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Abstract Teoreia o in

An analysis is presented of the transient electromagnetic field around
two parallel wires., It is shown that the field can be expressed in terms of a
discrete spectrum and a continuous spectrum. The discrete part of the spectrum
‘can be interpreted as modes. The frequency variations of the propagation and
attenuation constants of some of these modes are determined for different values

of the radius-to-separation ratio of the two wires. The time history of the

current at different points on the wires is also c¢alculated when each wire is
excited by a slice generator with a step-voltage source. Two different modes
of excitation are considered: (1) the two voltage generators have opposite

polarity and (2) they have the same polarity.
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I. Introduction

Certain types of EMP simulaters make use of parallel-plate transmission
lines as a guiding structure for the electromagnetic field. One reason for
using parallel-plate simulators is based on the fact that they can support a
TEM mode. For many types of cylindrical transmission lines the field distri-
bution of the TEM mode is nearly uniform over a significant porticn of their
cross section. This means that the TEM mode provides a good approximation to
the free-space nuclear EMP. The TEM mode propagates at all frequencies, but
for frequencies such that the free-space wavelength is of the order of the
cross sectional dimensions of the simulator, other modes may become important,
In many cases it is desirable to launch fast rising pulses on these simulators
where the rise time of the pulse is significantly shorter than the transit time
across the cross section of the simulator. In doing so many higher-order modes

may be generated.

In order to develop a quantitative understanding of the relative importance

of the higher-order mode contribution we will, in this note, investigzate a
structure consisting of two parallel wires. Each wire is supposed to be fed
by a delta gap generator with a step-voltage source. The field distribution
of the TEM wave on this structure has been determined previously [1l] by the
method of conformal mapping. However, as of now, there seems to be no
calculations made of the properties of the higher-order modes that can exist
on this structure. One reason for Iinvestigating this particular problem is
that we can find an explicit solution of a transient problem with the
assumption that the radius of each wire is much smaller than the distance
separating the wires. It is believed that many properties of the higher-order
modes on this structure are shared by the higher-order modes that exist on
other structures, for example, two parallel, perfectly conducting plates of
finite width. Unfortunately, it 1is not possible to find an explicit solutiocm
of the two-plate problem. Although, an integral equation for the induced
current density on the plates can be formulated, this equation has to be
solved numerically. Another reason for investigating the two-wire problem

1s to gain some imsight concerning the type of modes that can exist on an open
waveguide consisting of two parallel conductors, before undertéking a numerical

study of a more complicated structure.



A thorough investigation of the TEM mode on two parallel wires is given .
in [1]. An antenna consisting of two parallel wires of finite length and fed
at their midpoint by a slice generator has been treated in [2]. The approach
in [2] is based on an electric-field integral equation and this equation is
solved for low frequencies by using the Wienmer Hopf method. A frequency
domain analysis of two parallel wires is given in [3]. However, there exists
no analysis of the transient behavior of the field around two wires.
The analysis in this note is based on a solution of the Maxwell equations
in the frequency domain which can be obtained by employing Laplace transform
methods. In evaluating the inverse Laplace transform integrals we follow the
approach used in references [4] through [7] when calculating the transient
fields of a cylindrical antenna in free space. There is one important
difference: the field of one cylindrical antenna can, in the time domain, be
represented by one single integral, whereas the field around two parallel wires
can be represented by an integral and an infinite sum. Using spectral noctation,
the integral can be called the contribution from the continuous part of the
spectrum, whereas the sum is the contribution £from the discrete part of the
spectrum. Physically, each term in the sum can be thought of as due to a .

mode. These modes can be obtained from the nontrivial solutions of the source-

free Maxwell equations. One mode is the TEM mode and it propagates with the
speed of light. The propagation constants of the other modes are complex, i.e.,
each mode is attenuated as it propagates along the line. However, the field
components of each higher-order mode grow exponentially in the transverse
direction far away from the structure. Therefore, the use of these modes is
limited to a region in the vicinity of the guiding structure. Mathematically,
this fact can be expressed in the following way: the propagation constants of
the higher-order modes belong to the Riemann sheet in which the radiatiom
condition is violated. Many of these questions have been treated in the
literature (see, for example, references (8] and [9]).

Laplace transform methods are used in Section II to derive an integral
expression for the transverse magnetic field in the time domain. This
expression is then simplified in Section II to real valued integrals suitable
for numerical computations. Some analytical properties of the field are

derived in Section IV and the results of the numerical computations are




presented in Section VI in graphical form for the time behavior of the induced
current on two parallel wires due to two slice generators with step-function
voltage sources. Iwo different modes of excitaticn are considered: (1) the
line is excited antisymmetrically (push-pull), and (2) the line is excited
symmetrically (push-push). It should be pointed out that in the first excitation
a differential TEM mode is excited, whereas in the second excitation no TEM modes
is excited. Some frequencv domain properties of che field are determined in
Section VII including the fresquency dependence of the provagation constants of
some of the modes.

The analytical methods recently developad to solve transient electromagnetic

scattering problems [19,20]

can, of course, be applied to the calculation of the
fields around two perfectly conducting wires excited by two slice generators
whose output voltage are step-—functions in time. When the scattering bodies are
of finite extent, poles are the only singularities in the complex frequency plane
of the scattered field provided that the incident field is an entire function of
the complex Erequency'LZO}. In the two-wire problem, however, the scattering
body is of infinite extent and the scattered field has branch points in the
complex frequency plane. The branch points are associated with the propagation
constants of the modes that can exist on these wires and they remind us of the
branch points of the field scattered from a perfectly conducting body located in

. [21]
a parallel-plate region .
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ITI, TFormulation of the Problem

Consider two perfectly conducting, parallel, thin wires with radii a and ‘
separated by a distance d (see Figure 1). Throughout this note it will be
assumed that a << d. We introduce two cylindrical coordinate systems
(p1,¢l,z) and (pz,¢2,z) such that ey =2 is the surface of the "upper" wire
and Py = @ is the surface of the "lower" wire. Each wire is fed by an infinite-
simal gap at z = 0 and independent of the respective azimuthal angles ¢l and ¢2‘
To solve the Maxwell equations in the region outside the wires we will make use
of Laplace transforms with respect to the time t and the coordinate z, Let
£(p,z,t) denote an arbitrary field component. We then define the two sided Laplace

transform

E(p:zs"{) = [ f(D ,Z,t)eX‘P(‘th)dt (1)

-

that has the inverse transform

£(p,z,t) = C(Zwi)_l [ £(p,z,y)exp(cyt)dy (2)

C

¥
where the path of integratiom, Cy’ is parallel to the imaginary axis in the .
complex y-plane (see Figure 2a) and ¥ = s/c where s is the complex frequency,
and the vacuum speed of light is denoted by e¢. We also define the two-sided

Laplace transform
2 Rl
£(o,2,7) = { £(p,z,)exp(-z2)dz (3)
-l
with the inverse transform
- =1 2
£(o,z,v) = (2mi) ( £(o,5,7)exp(g2)dg (4)
c
z
and the path of integration, CC’ is parallel to the imaginary axis in the complex
r-plane as indicated in Figure 2b.
Assuming that the current distributions on the two wires are independent

of the azimuthal angles ¢ and 4,, respectively, we arrive at the following

solutions of the Maxwell equations, valid for oy > 8 and o, > a,

.»
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Figure 1. The geometry of the problem.
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functions, ZO is the wave impedance of free space and Ciseds ¥ o= 1, 2, Ls the
transform of the z-component cf the electric field on one wire, due to the
current on the same wire. With each wire being driven by a slice generator
located at z = 0 and having the out put voltage Vz(t), 2 =1,2, we arrive at

the following equation from the boundary conditions at e, = a,

[X, ®a)E, (z,7) + R (d)E,(2,7)1/K (pa) = =¥, ()
(6)
[K GAE, (5,7) + K_@a)E,(5,0)]/R_(a) = -V, ().

In deriving (6) we have assumed that the current distribution on each wire is
independent of the azimuthal angle and that d >> a. This equation is obtained by

keeping one term in a Fourier series expansions of the current and the tangential

electric field on the surface of each wire. Equation (6) yields

2 ~ 9 “
E)(5,y) = =K_(pa)A_(p)V () + (~1)7K (oa)a_(pIV_(), 2 = 1,2 (7
where
o ‘ =l
a,(p) = [K_(pa) = K_(pd)] (8)
and
Vo0 = [V (o= V0172, (9



From (5) and (7) we derive the following representation for the magnetic

field
(10)

l Hz(Qz’C!Y)¢2

1R e ¥ 1

ECXSY!CQY) =
%

where
(1L)

2f (orzy) = 10 R (00) [, ()T, () = DA (T
e is given by

-

The transform, ii(C’Y)’ of the total current, Il(z,t), on each wir
(12)

3 -1 - % =
ZOIQ(C,Y) = 27aYp Kl(pa)[A+(P)V+(r) - (=L7A_(@)V_(]1.
treat the case where Vl(t) and Vz(t) are both step-functions

We now go on to
simultaneously, i.e.,

in time and turned on

~ -1
T, = TN, =12 (13)

so that
~ _l .
In this case we have
= L

pRZOHR(pl’C,{) - V+G+(p,pl) = (—l) V_G_(P:pl) (15)
(16)

where
-1
G, (p,0) = 0P KICPD)Ai(p)-

Equations (2), (4), (13), (15) and (16) enable us to derive the following time-

domain representation of the magnetic field
2 ~
H(x,v,2,t) = 221 H,(p,,2,0)0, (17

10




where
2
pZ H,(p,2z,t) = V.F (0,2,t) = (-1)"V_F_(p,z,t) (18)
and

F (p,2z,t) = e(2ri)”t [ &Zvi)“l J G+(p,o)eXP<:2)chexp(cvt>dv- (19)
* c o %
¥ 4

From equations (17) and (19) it follows that all properties of the magnetic
field can be determined from the integral representation (19) of F+(p,z,t).
the same way the total current, Ig(z,t), on each wire is given by (c.f. (12))

L
Zolg(z,t) = 2ﬁV+F+(a,z,t) - (=1)"27V_F_(a,z,t). (20)

In the next section we will evaluate the integrals defined by (19).

o



III. The Magnetic Field Due to Step Voltages .

In this section we will evaluate the integrals given by (19), i.e.,
-1 [ -1 ,
F (p,z,t) = c(@ri) E2w1) J G _(p,p)exp(gz)dg lexp(cyt)dy. (19"
+ c ¢ :
A g

The path of integration, CY’ is to the right of all singularities in the complex -
v-plane of the inner integral. Moreover, from the radiation condition it follows

2
that the proper branch of p = (v - C2)1/2

is defined such that Re{p} = O in that
branch, and it is depicted in Figure 3. Since we can always choose C_ to the
right of the imaginary axis in the complex r-plane it follows immediaéely that

p =y at the origin of &he proper branch of the Z-plane. The path of integratiocn,
CC’ is parallel to the imaginary axis and such that -Re{y} < Re{g} < Re{y} when

; belongs to C§ and ¥ belongs to CY. To ensure convergence of the integral for
all values of z we choose to let CC coincide with the imaginary axis (see Figure
3). It is clear from (19) that F{p,z,t) = F(o,-z,t) so there is no locss of
generality to only consider the case z > 0. In the following we will limit

our investigations to z > O,

Next, we introduce the transformation .i

/2 M S NV

2 2
p =& -2g7)

The branch of the square root defining 7 as a function of p is chosen so that
Re{z} < 0 in that branch, and it is shown in Figure 4. Making use of the

technique introduced in [5] we can transform the inner integral in (19) to get

- -1 f 1/2 2 1/2
F, (p,z,t) = c(2ri) 1 [ [(Zni) t J (YZ - pz) / H(p,p)expl-2(¢ - pZ) Tdp |dy
- c. c =
( P (21)
where
H, (,0) = 0G,(p,p) = oKy (po)a, (p). (22)

The path of integratiom, Cp’ is around the branch cut in the p-plane. This

branch cut is given by the part of the hyperbola Re{p}Im{p} = Re{y}Im{y} for

which Re{p} = Re{v} (c.f. Figure 4).
.l




Figure 3. The proper branch of p = »/YZ - :2 where p = yat z = 0.
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Figure 4., Paths of integration in the branch of [ = /72 - p” where ¢ = -y at p = 0,
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From the asymptotic expressions for the modified Bessel functions one
'. immediately sees that there exists a P, such that Ko(pa) + Ko(pd) has no zeros
for Re{p} 2 p.. By choosing the path of integration CY such that Re{y} > P,

when y belongs to C we can deform the path of integration Cp to I since

Re{(yz - p2)1/2

the imaginary axis and such that P < Re{p} < Yy when p belongs to I' (see Figure 4).

¥
} > 0 in the branch under consideration. Here, I' is parallel ¢o

Since T is independent of y we can interchange the order of integration and obtain

(c.f£. [153])

-

F (o,2,8) = (2wi)_lJ Hi(p,o>{}2wi)'l[ (72 - P2>-1/28XP[CYt-Z(Y2 - pz)l/zldnqdp
I c.
0, ct < 2z
- (23)
(Z‘n'i)_l[ Hi_(p,p)Io(p‘r)dp, et > z

r

2
where t° = (ct)2 - 22. Note that F_(p,z,t) is uniquely defined by the two

" .quantities p and tv. Therefore, we get

F (p,z,t) 2 F _(p,7) = (2r1) ™t f H,(p,0)I (pT)dp - (24)
+ x e

Since H_(p,p) has no singularities to the right of T and since
H (p,0)I (pr) Vexpl-plp -2 - 1] as p~>=
in the right half plane it follows that F_(p,7) =0 for 7 <p - a or

ct < (G - )2 + 2212

To evaluate F_(p,t) for 7 > p ~- a we observe that (c.f. [16])

as expected from causality requirements.

iWIO(pT) = Ko(pr) - Ko[pr exp(in)] and that iﬂIo(pT) = KO[pT exp(-im)] - Ko(pt).

Following the procedure used in (4] and [5] we get

2,1 -1
Fi<p,f> = -(2m7) Jc H.(p,P)K (pT)dp + (2ﬁ2> Jc H,(P,p)K, [PT exp(im)]dp

- <2w2>‘lf i, (p,p)K_(pr)dp - <2w2>'1f 5, (2,0)K,_ [Pt exp(-im) Jdp
CE :

" ) C+

15



where Ct = FtiJ Rt' The integration path F+(F_) is the part of T for which
Im{p} is positive (negative) and L+(L_) is the part of the real axis that is
located between I' and the origin and taken in the positive (negative) direction
(see Figure 5). Making use of the Cauchy integration formula we get (c.f. [4]
and [5])

F (p,t) = R (p,7) + T, (p,t) + 8,(p,7) (25)
where

w L (E)[L_(E)K,(Ep/a)+¥ (8)I, (Ep/a)]

R, (p,7) = E’;J CHRE AR PR L K (5t/a)dE  (26)
: o M, (8) [, ()47 L, (8) ]
L(8) = I,() £ I_(gd/a), M. (8) = K (§) = K (5d/a) (27)
T, (0,0 = 0, T_(o,0) = (2 In(@/a)]" (28)
e K. (pp)K _[pt exp(-im)]
_ 2 1P o !

St(o,r) == nzl Im{i;f} Ko(pa) o KOCPd) S} (29)

4
and p; are the solutions of the equation

K (pa) £ K _(pd) =0 (30)

for which Im{pi} > 0.
Setting o = a in (26) and making use of the Wronskian for the modified
Bessel functions we arrive at the following expression, which is useful when

calculating the induced current on each wire,

16



[
~l /4

CUT

b Tm

fr,

'

. R

Figure 5. Paths of integration in the complex p-plane.

to make the Bessel functions uniquely determined.

jr.

_U
-

The cut is introduced



e L () 1268, ()1 (2/)35L, (DK, (24/a)]
R-l-(a’T) = } = ] 7 2 Ko(ir/a)di. (31)
; o B, () D (D)4 L2 ()] .

The term R, (p,T) in (25) is the combined contribution along the positive and
negative real axes, after deforming the paths of integration of the four integrals
in (19), respectively, in the fourth, third, first and second quadrant of the
complex p-plane and it can be interpreted as due to the continuous part of the
spectrum.

The quantity Ti(p’T) in (25) is the contribution to F+(p,r) from a small
circle around the origin in the p-plane. From (5) it can be seen that the
longitudinal components of both the electric field and the magnetic field
associated with T (p,T) are zero. Moreover, from (20) and (28) it follows that
the current on each wire associated with this term is a step-function wave
travelling along the wire. Therefore, the contribution T(p,T) can be interpreted
as the TEM-mode contribution to the total field. A more detailed analysis of
this term will be given in Section VII,

Mathematical;y, the term S+(p,r) in (25) is due to the poles of Ai(p).
Using the spectral notatiom, T, (p,7) + S _(p,T) is the contribution from the
discrete part of the spectrum.~ Physically, Si(p,‘t) can be interpreted as the .‘
contribution from the higher-order TM modes to the field., Some properties of
each term in the sum will be discussed in Section VI. It should be pointed out
here that due to the excitation we have chosen, only transverse magnetic fields
(with respect to the z-directiom) are generated.

We wish to point out in passing that all the properties of the field in the
space~time domain are determined by the analytical properties of the field in the
complex p-plane. Thus, when solving transient waveguide problems the complex
p-plane plays the same rcle as the complex frequency (s) plane deces in solving
transient scattering problems invelving finite sized scatterers.

Before we go on with the numerical evaluation of F_(p,7) as given by (25)
through (31) we will in the next section determine some ;nalytical properties
of R, (p,7) and St(p,r).

18



' IV. Some Analytical Properties of the Radiated Field
. In this section wa will determine some of the analytical properties of

the radiated field. As we have seen in Section II this is equivalent to

investigating the analytical properties of F _(p,7), given by (c.f. (25))
Folo,1) = R (o,7) + S.(ps7) + T _(p,1) (25")
Since all properties of T, (p,7) are known (c.f. (28)) we only have to investizate

the functions R, {(o,7) and S, (p,T) and we will start with the asvmptotic behavior

of R,(0,T) for small values of r.

A, Asymptotic Behavior of R, (p,T) for Early Time

From (26) it can be shown that R+(p,r) is a continuous function for all
0 2z aand all v > 0. We will here investigate R, (p,7) as T = p-a. Early time

for the radiated field can be defined as e = (1t -p +a)la << 1l, To find the

'. early time behavior of R, (p,T) we split R, (p,T) into two parts,
| x %
R.G,m) =R (0,1) + R!(0,7) (32)
where
R (0,7) = f I (€,0)K (E1/a)de
s o
(33)
RU(p,7) = { L (8,0)K_ (£7/a)dE

and

o (O IL, ()R, (5p/a) M (D)1, (8o/a)]
(g0 =5 —= = 5 53 (34)
) M) ML (B)+n L (8) ]

m

(c.f£. (26)) The quantity is a finite but large number such that we can use
asymptotic expansions of I.(&,0) and Ko(ar/a), when evaluating RU(p,t) for
0 >> a. Since I is finite it follows that R;(p,7) is finite for p > a. Using

®

15



asymptotic expansions of the modified Bessel functions we get .

R;(p,r) o [Zad/(wstp)]l/z f_{exp[-&(l + e + d/fa)]

= (a/d)l/2 exp[~E(e + 2p/a)1}€-l/2

dg (35)
and it can easily be seen from (35) that Rl (p,7) is finite for all
e =f{ ~-p+a)a=0. Thus, R (o,1) 1is fgnite for all times, provided that
p >> a. B
Some care has to be exercised in evaluating the asymptotic form of
R,(a,7). In this case we define the early time as t/a = ¢ << 1. For small
v;luesof e we can always find a Z such that I >> 1 but €% << 1. Using asymptotic

expansions for the integrands in (33) one obtains

R!(a,e) ~ - {HI+(£,a)ln(£ar/2)ds no-1n e J—I+(5,a)di
o o

and (36)

R;(a,e) Ay ﬁ—z(dfe)l/z J exp[-E (L + ¢ + d/a)]Ko(ai)di

=]

" W—Z(d/a)l/Z

In(l + d/a).
From (32) and (36) we get the following early time behavior of R, (a,t),

R, (a,T) ~ [n-z In(l + d/a)}dl/z[(ct)2 - 22]—1/4 as ct = z = 0+, (37)

B. Asvmptotic Behavior of R, {(p,T) for Late Time

The late time is defined as t >> a. To estimate R _(t,p) for late time

we make use of an integral representation of the Bessel function Ko(x) to get

Pre-] o0

R,6,7) = | 105,008, (§/2)aE = f @ - D7 [ I, (0,6)exp(-5ut/a)dE (38)
Q

1 o}

.»

20



The analysis presented in Appendix A enables us to derive the following asymptotic

expression, valid for large values of T,

fee] -? -
I+(p,£)exp(—£ur/a)d5 = 1In “(aut) + O[ln 4(auf)] (39)
‘0
where o = 2/[F(ad)l/2] and ' = 1.781072... (the exponential of Euler's constant).

Making use of this estimate of the imnner integral in (39) and the analvsis in

Appendix A we get the following late time behavior of R _(p,T)

1 -1 2T -2
R, (p,v) = &+ 1n ~|—"rr| + 0[1ln “(7)] as T o>, (40)
+ 4 {F(ad>l/2}

This asymptotic expression can be compared with the result obtained in [3] on
the late time behavior of the field of a perfectly conducting, circularly
cylindrical antenna excited by a step function delta gap generator.

Similarly, it is easy to show that

f I (o,5)exp(-fut/a)dE = 3(d° - ab)[(d* - a®) - 207 1n(d/a)][16 1n>(d/a)] T (un) ™"
[e]

+ 0[(ur) " 1ncur)] (41)

from which it follows that

-4 -6

R (0,1) = (@2 - a2y [(d® - a®) - 207 1n(d/)1(8 1a (@/a)] 7" =7 + 0™ 1n )

as T > @, (42)

C. Some Analytical Properties of S_(p,T)

We will here investigate the convergence of the sum (29) that defines

S (p,t). To do this we split S_(p,T) into two parts

S_(0,7) = Im{8!(c,t)} + Im{$"(o,)} (43)

()
[



where
N-1 ‘lll’

$1(e,t) = ] K_(p_,0,7)
=1 -

n

(44)

Z K_(P-sp:f)
n=N n

[t}

s'(p,T)

R_(ps0,7) = (2o/mRes{¥, (50)K [pt exp(~im)1/[K (pa) = K (pb)]1}  (45)

pn

The quantities p; are given by the solutions of
- = /4
Ko(pa) Ko(pd) 0 (46)

for which Im{p;} > 0 and N is chosen so that [p;a[ >> 1. 1In Appendix B it is
shown that all the sclutiomns, p;, of equation (46) are located within a band
around the imaginary axis and-that for n > ¥ we have .

°d = i2m/(1 - §) + 1n §/{2(1 - )] - i(1 - §)/(6mn) + o(a™ %) (47)

where § = afd. Using this asymptotic expression it is easy to show that p; is
a simple zero of (46) for n > N. After some lengthy and tedious algebraic

manipulations we get the following asymptotic expression, valid for a > N,

/2

K_(p_,0,7) = 460, 1) (2m) /2 exp(12mT) (L + B(o,7)/(2m) + 0(a 2)] (48)

where

(L + D{e/lrt@ - 81}

Alp,T)

3(o,T) = i[%-ln 6 - (1L -48)/8 - (1 - 5)2 T/(88) -~ (1 - §)d(3T + o)/ (pT)] (49)

T(o,t) = (z -2 +d)/(d - a). “III'
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Here, T can be interpreted as a normelized time, and T+ 1 ast - 0. Thus, we nave

/2

'. S"(0,7) = Alp,1)S_(T,0,1) + A(p,T)B(e,D)S_(T,1,N) + o /%) (50)

where

-m=-1/2

(2mm) exp(iZmT). (31)

I e~18

S _(T,m,N) =

n=N

In reference [10] the following integral representation of S_(T,m,N) has been

derived,

S_(T,m,N) = I(T,m,2N) (52)
where
I(T,m,M) = [T(m - %J]-l exp (17MT) [m{xm—l/z exp (-wMx) /{1 - exp(i27T - 2ﬂx)]}dx

o)

o -
(16

and T'(z) is the complete I'-function Moreover,
s (T,m,N) = S (T,m,1) - R_(T,m,N) (54)
where
Nol “m-1/2
R (T,m,N) = | (2mn) exp (12mT) (55)
n=1

and R_(T,m,N) is finite for all values of T. The integral that defines S_(T,m,l)

[10]

can be evaluated by the method of residues

‘m-l/z

S (T,m,1) = [4T(m + %)]—l [T -k exp(-i(m =~ %9(n/2)sgn(T - k)]

k

€

0 k

Il ~18

'. + 11+ kim’l/z expl=i(m - ) (7/2)sgn (T + X)] (56)
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where e, = 1 and g, = 2, k 21 and sgn(x) = -1 for x < C and sgn(x) = 1 for

x > 0. The sum (56) is absolutely convergent for all values of T when m = 1 and
it is absolutely convergent for m = 0 provided that T #n, n=20,x1,£2,... From
(56) we can derive the following asymptotic expression for S_(T,0,1) that is valid
when T is in a neighborhood of n.

1 -1/2 -1/2

S_(T,0,1) = 5w exp[in/4 sgn(T - n)1|T - a] +0(L)y. (57)

From (43) through (57) it can be seen that S_(p,t) is a continuous function
of T and p except at T - p + a = n(d - a), n being an integer. In order to
investigate S _(p,T) around its singularities we introduce € defined by
g=[t~-p+a-n{d-a)l/aand ]sl << 1, Equation (57) then enables us to get
the following asymptotic expression for S_(p,t), valid in a neighborhood of

T -p=n(d -a) -awhenun # 1,

0Ly, le] << 1 and € < 0
S_(o,7) = ) | : (58)
[D5n/(2ﬂ[p - a-na nd[)]llz 8—1/2 + 0(1), lEE << 1 and ¢ > Q.

For n = 1 we have

0(1), le| << 1L and € < 0
S_(p,t) = 1 (59)
?{p/[Zw(o - a)]}l/2 2 401y, el <<lande >0

provided that po - a >> a. For n = 1 and o = a we have

o, [s] << 1l and ¢ <0
S_(e,1) = ? (60)

(Zﬂ)—l/z s-l, le] << 1 and & > O.
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'. D. Some analytical Properties of S, (a,7)

We will here investigate the sum that defines S+(p,r), by following tha

procedure used in the analysis of S_(p,7). Thus,

s,(0,7) = In{S (0,0} + Infs) (0,0} (61)
where
N-1 .
$.(p,1) = nzl K, (p_ 50,7
5000, = I R, (pr.e,1) (62)
n=N
and
R (50,7 = (Qo/mRes{K (p)K_[p7 exp(-im1/X_(pa) = K ()1} . (63)

-+

A + . . , .
The quantities p, are given by che scolutions of

&

Ko(pa) + K'O(pd) =0 (64)

+ . ,
for which lm{p:} > 0, and N is such rthat ]pNa! >> 1. 1In Appendix B it is shown

that we have the following asymptotic form of P> valid for n > N,
=2
Pld = ir(2a - 1)/(1 - &) +1a 3/[2(L - ] - i1 - §)/[8x(2n = D] + 0(a ).

(65)

: - + )
From (63) we can derive the following asymptotic expression for K+(pnd), valid

for large n,

-1/
K+(p:,p,T> = -Ap,t)[7(2a - 1] L/2 expl{in(2n - l)T]{l + B(p,t)/[7{2n = 1)]

" + o™} (66)



where A(p,t)}, B(o,t) and T = T(p,T) are given by (4%). Equation (66) enables us

to get the following asymptotic representation of Si(p,r),

-3/2

silp,T) = -A(p,T)S_(T,0,N) - A(p,T)B(p,T)S (T,1,N) + O(W 7°7)  (67)
where
s,y = 1 ir@a - D2 explin(en - DI (68)
n=N
We also have the integral representation of S+(T,m,N),
S+(T,m,N) = I(T,m,2N - 1) (69)

where I1(T,m,M) is given by (53). From (61l) through (6%) it can be shown that
S+(p,f) is a continuous function of T and p except at T =p - a + n{d - a),
where n is an integer. In the vicinity of its singularities, i.e., when

T~-0+a=-n({d - a) = ca we have

SO(l), ]EI << 1 and € < 0
5,00, ) = (70)
? -1y 105% 2no - a - na - aa])12 72 1 0,
lel << 1l -and ¢ > 0
except for n =1 and p = a in.which case we have
}0(1), |e] << 1 and e <0
= 71
(2T |, =172 -1 o
' (27) e, [a] << 1 and ¢ > 0.

E. Some Analytical Properties of F_(p,7)

To sum up, we have shown in this section that F_(o,T) is a continuous
function of p and v, 0 2 @ and T > 0 except at ¢t =g +a =n{d - a), a

nonnegative integer, where F, (p,t) has a square root singularity. These
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singularities occur because of the assumption of the delta-gap generator. For

‘. a << d these singularities occur at T - p ~nd. Physically, they can be under-
stood as being due to the wavefront being reflected at ome of the two wires
(see Figure 6). The strength of these singularities is proportiomal to (a/d.)n
so they are very weak for thin wires. If we had replaced the delta gap by a
feeding gap of finite width A the field would have been finite for all times.
However, if A/a << 1 maxima and minima would occur in the field around T = n.
These extreme values will be more prouounced the smaller A/a is and the smaller
a1 is.

For early time, defined as t - o +a = ca, ¢ << 1, we have from (135), (38),

(58), (59), (60), (70), and (71)

02y, (p,,2,0) v == yEo 2V ossa, =12 (72)
TV2 0 /e
and
v
e v —=E2 koo g0, (73)
/ 2
" (Ct)z—Z-. o]
which, of course, agree with the asymptotic forms derived previously[6] for one

wire. Unfortunately these asymptotic expansions are only valid for early times
in a time scale using a/c as a unit and hence for a very short time compared to
the transient time between the wires.

Since Re{pi} < 0 it follows immediately from (45) and (63) that each term,
Ki(pi,p,f), in S, (o,7) is exponentially attenuated so that for t large and

T =-p+a#n(d-a), we have

Ft(o,f> g Ri(p,T) + T:(c,f)- (74)
Thus,
F (5,7 v 1/laléc/ (rPad)]
(75)
F(o,7) ~ [2 1nGd/a)] T+ (dF - 2ty (@’ - a®) - 207 1n(d/a) 108 1n (d/2)]E <7

0



8t

Figure 6. A ray wmodel describing the reflections of the wavefront.




o

as 1t + ». The expression (75) for F+(Q,T) can be compared with the late-time

expression for the transverse magnetic field of an infinitely long, perfectly

conducting, cylindrical antenna excited by a step function slice generator[sj.
It can also be seen from the asymptotic form (75) of F_{(p,7) that the TEM mode
quickly becomes the dominant part of the field when the two wires are fed

unsymmetrically, i1.e., when V2 = -V, so that V+ =0and V_ =V, = -V,.

1 1 2
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V. An Alternative Representation of F_(p,T)

In this section we will derive an alternative representation of F+(p,r)

which is useful for early time computations. We begin with (24):

F (g,7) = (Zni)-l J pKi(po)Io(pT)/[Kb(pa) t Ko(pd)]dp (76)
= r

The asymptotic expression of the modified Bessel functions implies that there
exists a p_ > 0 such that JKb(pd)/Ko(pa)| < 1 when Re{p!} > p,- We now choose
the path of integration, I', in (61) such that Re{p} > P, when p belongs to [.

The following series expansion is valid,

Fo(o,7) = ) @)t <Py J Kl(PD)IO(pT)K:(pd)/K§+l(pa)dp (77)
- m=0Q - r

where ¢, = ¥l. Since the integrand in (77) has no singularities to the right

of T and since
+
Kl(pp)IO(pr)K:(pd)/Km l(pa) v expl-plp - a -1t -m(d -2a)]} as p=+ =

in the right half plane it follows that

o -1 m m m+1
I (@ri)™ el o [ Ky (pp)T_(pT)R (pd)/K (pa)dp (78
m=0 - r

Fi(o,r)

where M = M(p,t) = int{t - o + a)/(d - a)} and int{x} denotes the integer part

of x. For 7 ~p +a <d - a we have

F lo,7) =F_(,7) = (2ri) ™ o fFKl(po)IO(pr)/Ko(pa)dp (79)

and in this case the electromagnetic field around the two wires is the same as from

51

two noninteracting, cylindrical antennas

The integral in (78) can be transformed into a real integral by emploving

the methods used in Section IIL. Thus,

30

.»



H <Q:T>£,m)d€ (80)

5|
N
O
-
)
A
It
W e~—-1,
I
[
H 3

O
o]

where

m=1

B, (o,5,m) = K (50)K) (5K "~ (£a)K_(£7)

~Re{[K; (50) + 71l  (5)1[K_(£0) - riI_(£0)]1"[K_(za)
-ril (»:a)]‘m"l Ko(ir)} (81)

0

For m = 0 this expression reduces to the one given in [5]. Each term in the sum

(80) has a square-root singularity at its "turn-on time', i.e.,

-2 = : . 2 -1/2
, DET ! H (p,7,5,m)dE ~ 2T+l[c(a/a)m/(2ﬁ{o - a - ma - md{)]l/ £ L/
- J - —
° (82)
where ¢ = 1~0 + a = m(d - a), and 0 < ¢ << 1, This is the same singularity that

was derived from another representation in Section V. Physically, the singularities
can be understood as due to reflections of the wavefront at each wire when using
a i-gap generator. The time at which the different reflections of the wavefront
arrive at g point can be determined from a ray model of the wavefront (see
Figure 6).

The representation (78) is useful mostly for earlier times, i.e., for
T~ < 3d. It is especially useful for t - o < d when the two wires radiate

like two independent wires in free space. The representation (25) is useful

T
\'
(08
[a

mostly for later times, i.e., T = | Tt is especially useful for late times
when the wires are fed in a push-pull manner sc that the TEM mode is the dominant
part of the electromagnetic field. ‘

In the next section we will present some numerical results that were

obtained from the theory cutlined in Sections II through V,
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VI. The Time History of the Field .
In this section we will present the numerical results obtained from the

theory outlined in Sections II through V,

A. Solution of Ko(pa) t (Ko(pd)

-
The roots, p;, of the equations

Ko(pa) * Ko(pd) = 0 30"

were found numerically and the results of these numerical calculations are

presented in Figure 7 and Tables 1 and 2. As a comparison we have also included

in Table 1 and 2 the asymptotic expressions of pi as given by equations (47) and

(65). It is observed that the larger a/d is the faster the solution of (30)

converges to the asymptotic expressions (47) and (65). This is obvious since

the asymptotic expressions (47) and (63) are derived under the assumption that

p:_:la >> 1., We also observe that the absolute value of the+real part of Pfx is .}
a monotonically decreasing function of a/d, and all the p; belong to one branch
for fixed a/d.

B. The Time History of the Current on Each Wire

The time history of the current along each wire can be determined from
the two functions F_(a,r) and F+(a,r) (c.f. (20)). These two functions were
evaluated numerically by using the representation (25) of F_(a,7t). The integral
(26) was evaluated by using a Gaussian quadrature formula, ;nd in evaluating the
sum (29) the asymptotic expressions (50) and (67) were used with N = 12. From

(5]

the representation (79) it is noted that

® I (E)K _(&t/a)
o o

F_(a,r) = F+(a,f) = dg, Tt <d~-a (83)

Yo £x_(2) (K2 ()41 (2)]
Q o] Q

and this function is tabulated in [18]. Equation (83) provided a good check
on the numerical calculiticas and agreement within .57 between the results
reported in [18] and our numerical results was found for .5 < t/d < .99 - a/d. .’
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In Figures 8 through 11 we have graphed the t-dependence of the two quantities

I (t) and I+<T),
I,(1) = 21F _(a,1) (84)

for a/d = .1, .01, .001l. 1In order to show the strength of each singularity we

have graphed the functioms I_(7) and I+(r) for n(d = a) + 0L < 17 < (n +1)@d ~ a),

n being a nonnegative integer. It can be seen from the graphes that the singularities

are very weak when a/d < ,0L.

The time history of the current at different points on each wire can be
determined from I_(7) and I+(T). The currents due to two step functions of
arbitrary amplitude and polarization can be obtained by superposition of two cases,
namely, (1) when V = —V2 = Vo’ ie., V_= Vo and V+ = 0 (push-pull) and (2) when

1

Vl = V2 = VO, i.e., V_ =0 and V+ = Vo (push-push). Trom symmetry comsiderations

it is clear that when the wires are fed in a push=-pull manner we have
Il(z,t) = -Iz(z,t) = 1_(z,t) (85)

wiiere Il(z,t) denotes the current on the upper wire and Iz(z,t) the current on
the lower wire. 'Similarly, symmetry considerations imply that

Il(z,c> = 12<z,c> = I+(z,t) (86)

when the wires are excited in a push-push manner. 1In Figures 12 through 17 we
have graphed I_(z,t) as a function of t for z =0, 1, 2, 5 and a/d = .1, .01, .001.
From these gra;hes one cohserves that the larger the distance z is and the smaller
a/d is the sooner the current approaches the late time behavior. In the push-
pull excitation one quantity of interest is the elaps time, t', between the
arrival time of the current wavefront at a given observation point and the tine
when the current at the same point has decayed to less than 107 of the TEM field.
Of course this time can be determined from the smallest T such that

[1_(x) - I_(m)!/I_(m) < .1. Figure 18 shows the variation of t' with z for a/d =

.1, .01, .00L.
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Table 1. The roots, p;, of the equation Ko(pa) - Ko(pd) = 0,

The quantity p;a is the asymptotic form given by (47).

a/d n Re{pnd} Im{pnd} Re{pnad} Imtpnad}
.1 1 -1.232 6.85 -1.279 6.96
2 -1.261 13.88 -1.279 13.95
3 -1.270 20.89 -1.279 20.94
4 -1.273 27.88 ~1.27% 27.92
5 -1.275 34.87 -1.279 34.90
6 -1.276 41.86 -1.279 41.88
7 -1.277 48.84 -1.279 48.87
8 -1.278 55.83 -1.279 55.85
9 -1.278 62.81 -1.279 62.83
10 -1.278 69.80 -1.279 62.81
11 -1.278 76.78 -1.279 76.79
12 -1,278 83.76 -1.279 83.77
.01 1 -1.923 5.94 -2.326 6.33
2 -2.061 12,38 -2.326 12.68
3 -2.129 18.73 -2.326 19.03
4 -2.171 25.16 -2.326 25.38
5 -2.199 31.53 -2.326 31.73
. 6 -2.218 37.89 -2.326 38.08
7 -2.235 44,25 -2.326 44,42
3 -2.247 50.61 -2.326 50.77
9 -2.257 56.97 -2.326 57.12
10 -2.265 63.33 -2.326 63.46
11 -2.272 £69.68 -2.326 69.81
12 -2.277 76.04 -2.326 76.16
001 1 -2.394 5.68 -3.457 6.27
2 -2.608 12.06 ~-3.457 12.57
3 -2.725 18.39 -3.457 18.86
4 -2.808 24,71 ~3.457 25.15
5 -2.867 31.02 -3.457 31.44
6 -2.815 37.33 -3.457 37.73
7 ~2.953 43,63 -3.457 44,02
8 -2.986 49.94 ~3.457 50.31
9 -3.014 56.24 =3.457 56.60
10 -3.038 62.54 -3.457 62.89
11 ~-3.060 58.83 -3.457 69.18
12 -3.079 75.13 -3.457 75.47
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Table 2. The roots, Pg’ of the equation Ko(pa) + Ko(pd) = (.

The quantity p:a is the asymptotic form given by (63).

a/d a Re{p d} In{p d} Re{p’ d} mipT d}
n n na na
1 1 -1,178 3.27 -1.279 3.46
2 -1.251 10.37 -1.279 10.46
3 -1.267 17.39 -1.27% 17.45
4 -1.271 24,38 -1.279 24,43
5 -1.274 31,38 -1.279 31.41
&) -1.276 28.37 ¢ =1,279 38.39
7 -1.277 45,35 -1.27% 45,38
3 -1.277 52.34 -1,279 52.36
g -1.278 59,32 -1.279 59.34
10 -1.278 66.31 -1.279 66.32
11 -1.,278 73.29 -1.279 73.30
12 -1.278 &0.27 -1.279 80.28
13 -1.278 87.25 -1.279 87.26
.01 1 ~1.762 2.64 -2.326 3.13
2 -2.007 §.17 -2.326 9.51
3 -2.100 15.58 -2.326 15.86
4 -2.150 21.97 -2.326 22,21
5 -2.186 28.34 -2.326 28.56
6 -2.210 34,71 -2.326 34,90
7 -2.228 41.07 -2.326 41.25
8 -2.241 47.43 -2.326 47.60
9 -2.252 53.79 -2.326 53,94
10 -2.261 60.15 -2.326 60.29
11 -2.268 66.51 -2.326 66.64
12 -2.274 72,86 -2.326 72.98
13 -2.280 79.21 -2.326 79.33
001 1 -2.177 2.40 -3.457 3.10
2 -2.520 8.88 -3.457 9.4
3 -2.674 15.23 -3.457 15.72
4 -2.767 21.55 -3.457 22,01
5 -2.839 27.87 -3.457 28.30
6 -2,892 34,18 -3,457 34,59
7 -2.935 40,48 -3.457 40,88
3 -2.970 46.78 -3.457 47.17
a -3.,000 53.09 -3.457 53.46
10 -3.027 59,39 ~3.457 56.75
11 -3.049 65.69 -3.457 56.04
12 -3.070 71.98 -3,457 72.33
13 -3.088 78.28 -3.457 78.62

35



| I | i i i
% .y
L ] xpn
| aM=00l ol - Py d 8o
x
X
x x %
< % x
~ x x % —60
X
x X
L o . i - Irr.—fpd}
% %
. %
- x * —40
. . %
x x *
. . X _
X X .
L] . %
% x
— . ‘ -120
¢ X
% x
| : x ——
% b4
< X
| 1 ! 1 1 ! 5
-3.5 =30 -25 -20 =15 -1.0 -5 0
Re(pd}

Figure 7. The roots of the equations Ko(pa) * Ko(pd) =0,

36




LE

30

I.(7
20

0

Figure 8.

T[d

The function T (tr) for n(d - a) + .01 < 1 < (n + 1)(d - a), n = 0,1,2.

| T 1 I I I | ] I 1 I I
| -
|
i
%
B _
1
- asd= .| -1
e
- ol
— .00l _
i | | { | | ] 1 | | 1 |
O | 2 3




[ | 1 I i I I I I I 1
1.6 l
™ LL .. a/d=.
12+
1{r)
8
~—— 0l
.001
Al
—
0 I 1 | | | | | | i i i
0 2 4 6 8 10 12
T[d
Figure 9. The function T_(1) for n(d - a) + .01 < v < (n + 1)(d - a), n= 1,2,...,11,12,




6t
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In order to get some informationm on the relative contribution to the field
from the TEM mode and the higher order modes when the wires are excited in a

push-pull manner we will graphically represent some of the terms in the sum (29)

and the term (28). The transverse field distribution of the TEM mode is given by

2
Eo(x,y) ) (-l)E d/(épz)[ﬁ cos ¢, + ¥ sin ¢2]
=1

(87)

bb(x,y) = .

[ e N %}

(—l)2 d/(&pl)[ﬁ sin ¢, - g cos ¢£}
1 .

and the transverse field distributions of the antisymmetrical higher order modes

are given by (c.f. (5)), n = 1,2,3...

(-1)*

gn(x,y) = :

. K (pp,)[x cos ¢, + ¥ sin 6, 1/[2[K; (p_d/2)]]

[} gt | 3N

(88)

g

B Goy) = (DR G )R sin ¢, - § cos ,1/[2]R; (5 d/2)][]

I
[ e | A

=1
Note that e, = Exgn and that (87) can be obtained from (88) by letting p; tend
to zero. We have normalized gn(x,y) such that |gn(0,0)| = 1. Since Re{p;} <0
we can see from (88) that the field components of the higher order modes grow
exponentiazlly in the transverse direction far away from the wires. This
exponential growth does not cause any problems when treating transient problems.
However, some care has to be exercised when using these modes in the solution of
steady-state problems, since the fields associated with each mode violate the
radiation condition at infinity. In the next section we will discuss the region
in which these higher order modes are mostly useful in the steady state solution.
A graphical representation of |gn(0,y)[, or equivalently, [hn(O,y)l for
0<y<d, afd = .0l, and o = 0,1,2,3 is given in Figure 19. The quantity
le_(x,0)] or [En(x,O)l is depicted in Figure 20 for 0'< x < d, a/d = .01, and

n=20,1,2,3. Note that both gn(O,y) and gn(x,O) are even functions of x and v.
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Figure 19.
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The variations along the v-axis of the normalized electric and
magnetic fields for the TEM-mode (n=0) and the lowest antisymmetric
T™M-modes (n=1,2,3). The axes of the wires are located at x = (0 and
vy = zd/2. The radius of each wire is d4/100.
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Figure 20.

The variation along the x-axis of the normalized electric and magnetic
fields for the TEM-mode (n=0) and the lowest antisymmetric TM-modes
(n=1,2,3). The axes of the wires are located at x = 0, v = #d4/2.
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The time history and spatial variatiom in the longitudinal dirsction of

each mode are obtained from fn(r), defined by (c.f. (28) and (29))

2/[d 1n(d/a)] ™t

fO(r)
(69)

-1 - 1 - - -
E(0) =40 K [p v exp(-im) ]| (p_d/D /K, (o &) - ak (p a)], =n > 1

Figure 21 shows the variationm with 1 of fn(T) for n = 0,1,2,3. From this grapn
we can see that fn(r), n > | is a monotonically decreasing function of T and

that for t > 5 the contribution from the higher order modes are negligible. Note
that En(r) gives the time history and longitudinal spatial dependence of the
transverse magnetic field of each mode on the z-axis. To obtain this dependence
of the transverse electric field requires an extra numerical integration. To

sum up (87) through (89) show that we have the following representation of the

magnetic field associated with each antisymmetrical mode
En(x,y,z,t) = Re{fn(r)gn(x,y)}, n=20,1,2,.... (90)

where En(r) and géX,y)are given by (87) through (89).
This concludes our time-domain analysis. In the next section we will derive

some frequency domain properties of che field.
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Figure Z21.

The longitudinal spatial variation and the time history
of the magnetic field of the TEM~mode (n=0) and the lowest
antisymmetric TM-modes (n=1,2,3).
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VIL. Some Frequency Domain Considerations

Although the method used in Section II-V to derive a time domain repre-
sentation of the field is based on first solving the Maxwell equations in the
frequency domain, we have not explored any properties of the field in the
frequency deomain. In this section we will investigate some of these properties.

Our point of departure is equation (11)

Z
o)

m

LEhE) = e R o) (4,7 ) = DT a (T ()] (11"

where

L) = (K (pa) £ K ()]

Performing cne inverse Laplace transform we get
2 ¥, ey = ry ™y | 0T K Go) 1A, )T, )
o g P2 JC lp LB VLAY

- (1" @) _()]exp(za)az (91)

For v = =ik, k real, the proper branch for p = iV;z + kz in the cecmplex g
plane, i.e., the branch for which Re{p} = 0, is depicted in Figure 22. The
path of integration CC is along the imaginary axis and "between' the branch-
cuts that start at ¢ = zik. This choice of branch-cuts makes the integral in
(91) converge for all values of p and z. Since all zeros of Ko(pa) x Ko(pd)
are located in the left half plane the integrand is an analytic function of

z in the proper branch. From the Cauchy integration formula we get

2 H,(p,2,-ik) = ~em 7k fc ot K, (po) 4, ()Y, (~1k)
—-1 " A ()T _(~1k) Jexn (z2)dz (92)

The pach c+(C_) is around the branch-cut in the righe (left) half plane and
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Figure 22. The proper branch of p = i¢r2 + k2 where Re{pl = 0.
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The paths of integration C+ and C .




C+(C_) should be chosen for z < 0(> Q) (see Figure 23). From (92) it follows .
that ﬁ(p,z,y) is an even function of z and so there is no loss in generality
to only consider the case z > 0.

For z > 0 equation (92) also has the form
o~ , o~ . 2 ~ .
ZOHch)zs-lk) = kH+(p,z,k)V+(-1k) - ('l) kH_(p,z,k)V_(—lk)
2 -1 X o~ .
- (=1)7[20 In(d/a)] exp (ikz)V_(-ik) (93)
where

solexp(ig€z)dg

k
! J F::[(kz _ g2)1/2

Q

Ht(p,z,k)

+int [ F+{(k2 + Ez)lfz,o]exp(-EZ)dE
ot

F (0,0) = Im{o*-l H£l>(co)/[Hél)(oa) * Hél)(ﬁd)]}-

In (93) the first two parts can be interpreted as the contribution from the
continuous part of the spectrum and the last part is the contribution from
the discrete part of the spectrum.

In order to interpret (93) physically we will evaluate the total current,

Il(z,k), on each wire, given by

[}

Ty(2,k) = 2mal, (a,2,-1k) = [, (2,k) + Q, (2,10 1V, (-tk)z"

- DFE_(z,k) + o (2,017 (-z]t

- -0 1 /) exp (k) T_(-100Z]" (94)

where

56



. N . 2 L2.1/2 .
P+(z,k) = - lka | br{(k - 7 ,alexp(isz)de
£ by T
rm 3 L
0, (z,k) = ilka ! G_[(x™ + 177" 7,alexp(~-£z)dg
z IIO z
‘ 2/(903):[J1(Ga)Yo(dd)-Jo(cd)YT(aa)]
G (o,2) = — - 5 7,
- ~ A\ + . [ T N ~A
v{[JO<Ga)_JO<3d)] +L&D(ua)_Yo<Ju)] !

We first note that QT(z,k) is purely imaginary funccion for real values of z
- : -1

(-ik}Z rapresents a stitionary wave, il.,e.,

<}

and k., Hence the term Q, {z,k)

+

1

x C
a nonradiating wave., The term P*(z,k)v+(—ix)2;l 2ill be interpreted as a super-
position of traveling waves, each wave being a fast wave, 1.e., 1ts Hhase
velocity is greater than the speed of light. The last term in (84) raepresents
a TEM wave and the quantity Z = ZOﬁ—l In(d/&) is the characteristic impedance

of two parallel wires.

For the special case where ?,(Y) = - $7(1> = G(Y) equation (94) becomes
I.(z,k) = =T (z,%) = [P (2,k) + Q {(z,k) =Ly
1 2y ) = = 2\2,:\/ = [ _La2y%) ._\-5:\-/120 V("J-ﬁ(-)
+ 7" exp(ikz)v(-ik). (93)

The output complex power from the two gZaneratnts is ziven by ZV(—ik)Il(A,k) =
& ~ 2 . .

Y (k)lZV(ik)t and Y (k) is the input admittance of a parallel pair of wires
driven in a push-pull manner. The admittance Y (k) can be split up in the

following way:

Y (k) = G+ iB (k) + Y' () (36)
=1 - N , R — .
where G = Z = W[-ZO In(d/a)] is the conductance of the TEM mode and
represents the power guided by the line., The second term is B_(k) = (220) T 0_(4,k)

where A is the gap width. This term is a capacitance and represents the

stationary field in the vicinicy oL each generator. Lt should be noted here that
Q (z,k) has a logarithmic singularity at z = 3, This is the same tvpe of

singularity that has been known for one cylindrical antenna in free space fad



by a delta gap. The third term, Yl(k) = (220)-1 P_(O,k), is the radiation
admittance and its real part accounts for power radiated from the wires. The
imaginary part of Y'(k) is small compared tc B(k). A similar representation
can be found for the input admittance, Y+(k), of a parallel pair of wires driven
symmetrically. Tn this case we do not have any term corresponding to the
contribution from a TEM wave. In Figure 24 we give a graphical representation
of the input impedance of two wires for these two different excitationms.

The calculations so £ar have been based on the integral representation
(93). This representation is based cn a choice of Riemann sheets of :2 + kz
such that the radiaticn condition is satisfiled throughout the entire configura-
tion space. However, if we limit ocur calculations to only certain parts of the
configuration space there are other possible choices of Riemann sheets. For
example, when calculating the field between the wires we can choose any branch-
cut starting at zik as shown in Figure 25. By choosing these branch-cuts we
will have Re{pl < 0 in part of the Riemann sheet under consideratiom. One
way is to let the branch-cuts coincide with the imaginary axis in the Z-plane

in which case we get
~ ~ . P ~ . )
z 8, (0,2,-1K) = Hl(0,2,007 (=ik) = (-1)" H!(p,2,0)V_(~ik) 97)

where

H:_(Q,Z,k) R;Cpsz:k) + S;_(Qsz,k) + T:_(p,z,k) (98)

8

Li(n)ELt(n}Kl(np/a)+Mi<n)Il(no/aﬂ

Rl(p,z,k) = -ika(Zv)-l J exp(ifz)dE (99)

© () RC )+ L ()]

L,(M) = 1,(n) = I (nd/a), M, (n) = K (nd/a) (100)

2

N o= a(gt - k2)1/2
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Figure 24. The push-pull, Y (k), and push-push, Y+(k), input

impedances of two parallel wires.



09

ik

‘;e‘_

Figure 25,

o TTy
The branch of p = vz~ + k2 used in the representation (78).
In this branch, Re{p} < 0 in the second and fourth quandrants

and Re{p) > 0 in tne fivst and third quadrants.




o—? - - - - + -]

1] = - 1 — - - -+ -2 - et
$.(0,2,k) ik pil &l(pnp>[9naK15pna) ea :naKl(pndH exp (£ 2) (101)
Ti(e,z,0) = 0,  Tl(o,2,k) = (2 ln(d/a)] " exp(ika), (102)

and pi are the roots ?f the equation Ko(pa) x Ko(pd) = 0 such that 7 = argipi} <0
and }ci! = !kz + pi2|¢/2’ -7 = arg{cn} < - 37/2. This representation corrasponds
to the representation (25) through (29) of the time-domain result.

The+quantities pi have been tabulated in Seition VI, From (101)it is clear
that Im{c;} is the propagation constant and -Re{c;} is the attenuation constant
of the higher order modes. Furthermore, the transverse field distribution of
each mode is determined by Kl(pip)[aKl(pza) irdKl(pzd)]-l and this expression is
exponentially growing for large values of o, indicating that the representation
(95) is not valid in all space. However, as we have said before, (97) is valid
in the region between the two wires,

The quantity that determines the relative importance of the contribution
of each higherforder mode is gi. It is therefore of value to have the frequency
variation of g;. The loci of ;i in the complex plane as the frequency varies
is depicted in Figures 26 through 31. Figures 32 through 39 give the variation

with kd of the following two normalized quantities
o = Re{g_d}, 8 = Im{g d}

form=1, 2, 3, 4, 5 and a/d = .1, .01, .00L.

Finalily, we will derive a representation which is most useful between
the wires and far away from the source point., In this case we draw the branch-
cuts from ik to #zik ¥ = parallel to the real axis as indicated in Figure 40.

This Riemann sheet enables us to derive the following representation

28, (0,2,-18) = Hl(o,2,007, (-1k) = (-D" H'(0,2,0F_(-1k) (103)
where
H!(Q,Z,k) = Rﬂ(psz,k) + S: (o,z,k) + TL(Q:Z’R) (104>
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. @ Li(n)Kl(nQ/a)+Mt(n)Il(np/a) .
R @200 = T JO TN, (M B (m+InfL (] ke = sadt o (03)
in| = (&% - 2ik£[a2)l/2, argi{n} =%+ arctan[£/ (2k) ]
gt Ky = ik ! £ % £y, .t £ . ,=1 6
w(pszsk) =1 g Kl(an)[CnaKl(pna) £ g dK, (p d)] © exp(z 2) (106)

and £' denotes summation over all n such that Re{gi} < 0 and O < Im{gi} < k,

For large values of z, S:(p,z,k) is negligable since each term is exponentially
attenuated. Moreover, tge main contribution of Rz(p,z,k) comes from small
values of § when z is large. This enables us to aerive an asymptotic expression
of the integral (104), valid for large values of z. From this asymptotic
expression it can be seen that the current on the antenna, far away from the

feeding point z = 0 has the following form,

I(z,k) = I.(z,k) + I (z,k) (107)

where

I+(z,k) =7 ln_z[Zikrzad/z]exp(ikz)v+(-ik)/zo ) (108)
I (z,0) = (/)Y 2 (/)% a¥1n(a/a)
2 2 -2 . o .
- (d° - a")/4]ln (d/a)exp(lkz)v_(-lk)/zo (109)

The branch-cut chosen here has been discussed previously in connection
with the calculation of the current on a cylindrical antenna and the expression
(108) can be compared with the results obtained in [11] through [13]. It should
also be noted that the connection between this choice of the branch-cut and the

saddle point method is discussed in [14].
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Figure 26. The loci of the complex propagation constants
of the five lowest, antisvmmetric TM modes on

two wires when a/d = .1.
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Figure 27.

Refs "a}

The loci of the complex propagation constants
of the five lowest, antisymmetric TM modes on
two wires when a/d = .01.
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Figure 28, The loci of the complex propagation constants
of the five lowest, antisymmetric TM modes on
two wires when a/d = .001.

€5



—~20
Im{gi‘d}
— 10
|
| 1 i | 1 | [ 0
-30 ~20 -0 »;
Re {gzd}

Figure 29.

The loci of the complex propagation constants
of the five lowest, symmetric TM modes on two
wires when a/d = .1.
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Figure 30. The loci of the complex propagation constants
of the five lowest, symmetric TM modes on two
wires when a/d = .0L.
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Figure 31.
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The loci of the complex propagation ceonstants
of the five lowest, symmetric TM modes on two
wires when a/d = .001.

68



‘ll 30
B: 20
10
o L —t
Q 10 20 30 40

8Q

-
-

SR TS USSR SIS [

\

!

~

:

|

|

i

{

] i L o

20 SO
Figure 32, The propagation and attenuation constants of
: the five lowest antisymmetric TM modes on two

wires when a/d = .1.
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Figure 33. The propagation and attenuation constants of
the five lowest antisymmetric TM modes on two
wires when a/d = .01,
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Figure 34,

The propagation and attenuation constants of the
five lowest antisymmetric TM modes on two wires

when a/d
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Figure 335. The propagation and attenuation constants of the

five lowest symmetric TM modes on two wires when
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Figure 36. The propagation and attenuation constants of the
five lowest symmetric TM modes on two wires when

'. | " a/d = .0L.
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Figure 37. The propagation and attenuation constants of the
five lowest symmetric TM modes on two wires when
a/d = ,001,
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The propagation and attenuation constants of the
lowest antisymmetric TM mode on two wires when
a/dr= .1, .01, .001.
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Figure 39. The propagation and attenustion constants of the
lowest symmetric TM mode on two wires when
a/d = .1, .0l., .00L.
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Figure 40. The branch of p = ng + k2 used in the representation (84).
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To conclude this section we discuss briefly the analytical properties of .
the field in the complex frequency plane. As we have seen in Section III the
field, when considered as a function of the complex variable p, has a branch
point at p = 0 and poles at p = pi where Ko(pia) % Ko(Pid) = 0., The analytical
properties of the field in the complex p-plane completely determine the space-
time behavior of the scattered field {c.f. (23)). From the analysis in this
section (c.f. (89)) it can be seen that the field has branch points in the complex
frequency plane and that the locations of these branch points are given by
s = cpi. These branch points may be compared with the branch points of the field

[21]

scattered from an object located in a parallel-plate region
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VIII. Concluding Remarks

The transient electromagnetic field around two wires can be expressed in
terms of a discrete spectrum and a continuous spectrum. The discrete part of
the spectrum can be interpreted as modes. The propagation and attenuation
constants of these modes have been calculated for a wide range of frequencies
and for different values of the radius-to~separation ratio. The field of each
mode grows exponentially in the transverse direction far away from the wires
thereby violating the radiation condition. Thus, the usefulness of the modszs
in the frequency domain is limited to a region near the two wires.

The time history of the current on the wires has been calculated when
each wire is fed by a step~function slice generator. The current due to twd
step-function voltage sources of arbitrary amplitude and polarity has been
obtained by superposition of two linearly independenc cases: (1) when the two
voltage generators have the opposite polarity (push-pull), and (2) when they
have the same polarity (push-push). When the wires are fed in a push-pull
manner and when the radius-to-separation ratio is less then .0l it was found
that the current on the wires can be described accurately by the TEM mode alone
after one transient time or so between the wires., This, of course, means that
transmission line theory is applicable for times larger than the transit time
across the structure,

There are other wave guiding structures that can be analyzed with the
methods used‘in this note. For example, the properties of the electromagnetic
field supported by any number of parallel, thin wires can be determined by
employing exactlyrthe same methods. However, due to the rathér complicated
expressions that will result, the number of wires cannot be too large,

Two perfectly conducting plates of finite width is another example of a

structure where Laplace transform methods are suitable. 1In the parallel plate

problem it is impossible to derive an explicit expression for the current induced

on the plates due to step-function slice generators. Instead, an integral
equation of the first kind for the induced current density can be derived,.
After a suitable transformation this integral equation can be transformed into
an integral equation of the second kind. This integral equation can be further

transformed into a set of algebraic equations by expanding the current density
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in a Fourier series with the Chebyshev polynomials as basis functions. Standard
numerical methods can then be applied to solve this set of equations. The TM .
modes can be determined from the nontrivial solution of the homogeneous integral

equation. Furthermore, it can be shown from this set of equations that in the

limit when the width-to-separation ratio is small, the propagation and attenuation

constants of the TM modes of the parallel plates are the same as those of two

parallel, circular wires. Hopefully, we will be able to report some results on

the two plates problem in the near future.
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Appendix A

In this appendix we will derive asymptotic forms of some integrals. These
asymptotic forms are used in Section IV to evaluate the late time behavior of
the field.

A, Asymptotic Evaluation of f:I+(E)exp(-v€)d€

First, we will find an asymptotic form of the integral

o

J+(V> = jol+(8)exp(~vs>d£ (Al)

valid for large values of v. The function I+(£) is given by

) L (L ()R, () +M (D)1, (ag)]

1) =
¥ M (8) M5 ()47 L (8))

’

(A2)

LE) = I (8) + I (88),  M_(8) = K (§) +K_(50)

where o > 1, & < 1 and Io(x) and Ko(x) are modified Bessel functions.
The main contribution to J+(v) comes from small values of £, Asymptotically,

for small values of &£ we have
I,(5) = -1/{28 1a(o8)[r? + 1a2(e8)]} + 0(£% 1a £) (43)
where
g = P61/2/2, I = 1,78102.....(the exponential of Euler's constant).
From (A3) it follows that

3, (v) = —[ {28 1n(e8) [ + 1n” (60) 1} exp(=vg)dg + 0(v™> 1n ) (44)
Q

as v = =%, Integration by parts give
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I(w) = 3L(v) * U+ 3T () + 0y 1n v) (a5) .

where

K!

JLw) = J I(g,v)exp(~£)dE,
o
K"

T =J L(g,v)exp(-£)dE,
K"

J:'(v) = [ I(g,v)exp(~-£&)dE&, (A6)
Kl‘f

1(6,v) = (Zﬁ)-z In{(ln g =~ 1n K)Z/[(ln £ - 1ln K)z + wz]},

« = 29/ sty

T

are chosen so that «' << 1 but x'g >> 1, .

1

The limits of integraticn k' and «'
and «" »> 1 but «'/« << 1. These choices of ' and " are obviously possibly
when v is large. We can now derive the following asymptotic forms for J;(v),

J:(v) and J:'(v), valid for large values of v

L) = ot Tt vy,
) =1 22w/ (ret 3] + ol ) T, (A7)
I (o) = ofexpl-2v/ (72Y/ 317,
Thus, we have
5,0 = 2w ew st ) (48)

as v -+ @, ‘III'
g
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B, Asymptotic evaluation of f:I_(g)exp(-vg)di

Next, we will find an asymptotic form of the integral

J_(v) = j I_(&)exp(-vE)dg
0 .
valid for large values of v. The function I_(g) is given by

L) [L_(8)K, (ag)HM_(&) I, (ag)]

I_(8)

]

M_(9) 1 )+t (o)

n

L) = I (2) = I (88),  M_(8) = K (D) - K (8).

Asymptotically, for small values of £ we have
1 (2) = (-6 -5% + 202 1aal/(32 1n° @) }e° + 0(2° 1n £)
from which it follows that

I = 3{@-H -8 + 268 1nal/(16 10 Y+ 00 1n W)

as v - «,

-1/2

, . @ 2 -n
C. Asymptotic Evaluation of Il(u -1) In “(vu)du

Finally, we will find an asymptotic form of the integral

F(v) = J w2 - Y T ey du
1

valid for large values of v and for n being an integer, n = 2, A change of

variables enables us to cast the integral into the following form
= ™t + it
Fn(v) rn(V) Fn(V>
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where .

£
Fr'z(v) = JOPn(v,u)du,
1
Fg(v) = LPn(v,u)du, (ALS)
P (vow) = u - )2 12 w/w)

and £ is a small but finite quantity such that ¢ << 1 but ve >> 1. We can now

derive the following dasymptotic forms for FI; (v) and F;(v),

FLo) = (e - DT ") + 0l
(AL6)
F'(v) = 0[1n"(v)] .
|
Thus,
P~ - DT 1w (A17)
as v - =
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Appendix B
'. In this appendix we will determine certain properties of the zeros of the
functions Ko(w) x Ko(éw), where § is a real, positive number such that § < 1.
Ko(w) is the modified Bessel function of the second kind and -m < arg{w} < 7.
Firstly, we will show that all zeros are located within a band around the

imaginary axis. For Re{w}! >> 1 we have
Ko(w) * &O(Sw) = iKO(éw)[il + Ko(w)/Ko(SW)] (B1)

and the asymptotic expansion for large arguments implies the existance of a
finite w; > 0 such that }Ko(w)/Ko(éw)l < 1 for Re{w} > w;. Moreover, since
Ko(éw) has no zeros it follows immediately that Ko(w) % KO(GW) has no zeros

for Re{w} > w;. Next, for -Re{w} >> 1 we have
KO(W) * KO(S?) = Ko(w)[l * KO(5W)/KO(W)] (B2)

and again from the asymptotic expansion it 1s clear that there exists a finite
" W; < 0 such that lKO(Sw)/KO(w)f < 1 for Re{w} < w;:'. Thus, Ko(w) * Ko(éw) has
no zeros for Re{w} < w;. It is now obvious that all zeros of KO(W) = KO(SW)
are located within a band around the imaginary axis in the complex w-plane.
Secondly, we will deduce an asymptotic expression for the zeros, wi, of
ft(w) = Ko(w) s Ko(éw), valid when !wi[ >> 1, Using the asymptotic expressions

for Ko(w), valid when |w| >> 1 we have

1/2
] /

£, w0 = [n/(2w) exp (=w) {1 = 1/(8w)

e 572 el (L - Wil - 18501 + 06 D)1, (83)

(171

Making use of a method due to Stokes we get the following asymptotic form

B

of w~,
n
+ . £ . ' . . R + £ 2 .
wo=i(l- 88 +1n §/[2(L - &)1 - 1i(L - “)/<855n> + 008 )] (B4)
~ + )
where Bn = (2n - 1), Bn = 2nw, n integer.
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Since § < 1 equation (B4) implies that Re{wi} < 0. It is our contention
that Re{wi} < 0 for all zeros of ft(w). This is true for all cases that have
been investigated numerically. It is also true for all those zeros for which
\wi| >> 1 and léwil << 1. The last statement follows from an investigation of

the variation of the argument of the function,

/2

gi(w) = [2/(Trw)]l exp(-w) * 1n[2/(T&w)],

around a closed contour in the right half plane.
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