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An analysis is presented of the,transient electromagnetic field around

two parallel wires. It is shown that the field can be expressed in terms of a

discrete spectrum and a continuous spectrum. The discrete part of the spectrum

can be interpreted as modes. The frequency variations of the propagation and

attenuation constants of some of these modes are determined for different values

of the radius-to-separation ratio of the two wires. The time history of the

current at different points on the wires is also calculated when each wire is

exc~ted by a slice generator with a step-voltage source. Two different modes

of excitation are considered: (1) the two voltage generators have opposite

polarity and (2) they have the same polarity.
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I. Introduction

Certain types of EMP simulators make use of parallel-plate transmission

lines as a guiding structurz for the electromagnetic field, One reason for

using parallel-plate simulators is based on the fact that they can support a

TEllmode. For many types of cylindrical transmission lines the field distri-

bution of the TEM mode is nearly uni~orm over a significant portifinof their

cress section. This means that the TEM mode provides a good approximation to

the free-space nuclear EMP. The TEM mode propagates at all frequencies, but

for frequencies such that the free-space wavelength is of the order of the

cross sectional dimensions of the simulator, ot’hermodes may become important,

In many cases it is desirable to launch fast rising pulses on these simulators

where the rise time of the pulse is significantly shorter than the transit time

across the cross section of the simulator. In doing so many higher-order modes

may be generated.

In order to develop a quantitative understanding of the relativz importance

of the higher-order mode contribution we will, in this note, investigate a

structure consisting of two parallel wires. Each wire is supposed to be fed

0
by a delta gap generator with a step-voltage source, The field distribution

of the TEI1wave on this structure has been determined previously [1] by the

method of conformal mapping. However, as of now, there seems to be no

calculations made of the properties of the higher-order modes that can exist

on this structure. Onz rzason for investigating this particular problem is

that we can find an explicit solution of a transient problem with the

assumption that the radius of each wire is much smaller than the distance

separating the wires. It is believed that many properties of the higher-order

modes on this structure are shared by the higher-order modes that exist on

other structures, for example, two parallel, perfectly conducting plates of

finite width. Unfortunately, it is not possible to find an explicit solution

of the two-plate problem. Although, an ir.ce.gralequation for the induced

current density on the plates can be formulated, this equation has to be

solved numerically. Another reason for investigating the two-wire problem

is to gain some insight concerning t’netype of modes that can exist on an open

‘,~aveguideconsisting of CTJOparailel conductors, before undertaking a numerical

study of a more complicated structure.
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A thorough investigation of the TEM mode on two parallel wires is given

in [1]. An antenna consisting of two parallel wires of finite length and fed

at their midpoin~ by a slice generator has been treated in [2], The approach

in [2] is based on an electric-field ineegral equation and this equation is

solved for low frequencies by using the Wiener Hopf method. A frequency

domain analysis of two parallel wires is given in [3]. However, there exists

no analysis of the transient behavior of the field around t’wowires.

The analysis in this note is based on a solution of the Maxwell equations

in the frequency domain which can be obtained by employing Laplace transform

methods. In evaluating the inverse Laplace transform integrals we follow the

approach used in references [4] through [7] when calculating the transient

fields of a cylindrical antenna in free space. There is one important

difference: the field of one cylindrical anten;a can, in the time domain, be

represented by one single integral, whereas the field around two parallel wires

can be represented by an integral and an infinite sum. Using spectral notation,

the integral can be called the contribution from the continuous part of the

spectrum,”whereas the sum is the contribution from the discrete part of the

spectrum. Physically, each term in the sum can be thought of as due to a

mode, These modes can be obtained from the nontrivial solutions of the source-

free Maxwell equations. One mode is the TEM mode and it propagates with the

speed of light. The propagation constants of the other modes are complex, i.e.,

each mode is attenuated as it propagates along the line. However, the field

components of each ‘nigher-ordermode grow exponentially in the transverse

direction far away from the structure. Therefore, the use of these modes is

limited to a region in the vicinity of the guiding structure. Mathematically,

this fact can be expressed in the following way; the propagation constants of

the higher-order modes belong to the Riemann sheet in which the radiation

condition is violated. Many of these questions have been treated in the

literature (see, for example, references [8] and [9]).

Laplace transform methods are used in Section 11 to derive an integral

expression for the transverse magnetic field in the time domain. This

expression is then simplified in Section 11 to real valued integrals suitable

for numerical computations. Some analytical properties of the field are

derived in Section IV and the results of the numerical computations are
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ID ?resenteclin Section VI in grapilical iorm ior the time behavior of the induced

current on t’woparallel wires due to two slice generators with step-function

voltage sources, ~JiJdifffer~ntnodes of a~citati~n are consider~d: (1) the

line is excited antisymmetrically (push-pull), and (2) the line is excited

syrmnetrically (push-push), It should be pointed out that in the first excitation

a differential TEM mode is excited, !./hereasin the second excitation no TEM mode+

is excited. Some frequency domain properties of che field are determined in

Section VII including che frequency depend~~ce of the propagation constants af

some of the modes.

The analytical methods recently develupsd to solve transiefitelectromagnetic
[19,20] can,

scattering problems of course, be applied to the calculation of the

fields around two ?erfectly conducting wires excited hy two slice generators

whose out?ut voltage are step-functions in ti,me. When the scattering bodies are

of finite extent,poles are the only singularities in the complex frequency plane

of the scattered field provided that the incident field is an entire function of
[20]the complex Frequency . In the two-wirs problem, hmqever, the scattering

body is of infinite extent and the scattered field has branch points in the

o complex frequency plane. The branch points are associated with the props.gatiorl

constants of the modes that can exist on these wires and they remind us of the

branch points of the field scattered frr,ma perfectly conducting body located in

a parallel-plate region
[21]



11. Formulation of the Problem

Consider two perfectly conducting, parallel, thin wires with radii a and

separated by a distance d (see Figure 1). Throughout this note it will be

assumed that a cc d. We introduce two cylindrical coordinate systems

(P1,+l,Z) and (P2,+2,Z) such Chat PI = a is the surface of the “upper” wire

and p2 = a is the surface of the “lowerl~wire. Each wire is fed by an @finite-

simal gap at z = O and independent of the respective azimuthal angles +1 and +2.

To solve the Maxwell equations in the region outside the wires we will make use

of Laplace transforms with respect to the time t and the coordinate z. Let

f(p,z,t) denote an arbitrary field component. We then define the two sided Laplace

transform

\

02

i(p,z,y) = f(p,z,t)exp(-cyt)dt (1)
-.=

that has the inverse transform

f(p,z,t)
-1

= c(2~i)
J

~(p,z,y)exp(cyt)dy (2)
c
Y’

where the path of integra~ion, C is parallel to the imaginary axis in the
Y’

complex y-plane (see Figure 2a) and y= s/c where s is the complex frequency,

a nd the vacuum speed of light is den~ted by c. We also define the two-sided

Laplace transform

i(w,’() = I ;(p,z,y)exp(-~z)dz (3)

with the inverse Cransform

;(p,q,y) = (2ni)
~

-1 2
f(p,~,-~)exp(<z)d~ (4)

c
c

,,
and the path of integration, C

c’
is parallel to the imaginary axis in the complex

<-plane as indicated in Figure 2b.

Assuming that the current distributions on the two wires are independent

of the azimuthal

solutions of the

angles +1 and $7, respectively, we zrrive at the following

Maxwell equations, valid for PI > a and P2 > a,

e
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where D = e{ -<) and the subscripc tr ~eno~es ths transverse components

with respect to z. Moreover, 10(X), Ko(x) and K (x) sre the modifisd Bessel1A
functions, Z. is the wave impedance of free space and ~.(:,!), t = 1, 2, is the

L
transform of the z-component of the electric field on one wire, due to the

current on the same wire. With each wire being driven by a sl<ce generator

located at z = O and having the out put voltage Vi(t), L = 1,2, we arrive at

the following equatian From the boundary conditions at ;P = a,

(6)

In deriving (6) we have assumed that the current distribution on each wire is

independent of the azimuthal angle and that d >> a. This equation is obcaiced by

keeping one term in z Fourier series expansions of the current and the tangential

Equation (6) yieldselectric field on the surface of each wire. .

where

~_(P) = [Ko(pa) z Ko(pdj]-]-—

and

(8)

(9)



From (5) and (7) we derive the following representation for the mgnetic

field ●
2;.

ij(x,y,c,”()= ~ HL(PL,G;()$L (10)

!2,=1

where

.
(11)

Zoiik(fl,w) = ‘{P‘IK1(pP) [A+(p)t+(Y) - (-&A-(P)~_(y)]O

.
.

The transform, ~k(g,y), of the total current, Ik(z,t), on each wire is given by

Zoj(c,’f)

We now go on to

in time and turned on

so that

c

= 2mayp-lK1(pa) [A+(p)ti+(-f)-(-l)LA-(P)~-f~)l.
(12)

treat the case where Vi(t) and V2(t) are both step-functions

simultaneously, i.e.,

VE(Y) = VJCY)-% 2 = 1,2 (13)

.+(Y) = VJCY)-L, v+ = (Vl ~ Vy.
(14)

In this case we have

& (PLX)Y)Qkzo k
= V+G+(P,PL) - (-1)%-GJP,PJ (15)

where
-1

G~(P>P) = PP K1(PO)Ai(P).
(16)

Equations (2), (4), (13), (I-5)and (16) enable us to derive the following time-

domain representation of the magnetic field

~(x,y,z,t) = ; H@ L,z,t)$2
2=1

(17)



where

.

0 NJ-$@v) = V+F+(p,z,t) - (-l)LV F (p,z,t).- (18)

and

F+(P, Z,t) = c(2mi)‘1jC~2ni)-lj’C jGt(p,p)exp(gz)d~ exp(cyt)d’{. (19)

Y c

From equations (17) and (19) it follows that all properties of the magnetic

field can be determined from the integral representation (19) of F=(p,z,t). ~n

the same way the total current, IL(z,t), on each wire is given by

zoz~(z,t) = 2rV+F+(a,z,t) - (-l)L2irVF (a,z,t),--

(C,f. (12))

(20)

,

In the next section we will evaluate_ the integrals defined by (19).

11



111. The Xagnetic Field Due to Step Voltages

In this section we will evaluate the integrals given by (19), i.e.,

F+(P, Z,E) = c(2~i)
-1 r“

~1 1
(2~i)-1 ] G+(p,p)exp(Cz)d< exp(cyt)dy. (19’)

c c
‘f’ c

The path of integration, C,{,is to the right of all singularities in the complex *

y-plane of the inner integral. Xoreover, from the radiation condition it follows
~ _ ~jl/2that the proper branch of P = (y is defined such that Re{p} > 0 in that

branch, and it is depicted in Figure 3. Since we can always choose C.,to the

right of the imaginary axis.in the complex ‘{-plane it follows irmnediatelythat

P = y at Che origin of the proper branch of the q-plane. T’nepath of integration,

c
<’

is parallel to the imaginary axis and such that -Re{.f}< Re{C} < Re{.(}Wnen

c belongs to C
<
and y belongs to C . To ensure convergence of the integral for

‘{
all values of z we choose to let C coincide with the imaginary axis (see Figure

c
3) . It is clear from (19) that F(p,z,t) = F(p,-z,c) so there is no loss of

generality to only consfder the case z > 0. In the following we will limit

our investigations to z > 0.

Xext, we introduce the transformation

2 1/2
?=6{2 -<), c = (Y2 - ?2)1’2.

The branch of the square root defining L as a Eurction of p is chosen so that

Re{<] s O in that branch, and it is shown in Figure 4. Making use of the

technique introduced in [5] we can transform the inner integral in (19) to get

where

Hf(P,P)= DG~(p,D) = OKl(pP)At(p)S
(z~)

.

0

The path of integration, C is around the branch cut in the p-plane. This
P’

branch cut is ~iven by the part of the hyperbola Re{p}Im{p} = Re{l}Im{-~] for

which Re{p} z Re{y} (cf. Figure 4).



.

0

Figure 3. The proper branch of p = ~wherep=yatq=O.
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From the asymptotic expressions for the modified Bessel functions one

immediately sees that there exists a pr such that Ko(pa) * Ko(pd) has no zeros

for Re{p} ~ pr. By choosing the path of integration C such that Re{y} > pr
Y

when y belongs to C we can deform the path of integration C to I’since
P

2 1/2] a ; in the branch under consideration. Here, r is parallel coRe{(Y2 - p )

the imaginary axis and such that pr < Re{p} < Yr when p belongs to r (see Figure 4).

Since !7is independent of y we can interchange the order of integration and obtain

(Cf. [15])

Ft(p,z,t) = (2mi)
-’\;= ’’,”@i~’Jc ‘+ - ‘rl’2exp[c’’t-z(+ - ‘)1’2]d’~dp

Y

(j’(2ni)-1 HJp,p)Io(p~)dp,
r

Ct>’

(23)

2
where r = (ct)2 - Z2. Note that F+(p,z,t) is uniquely defined by the two

o quantities p and ~, Therefore, we get

F+(p,z,t) s Fi(P,T) = (2~i)‘1 ~ H (P,P)Io(P~)dP s
~r k

(24)

Since Hf(p,p) has no singularities

Ht(P,p)Io(p’r) u eXp[-P(P

to the right of I’and since

-a -T)] as p+~

in the right half plane it follows that F+(p,r) = O for T < P - a or
2 2 1/2

ct < [(p - a) +Z] as expected from causality requirements.

To evaluate Ff(p,T) for r > P - a we observe that (c.f, [16])

i~Io(p~) = KO(PT) - KOIPT exp(in)l and that inIo(p~) = Ko[pT exp(-in)] - Ko(pT)t

Following the procedure used in [4] and [5] we get

2 -1

\_

2 -1
Ft(p,7) = ‘(2T ) Hi(p,p)Ko(p~)dp + (2T )

\-
Hi(P,P)Ko[P~ exp(ir)ldp

c c

2 -1

J

2 -1
+ (21T) HJp,p)Ko(p~)d? - (2T )

\
H+(P,P)KOIPT exp(-ir)ldp

c+ c+ -



.

where C= = r+u R+. The integration path 1’+(1’-)is the part of r for which

IIII{p}is positive (negative) and L+(L-) is the part of the real axis that is
@

located between I’and the origin and taken in the positive (negative) direction

(see Figure 5). Making use of the Cauchy integration formula we get (c..f.[4]

and [5])

F+(P,T) = RJP,T) + T~(P,T) + S+(P,T)

9

(25)

where

L+(C) = Io(#) f To(&d/a), M+(<) = Ko(:) t Ko(@/a) (27)

T+(CI,T) = O, T-(P,T) = [2 In(d/a)]-1

{1K1(PP)KOIPT exp(-in)l ~
s+(p,T) =? ~ IrnRes

P;
Ko(pa) t Ko(pd) [

n=l 1,

and p: are the solutions of the equation

Ko(pa) f Ko(pd) = O

(28)

(29)

(30)

for which Im{p~} > 0.

Setting P = a in (26) and making use of the Wronskian for the modified

Bessel functions we arrive at the following expression, which is useful when

calculating the induced current on each wire,

e
16
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The term Ri(p,T) in (25) is the combined contribution along the positive and

negative real axes, after deforming the paths of integration of the four Lntegrals

in (19), respectively, in the fourth, third, first and second quadrant of the

complex p-plane and it can be interpreted as due to the continuous part of the

spectrum.

The quantity Tt(p,T) in (25) is the contribution to F+(p,T) from a smali

circle around the origin in the p-plane, From (5) it can be seen that the

longitudinal components of both the electric field and the magnetic field

associated with T-(p,T) are zero. Moreover, from (20) and (28) it follows that

the current on each wire associated with this term is a step-function wave

traveling along the wire. Therefore, the contribution T(P,T) can be interpreted

as the TEM-mode contribution to the total field. A more detailed analysis of

this term irillbe given in Section VII.

Mathematically, the term S+(P,T) in (25) is due to ~he poles of At(p).

Using the spectral notation, Ti(p,T) + S+(P,T) is the contribution from the

discrete part of the spectrum. Physically, St(p,T) can be interpreted as the

contribution from the higher-order TM modes to the field. Some properties of

each term in the sum will be discussed in Section VI. It should be pointed out

here that due to the excitation we have chosen, only transverse magnetic fields

(with respect to the z-direction) are generated.

We wish to point out in passing that all the properties of the field in thie

space-time domain are determined by the analytical properties of the Eield in the

complex p-plane. Thus, when solving transient waveguide problems the complex

p-plane plays the same role as the complex frequency (s) plane does in solving

transient scattering problems involving finite sized scatterers.

Before we go on with the numerical evaluation of Fi(O,T) as given by (25)

through (31) we will in the next section determine some analytical properties

of Rt(p,T) and St(p,T).
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IV. Some Analytical Properties of the Radizted Field

In this section wa will determine some of the analytical properties of

the radiated field. As we have seen in Section 11 this is equivalent to

investigating the analytical properties of F~(p,T), given by (cf. (25))

Fi(p,~) = RJP,T) + S+(P,T) -t-Tt(p,T)

Since all properties of Tt(O,T) are known (cf.
(28)) we only ‘nave to investigate

the functions Rf(P,T) and St(P,T) and we will start with the asymptotic behavior

of R~(p,T) for small values of T.

,A. Asymptotic Behavior of Rf(P,T) for Early Time

From (26) it can be shown that R+(p,r) is a continuous function for all

P > a and all r > 0. We will here investigate Rf(p,T) as T + p-a. Early tim~:
for the radiated field can be defined as c = (T - 0 + a)/a << 1.

To find the

o early time behavior of RL(p,T) we split R+(p,T) into two parts,

RJO,T) = R;.(P,T)+ R;(P,T) (32)

where

/

:
R;(p,T) = I=(&,p)Ko(C~/a)dE

o

(33)

and

L+(C)[Lt(&)~l(gp/a)+M_(5)11 ($P/a)]
It(c,p) = ~ -

tit(@~)+jT2Lf(Q ]
(34)

(cf. (26)) The quantity S is a finite but large number such that we can use

asymptotic expansions of I&(C,p) and Ko(g~/a), when evaluating R~(o,T) for

o a ~~ a, Since 5 is finite it follows that R~,(p,T) is finite for p > a.

{
UsinS

19
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s

asymptotic expansions of the modified Bessel functions we get

R~(p,T) ‘J [2ad/(r5~p)]
1.

1/2 ‘~exp[-g(l + c + d/a)]

3

f (a/d)l/2 exp[-:(c + 2p/a)]}~-1’2 d: (35)

and it can easily be seen from (35) that R~(p,T) is finite for all

C=(T -p+a)/a=O. I%US, Rt(p,T) is finite for all times, provided that

p >> a,

Some care has to be exercised in evaluating the asymptotic form of

R=(a,~), In this case we define the early time as ~/a = c << 1. For small

valuesof c we can always find a 2 such that Z >> 1 but E: << 1. Using asymptotic

expansions for the integrands in (33) one obtains

and (36)

~

m

R~(a,z) w ~-2(d/s)l’2 exp[-g(l + s + d/a)]Ka(s&)d&
=

N ~-2(d/e)l’2 In(l + d/a).

FrGm (32) and (36) we get the following early time behavior of R~(a,~),

R&(a,T) N [m‘2 ln(l”+d/a)]d 1’2[(ct)2 - 22]-1’4 as ct - z + 0+. (37)

B. Asymptotic Behavior of RL(P,T) for Late Time

The late time is defined as T >> a. To estimate Rk(T,p) for late time

we make use of an integral representation of the Bessel function Ko(x) to get



.

@

The analysis presented in Appendix A enables us to derive the following asymptc]tic

expression, valid for large values of T,

/

w

~&(p,~)=w(-Cu~/a)dt = in-2(au~) + O[ln-4(au~)] (39)
“o ‘

where a = 2/[~(ad)1/2] and ~ = 1.781072, .. (the exponential of Euler’s constant:).

Making use of this estimate of the inner integral in (39) and the analysis in

Appendix A we get the following lace time behavior of R+(P,T)

R+(P ,T) =*ln

[1

-1 2T

I’(ad)l/2

+O[ln-2(?)] as ~+cu, (40)

This asymptotic expression can be compared with the result obtained in [5] on

the late time behavior of the field of a perfectly conducting, circularly

cylindrical antenna excited by a step fwnction delta gap generator.

Similarly, it is easy to show that

do [L(p,?)eq(-CuT/a)dC = 3(d2 - a2)[(~2- a2)- ~C2 ln(d/a)l[16 In3(d/aJl-l(UT)-4

+ O[(UT)‘6 ln(u~)] (41)

from which it follows that

R-(p,T) = (d2 - a2)[(d2 - a2) - 2p2 ln(d/a)][8 ln3(d/a)]-1 T-4 + 0(T-6 In T)

(4,2)

c. Some Analytical Properties of S-(p,~)

l~ewill here investigate the convergence of the sum (29) that defines

s_(P,~). To do this we split S (P,T) into two parts

s (O,T) = Im{S’_(p,~)}+ Im{S~(p,~)) (43)



where

??-1
S:(P, T) = ~ K (P;,P,~)

n=l - “-

m

s:(p,T) = I KJP-,?,T)IS
n=li

K-(P~,o,T) = (20/n)R~S{K1(PP)Ko[pT exp(-ir)]/[Ko(pa) - KO(pb)] ~
Pn

The quantities p; are given by the solutions of

Ko(pa) - Ko(pd)

for which Im{p~} > 0 and N is chosen so that

shown zhat all the solutions, p;, of equation

around the imaginary axis arid.that for n > N

p~d = i2nn/(1 - 3) + In 6/[2(1- 8)] - i(l

(44)

(45)

(46)

- I >> 1,
P~al In Appendix B it is

(46) are located within a band

we have

m

- 6)/’(l6~n) + 0(n-2) (47)

w’here3 = aid. Using this asymptotic expression it is easy to show that p; is

a simp~e zero of (46) for n > 1?. After some lengthy and tedious algebraic

manipulations we gec the following asymptotic expression, valid for n > X,

K (p;,P,~) = A(p,T)(2Tin)‘1’2 exp(i2mT)[l + 3(p,~)/(2mn) + 0(n-2)] (48)

where

)1/2 ~T/2
~(p,?) = (1 + i){L?/[~T(l - 5)IJ

1
B(P,T) = i[~ ln6- (1 - (s)/8- (1 - 6)2 T/(86) - (1 - 6)d(3~+o)/(P~)] (49)

and

T= T(P,T) = (T - 0 +d)/(d -a).

22



Here.,T can be interpreted as a normalized time, and T + 1 as T + O. Thus, we have

S:(P,T) = .4(p,T)S_(T,0,N) +A(P, T)B(o,T)S-(T,l,N) + O(N
-3/2,

(50)

where

S-(T,rn,N)=
~ ~2nn)-m-l/2 exp(i2nnT) . (51)

n=N

In reference [10] the following integral representation of S (T,m,Y) has been

d’erived,

S-(T,m,N) = I(T,m,2N) (52)

where

-1
I(T,m,M) = [T(m /{

m Jn-112
-*)I exp(irMT) exp(-~Mx)/[1 - exp(i2rT - 2nx)]~d:x

‘o
(53)o [16]

and ~(z) is the complete I’-function . Moreover,

S (T,m,N) = S_(T,m,l) - R-(T,m,N)

where

R-(T,m,N) =

and R (T,m,N) is finite for all

N-1
~ (:2mn)-m-i/2exp(i2mT)

(54)

(55)

n=1

values of T. The integral that defines S-(T,m,l)
[10]

can be evaluated by the method of residues

S-(T,m,l) = [4~(m +;)] ‘1 ~ .k IT - k\m-1/2 exp[-i(m - ~)(n/2)sgn(T - k)]

k=O

+ ~T +klm-1’2 exp[-i(m - ~)(m/2)sgn(T + k)]

23
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where c =la.ndzk =2, k z 1 and sgn(x) = -1 for x < 0 and sgn(x) = 1 for
o

X> (I. The sum (56) is absolutely convergent for all values of T when m a I and

it is absolutely convergent for m = O provided that T $ n, n = 0,~1,~2,... From

(56) we can derive the following asymptotic expression for S-(T,O,l) that is valid

when T is in a neighborhood of n.

1
S-(T,O,l) = ~i=r

-1/2 -~/’~
exp[ir/4 sgn(T - n)][T - nl + o(l). (57)

From (43) through (57) it can be seen that S-(P,T) is a continuous function

of T and p except at T - P + a = n(d - a)! n being an integer. In order to

investigate S (P,T) around its singularities we introduce E defined by

E =[~ --p+a - n(d - a)]/a and IcI << 1. Equation (57) then enables us to get

the following asymptotic expression for s_(P,r), valid in a neighborhood Of

T-= P n(d - a) - a when n ~ 1,

p(l) , lsl<<landc<O

For n = 1 we have

I0(1) , \~[<<lands<O

s-(p,T) = ‘

/

(59)

{p/[2T(p - a)]~l/2 c-1/2 i-O(l), Icl C< 1 and s >0

provided that P - a >> a. For n = 1 and o = a ~~ehave

y(l) , lcl<<landc<O

s_(p,T) = ~

1(2T)-1/2 ~-1
, l&l<< land z>O.

(60)
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ID
D, Some .~.alytical Properties of S+(,3,T)

~~~ewill here investigate the sum that

procedure used in the analysis of S_[D,Tj,

S+(P,T) = Im~S;(o,~)} +

where

defines S+(p,T), by following tha

Thus ,

Im{s~(p,~)} (61)

(62)

and

K+(Y~,P,T) = (2p/r)Res{K1(pP)Ko[p~ exp(-i~)]/Ko(pa) - Ko(pd)l] . (63)

P:

+
The quantities pn are given bj Zhe solutions of

Ko(pa) + K,o(pd)= O (64)

for which ~m{p~) > 0, and N is such {thatlp~al >> 1. In Appendix B it is shown
+

chat we have the following asymptotic form of pn, valid for n > N,

p~ = i,~(l!n- 1)/(1 - S) -1-In 5/[2(1 - $)] - i(l - 6)/[8n(2n - 1)] -iO(n-2)o

(65)

From (55) ire can derive the foliowing asymptotic expression for K+(p~d), valid

for large n,

K+(p;,p,T) =
-1/i~

-A(0,~)[~(2kl- 1’] exp[iT(2rl- l)T]{i + B(p,~)/[r(2n - 1)]

+ 0(n-2)j (66)



.

where ,A(p,T), B(p,T) and T = T(p,T) are given by (49). Equation (66) enables us

to get the following asymptotic representation of S~(p,T),
*

$(P,T) =
-3/~

-A(P,T)S+(T,O,N) - A(p,T)B(p,T)S&(T,l,N) + O(N ) (67)

where

co

S+(T,IU,N)= ~ [r(2n - 1)]
-m-l/2

exp[im(2n - I)T].
n=N

We also have the integral representation of S+(T,m,N),

(68)

S+(T,m,N) = I(T,m,2N - 1) (69)

where I(T,m,M) is given by (53). From (61) through (69) it can be shown that

S+(P,T) is a continuous function of T and P except at T = P - a + n(d - a),

where ~ is an integer. In the vicinity of its singularities, i.e., when

T -p+-a - n(d - a) = ea we have

( (1)o, /E~<<lands<O

s+(p,T) = ~

I (-l)n+l[p&n/(2mlp -a
-1/2

-na- nd\)]l’2 c + 0(1),

Icl << l-and E >0

except for n = 1 and P = a in which case we have

}

o(l), lsl<~lands<O

S+(a,T) =

1,(2m)-1/2 s-l, ~s\ << 1 and s> O.

Tb. Some Analytical Properties of FA(P,?)

(70)

(71)

To sum up, we have shown in this section that F4(Q,T) is a continuous

function of Q and T, p z a and T > 0 except at T - 0 +a = n(d - a), n

nonnegative integer, where F+(p,T) has a square root singul,ariry. These
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singularities occur because of the assumption of the delta.-gsp generator. For

a << d these singularities occur at T - p x nd, Physically, they can be under-

stood as being due zo the wavefront being reflected at one of the two wires

(see Figure 6), The strength of these singularities is proportional to (a/d)n

so they are very weak for thin wires. If we had replaced the delta gap by a

feeding gap of finite width A the field would have been finite for all times,

However, if L/a << 1 maxima and minima would occur in the field around T = n.

These extreme values will be more pronounced the smaller L/a is and the smaller

n is.

For early time, defined as T - p -ia = ~a, ~ << 1, we have from (15), (38),

(58), (59), (60), (70), and (71)

and

v
12(z,t) ~

!.,
.<’

Ct - z + 0+,

&
2 ,.

. . .

(73)

16Jwhich,of course, agree with the asymptotic forms derived previously for one

wire . Cn.fort~nately these asymptotic expansions are only valid for early times

in a time scale using a/c as a unit and hence for a very short time compared to

the transient time between the wires.

Since Re{p~} < 0 it follows immediately from (45) and (63) that each te::m,

KJP:,P,T), in S4(p,T) is exponentially attenuated so that for T large and

‘r-p +a#n(d-a), wehave

(74)

Thus ,

F+(P,T) N l/ln[4~2/(r2ad)l
(75)

‘. [~ ln(~/a)]-l + (d2 -
~

F_(P,Y) ,a2)[(d2 - a2) - ~p ln(d/a)][8 ln3(ci/a)]-1 T-4*

O

(’
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Figure 6. A ray model describing the reflections of the wavefront.
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0 as 7*=. The expression (75) for F+(P,T) can be compared with the late-time

expression for the transverse magnetic fi~ld of an infinitely long, perfectly

conducting, cylindrical antenna excited by a step function slice generator
[s]6

It can also be seen from the asymptotic form (75) of F-(P,T) that the Tnf mode

quickly becomes the dominant part of the field when the two wires are fed

unsymmetrically, i.e., when V2 = -Vl, so that V+ = O and V- = VI = -V2.



v. An Alternative Representation of F+(P,T)

In this section we will derive an alternative representation of F+(P,T)

which is useful for early time computations. We begin with (24]:

(76)

The asymptotic expression of the modified Bessel functions implies that there

exists a p ~ > 0 such that ~Ko(pd)/Ko(pa)l < 1 when Re{p? > pr. We now c“noose

the path of integration, i’, in (61) such that Re{p} > pr when p belongs to P.

The following series expansion is valid,

Ff(P,T) = J~(2ni)-lc~P ~ ~K (~)Io(p~)K~(pd)/K~+l(Pa)dP (77)

m=O

where c+ = 71. Since the integrand in (77) has no singularities to the right

of r and since

K1(pP)Io(pT)K~(pd)/Km+L(pa) @ exp{-p[o - a - T - m(d - a)]} asp+=

in the right half plane it follows that

M

F+(P,T) =
-1

~ (2mi)-ls~0 ~1K (pp)Io(p~)K~(pd)/K~+l(?a)dp (78)

m=O

where M = M(P,T) = int{~ - Q + a)/(d - a)] and int{x} denotes the integer part

of x. For T - p+a<d-awehave

F+(P,T) = F-(p,T) = (2ri)‘1 p ~’<(pP)Io(pr)lKo (pa)dp
r

(79)

~d in thki case ●&e electromagnetic field around the two ~“iresis t~~esame as from
[51

cwo noninteracting, cylindrical antennas .

The integral in (78) can be transformed into a real integral by employing

the methods used in Section III. T’nus,

.

*
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lD (80)

where

o

-Re{[Kl(Cp) + TiIl(:p)][Ko(Zo) - riIo(Cp)lm[Ko (5a)

-~i~ ~(Ea)] -m-l i<o(~~)} (91)

For m = O this expression reduces to the one given in [5], Each term in the sum

(80) has a square-root singularity at its “turn-on time”, i.e.,

~~here : = T-o + a - m(d - a), and ()< s << 1, This is the same singularity that

was derived from another representation in Section V, Physically, the singuc.arities

can be understood as due to reflections of the wavefront at each wire when using

a ?-gap Zenerator. The time at which the different reflections of the wavefront

arrive at a point can be determined from a ray model of the wavefront (see

Figure 6).

The representation (78) is useful mostly for earlier times, i.e., for

T - J < 3d. It is especially useful for ~ - p < d ~~hen the two ~~iresradiat~:

like cwo independent wires in free sFzce. The representation (25) is useful

mostly for later times, i.e., T - 0 > ~ci, :c is especially useful for late times

when the t{iresare fed in a pusl~,-pllllmnne~ .5$:tb.atthe TEM mode is t;hedominant

part Of the electro~~agnetic iield,

In Cti~ next section we wili present some numerical results that were

obtained from the theory outlined in Sections 11 through V,



.
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VI’. The Time History of che Field

In this section we will present the numerical results obtained from the

theory outlined in Sections 11 through V.

A. Solution of Ka(pa) t (Ko(pd)

The roots, p:, of the equations

Ko(pa) f Ko(pd) = O (30’)

were found numerically and the results of these numerical calculations are

presented in Figure 7 and Tables 1 and 2, As a comparison we have also included
~

in Table 1 and 2 the asymptotic expressions of pn as given by equations (47) and

(65). It is obsened that the larger a/d is the faster the solution of (30)

converges to the asymptotic expressions (47) and (65). This is obvious since

the asymptotic expressions (47) and (65) are derived under the assumption that

p~a >> 1,
~

We also observe that the absolute value of the real part of pn is
o

1

a monotonically decreasing function of a/d, and all the p; belong to one branch

for fixed aid.

B. The Time History of the Current on Each Wire

The time history of the current along each wire can be determined from

the two functions F-(a,~) and F+(a,~) (cf. (20)). These two functions were

evaluated numerically by using the representation (25) of F+(a,~). The integral

(26) was evaluated by using a Gaussian quadrature formula, ;nd in evaluating the

sum (29) the asymptotic expressions (50) and (67) were used with N = 12. From

the representation (79) it is noted that
[5]

Io(E.)Ko(C~/a)
-) = \mF (a,~) = F+(a,. d~, T<d-a (83)

‘O Wo(@(C)+m2@]

and this function is tabulased in [18]. Equation (83) provided a good check

on the numerical caicui~ticns and agreement within .5% between the results

reported in [18] and our numerical results was found for .5 < ~/d < .99 - aid.
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In Figur~s 8 through 11 we have graphea the ~-dependence of the two quantities

1-(?) and lA(T),

I+(T) = 2mF+(a,~) (84)

for a/d = ,1, .01, .001, In order to show the strength of each singularity we

have graphed the functions I-(T) and T.+(T)for n(d - a) + .01 < T < (n +l)(d - a),

n being a nonnegative integer, It can be seen from the graphes that the singularities

are very weak when ajd ~ .01.

The time history of the current at different points on each wire can be

determined from I_(T) and I+(T). The currents due to two step functions of

arbitrary amplitude and polarization can be obtained by superposition of two cases,

namely, (1) when ‘Jl = -~J, = V i.e., V = V. and V+ = O (push-pull) and (2) when
. o’

‘1 = V2 = Vo, i.e., V = O and V+ = V. (push-push). From symmetry considerations

it is clear that when the wires are fed in a push-pull manner we have

o
IJz,t) = -12(z,t) = I-(z,t) (85)

where I (z,t) denotes the current on the upper wire and I (z,t) the current on
1 2

the lower wire. ‘Similarly, symmetry considerations imply that

Il(z,t) = 12(z,t) = I+(z,t) (86)

when the wires are excited in a push-push manner, In Figures 12 through 17 we

have graphed I,(z,t) as a function of t for z = O, 1, 2, 5 and ald = .1, .01, .001.

From these graphes one observes that the

ald is the sooner the current approaches

pull excitation one quzntity of interest

arrival time of the c’urrenrwavefront at

larger the distance z is and the smailer

the late time behavior. In the push--

is the claps time, t’, between the

a given observation point and the tine

when the curren~ ac the same point has decayed to less than 10% of the TEM field.

Of course this time can be determined from the smallest T such that

II-(T) _- I (m)]/I-(m) < .1. Figure 18 shows the variation of t’ with z For a/d =

,1, ,01, .001.
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TabIe 1. T’neroots, p~, of the equation Ko(p) - Ko(pd) = O.

The quantity p~- is the asymptotic form given by (47).
Lld

ald n Re{p~d] Im{pid} Re{p~ad) Im{pnad}

.1 1 -1.232 6.85 -1.279 6.96

2 -1.261 13.88 -1.279 13.95
3 -L.270 20.89 -1.279 20.94
4 -10273 27.88 -~.~79 27.92
5 -1.275 34.87 -1.279 34.90

6 -1.276 41.86 -~*~79 41.88
7 -1.277 48.84 -~*~79 48.87
8 -1.278 55,83 -1.279 55.85
9 -1.278 62.81 -1.279 62.83

10 -1.278 69.80 -1.279 69,81

11 -1.278 76.78 -1.279 76.79
12 -1.278 83.76 -1.279 83.77

.01 I -1.923 5.94 -z.3~~ 6.33
2 -2.061 12.38 -2.326 1~.(j8

3 -2.129 18.78 -2.326 19.03
4 -2.171 25.16 -2.326 25.38
5 -2.199 31.53 -2.326 31.73

.6 -2.219 37.89 -2.326 38.08
7 -2.235 44.25 -2.326 44.42
8 -2,247 50.61 -2.326 50.77
9 -2.257 56.97 -2.326 57,12
10 -2.265 63.33 -2.326 63.46
11 -2.272 69.68 -2.326 69.81
12 -2.277 76.04 -2.326 76.16

,001 1 -2.39.4 5.68 -3.457 6.27

2 -2.608 12.06 -3.457 ~~,57

3 -2.725 18.39 -3.457 19.86
4 -2.808 24,71 -3.457 25,15
5 -2.867 31.02 -3.457 31.44
6 -2.915 37.33 -3.457 37.73
7 -2.953 43.63 -3.457 44.02
8 -2.986 49.94 -3.457 50.31
9 -3.014 56.24 -3.457 56,60

10 -3.038 62.54 -3.457 62.89
11 -3.060 68.83 -3.457 69.18
12 -3.079 75.13 -3.457 75,47

I
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~ab~e 2. The roots, ~~, of the equation Ko(@) + Ko(pd) = O.

The quantity p~a is the asymptotic form given by (65).

a/d n Re{p~d} Im{p: } Re{p~ad} Im{p~ad}

.1 1 -1.178 3*Z7 -~,~79 3.L6

2 -1,~51 10.37 -1.279 10n46

3 -1.267 17,39 -1.279 17.45

4 -l,~jl ?4.38 -1.279 24.43

5 -~.~74 31.38 -1,279 31.41
6 -1.276 2,8.37 ● -1.279 38.39

7 -1,277 45.35 -1.279 45.38

8 -1.277 52.34 -1,279 52.36

9 -1.27~ 59.32 -1.279 59.34

10 -1.278 66.31 -1.279 66.32

11 -1.278 73,29 -1.279 73.30

12 -1.278 80,27 -1.279 80.28

13 -1.278 87.25 -1.279 87.26

.01 1 -1.762 2.64 -2.326 3.13

2 -2.007 9.17 -2.326 9.51

3 -2.100 15.58 -2.326 15.86

4 -2.150 21.97 -2.326 22.21

5 -2.186 28.34 -2.326 28.56

6 -2.210 34.71 -2.326 34.90

7 -2.228 41.07 -2.326 41.25

8 _2.~41 4.7.43 -2.326 47.60

9 -~,25~ 53.79 -2.326 53.94

10 -2.261 60.15 -2.326 60.29

11 -2,268 66.51 -2.326 66,64

12 -2.274 72.86 -2,326 72.98

13 -~,~80 79.21 -2.326 79.33

.001 1 -2.177 2.40 -3.457 3.10

2 -2.520 8.98 -3.457 9.42

3 -2,674 1.5.23
~ :;::;;

15.72

4 -2.767 21.55 z~,ol

5 -2.839 27.87 , -3,457 28.30

6 -2.892 34.18 ‘ -?.457 34.59

7 -2.935 40,48 -3.457 40.88

8 -2.970 46.78 -3.457 47.~7

Q -3.000 53.09 -3.457 53.b6

10 -3.027 59.39 -3.457 39.75

11 -3.049 65.69 -3,457 66.04

12 -3.070 71.98 -3.457 72.33

13 -3.088 78.28 -3.457 78.62
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In order to get some information on che relative contribution to the field

from the TEM node and the higher order modes when the wires are excited in a

push-pull manner we will graphically represent some of the terms in the sum (29)

and

and

are

the term (28). The transverse field distribution of the TEM mode is given by

(87)

II (X,y) = ~ (-l)t d/(4pL)[;sin$L- ; Cos Q
!2=1

the transverse

given by (cf.

2

field distributions of the antisymmetrical higher order modes

(5)), n= 1,2,3...

(-~)~ Kl(p&)~; COS ok i-j sin $t]/[2/Kl(p~d/2)1]
1

(89)

Note that e = ;Xh and that (87) can be obtained from (88) by letting p; tend

to zero. !J;have normalized ~(x,y) such that 1~(0,0)1 = 1. Since Re{p~} ~ O

we can see from (88) that the field components of the higher order modes grow

exponentially in the transverse direction far away from the wires. This

exponential growth does not cause any problems when treating transient probI.ems.

However, some care has to be exercised when using these modes in the solution of

steady-state problems, since the fields associated with each mode violate the

radiation condition at infinity. In the next section we will discuss the region

in which these higher order modes are mostly useful in the steady state solution.

]h (O,Y) I forA graphical representation of l~(O,y)[, or equivalently, ~

()<y<d,a/d=.ol,and n = 0,1,2,3 is given in Figure 19. The quantity

l~(x,O) \ or [~(x, O) I is depicted in Figure 20 for 0’< x < d, a/d = .01, and

n = 0,1,2,3, Note that both ~(O,y) and ~(x,O) are even functions of x and y.

,

●
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Figure 19. The variations along the y-axis of the normalized electric and
magnetic fields for the TEM-mode (n=O) and the lowest antisymmetric
T?f-modes (n=l,2,3). The axes of the wires are located at x = O and
y = td/2. The radius of each wire is d/100.
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lb
The time history and spatial variation in the longitudinal direction of

each mode are obtained from fn(~), defined by (c.i. (28) and (29))

fom = 2/[d ln(d/a)]-l

(:’9)

fn(~) = 4(iT)
-1

Ko[p~T e~p(-ir)llKo(p~d/2)\/[dKl(p~d) - aKl(p~a)], n > ~

Figure 21 shows the variation with T of fn(~) for n = 0,1,2,3. From this graph

we can see that fn(T), ~ > L is a monotonically decreasing function of T and

that for T > 5 the contribution from the higher order modes are negligible. Note

that fn(r) gives the time history and longitudinal spatial dependence of the

transverse magnetic field of each mode on the z-axis. To obtain this dependence

of the transverse electric field requires an extra numerical integration. TQ

sum up (87) through (89) show that we have the following representation of the

magnetic field associated with each antisymmetrical mode

~(x,y,z, t) = Re{fn(r)~(x,y)}, n = 0,1,2, .... (?0)

where fn(~) and &,y)are given by (87) through (89).

This concludes our time-domain analysis. In the next section we will clerive

some frequency domain properties of che field.
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v~Io Some Frequency Domain Considerations

Although the method used in Section 11-flto derive a time domain repre-

sentation of the field is based on first solving the Xaxwell equations in the

frequency domain, we have not explored any properties of the field in the

frequency domain,
.-.—

Our point of

In this section we will investigate some of these properties.

departure-is equation (II)

A

-1ZOIIJ!2,C,’() = ‘(p Kl(pp)[AA(p)~4(@ - (-1)2 A-(p);-(y)] (11’)

where

~ (p) = [Ko(pa) i Ko(pd) ]-l
I

Performing one inverse Laplace transform we get

Zolj(p,z,’{) = (2iri)-1 f ‘ip p‘1 K1(pO)[~+(P)~+(Y)

- (-1)1 A-(p);-(y) ]exp(gz)dc (91)

For y = -ik, ‘kreal, ~the proper branch for p = ilc in the complex ?

plane, i.e., the branch for which R,e{p}> 0, is depicted in Figure 22. The

path of integration C
c

is along the imaginary axis and “between” the branck-

cuts that start at c = *ik. This choice of branch-cuts makes the integral in

(91) converge for all values of P and z. Since all zeros of Ko(pa) t Ko(pd)

are located in the left half plane the integrand is an analytic

c in the proper branch.

Zofi2(p,z,-ilc

function of

From the Cauchy integration formula we get

-(-l)L A-(p)~-(-ik) lexp(~z)d~

The path C+(c-) ~S around the branc:~-cut in the rig’n~ (left) half plane and

53
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C+(C-) should be chosen for z < 0(> O) (see Figure 23). From (92) it follows

that H(P,z,y) is an even function of z and so there is no loss in generality

to only consider the case z > 0.

For z > 0 equation (92) also has the form

ZoEk(p,z,-ik) = !dl+(p, z,k)~+(-ik)- (-l)L kH-(p,z,k);-(-ik)

- (-L)L[2p ln(d/a)]-l exp(ikz)~-(-ik)

where

(93)

H+(p,z,k) = - n
~

-1 k
Fi[(k2 - C2)1’2,p]exp(icz)dg

o

In (g3) the first two parts can be interpreted as the contribution Erom the

continuous part of the spectrum and the last part is the contribution from

the discrete part of the spectrum.

In order to interpret (93) physically we will evaluate the total current,

IL(z,k), on each wire, given by

~L(z,k) = 2mafiL(a,z,-ik)= [P+(z,k) +Q+(z,k) ];+(-ik)Z~l

- (-l)i[p-(z,k) +Q-(z,k) lV-(-ik)Z~l

- (-~)LT~n-l(d/a)exp(ikz)~-(-ik)Z~l (94)

where
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@ ,.a
7 ~;/’J

QJz,k) = i2ka ~ G-[(!<2* ;- I ,a]exp(-;z)dt
‘o –

A -L
a nonradiating wave. Tileterm P-(z,k)VA(-i~)Z ::;ube interpreted as a s~uper-

9
position of traveling waves, each wave being a fast ‘.f~-:~:i.e., its ?hwe

velocity is greater than the speed of light, ‘~~~~last term in (94) represents
-1

a TEM wave and the quantity Z = ZGF ln(d/a) is che c“naracteriscic impedance

of two parallel wires.

For the special case where ~1~(fj =- V2({) = ~(f) equation (94) becomes

Il(z,k) = ‘12(Z,k) = [P_(z,k.)+c!_(z,k)lz:ll@k)

+Z
-i

exp(ikz)”~(-ik), (95)

T’neoutput complex power from the two ~e:~era~ots is gives by 2’~(-ik)I (J~, ,;;)=

Y~(k)12V(ik) 12 and Y-(k) is the input admittance of ~ parallel pair of ~~ires

driven in a push-pull manner. The adnictance Y (k) can be split up in t~,e

following way:

Y (k) = G + iB (k) - Y’-(h) (96)

r;hereG = Z
-1

= ii[2z kdd/a)]-l is the conductance of tr,eTiZ.fnode and
o

represer.tsthe power guided by t!leline.
-~

The second term is B_(k) = (2ZO) Q_(A,k)

where A is the gap ‘width. This tern is z capacitance and represents the

stationary field in the vicinicy ,)ieach generatcu. It should be nctzd here chat

Q-(z,k) has a Io,garithmic ~~ngiil-ar~~:: at z = ‘), This is the same type of

singularity that bias cvlinarical a~ltennain tree space fedbeen ti.nownfor on; ~



by a delta gap. The third term, Y:(k) = (22.)-1 P-(O,k), is the radiation

admittance and its real part accounts for power radiated from the wires. The

imaginary part of Y:(k) is small compared to B(k). A similar representation

can be found for the input admittance, Y+(k) , of a parallel pair of wires driven

symmetrically. Tn this case we da not have any term corresponding to the

contribution from a TEM wave. In Figure 24 we give a graphical representation

of the input iinpedanceof two wires for these two different excitations.

The calculations so far have been based on the integral representation

(93). This representation is based on a choice of Riemann sheets of m

such that the radiation condition is satisfied throughout the entire configura-

tion space. However, if we limit our calculations to only certain parts of the

configuration space there are other possible choices of Riemann sheets. For

example, when calculating the field between the wires we can choose any branch-

cut starting at iik as shown in Figure 251 By choosing these branch-cuts we

will have Re{p} < 0 in part of the Riemann sheet under consideration. One

way is to let the branch-cuts coincide with the imaginary axis in the ;-plane

in which case we get

ZofiJp,z,-ik) = H~(P,z,k)ti+(-ik) - (-1)2 H~(p,z,k)~-(-ik)

where

H;(p,z,k) = R}(p,z,k) + S;(p,z,k) + T;(p,z,k)

(97)

(98)

-1 m Lt(q)[Li(n)K1(np/a)+lft(n)I1(qp/a)]
R~(p,z,k) = -ika(2~)

j
exp(igz)dg (99)

k nM=(n)[M~(n)+T2L~(n,)1

L~(~) = Io(n) * Io(nd/a), ~+(n) = Ko(nd/a) (Loo)
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q(p,z,k) = o, T~(p,z,k) = [2P ln(d/a) ]-1 exp(ikz) , (102)

~
and p are the roots of the equation Ko(pa) t Ko(pd) = O such that T ~ arg(p~} < 0

n L2 ~/~
and [c~~ = ~k2+P~ I , -ITs arg{cn} s - 3n/2. This representation corresponds

to the representation (25) through (29) of the time-domain result.

The quantities p~ have been tabulated in Section VI, From (Iol)it is clear

that Im{L~} is the propagation constant and -Re{C~} is the attenuation constant

of the higher order modes. Furthermore, the transverse field distribution of

each mode is determined by Kl(p~p)[aKl(p~a) fdK1(p~d)]-l and this expression is

exponentially growing for large values of 0, indicating that the representation

(95) is not valid in all space. However, as we have said before, (97) is valid

in the regio~.between the two wires.

The quantity that determines the relative importance of the contribution
*

of each higher-order mode is Cn. It is therefore of value to have the frequency
~

variation of g;. The loci of <~ in the complex plane as the frequency variss

is depicted in Figures 26 through 31. Figures 32 through 39 give the variation

with kd of the following two normalized quantities

for n = 1, 2, 3, 4, 5 and aid = .1, .01, .001.

Finally, we will derive a representation which is most useful between

the wires and far away from the source point. In this case we drzw the branch-

cuts from tik to ?ik ~ ~ parallel to the real axis as indicated in Figure 40.

This Riemann sheet enables us to derive the following representation

zollJ&z,-ik) = I$(p,z,k)?+(-ik) - (-l)k H~(p,z,k)~-(-ik) (103)

where

H’J(g,z,k)= R“(p,z,k) + S“(o,z,k) + T;(o,z,k)= (104)
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I
= L@]K1(np/a)+ll+(n) I1(nP/a)

R~(p,z,k) = ika 2qMt(n) [M+(n)Zi#L+(n) 1
exp(ikz - &z)d&

o

(105)

ITI]= (l&2 -2ik&la2)1’2 9 arg{nl = ~+ arctan[g/(2k)l

and Z’ denotes summation over all n such that Re{C~} < 0 and O < Im{L~} c k.

For large values of z, S~(p,z,k) is negligible since each term is exponentially

attenuated. Xoreover, the main contribution of R~(p,z,k) comes from small

values of ( when z is large. This enables us to derive an asymptotic expression

of the integral (104), valid for large values of z. From this asymptotic

expression ic can be seen that the current on the antenna, far away from the

feeding point z = O has

where

the following form,

I(z,k) = I+(z~k) + 1-(z,k)

I+(z,k) = T in‘2[2ik~2ad/z]exp (ikz]~+(-ik)/Zo

(107)

o

I-(z,k) = (r3/2)1/2(ik/z)3/2 a21n(d/a)

- (d2 - a2)/4]ln-2(d/a)exp(ikz)~-(-ik) /z. (109)

The branch-cut chosen here has been discussed previously in connection

with the calculation of the current on a cylindrical antenna and the expression

(108) can be compared with the results obtained in [11] through [13]. It should

also be noted that the connection between this choice of the branch-cut and the

saddle point method is discussed in [14].
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Figure 26. The loci of the complex propagation constarits
of the five lowest, antisynmetric TM modes on
two wires when ald = .1.
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Figure 27. The Loci of the complex propagation constants
of the five lowest, antisymmetric TX modes on
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Figure 28. The loci of the complex propagation constants
of the five lowest, antisymmetric TM modes on
two wires when a/d = .001.
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Figure 29. The loci of the complex propagation comstan~s
of the five lowest, symmetric TM modes on two
wires when a/d = .1.
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Figure 30. The loci of the complex propagation constants
of the five lowesty symmetric Tl”lmodes on two
wires when a/d = .01.
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Figure 31. The loci of the complex propagation
of the five lowest, symmetric TM mod
wires when ald = .001.
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Figure 33. The propagation and attenuation constants of
the five lowest ancisymmetric TX nodes on two
wires when ald = .01.
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Figure 38, The propagation and attenuation constants of the
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To conclude this section we discuss briefly the analytical properties of

the field in the complex frequency plane. As we ‘naveseen in Section III the

field, when considered as a function of the complex variable p, has a branch

point at p = O and poles at p = p: where Ko(p~a) t Ko(p~) = O. The analytical

properties of the field in the complex p-plane completely determine the space-

time behavior of the scattered field (cf. (23)). From the analysis in this

section (cf. (89)) it can be seen that the field has branch points in the comPle~

frequency plane and that the locations of these branch points are given by
~

s = Cpn. These branch points may be compared with the branch points of the field
[~~]

scatteced from an object located in a parallel-plate region .

0’

78



*

(D

O

VIII. Concluding Remarks

The transient electromagnetic field around cwo wires can be sxpressed in

terms of a discrete spectrum znd a continuous spectrum. The discrete pzrt of

the spectrum can be interpreted as modes. The propagation and attenuation

constants of these modes have been calculated for a wide range of frequencies

and for different values of the radius-to-separation racis. The field of each

mode grows exponentially in the transverse direction far away from the wires

thereby violating the radiation condition. Thus , the usefulness of the nodas

in the frequency domain is limited to a region near the two wires.

The time history of the current on the wires has been calcula~ed when

each wire is fed by a step-function slice generator. The current due to tw2

step-function voltage sources of arbitrary amplitude and polarity has been

obtained by superposition of two linearly independent cases: (1) when the two

voltage generators have the opposite polarity (push-pull) , and (2) when the;y

have the same polarity (push-push), When the wires are fed in a push-pull

manner and when the radius-to-separation ratio is less then .01 it was found

that the current on the wires can be described accurately by the TS?!mode alone

after one transient time or so between the wires. This , of course, means that

transmission line theory is applicable for times larger than the transit tiine

across the structure.

There are other wave guiding structures that can be analyzed with the

methods used in this note. For example, the properties of the electromagnetic

field supported by any number of parallel, thin wires can be determined by

amploying exactly the same methods. However, due to the rather complicated

expressions that will result, the number of wires cannot be too large.

Two perfectly conducting plates oi finite width is another example of a

structure where Laplace transform methods are suitable, In tlheparallel plate

problem it is impossible to derive an explicit expression for the current induced

on the plates due to step-function slice generators. Iastead, an integral

equation of the first kind for the induced current density can be derived.

After a suitable transformation this integral equation can be ~ransformed into

an integral equation of the second kind. This integral equation can be further

transformed into a set of algebraic equations by e:<panding che current density
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in a Fourier series with the Chebyshev polynomials as basis functions. Standard

numerical methods can then be applied to solve this set of equations. The TM

modes can be determined from the nontrivial solution of the homogeneous integral

equation. Furthermore, it can be shown from this set of equations that in the

limit when the width-to-separation ratio is small, the propagation and attenuation

constants of the TM modes of the parallel plates are the same as those of two

parallel, circular wires. Hopefully, we will be able to report some results on

the two plates problem in the near future.
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In this appendix we

asymptotic forms are used

the field.

A. Asymptotic Evaluation

Appendix A

will derive asymptotic forms of some integrals, These

in Section IV to evaluate the late time behavior of

First, we will find an asymptotic form of the integral

~

a

J+(v) = I+(&)exp(-v?)d&
o

valid for large values of v. The function I+(C) is given by

(Al)

(A2)

L+(O = l.(O + 10(M), M*(O = KO(O + KO(M)

where a > 1, ~ < 1 and Io(x) and Ko(x) are modified Bessel functions,

The main contribution to J+(v) comes from small values of ~, Asymptotically,

for small values of { we have

1+(:) = -1/{2& ln(o&)[r2 + ln2(og)]} + 0(g2 In ~)

where

a = r81~2/2, r = 1,78102.....(the exponential of Euler’s constant).

From (A3) it follows that

(A3)

J+(v) = -
/
‘n{2~ln(crg)[n2 + ln2(og)]}-1 -3exp(-vg)dg + O(v in v) (A4)
o

as v-a, Integration by parts give



A

where

J+(v) = J:(v) + J;(v) + J;’ (v) + O(V
-3

In v)

\

K’
J:(v) = 1(5,v)exp(-~)d#,

o

I+( ‘,,JII! v) = I(E,v)exp(-5)d&,
K

(A6)

and Kr’>> I but C’t].<<< ~. These choices of Ki and ~“ are obviously possibly

when v is large. We can now derive the following asymptotic forms for J;(v),

J;(v) and J~’(v), valid for large values of v

J;(v) = O(V-l in-l v),

J; (V) = ~ in-2[2v/(Y8 1’2;] + o[ln-4(v)],

J;’ (V) = O{exp[-2v/(721/2)1}.

Thus, we have

J+(V) = * h-2[2v/(r3 1/2)1

(A7)

(.+8)
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B. Asymptotic evaluation of ~~1-(&)exp(-v&)dg

Yext, we will find an asymptotic form of

fm

the integral

J-(v) =
J

I-(~)exp(-vg)dt
o

(A9)

valid for large values of v. The function I-(:) is given by

(A.lo)

L-(g) = 1.(9 - 10(M), M-(G) = Ko(t) - Ko(8~).

Asymptotically, for small values of c we have

I-(t) = {(1 - 62)[(1 - 62) + 2a2 in a]/(32 ln3 a)}c3 + 0(?5 in g) (All)

O from which it follows that

J-(v) = 3{(1 - 62)[(1 - 82) + 2ci2In CY]/(16 ln3 ~)}v-4 + 0(v-6 in v) (A12)

c. Asymptotic Evaluation of ~~(u2-1) -112 in-n(vu)du
.

Finally, we will find an asymptotic form of the integral

valid for

variables

Fn(v) =
~

‘(U2 -1/2
- 1) in-n(vu)du

1

large values of v and for n being an integer, n z 2. A change of

enables us to cast the integral into the following form

(A13)

Fn (V) = F:(v) + F“(v) (AIL)
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where

and E is a,small but

derive the following

Thus,

as v + ~.

\

&
F;(v) = ?n(v,u)du,

o

I

1
F;(v) = Pn(v,u)du,

&

2 ~~2 lnn(v/u)Pn(v,u) = U(1 - u )

finite quantity such ti-iatc << 1 but vz >> 1, We can now

asymptotic forms for F:(v) and F“(v),
LI u

F;(v) = (n - 1)-1 Inn-l(v) + O[lnn(v)],

F;(V] = O[lnn(v)]

Fn(v) _ (n - 1)-1 Inn-l(v)

(A.15)

(AL6)

0’
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o Appendix B

In this appendix we will determine certain properties of the zeros of the

functions Ko(w) t Ko(dw), where 6 is a real, positive number such that S < 1,

Ko(w) is the modified Bessel function of the second kind and -m < arg{w} < m.

Firstly, we will show that all,zeros are located within a band around the

imaginary axis. For Re{w} >> 1 we have

Ko(w) f KC(5W) = MO (dw)[tl + Ko(w)/Ko(6w)] (Bl)

and the asymptotic expansion for large arguments implies the existance of a

finite w; > 0 such that lKo(w)/Ko(dw) I < 1 for Re{w} > w;. Moreover, since

Ko(dw) has no zeros it follows immediately that Ko(w) t KO(6W) has no zeros

for Re{w} > w;. Next, for -Re{w} >> 1 we have

Ko(w) t KO(8W) = Ko(w)[l f Ko(6w)/Ko(w)] (B2)

and again from the asymptotic expansion it is clear that there exists a finite

w“ < 0 such that lKo(dw)/Ko(w) I < 1 for Re{w} < w~. Thus , KO(W) f KO(6W) has
r

no zeros for Re{w} < w“. It is now obvious that all zeros of Ko(w) t KO(15’W)
r

are located within a band around the imaginary axis in the complex w-plane.

Secondly, we will deduce an asymptotic expression for the zeros, w;, c)f
11

f+(w) = Ko(w) t KO(6W), valid when ~w~l >> 1. Using the asymptotic expressions

for Ko(w), valid when Iwl >> 1 we have

f+(w) = [IT/ (2w) ]1’2 exp(-w) {1 - 1/ (8w)

-ljz
=8 exp [(l - ~)w][l - l/(86w)] + ()(w-2)}, (S3)

Making use of a method due to Stokes
[17]

we get t“~efollowing asymptotic form

of Wk,
n

~
w = i(l - 3)s:+ h 6/[2(1 - 6)] - i(l - 1$)/(8dB~)+ 0[(6~)21 (B4)
n

+

9P
where 6- = (2n - l)r, 8 = 2n~, n integer.

n n
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Since 6 < 1 equation (B4) implies that Re{w~} < 0. It is our contention

that Re{w~} < 0 for all zeros of ft(w). This is true for all cases that have

been investigated numerically. It is also true for all those zeros for which

Iw~l >> 1 and \6wil << I. The last statement follows from an investigation of
n

the variation of the argument of the funcbion,

i%=(w) = [2/(iTw)]l’2exp(-w) i ln[2/(1’6W)],

around a closed contour in the right half plane.
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