should exercise a general caution.

We would like to thank Mrs. Linda Crosby for her calculational assistance
in the preparation of this note.

CARL E. BAUM, 1/Lt, USAF
1 December 1965
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