Abstract

The impedances and field distributions of two curved parallel-plates are presented. In this report, the circular geometry is studied in detail and it is found that maximum field uniformity occurs when each plate sustains an angle of 90° at the center of the circle.
I. Introduction

In the design of parallel-plate transmission-line simulators, it is desirable to achieve a maximum working volume inside which the electric field is with prescribed uniformity. Baum [1] carried out the calculations of impedances and field distributions of the TEM-mode for straight parallel-plate transmission-line simulators. In this note, we present a similar study of curved parallel-plate transmission-line simulators, and try to optimize the field uniformity for such a configuration. The particular geometry we analyze is two circular plates, as shown in Fig. 1. Such a study will provide physical insights into the general curved-plate problems and give useful results in EMP simulator design.

We approach this problem by means of conformal transformations. Moon and Spencer [2] have provided a transformation which is proved to be useful for this circular geometry. Independently, we applied successive conformal transformations which have yielded the same results as that of Moon and Spencer. In Appendix A, the derivation of the final transformation formula is presented because this provides a better physical insight into this problem.

In Section II, the transformation is presented and the complex potential function is defined. From these expressions, we derive the equations for the electric field and impedance. In Section III, the geometry for the optimum field uniformity is found, and we present results for the potential, field and charge distribution, and the geometric impedance factor.
Fig. 1. A circular parallel-plate transmission-line simulator with plate angle $2\alpha$ and radius $r_0$. 
II. Mathematical Formulation

In this section, we make use of a transformation similar to that of No. J3 given by Moon and Spencer [2]. In Appendix A, we show that four successive conformal transformations provide the same result.

The transformation we use is

\[ z = \frac{1+jm^{1/4}}{1-jm^{1/4}} \frac{\text{sn}(w|m)}{\text{sn}(w|m)} \]  

where

\[ z = x + jy, \]  

\[ w = u + iv, \]  

and \( \text{sn}(w|m) \) is a Jacobian elliptic function [3]. Transformation (1) differs slightly from that of Moon and Spencer and is illustrated schematically in Fig. 2. We shall show that the loci of \( z \) for \( u = \pm K(m) \) are circular arcs.

Expanding \( \text{sn}(w|m) \) [3], we have

\[ \text{sn}(u + jv|m) = \frac{\text{sn}(u|m)\text{dn}(v|m_1) + j \text{cn}(u|m)\text{dn}(u|m)\text{sn}(v|m_1)\text{cn}(v|m_1)}{\text{cn}^2(v|m_1) + m \text{sn}^2(u|m)\text{sn}^2(v|m_1)}, \]  

where

\[ m_1 = 1 - m. \]

It is noted that the parameters \( m \) and \( m_1 \) are associated with \( u \) and \( v \), respectively. To simplify the notations, we suppress the parameters in the Jacobian functions \( \text{sn}, \text{cn}, \) and \( \text{dn} \). Thus, (4) becomes
Fig. 2. Complex potential $w$ in the complex $z$-plane

$w = u + jv, \ z = x + jy$. 
\[
\text{sn}(u + iv|m) = \frac{\text{sn} u \ dn v + i \text{cn} u \ dn u \ \text{sn} v \ \text{cn} v}{\text{cn}^2 v + m \ \text{sn}^2 u \ \text{sn}^2 v}.
\] (6)

From (1) and (6), we obtain

\[
x = T \Gamma^{-1}
\] (7)

and

\[
y = 2A \ \text{sn} u \ \text{dn} v \ \Gamma^{1/4} \Gamma^{-1/2},
\] (8)

where

\[
A = 1 - \text{dn}^2 u \ \text{sn}^2 v
\]

\[
\Gamma = \text{sn}^2 u \ \text{dn}^2 v + (\Delta m^{-1/4} + \text{cn} u \ \text{dn} u \ \text{sn} v \ \text{cn} v)^2
\]

and

\[
T = A^2 \ m^{-1/2} - [(\text{cn} u \ \text{dn} u \ \text{sn} v \ \text{cn} v)^2 + \text{sn}^2 u \ \text{dn}^2 v].
\] (9)

It is to be noted that the corresponding expressions in Moon and Spencer contain an error.

From (7), (8) and (9), we can show that, for \(u = \pm K(m)\), where \(K(m)\) is the complete elliptic integral of the first kind, the following relationship is obtained:

\[
x^2 + y^2 = 1.
\]

This means that \(u = \pm K(m)\) defines a pair of circular arcs with a unity radius.
It is further observed from Moon and Spencer that one edge of the circular arc is at the values \( u = K(m) \), \( v = 0 \). This defines the half angle of the arc, \( \alpha \), such that

\[
\tan \alpha = \frac{1-m^{1/2}}{2m^{1/4}}. \tag{10}
\]

From above, it is clear that (1) describes the potential distribution for two circular parallel-plates biased at equal but opposite potentials \( \pm K(m) \), and \( w \) is the complex potential function. When normalizing the plate potentials to \( \pm V_0 \), we define

\[
w_n = u_n + j \frac{V_0}{K(m)} v_n, \tag{11}
\]

which is the normalized complex potential function.

To calculate the electric field for this normalized case, we make use of the following expression [4], [5]:

\[
\frac{dw}{dz} = \frac{\partial u_n}{\partial x} - j \frac{\partial u_n}{\partial y},
\]

i.e., the complex conjugate of the normalized electric field, \( \overline{E} \), is given by

\[
\overline{E} = E_x - j E_y = \frac{dw}{dz}, \tag{12}
\]

i.e.,

\[
E_x = \text{Re} \left( \frac{dw}{dz} \right),
\]

and

\[
E_y = -\text{Im} \left( \frac{dw}{dz} \right).
\]
From (1) and (11), we have

\[ \text{sn}(K(m)V_0^{-1} w_n | m) = - \frac{1}{m^{1/4}} \frac{z-1}{z+1}. \] (13)

Let

\[ \nu(z) = \text{sn}(K(m)V_0^{-1} w_n | m), \] (14)

then

\[ w_n = \frac{V_0}{K(m)} \text{sn}^{-1}(\nu | m) = \frac{V_0}{K(m)} \int_0^\nu \frac{d\lambda}{\sqrt{(1-\lambda^2)(1-m\lambda^2)}}. \] (15)

Now

\[ \frac{dw_n}{dz} = \frac{dv}{dz}, \]

\[ \frac{dw_n}{dz} = \frac{V_0}{K(m)\sqrt{(1-\nu^2)(1-m\nu^2)}} \cdot \frac{-2j}{m^{1/4}(z+1)^2}. \]

Thus,

\[ E = \frac{2jV_0}{K(m)(1+m^{1/2})} \left\{ z^4 + 2 \left[ 1 - 2 \left( \frac{1-m^{1/2}}{1+m^{1/2}} \right) \right] z^2 + 1 \right\}^{-1/2}. \] (16)

We now define

\[ E_0 = \frac{2V_0}{K(m)(1+m^{1/2})}, \] (17)

which is the value of the field at \( z = 0 \). A dimensionless factor \( f_E \) can be defined

\[ f_E = r_o E_o / V_o. \] (18)
which is a measure of the electric field at \( z = 0 \) when the plates are biased at \( \pm 1 \) volts.

The geometric impedance factor, \( f_g \), is given by [4]

\[
\frac{f_g}{g} = \frac{\Delta u}{\Delta v},
\]

where \( \Delta u \) is the change in the potential function between the plates and \( \Delta v \) is the change in the stream function on a path encircling one plate. From Fig. 2, we obtain

\[
f_g = \frac{K(m)}{K(m_1)}. \quad (19)
\]

As is in Baum's work [1], this quantity is defined to relate the line impedance \( Z_L \) to the wave impedance \( Z \), such that

\[
Z_L = f_g Z. \quad (20)
\]

The capacitance per unit length of the line is

\[
C = c/f_g, \quad (21)
\]

and the inductance per unit length is

\[
L = \mu f_g. \quad (22)
\]
III. Results

We shall first present the procedures in obtaining the configuration for optimum field uniformity. We can expand the electric field at \( z \), \( E(z) \), in a Taylor series about \( z = 0 \),

\[
E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} \frac{d^n E}{dz^n}(0)
\]

For higher field uniformity, i.e., for \( E(z) \) being closer to \( E(0) \), more higher terms in the series should vanish. From the symmetry of the problem, all odd derivatives of \( E(z) \) at \( z = 0 \) are zero. In this structure, we have only one degree of freedom, namely, the half angle of the plate, \( \alpha \), hence, we expect that we can only set the second derivative of \( E(z) \) at \( z = 0 \) to be zero. This leaves the resulting field to be of the following forms:

\[
E(z) = E(0) + \frac{d^4 E}{dz^4}(0) \frac{z^4}{4!} + \text{higher order terms.} \quad (23)
\]

From (16) and (17), the first derivative of \( E(z) \) is,

\[
\frac{dE}{dz}(z) = jE_0 \frac{2z^3 + 2[1 - 2(1 - m^{1/2})^2(1 + m^{1/2})^{-2}]z}{\{z^4 + 2[1 - 2(1 - m^{1/2})^2(1 + m^{1/2})^{-2}]z^2 + 1\}^{3/2}},
\]

and \( \frac{dE}{dz}(0) = 0 \) as expected.

The second derivative gives

\[
\frac{d^2 E}{dz^2}(0) = jE_0 \frac{6z^2 + 2[1 - 2(1 - m^{1/2})^2(1 + m^{1/2})^{-2}]}{\{z^4 + 2[1 - 2(1 - m^{1/2})^2(1 + m^{1/2})^{-2}]z^2 + 1\}^{3/2}} - jE_0 \frac{3[2z^3 + 2[1 - 2(1 - m^{1/2})^2(1 + m^{1/2})^{-2}]z^2]}{\{z^4 + 2[1 - 2(1 - m^{1/2})^2(1 + m^{1/2})^{-2}]z^2 + 1\}^{5/2}}
\]
and
\[ \frac{d^2E}{dz^2}(0) = 2j \varepsilon_0 \left[ 1 - 2 \left( \frac{1-m^{1/2}}{1+m^{1/2}} \right)^2 \right]. \]

Setting this second derivative equal to zero, we get,
\[ m^{1/2} = \frac{\sqrt{2}-1}{\sqrt{2}+1} = 3 - 2\sqrt{2} = 0.17157. \]  \hspace{1cm} (24)

From (10), the half angle for the optimum field uniformity, \( \alpha_{\text{opt}} \), may be shown to be
\[ \alpha_{\text{opt}} = \tan^{-1} 1 = 45^\circ. \]  \hspace{1cm} (25)

In Fig. 3, we present the field and potential distribution for the optimum case, i.e., \( \alpha = 45^\circ \). It is observed that the potential is reasonably constant up to a radius of \( \frac{1}{2} r_o \), where \( r_o \) is the radius of the circular plates. There is a high concentration of field lines near the edge of the plate, as expected. For comparison, we also present the same plots for the two cases \( \alpha = 30^\circ \) and \( \alpha = 60^\circ \) in Fig. 4 and Fig. 5, respectively. Indeed, we see that \( \alpha = 45^\circ \) has higher field uniformity.

The electric field plots are presented normalized with respect to the electric field at the center, \( E_o \). In Fig. 6, we show the values of \( f_E \), as defined by (18), as a function of the half plate angle \( \alpha \). The values \( f_E \) is also tabulated in Table I. For \( \alpha = \alpha_{\text{opt}} = 45^\circ \), the normalized electric field is plotted against the normalized radius \( r/r_o \) in Fig. 7, for various values of \( \theta \) (\( \theta \) is defined in Fig. 1). It is observed that there is an even symmetry about \( \theta = 45^\circ \) for \( E_y \), the y-component of the electric field, and an odd symmetry about \( \theta = 45^\circ \) for \( E_x \), the x-component of the electric field. The electric field is infinite at the edge of the plate, i.e., \( r/r_o = 1 \) and \( \theta = 45^\circ \). The alternative electric field plot against \( \theta \) for various \( r/r_o \) values is
Fig. 3. The field and potential distributions for $\alpha = \alpha_{opt} = 45^\circ$. 
Fig. 4. The field and potential distributions for $\alpha = 30^\circ$. 
Fig. 5. The field and potential distributions for $\alpha = 60^\circ$. 
Fig. 6. The electric field at the center versus the half angle of the plate. The electric field is normalized with respect to $V_o/r_o$, where $V_o$ is the biasing voltage on the plate and $r_o$ is the radius of the plate.
Fig. 7. Normalized electric field versus radius for $\alpha = 45^\circ$. The $y$-components of the electric field, $E_y$, are all negative, whereas the $x$-components, $E_x$, are negative for $\theta > 45^\circ$. 

$E_x/E_0$ are negative for $\theta = 60^\circ, 75^\circ$. 

$\theta = 30^\circ, 60^\circ$ 

$15^\circ, 75^\circ$ 

$0^\circ, 45^\circ, 90^\circ$ 

$\alpha = 45^\circ$ 

$\theta = 45^\circ$ 

$30^\circ, 60^\circ$ 

$15^\circ, 75^\circ$ 

$0^\circ, 90^\circ$ 

$r/r_o$ 

$r/r_o$
Table I. Values of $f_E = r_oE_o/V_o$

<table>
<thead>
<tr>
<th>$\alpha$ (degree)</th>
<th>$f_E$</th>
<th>$\alpha$ (degree)</th>
<th>$f_E$</th>
<th>$\alpha$ (degree)</th>
<th>$f_E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.</td>
<td>30</td>
<td>0.92742</td>
<td>60</td>
<td>1.18642</td>
</tr>
<tr>
<td>1</td>
<td>0.36799</td>
<td>31</td>
<td>0.93900</td>
<td>61</td>
<td>1.19208</td>
</tr>
<tr>
<td>2</td>
<td>0.42170</td>
<td>32</td>
<td>0.95027</td>
<td>62</td>
<td>1.19756</td>
</tr>
<tr>
<td>3</td>
<td>0.46097</td>
<td>33</td>
<td>0.96137</td>
<td>63</td>
<td>1.20285</td>
</tr>
<tr>
<td>4</td>
<td>0.49349</td>
<td>34</td>
<td>0.97226</td>
<td>64</td>
<td>1.20795</td>
</tr>
<tr>
<td>5</td>
<td>0.52196</td>
<td>35</td>
<td>0.98294</td>
<td>65</td>
<td>1.21286</td>
</tr>
<tr>
<td>6</td>
<td>0.54767</td>
<td>36</td>
<td>0.99341</td>
<td>66</td>
<td>1.21758</td>
</tr>
<tr>
<td>7</td>
<td>0.57136</td>
<td>37</td>
<td>1.00368</td>
<td>67</td>
<td>1.22211</td>
</tr>
<tr>
<td>8</td>
<td>0.59350</td>
<td>38</td>
<td>1.01375</td>
<td>68</td>
<td>1.22645</td>
</tr>
<tr>
<td>9</td>
<td>0.61438</td>
<td>39</td>
<td>1.02361</td>
<td>69</td>
<td>1.23059</td>
</tr>
<tr>
<td>10</td>
<td>0.63424</td>
<td>40</td>
<td>1.03328</td>
<td>70</td>
<td>1.23455</td>
</tr>
<tr>
<td>11</td>
<td>0.65323</td>
<td>41</td>
<td>1.04275</td>
<td>71</td>
<td>1.23831</td>
</tr>
<tr>
<td>12</td>
<td>0.67146</td>
<td>42</td>
<td>1.05203</td>
<td>72</td>
<td>1.24189</td>
</tr>
<tr>
<td>13</td>
<td>0.68905</td>
<td>43</td>
<td>1.06112</td>
<td>73</td>
<td>1.24527</td>
</tr>
<tr>
<td>14</td>
<td>0.70605</td>
<td>44</td>
<td>1.07001</td>
<td>74</td>
<td>1.24846</td>
</tr>
<tr>
<td>15</td>
<td>0.72253</td>
<td>45</td>
<td>1.07871</td>
<td>75</td>
<td>1.25145</td>
</tr>
<tr>
<td>16</td>
<td>0.73853</td>
<td>46</td>
<td>1.08721</td>
<td>76</td>
<td>1.25426</td>
</tr>
<tr>
<td>17</td>
<td>0.75411</td>
<td>47</td>
<td>1.09553</td>
<td>77</td>
<td>1.25687</td>
</tr>
<tr>
<td>18</td>
<td>0.76928</td>
<td>48</td>
<td>1.10366</td>
<td>78</td>
<td>1.25929</td>
</tr>
<tr>
<td>19</td>
<td>0.78409</td>
<td>49</td>
<td>1.11159</td>
<td>79</td>
<td>1.26152</td>
</tr>
<tr>
<td>20</td>
<td>0.79855</td>
<td>50</td>
<td>1.11934</td>
<td>80</td>
<td>1.26355</td>
</tr>
<tr>
<td>21</td>
<td>0.81268</td>
<td>51</td>
<td>1.12690</td>
<td>81</td>
<td>1.26539</td>
</tr>
<tr>
<td>22</td>
<td>0.82650</td>
<td>52</td>
<td>1.13427</td>
<td>82</td>
<td>1.26704</td>
</tr>
<tr>
<td>23</td>
<td>0.84003</td>
<td>53</td>
<td>1.14144</td>
<td>83</td>
<td>1.26849</td>
</tr>
<tr>
<td>24</td>
<td>0.85328</td>
<td>54</td>
<td>1.14844</td>
<td>84</td>
<td>1.26975</td>
</tr>
<tr>
<td>25</td>
<td>0.86626</td>
<td>55</td>
<td>1.15524</td>
<td>85</td>
<td>1.27082</td>
</tr>
<tr>
<td>26</td>
<td>0.87900</td>
<td>56</td>
<td>1.16185</td>
<td>86</td>
<td>1.27169</td>
</tr>
<tr>
<td>27</td>
<td>0.89145</td>
<td>57</td>
<td>1.16828</td>
<td>87</td>
<td>1.27237</td>
</tr>
<tr>
<td>28</td>
<td>0.90367</td>
<td>58</td>
<td>1.17451</td>
<td>88</td>
<td>1.27285</td>
</tr>
<tr>
<td>29</td>
<td>0.91566</td>
<td>59</td>
<td>1.18056</td>
<td>89</td>
<td>1.27314</td>
</tr>
<tr>
<td>30</td>
<td>0.92742</td>
<td>60</td>
<td>1.18642</td>
<td>90</td>
<td>1.27324</td>
</tr>
</tbody>
</table>
presented in Fig. 8. The vector nature of the field distribution is illustrated in Fig. 9, which gives some insight into the field behavior.

By studying the electric field quantities, we can determine the maximum radius inside which the electric field is within a certain percentage of the field at the center. We define the electric field variation as

\[
\frac{|\Delta E|}{|E(0)|} = \frac{|E(z) - E(0)|}{|E(0)|}
\]  

(26)

In Table II, for \(\alpha = \alpha_{\text{opt}} = 45^\circ\) we present \(|\Delta E|/|E(0)|\) versus the maximum allowable radius.

| \(\frac{|\Delta E|}{|E_0|} \times 100\%\) | radius \(r\) |
|----------------|--------|
| 1%              | 0.35 \(r_0\) |
| 2%              | 0.45 \(r_0\) |
| 5%              | 0.55 \(r_0\) |
| 10%             | 0.65 \(r_0\) |

The charge density \(\sigma\) on the conducting plate is presented in Fig. 10 as a function of \(\theta\) for the case \(\alpha = \alpha_{\text{opt}} = 45^\circ\). The charge density is proportional to the normal electric field on the plate and we normalize it with respect to \(E_0/\varepsilon\).

The geometric impedance factor \(g_g\) is presented in Fig. 11 as well as tabulated in Table III. It is interesting to compare this with two straight parallel plates of width \(2a\) and separated by \(2b\) [1], [6]. In Fig. 12, we present the relationship between the straight parallel-plate geometry and the curved parallel-plate geometry for various \(g_g\) values.
Fig. 8. Normalized electric field versus angle $\theta$ for $\alpha = 45^\circ$. The $E_y$ values are all negative.
Fig. 9. The electric field distributions inside the circular region. The lengths of the vectors are proportional to the magnitude of the electric field.
Fig. 10. Normalized charge density on the plate for $\alpha = 45^\circ$. 
Fig. 11. Geometric factor versus $\alpha$. 

22
Fig. 12. Relationship between the straight parallel-plate geometry and the circular parallel-plate geometry for various $f_g$ values.
Table III. Geometric impedance factor $f_g$.

<table>
<thead>
<tr>
<th>$\alpha$ (degree)</th>
<th>$f_g$</th>
<th>$\alpha$ (degree)</th>
<th>$f_g$</th>
<th>$\alpha$ (degree)</th>
<th>$f_g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\infty$</td>
<td>30</td>
<td>0.63963</td>
<td>60</td>
<td>0.39085</td>
</tr>
<tr>
<td>1</td>
<td>1.72985</td>
<td>31</td>
<td>0.62865</td>
<td>61</td>
<td>0.38406</td>
</tr>
<tr>
<td>2</td>
<td>1.50919</td>
<td>32</td>
<td>0.61799</td>
<td>62</td>
<td>0.37730</td>
</tr>
<tr>
<td>3</td>
<td>1.38009</td>
<td>33</td>
<td>0.60761</td>
<td>63</td>
<td>0.37056</td>
</tr>
<tr>
<td>4</td>
<td>1.28846</td>
<td>34</td>
<td>0.59750</td>
<td>64</td>
<td>0.36383</td>
</tr>
<tr>
<td>5</td>
<td>1.21736</td>
<td>35</td>
<td>0.58765</td>
<td>65</td>
<td>0.35711</td>
</tr>
<tr>
<td>6</td>
<td>1.15924</td>
<td>36</td>
<td>0.57803</td>
<td>66</td>
<td>0.35040</td>
</tr>
<tr>
<td>7</td>
<td>1.11006</td>
<td>37</td>
<td>0.56863</td>
<td>67</td>
<td>0.34368</td>
</tr>
<tr>
<td>8</td>
<td>1.06744</td>
<td>38</td>
<td>0.55944</td>
<td>68</td>
<td>0.33695</td>
</tr>
<tr>
<td>9</td>
<td>1.02981</td>
<td>39</td>
<td>0.55045</td>
<td>69</td>
<td>0.33020</td>
</tr>
<tr>
<td>10</td>
<td>0.99611</td>
<td>40</td>
<td>0.54164</td>
<td>70</td>
<td>0.32342</td>
</tr>
<tr>
<td>11</td>
<td>0.96561</td>
<td>41</td>
<td>0.53301</td>
<td>71</td>
<td>0.31660</td>
</tr>
<tr>
<td>12</td>
<td>0.93771</td>
<td>42</td>
<td>0.52454</td>
<td>72</td>
<td>0.30972</td>
</tr>
<tr>
<td>13</td>
<td>0.91204</td>
<td>43</td>
<td>0.51622</td>
<td>73</td>
<td>0.30279</td>
</tr>
<tr>
<td>14</td>
<td>0.88823</td>
<td>44</td>
<td>0.50804</td>
<td>74</td>
<td>0.29578</td>
</tr>
<tr>
<td>15</td>
<td>0.86603</td>
<td>45</td>
<td>0.50000</td>
<td>75</td>
<td>0.28868</td>
</tr>
<tr>
<td>16</td>
<td>0.84523</td>
<td>46</td>
<td>0.49209</td>
<td>76</td>
<td>0.28146</td>
</tr>
<tr>
<td>17</td>
<td>0.82566</td>
<td>47</td>
<td>0.48429</td>
<td>77</td>
<td>0.27411</td>
</tr>
<tr>
<td>18</td>
<td>0.80717</td>
<td>48</td>
<td>0.47661</td>
<td>78</td>
<td>0.26660</td>
</tr>
<tr>
<td>19</td>
<td>0.78965</td>
<td>49</td>
<td>0.46904</td>
<td>79</td>
<td>0.25891</td>
</tr>
<tr>
<td>20</td>
<td>0.77300</td>
<td>50</td>
<td>0.46156</td>
<td>80</td>
<td>0.25098</td>
</tr>
<tr>
<td>21</td>
<td>0.75712</td>
<td>51</td>
<td>0.45417</td>
<td>81</td>
<td>0.24276</td>
</tr>
<tr>
<td>22</td>
<td>0.74195</td>
<td>52</td>
<td>0.44687</td>
<td>82</td>
<td>0.23421</td>
</tr>
<tr>
<td>23</td>
<td>0.72742</td>
<td>53</td>
<td>0.43965</td>
<td>83</td>
<td>0.22521</td>
</tr>
<tr>
<td>24</td>
<td>0.71347</td>
<td>54</td>
<td>0.43251</td>
<td>84</td>
<td>0.21566</td>
</tr>
<tr>
<td>25</td>
<td>0.70006</td>
<td>55</td>
<td>0.42543</td>
<td>85</td>
<td>0.20536</td>
</tr>
<tr>
<td>26</td>
<td>0.68714</td>
<td>56</td>
<td>0.41841</td>
<td>86</td>
<td>0.19403</td>
</tr>
<tr>
<td>27</td>
<td>0.67466</td>
<td>57</td>
<td>0.41145</td>
<td>87</td>
<td>0.18115</td>
</tr>
<tr>
<td>28</td>
<td>0.66261</td>
<td>58</td>
<td>0.40454</td>
<td>88</td>
<td>0.16565</td>
</tr>
<tr>
<td>29</td>
<td>0.65094</td>
<td>59</td>
<td>0.39768</td>
<td>89</td>
<td>0.14452</td>
</tr>
<tr>
<td>30</td>
<td>0.63963</td>
<td>60</td>
<td>0.39085</td>
<td>90</td>
<td>0.0</td>
</tr>
</tbody>
</table>
IV. Conclusions

We have presented, in this report, the impedances and field distributions of two circular parallel-plate transmission-line. It is found that for the plate angle of 90°, we have the optimum field uniformity.
Appendix A. Derivation

We show, in this appendix, that the formulas presented in the text can be derived using four successive conformal transformations. This process provides more physical insights into the problem considered in the text.

The use of a logarithmic transformation maps a quadrant of a circle into a semi-infinite strip, which, on the application of a sine transformation, is mapped into a straight line. Using the Schwarz-Christoffel transformation, this later configuration is mapped into a rectangle with simple boundary conditions, the solution of which is readily obtained.

Because of the symmetry of the configuration, we concentrate on only one quadrant of the circle. The corresponding points in all the planes are identified by the same parenthesized number, e.g., point (3) in the $w_3$-plane corresponds to point (3) in the $z$-plane as a result of the transformations. The process of the successive transformation is illustrated in Fig. A.1.

Using the logarithmic transformation \[7\], the first quadrant of the $z$-plane is mapped into an infinite strip in the $w_1$-plane. The interior of the unit circle in the $z$-plane now transforms into the upper half strip, whereas the exterior, the lower half strip. In the $w_1$-plane, the configuration is symmetric about the $v_1 = 0$ axis and we continue the transformation for only the upper half strip, i.e., the interior of the circle. The sine transformation opens up the strip into a line in the $w_2$-plane. The configuration in the $w_2$-plane is similar to the one given by Collin \[8\], who uses the Schwarz-Christoffel transformation to obtain the configuration in the $w_3$-plane. The potential function for this final form is readily calculated.

The transformations are summarized in the following:

\[ w_1 = 2j \ln z + \pi/2, \]  
\[ w_2 = (2p)^{-1}(\sin w_1 - 1), \]  
and  
\[ w_3 = -j[K(p_1)]^{-1} \text{sn}^{-1}(\sqrt{\omega_2},p) + 1 + jK(p)/K(p_1), \]
$$w_1 = 2j \ln z + \frac{\pi}{2} \quad w_2 = \frac{(\sin w_1 - 1)}{2p} \quad w_3 = \frac{-i}{K(p_1)} sn^{-1}(\sqrt{-w_2}p) + 1 + \frac{K(p)}{K(p_1)} w_3$$

$$p = \cos^2 \alpha \quad p_1 = 1 - p$$

Fig. A.1. The four-step successive conformal transformation.
where
\[ p = \cos^2 \alpha, \quad (A.4) \]
and
\[ p_1 = 1 - p. \quad (A.5) \]

\( K(p) \) is the complete elliptic integral of the first kind with the parameter \( p \).

The \( v_3 = \text{constant} \) contours are the equipotential lines in the \( w_3 \)-plane. The potentials in the \( w_3 \)-plane, when the plates are biased at \( \pm \sqrt{V} \), are given by
\[ \phi = \sqrt{V} \left[ 1 - \frac{K(p_1)}{K(p)} v_3 \right], \]
and we define the complex potential function as
\[ F(w_3) = \sqrt{V} \left[ 1 + j \frac{K(p_1)}{K(p)} w_3 \right], \quad (A.6) \]
so that the complex conjugate of the electric field is given by
\[ \bar{E} = E_x - jE_y = \frac{dF}{dz} = j\sqrt{V} \frac{K(p_1)}{K(p)} \frac{dw_3}{dz}. \quad (A.7) \]

It can be readily shown that
\[ \sqrt{-w_2} = (4p)^{-1/2} (z - \frac{1}{z}), \]
hence
\[ \bar{E} = \frac{2j\sqrt{V}}{K(p)} \left\{ z^4 + 2[2p - 1]z^2 + 1 \right\}^{-1/2}. \quad (A.8) \]

Comparing with (16), for the same \( z \) variation, we demand
\[ 2p - 1 = 1 - 2 \left( \frac{1-m^{1/2}}{1+m^{1/2}} \right)^2, \]

i.e.,

\[ p = \frac{4m^{1/2}}{(1+m^{1/2})^2}. \]  \hspace{1cm} (A.9)

We can check the consistency of this relationship by comparing the formulas for the half angle of the plate, \( \alpha \). From (A.4),

\[ \cos \alpha = p^{1/2} = \frac{2m^{1/4}}{1+m^{1/2}} \]

hence

\[ \tan \alpha = \frac{1-m^{1/2}}{2m^{1/4}} \]

which is identical to (10).

It remains to check the amplitude of the field. Comparing (A.8) and (18), we want to prove that

\[ K(p) = K \left( \frac{4m^{1/2}}{(1+m^{1/2})^{2}} \right) = K(m) (1 + m^{1/2}). \]

Indeed, such an identity can be obtained from Table VI.5 of Jahnke and Emde [9].

Thus, the transformation (1) as given by Moon and Spencer can be obtained by four successive conformal transformations.
Acknowledgement

The author is grateful that Dr. C. E. Baum who suggested the use of the transformation in Moon and Spencer, which subsequently is proved to be the same as the successive transformations that the author was investigating. Special thanks are expressed to Drs. Kelvin S. H. Lee and Lennart Marin for their numerous suggestions.
References

1. C. E. Baum, "Impedances and field distributions for parallel plate transmission line simulators," Sensor and Simulation Note 21, June 1966.
9. E. Jahnke and F. Emde, Table of Functions, Dover, 1945.