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Abstract

The impedances and field distributions of two curved parallel-plates

are presented. In this report; the circular geometry is studied in detail

and it is found that maximum field uniformity occurs when each plate substains

an angle of 90° at the center of the circle.
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1. Introduction

In the design of parallel-plate transmission-linesimulators, it is

desirable to achieve a maximum working volume inside which the electric field

is with prescribed uniformity. Baum [1] carried out the calculations of

impedances and field distributions of the TEM-mode for straight parallel-place

transmission-linesimulators. In this note, we present a similar study of

curved parallel-plate transmission-line simulators, and try to optimize the

field uniformity for such a configuration. The particular geometry we analyze

is two circular plates, as shown in Fig. 1. Such a study will provide

physical insights into the general curved-plate problems and give useful results

in EMP simulator design.

We app~oach this problem by means of conformal tranformations. Moon and

Spencer [2] have provided a transformationwhich is proved to be useful for

this circular geometry. Independently,we applied successive conformal

transformationswhich have yielded the same results as that of Moon and Spencer.

In Appendix A, the derivation of the final transformation formula is presented

because this provides a better physical insight into this problem.

In Section 11, the transformation is presented and the complex potential

function is defined. From these expressions, we derive the equations for the @

electric field and impedance. In Section 111, the geometry for the optimum

field uniformity is found, and we present results for the potential.,field and

charge distribution, and the geometric impedance factor.
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Fig. 1. A circular parallel-plate transmission-line simulator
with plate angle 2a and radius ro.
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11. Mathematical Formula~ion

~n this section, we make use of a transforma~ion similar LO L~IaLof
No. J3 given by Moon and Spencer [2]. In Append~x A, we show thaL four

successive conformal transformationsprovide the same result.

The transformationwe use is

. l+jnl
1/4

s-n(w(m)
z

]-jl#4 sn(wlrn)

where

z =x+jy,

(1)

(2)

w=u+ iv, (3)

and sn(w\m) is a Jacobian elliptic function [3]. Transformation (1) differs

slightly from that of Moon and Spencer and Ls illustrated schematically in

Fig. 2. We shall show that the loci of z for u = tK(m) are circular arcs.

Expanding sn(w\m) \3], we have

sn(ulm)dn(vlml)+jcn(ulm)dn(ulm)sn(vlml)cn(vlml)
sn(u + jvlrn)= s (4)

cn2(vlm1)+msn2(u[m)sn2(vlml)

where

‘1=1-’ (5)

It is noted that the parameters m and ml are associated with u and v, respectively.

To simplify the notations, we suppress Che parameters in the Jacobian functions

sn, cn, and dn. Thus, (4) becomes
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Fig. 2. Complex potential w in the complex z-plane

O

k’= U + jv, z = x + jy.
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sn u dn v+j
sn(u + ivlm) =

cnudnusnvenv
2 22

.
cnv+msnusnv

From (1) and (6), we obtain

x = Tr-l

and

Y = 2A .sT1u dn v.(//4 r)-l,

where

A=l - dn2u sn2v

r -1/4 2
= sn2u dn2v + (Am +cnudnusnvcnv)

and

T = A2 m-1/2 - [(en udn u snv cnv)2 + sn2udn2v].

(7)

(8)

(9)

It is to be noted that the corresponding expressions in Moon and Spencer

contain an error.

From (7), (8) and (9), we can show that, for u = iK(m), where K(m) is

the complete elliptic integral of the first kind, the following relationship

is obtained:

x2+y2=l.

This mea,nsthat ~ = iK(m) defines a pair of circular arcs with a unity radius,
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It is further observed from Moon and Spencer that one edge of the circular

@

arc is at the values u = K(m), v = 0. This defines the half angle of the arc,

a, such that

l-R?l’
tana=—

.-2ml/4 “
(10)

From above, it is clear that (1) describes the potential distribution

for two circular parallel-plates biased at equal but opposite potentials tK(m),

and w is the complex potential function. When normalizing the plate

potentials to tVo, we define

v
w =un+jvn=—
n K(g) “

(11)

which is the normalized complex potential function.

To calculate the electric field for this normalized case, we make use of

the following expression [4], [5]:

dw au aUn

—-j7jy-$
&= axn

i.e., the complex conjugate of the normalized electric field, E, is given by
—

dwn
~=E-jE

x Y ‘T’

i.e.,

dw

()
~=Re&,

(12)

and

dwn

% ()‘-l*T “
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From (1) and (11), we have

sn(K(m)V~l wn[m) = - L-_=
#4 Z+l “

Let

V(Z) = sn(K(m)V~l wn\m),

then

v Vv
w .* Sn-l(vlm) - J&J dA-—
n

,

0 J(l-,lz)(1-mA2)

Now

dw dv
n—.—

dv dz

V.
-2j

‘ #4(z+l)2 “
K(m) (1-v2)(l-mv2)

Thus,

2jV
z=

o
,~{$+2[1-2($712’lr’2*K(m)(l+m )

We now define

2V
E. =

o
1/2 ‘

K(m)(l+m )

which is the value of the field at z = 0. A dimensionless factor fE can be

defined

/vfE = roEo o

8
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(14)

(15)

(16)
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dD
which is a measure of the electric field at z = O when the plates are biased

at tl volts.

The geometric impedance factor, fg, is given by [4]

fg=g,

where Au is the change in the potential function between the plates and Av is

the change in the stream function on a path encircling one plate. From Fig. 2,

we obtain

fg = K(m)/K(ml). (19)

As is in Baum’s work [1], this quanti”tyis defined to relate the line impedance

ZL to the wave impedance Z, such that

‘L
= fgz.

The capacitance per unit length of the line is

c = E/fg,

and the inductance per unit length is

L= pfg. ‘“

(20)

(21)

(22)
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111. ResulEs

o
I

We shall first present the procedures in obta<ning the configuration for

optimum field uniformity. We can expand the electric field at z, ~(z), in a

Taylor series about z = 0,

Y(z) = :
Zn d%
—— (o)n!

n=O dzn

For higher field uniformity, i.e., for ~(z) being closer to E(O), more higher

terms in the series should vanish. From the symmetry of the problem, all odd

derivatives of ~(z) at z = O are zero. In this structure, we have only one

degree of freedom, namely, the half angle of the plate, a, hence, we expect

that we can only set the second derivative of ~(z) at z = 0 to be zero. This

leaves the resulting field to be of the following forms:

4– 4
E(z) = z(o) + a + higher order terms.q (0) 4!

dz

From (16) and (17), the first derivative of ~(z) is,

—
2Z3+2[1-2(1-M

1/2 2 ~tiU2 -2
~(z) =jEo

{z4+2[l-2(1-ml/2)2(l+m1’2)-2]z2+;J3’2 ‘

and ~ (0) = O as expected,

The second derivative gives

d2~ 6z2+2[&2(l-rn1’’2)2(l+m’’’2]-2]~ (0) = jEo
dz {z4+2[l-2(1-ml/2)2(1*~ ’2)-212+1]3/2

(23)

1/2 2
3[2z3+2[l-2(1-m

#2)-2 ~ 2
-jE.

{z4-f-2[1-2(1-m1~2)2(l+m1’2)-2]~+1}5’2
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and

Setting this second derivative equal to zero, we get,

(24)

From (10), the half angle for the optimum field uniformity> aopt~ maY be shorn

to be

= tan
-1 ~

a = 45°.
opt

(25)

In Fig. 3, we present the field and potential distribution for the
o

optimum case, iceb} a = 45 . It is observed that the potential is reasonably

constant up to a radius of A r , where r
20

is the radius of the circular plates.
o

There is a high concentration of field lines near the edge of the plate, as

expected. For comparison, we also present the same plots for the two cases

a = 30° and a = 60° in Fig. 4 and l~ig.5> respectively. Indeed, we see that

u = 45° has higher field uniformity.

The electric field plots are presented normalized with respect to the

electric field at the center, Eo. In Fig. 6, we show the values of ‘E, a!;

defined by (18), as a function of the half plate angle ci. The values fE is

also tabulated in Table 1. For a = CY = 45°, the normalized electric field”
opt

is plotted against the normalized radius r/r. in Fig. 7, for various values of

8 (0 is defined in Fig. 1). It is observed that there is an even symmetry

about @ = 45° for Ey, the y-component of the electric field, and an odd

symnetry about 6 = 45° for Ex, the x-component of theelectric field. The
o

electric field is infinite at the edge of the plate, i.e., r/r. = 1 and e = 45 .

The alternative electric field P1oI:against 6 for various r/r. values is

11
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Fig. 6. The electric field at the center versus the half angle
of the plate. The electric field is normalized with
respect to !Jo/ro,where V. is the biasing voltage on
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Table I. Values of fE = roEo/Vo.

4) (de~ree)

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

fE

0,

0.36799

0.42170

0.46097

0.49349

0.52196

0.54767

0.57136

0,59350

0,61438

0.63424

0.65323

0.67146

0.68905

0.70605

0.72253

0.73853

0.75411

0.76928

0.78409

0.79855

0.81268

0.82650

0.84003

0.85328

0.86626

0.87900

0.89145

0.90367

0.91566

0.92742

(de~ree)

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

fE

0.92742

0.93900

0.95027

0.96137

0.97226

0.98294

0.99341

1.00368

1.01375

1.02361

1.03328

1.04275

1.05203

1.06112

1.07001

1.07871

1.08721

1.09553

1.10366

1.11159

1.11934

1.12690

1.13427

1,14144

1.14844

1.15524

1.16185

1.16828

1.17451

1.18056

1.18642

fE
(de~ree)

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

1.18642

1.19208

1.19756

1,20285

1.20795

1,21286

1.21758 ~

1.22211

1.22645

1.23059

1.23455

1.23831

1.24189

1,24527

1.24846

1.25145

1.25426

1.25687

1.25929

1.26152

1.26355

1.26539

1.26704

1.26849

1.26975

1.27082

1.27169

1.27237

1.27285

1.27314

1.27324
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presented in Fig. 8. The vector nature of the field dis~ribu~ion is illustrated

in Fig. 9, which gives some insight into the field behavior.

By studying the electric field quantities, we can determine the maximum

radius inside which the electric field is within a certain percentage of the

field at the cenher, ~~edefine the electric field variation as

.&.Jz&yl (26)

In Table 11, for G = CY, = 45° we present lAE1/117(0)[versus the maximum ‘
opt

allowable radius.

Table II, Maximum allowable radius for a given electric field variation.
a a= = 45°

opt

1% 0.35 r.

2% 0.45 r
o

5% 0.55 r
o

10% 0.65 r
o

The charge density rson the conducting plate is presented in Fig. 10 as

a function of 6 for the case a = a = 45°. The charge density is proportional
Opt

to ehe normal electric field on the plate and we normalize it with respect to

Eo/E.

The geometric impedance factor fg is

tabulated in Table 111, It is interesting

presented in Fig. 11 as well as

to compare this with two straight

parallel plates of width 2a and separated by 2b ~1], [6]. In Fig. 12, we

present the relationship 3etween the straight parallel-plate geometry and the

curved parallel-plate geometry for varicus fg values.

18



o

/’Ex Ea

.zJ-

.2-

0 .

0° 30°

-.1

-.2

-E

,

a=45°
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f
(de~ree) g

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

co

1.72985

1.50919

1.38009

1.28846

1.21736

1.15924

1.11006

1.06744

1.02981

0.99611

0.96561

0.93771

0.91204

0.88823

0.86603

0.84523

0.82566

0.80717

0.78965

0.77300

0.75712

0 ● 74195

0.72742

0.71347

0.70006

0.68714

0.67466

0.66261

0.65094

0.63963

Table IIL Geometric impedance factor f .
g

f

(de~ree) g

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

0.63963

0.62865

0.61799

0.60761

0.59750

0.58765

0.57803

0.56863

0.55944

0.55045

0.54164

0.53301

0.52454

0.51622

0.50804

0.50000

0.49209

0.48429

0.47661

0.46904

0.46156

0.45417

0.44687

0.43965

0.43251

0.42543

0.41841

0.41145

0.40454

0.39768

0.39085

24

f

(de~ree) ~

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

t

.

0.39085

0.38406

0.37730

0.37056

0.36383

0.35711

0.35040

0.34368

0.33695

0.33020

0.32342

0.31660

0.30972

0.30279

0.29578
e’

0.28868

0.28146

0.27411

0.26660

0.25891

0.25098

0.24276

0.23421

0.22521

0.21566

0.20536

0.19403

0.18115

0.16565

0.14452

0.
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‘t) Iv, Conclusions

We have presented, in this report, the impedances and field distributions

of two circular parallel-plate transmission-line. It is found that for the

plate angle of 90°, we-have the optimum field uniformity.
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Appendix A. Derivation

We show, in this appendix, that the formulas presented in the text can be

derived using four successive conformal transformations. This process provides

more physical insights into the problem considered in the text.

The use of a logarithmic transformation maps a quadrant of a circle into

a semi-infinite strip, which, on the application of a sine Transformation,

is mapped into a straight line. Using the Schwarz-Christoffeltransformation,

this later configuration is mapped into a rectangle with simple boundary

conditions, the solution of which is readily obtained.

Because of the symmetry of the configuration, we concentrate on only otie

quadrant of the circle. The corresponding points in all the planes are identified

by the same parenthesized number, e.g., point (3) in the w3-plane corresponds

to point (3) in the z-plane as a result of the transformations. The process of

the successive transformation is illustrated in Fig. Al.

Using the logarithmic transformation [7], the first quadrant of she z-plane

is mapped into an infinite strip in the wl-plane. The interior of the unit

circle in the z-plane now transforms into the upper half strip, whereas the

exterior, the lower half strip. In the wl-plane, the configuration is symmetric

about the v = O axis and we continue the transformation for only the upper e
1

half strip, i.e., the interior of the circle. The sine transformation opens

up the strip into a line in the w -plane.
2

The configuration in the w2-plane

is similar to the one given by Collin [8], who uses the Schwarz-Ctiristoffel

transformation to obtain the configuration in the w3-plane. The potertcial

function for this final form is readily calculated.

The transformationsare summarized in the following:

‘1 = 2j in z +r/.2,

‘2
= (2p)-l(sinwl - 1),

and

l(-,P) + 1 + jK(p)/K(pl),w=~ -j[K(pl)]-l sn-

(A.1)

(A.2)

(A.3)

26
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where

2
P = Cos a, (A.4)

and

pl= l-p. (A.5)

K(p) is the complete elliptic integral of the first kind with the parameter p.

The v
3
= constant contours are khe equipotential lines in the w -plane.

3
The potentials in the w3-plane, when the plates are biased at *VO are given by

[

K(P1)
$=vol__

K(p) 1‘3 ‘

and we define the complex potential function as

F(w3) =

so that the complex conjugate of

[

K(P1)

1
vol+j~w3,

the electric field is given by

K(P1) dw3
E=E

x
-jE =~=jV ——

Y 0 K(p) dz ●

It can be readily shown that

~ = (4p)-1/2(z - :),

hence

-1/2
z= ~ {.4 + Z[zp - 1]Z2 + 1} .

(A.6)

(A.7}

(A.8)

Comparing with (16), for the same z variation, we demand

28
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●

‘O
i.e. ,

~-ml/2 2

()
2p-l= l-2—

1#2

#2

P= ~lal/2 2 “
1

We can check the consistency of this relationship

(A.9)

by comparing the formulas

for the half angle of the plate, a. From (A.4),

Zml/4
1/2 _

Cos a = p
l+ml/2

hence

1-212
tanct=—

.2ml/4

which is identical to (10),

It remains to check the amplitude of the field. Comparing (A.8) and (18),

we want to prove that

()
Lml/2

K(p) = K——
1/2,

=K(m)(l+m .
(l+ml’2)2

Indeed, such an identity can be obtained from Table

Thus, the transformation (1) as given by Moon

VI.5 of Jahnke and Erode[9].

and Spencer can be obtained

by four successive conformal transformations.
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