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Abstract

The natural frequencies and the current distribution of the natural

modes of two, perfectly conducting, solid, finite, collinear cylinders are

determined. The analysis is based on the magnetic-field integral equation

specialized to the case of rotational Symmetry. The results are presented

in form of graphes and tables for th~ natural frequencies and the current

and charge distributions of the natural modes.
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I. Introduction

The singularity expansion method (s~) for solving transient electro-

magnetic interaction problems was first proposed by Baum in [l’J. This method

is based on the analytical properties of the field in the complex frequency(s)

plane. The singularity expansion method prompted the study that is undertaken

in [2] of the analytical properties in the complex s plane of the field

scattered from a perfectly conducting, finite body. It is shown in [2] that

the operator inverse to the integral operator of the magnetic-field formulation

is an analytic operator-valued function in the ~omplex frequency plane except

at certain points in the left half-plane where it has poles. A representation

of the inverse operator in terms of the natural modes and frequencies is also

given in [2]. Some analytical properties of the field scattered from imperfectly

conducting bodies and perfectly conducting bodies located in a parallel plate

region are discussed in [3]. The singularity expansion method for the special

case of first order poles is treated in great detail in [4].

One of the advantages of the singularity expansion method as compared to

other more conventional methods is that it provides a means of characterizing

the electromagnetic properties of a body with a set of complex numbers (the e

natural frequencies) and two sets of modal functions. These quantities are

uniquely determined by the body itself and do not depend, for example, on the

incident fielil. Once these quantities are known a wide variety of scattering

and antenna problems can be solved without having to solve any boundary value

problems. The singularity expansion method is therefore more desirable than

other more conventional methods for two reasons: (1) it provides more physical

insight into the problem and (2) it has many computational advantages.

RecenCly, the natural frequencies and modes have been calculated numerically

for certain differently shaped, perfectly conducting bodies. The electric-field

integral equation is used in [5] to numerically obtain the natural modes of a

perfectly conducting thin wire. Some approximate analytical results regarding

the locations of the natural frequencies of a thin wire are derived in [6]

from an approximate solution of the electric-field integral equation. The

natural frequencies and modes of a perfectly conducting sphere are calculated

in [7] by using an eigenfunction expansion of the scattered field. In [8] the

natural modes Of a prolate spheroid are obtained by applying the theory developed~..,
9
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in 12] to perfectly

The expansion

when evaluating the

step-function plane

conducting, rotationally symmetric bodies.

of the scattered field in natural modes is very expedient

fields for moderate and large times. For example, when a

wave is impinging on a perfectly conducting body a reasonable

number of terms is needed to describe the induced current density for times after

the wavefront has passed the body. However, for times such that only part of

the scattering body is illuminated the convergence of the series is rather

poor. Another method which is more useful for early times is presented in [9].

So far all numerical calculations of natural-modes have been limited to

[5]-[8] [111
simple, isolated, perfectly conducting or resistively loaded bodies.

Some preliminary results for the two-body problem are reported in [1oI. The

purpose of this note is to study the natural modes of two,perfectly conducting,

solid, finite, ccllinear cylinders when the size of the cylinders is kept constant”

but the distance between them varies. From image theory it is clear that part

of the natural modes of two cylinders are those of one cylinder above a perfectly

conducting plane.

In Section 11 we derive an integral equation for the total current on

each cylinder. The natural modes are then obtained from the nontrivial solutions

of the homogeneous integral equation. In general, numerical methods have to

be used to find these solutions. However, in the limiting case as the radius

of each cylinder becomes Vanis’ningly small the integral equation can be solved

analytically. In

imaginary axis of

The results

in graphical form

this case, all the natural frequencies are located on the

the s-plane.

of the numerical calculations are presented in Section IV

for the locations of the natural frequencies in the complex

frequency plane as well as the spatial variation of the current and charge

distributions of the natural modes. Particular attention is given to the

variation of the two fundamental modes as the distance between the cylinders

varies. It is found in [5] through [8] that the natural frequencies of one

perfectly conducting body seem to occur in layers in the complex frequency

plane. The natural frequencies of t~roscattering bodies do not in general

possess this property.

3



11. Integral Equation for the Cylinder Current

In this section we will derive an integral equation describing scattering

from two perfectly conducting, solid, finite collinear cylinders (see Figure 1).

Following the approach in [12] we have the following integral equation for the

$-symmetric part of the tangen~ial component of the magtietic field, H$(P,Z), on

the surfaces of the two cylinders

I
a

f(P,z)H@(P,z) +- ~Kl(p,z,o’,d)H$(p’,d) +Kl(p,z,p’,-d)H$(p ’,-d)
o

J
b

- Kl(p, z,p’3b)HO(p’,b) - Kl(p,z,p ’,-b)H4(p ’,-b)]p’dp ‘ -
d[K2(p’z’a’z’)H$ (a’z’)

+ K2(p,z,a,-z ‘)H@(a,-z’)ldz’ = H~(p,z), (P,z)ESl or S2. (1)

Here,

{

1/2, if (~o - al +lztdl)(lp-al+lz fb\)#O
f(p,z) = (2)

1/4, if (IP -al +lzldl)(~p-al-!-lz fbl)=O

KJP>z,P’,z’) ‘+@ (P,z,P’,z’; Y)]

K2(P,Z,P’,Z’) = -& [p’G(p,z,p’,z’;y)l

G(p,z,p’,z’;y) = (4Tr)
-1 2~R-1

J
exp(-yR)cos $d~

o

(3)

(4)

C5)

(6)

D

u

R=Ep2+p ,2 2 1/2
- 2pp’ Cos $ + (z- z’) ]

●
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Figure 1. Electromagnetic interaction of two collinear cylinders and
a plane wave.
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and S (S ) denotes the surface of the top (bottom) cylinder.
12
In terms of the total current, l(P,z), defined by

I(p,z) = 2TrpH4(p,Z) {7)

equation (1) becomes

J
a

f(p,z)I(p,z) + PIK1(p, z,p’>d)I(p’>d) + Kl(p,z,p t,-d)l(p’&d)
o

1
b

- Kl{p, z,p’,b)I(p’,b) - Kl(p, z,p’,-b)I(~’,-b)ldp’ - p[K2(p~z3a,z’)I(a,z ’)
d

inc
+ K2(p,z,a, -z’)I(a,-z’)ldz’ = 2npH

$
(8)

To solve the integral equation (8) we first transform it into cwo somewhat

inc
simpler integral equations. Split I(p,z) and H~ (P,z) into their even and

odd parts:

I(p,z) = I+(P,Z) + I-(o,z)

‘nc(p, Z) = Hfi(p, z) + H~(p, z)

‘$

(9)

where

Ihp, z) = [I(P,z) * I(P,-z)l/2 (10)

.
and, lnc(p,z),and H~(p,z).similarly, for H+ The functions I+(p,z) and I-(p,z)

satisfy the following set of uncoupled integral equations
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J
a

f(p,z)I+(p,z) + p[K:(p, z,p’,d)I+(p’,d) - K~(p, z,p’,b)I+(p’,b)]dp’
o

-1
b

Pa-lK~(p, z,a,z’)I+(a, z’)dz’ = 21TpH:c(p, z), (P,z) = 51 (11)
d

J
a

f(p,z)I-(p,z) + PIK@,z, p’,d)I-(p’,d) - K~(p,z,p ’>b)I-(p ’>b)ldp ‘
o

-1
b

Pa-lK~(p,z,a,z’ )l-(a,z’)dz’ = 2TrpH:nc(p,z), (P,.z)G 51 (12)
d

where K~(P,z,p’,z’) and K~(p,z,p’,z’) are determined by substituting Gf(p,z,p ’,z’;y)

into (3) and (4) and

GtP,z,P’,z’;y) = (4Tr)
-1 2m

J
[R~l exp (-yR+) t R~l exp (-yR-)ICOS vd$

o
(13)

R+=[p2+p
,2 2 1/2

- 2pp’ Cos + + (z t z’) 1 ●

The integral equation (12) is identical tO the integral equation (6) in [12]

describing scattering from a perfectly conducting post above a ground plane.

Equations (11) and (12) constitute the mathematical formulation of the

electromagnetic scattering problem. In the next section we will go on to discuss

the properties of the solution of the integral equations (11) and (12).
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-III. Numerical Calculation of the Natural Modes

In this section we will dtscuss briefly how to obtain the natural frequencies

and the current distribution of the natural modes.

The kernels K~(o,z,p’,z’) and K~(p,z,p’,z’) that appear in (11) and (12)

have a logarithmic singularity at p = p’, z = z’. Moreover, K~{p,z,o’,z’) and

K~(P,z,P’,z’) are square integrable and hence they are of Hilbert-Schmidt type.

Therefore, poles are the only singularities in the complex y-plane of the solutions

of the integral equations {11) and (12) provided that H~(P,z) and H~nc(P,z)

are analytic functions in the entire y-plane. In E2~ it has been shown that the

locations of these poles, i.e., the natural frequencies, can be determined from

the eigenvalue problem:
+

Find the values of y,yn and y; respectively, such that

the homogeneous integral equations havenmtrivial solutions

(14)

o

Here, A+(y) and A-(y) are integral operators defined by the integral equations

(ll)r~~d (12), respectively. It has also been shown that there exists H: such

thatL’J

(15)

where AT(Y) = AT*(Y), the star denotes complex conjugation and At is the adjoint

operator of A. The quantity s: = cy~ is called a natural frequency of the body
~

and In the current distribution of a natural mode.

In order to determine the natural modes it is necessary to solve the

homogeneous equations (11) and (12), It is not possible in the general case

to solve these equations analytically so numerical mehtods have to be used.

8
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It should, however, be pointed out that the natural modes of a perfectly

conducting cylindrical tube can be determined analytically in the limit as the

diameter-to-length ratio of the tube becomes very small (see Appendix A). The

[8],[12]integral equations (11) and (12) can be approximated by matrix equations .

Thus , in the matrix approximation (14) gives the following set of algebraic

equations

MJy& = O
n

(16)

where M+(y)

at N sample

+
is a NxN matrix and I is a column vector determining the current

n
points (see Figure 2). The method used to determine the elements

in M+(y) from the integral operator A+(y) is presented in [8]. Thus, by
.

finding y: from

det{M+(y~)} = O

+
and the corresponding nontrivial solutions I

A
and H; from

n

(17)

(18)

we can determine I~ and H: numerically. A detailed analysis of how to determine

Y:, Pn, R: from (17) and (18) is presented in [8].

The segments into which each cylinder is divided for the numerical

calculations are shown in Figure 2. The cylindrical surface is divided into 31

segments (cf. Figure 2). In the special case where d = O we, of course, omitted

the lower planar surface. The numerical calculations were performed for a/h = .1

and various d/h values. The kernel in the integral equation is an exponentially

growing function of R+ = [p2 + p’ 2 2 1/2
- 2pp’ Cosl) - (z t z’) ] when y belongs

to the left half-plane. This exponential growth introduces numerical inaccuracies

so we had to limit the numerical calculations to d/h < 1.

9



An iterative method similar to the Newton-Raph~on method of finding

zeros of real functions was used to find the naturaJ. frequencies. Each

iteration was started by an initial guess of the natural frequency and stopped

when the difference of yd between

The ratio of det{ll(y)} at the end
-5

iteration was, less than 10 . It

det{M(y)) are simple zeros.

-4
two consecutive iterations was less than 10 .

point to -thatat the starting point of each

was also found numerically that all zeros of

We wish to

also be obtained

for the exterior

point out that the interior resonances of one cylinder can

from (1) although the integral equation was originally derived

scattering problem. This fact provides a useful check on the

numerical calculations.

In the nex~ section we will present tbe results Of the numerical calculations

obtained by using the methods discussed in this section.

10
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Figure 2. The zones and sample points used in the numerical quadrature of
the integral equation.
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IV. Numerical Results

In this section we will present the results of the numerical calculations

that were obtained with the aid of a CDC 6600 computer. We will first present

the results that were obtained for the variation with the diameter-to-length

ratio of the natural frequencies and the current and charge distributions of

some of the natural modes of one perfectly conducting, solid cylinder. Then,

we will present the calculations on certain important quantities for two

collinear cylinders when the size of each cylinder is kept constant but the

distance between them varies.

A. Natural-Modes of One Cylinder

The result of the search in the complex y-plane for the natural frequencies

of one cylinder is presented in Figures 3 and 4. The H-field integral equation

was used to numerically determine the natural frequencies when a/h = .1, .05

whereas the E-field integral equation was used to determine these quantities

numerically’] for a/h = .01 and analytically for a/h + O. All calculations

[5,8]were concentrated on the first layer since previous studies show that this

layer is the most important one. We note that the absolute value of the real

part of yh is a“monotonically increasing function of a when h is fixed. This

means that the Q-value of each mode is a decreasing function of a when h is

fixed. The notation “even” and ‘loddl’in Figure 3 refers to the symmetry proper-

ties about z = O of the current distribution of the natural mode. {Cf. [14-J

where the notation “antisymmetric” and “symmetric”, respectively, has been used).

In Table 1 we have tabulated certain natural frequencies of one cylinder for

different values of a/h.

The magnitude of the current and charge distributions of first-layered

natural modes of one cylinder are depicted in Figures 5 through 7. In these

figures we have chosen to normalize the current density, jn, so that its absolute

value is less than or equal to one and that jn is real and positive when \jnl = 1.

The continuity equation enables us”to calculate the charge density, qn, from the

current density giving qn = j~/chyn . Here, the prime denotes differentiation

with respect to u. The results for the charge distribution were obtained

by performing a numerical differentiation of the current distribution. There-

fore, we expect the results for the charge distribution to be less accurate

that those for the current distribution. The phase variation of the current

.
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and charge distribution of natural modes when a/h = .05 are presented in

Figure 8.

B. Natural Modes of Two Collinear Cylinders

The natural frequencies of two collinear cylinders are depicted in Figures 9

through 13. In obtaining these results the size of each cylinder was constant

(a/h = .1) but the distance between the two cylinders varied. As mentioned

previously, due to numerical accuracy problems, the calculations were limited to

d/h < 1. The case where d/h = m was, of course, obtained by considering one

cylinder in free space. In Figures 9 through 13 “even” and “odd” refer to the

symmetry properties about z = O of the z-component of the current density on

the two cylinders. For d/h = ~ there is no interaction between the two cylinders

so that the natural frequencies for even and odd modes coincide in this case.

For d/h = 1 we observe that there are two natural frequencies in the vicinity

of the lowest natural frequency of one cylinder. One of these frequencies

corresponds to an even natural mode and the other to an odd natural mode. This

effect may be called mode splitting, since due to the interaction between the

two cylinders the lowest natural mode of one cylinder is split up into one even

and one odd natural mode of two cylinders. The loci of natural modes in the

complex frequency plane as the distance between the two cylinders varies are

rather complicated and we will return to some of these questions later. As d/h

varies from infinity to zero, we note from Figures 9 through 13 that the two

lowest natural frequencies vary between the lowest natural frequency of one

cylinder wherea/h = .1 and the two lowest natural frequencies of one cylinder

where a/h = .05. Some natural frequencies are tabulated in Table 2.

The current and charge distributions of some natural modes are depicted in

Figures 14 through 18. We observe from these figures that the current and charge

distributions for even and odd modes almost coincide for d/h = 1, indicating

that the interaction between the two cylinders is very weak for these two modes.

c. Variation of the Lowest Natural Modes With d/h.

We now go on to study in detail the variation of the two lowest even and odd

natural modes with d/h.

The loci in the y-plane of the first even and odd modes are depicted in

Figure 19. It can be seen from this figure that the interaction between the two

13



cylinders for even modes <s a rapidly varying function of d/h for small values

of d/h. This interaction between the cylinders is due to the capacitive coupling

between the two cylinders. The capacitance of two cylinders is a quantity that

1131 The coupling between thevaries rapidly with d/h for small values for d/h .

cylinders is very weak for odd modes since the current distribution of odd

modes has a node at z = O when d/h = O. The current and charge distributions

of the lowest even and odd natural modes are graphed in Figures 20 and 21 for

d/h = O, .01, .1, .5, 1.

The variation of the “second” natural frequency with

In this case, the natural frequencies seems to belong to

We have depicted 4 different branches in Figure 22. The

natural frequency for d/h = ~ can be viewed as belonging

d/h is not so simple.

different branches.

question whether the

to any of these 4 branches

,

has to be left unanswered, The spiraling behavior of the loci of the natural

frequencies for two cylinders around the natural frequency of one cylinder has

also been observed in the case of a thin wire arbitrarily oriented above a

’101 The current distributions for modes belonging to any of theground plane .

4 branches in Figure 22 are shown in Figures 23 through 30. It should be

mentioned that different modes for fixed value of d/h have a more rapid variation ●
the larger Im{yh] is.
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alh = .1

Re{yh}

-.234

-.409

-.549

-.727

-.890

-1.068

-1.292

-1.477

-1.651

-1.841

J.m{yh }

1.255

2.688

4.088

5.635

7.081

8.652

10.169

n.777

13.515

15.232

Re{-yh}

-.194

-.316

-.393

-.507

-.581

-.680

-.760

-.852

-.942

-1.030

[m{yh}

1.334

2.809

4.228

5.823

7.235

8.875

10.357

11.952

13.450

15.051

a/h = .01

I

Re{yh]

-.126

-’181

-.223

-.259

-.284

-.303

-.320

-.34

-.35

-,36

[m{yh }

1.456

2.981

4.507

6.048

7.574

9.133

10.659

12.16

13.69

15.22

a/h = O

o

0

(1

o

0

0

0

0

0

0

Im{ yh }

1.571

3.142

4.712

6.283

7.854

9.425

10.996

12.566

14.137

15.708

Table 1. Natural frequencies of a perfectly conducting, solid, finite

cylinder where a/h = .1, .05, .01, 0.



P
oh

Re{yh]

-.097

-.158

-.196

-.254

-.290

-.340

-.380

-.426

-.4i’l

-.515

-.566

-.609

-.667

-.708

-.77L

-.803

Im{yh}

.667

1.405

2.U4

2.912

3.643

4,h38

5.179

5.976

6.725

7.525

8.286

9.089

9.866

10,673

11,-476

12.288

d/h = .01

Re{yh]

-,181

-.157

-.265

-.252

-.-340

-.-338

-.41.5

-.423

-.494

-.512

-.577

-.605

-.667

-.703

-.759

-.797

Im{yh}

.884

1.398

2.262

2.898

3.736

4.417

5.242

5.948

6.766

7.490

8.308

9.046

9.870

10.622

11.460

12.228

Re{yh}

-.289

-.152

-.463

-.246

-.568

-.332

-.635

-.418

-.684

-.506

-.729

-.599

-.778

-.694

-.829

-.784

I.m{yh]

1.083

1.350

2.388

2,798

3.738

4.264

5.125

5.740

6.546

7.226

8.000

8.721

9.483

10.231

10.999

11.762

djh = 1

Re{yh] Im{yh}

-.237 1.300

-.218 1.216

-.337 2.640

-.458 2.793

-.741 3.756

-.431 4.126

-.643 h.415

-.690 5.260

-.518 5.647

-.726 6.063

-.691 6.778

-.603 7.199

-.7.54 7.682

-.719 8.331

-.667 8.773

-.794 9.305

djh = ~

Re{yh}

-.222

-.222

-.409

-.409

-.549

-.549

-.727

-.727

-.890

-.890

-1.068

-1.068

-1.292

-1.292

-1.477

-1.477

Im{yh}

1.253

1.253

2.688

2.688

4.088

4.088

5.635

5.635

7.081

7.081

8.652

8.652

10.169

10.169

11.777

11.777

Table 2. Natural frequencies of two, perfectly conducting, solid, finite,

collinear cylinders where a/h = .1, and djh = O, .ol, .1, I, CO.



The following tables summarize the different combinations of parameters

.

.

●

s

.

●

for which numerical data are presented in Figures 3 through 30.

Figure

3
4
5
6
7
8

Figure

9
10
11
12
13
14
15
16
17
18

Figure

19
20
21
22
23
24
25
26
27
28
29
30

Quantity

Frequency
Frequency
Current & Charge, Magnitude
Current & Charge, Magnitude
Current & Charge, Magnitude
Current & Charge, Phase

Quantity

Frequency
Frequency
Frequency
Frequency
Frequency
Current & Charge, Magnitude
Current & Charge, Magnitude
Current & Charge, Magnitude
Current & Charge, Magnitude
Current & Charge, Magnitude

Quantity

Frequency
Current & Charge
Current & Charge
Frequency
Current & Charge
Current & Charge
Current & Charge
Current & Charge
Current & Charge
Current & Charge
Current & Charge
Current & Charge

—.

Pole ii

1

1

1

2
2
2
2
2
2
2
2
2

a/h

o, .01, .05, .1
o<a/h<.l

.1

.05
0

.05

d/h

o
.01
.1
1
m

o
.01
.1

1
m

d/h

()<d/h<l

o, .01, .1, .5, 1
0, .1, .5, 1
0 < d/h < 1

0, .1, .2, .26, .3
.3, .7, .9, 1
.2, .26, .3, .5
.7, .8, .84, .9

.2

.3

.7

.9

*The notation + (-) is used in Section III for even (odd).

Symmetry*

Even & Odd
Even
Odd

Even & Odd
Even
Odd
Even
Odd

Even & Odd
Even & Odd
Even & Odd
Even & Odd

17
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Tigure 3. Natural frequencies of a cylinder for different diameter-to-length
ratios.
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o

,01
.05

.1

0
.01

.05
.

0

.01
.05

.1

o

J#J@--
‘G@-”

‘w”

I I I 1 I 1 1 1

-1.2 -*a -.4 0

Re{yh}

FLgure 4. Loci of natural frequencies when O < a/h < .1. The location of
the natural frequencies for a/h = O, .01, .05, .1 is indicated on
the curves.
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Appendix

The Natural Modes of

In this appendix we will investigate

a Thin Wire

●
analytically the natural modes of a

perfectly conducting cylinder in the limiting case where the diameter-to-length

ratio of the cylinder tends to zero .

Let j(z) denote the part of the axial component of the current density

that is independent of the azimuthal angle $. The quantity j(z) satisfies the

differential-integral equation (the Pccklington equation)

where

I
?T/2

G(c) = IT-l R-l exp(-yR)d$
o

R’ = 4a2 sin2+ + g,2

●
a and 2h being, respectively, the radius and length of the cylinder. We are

interested in the nontrivial solutions of (Al) when E:’ (z) s O (the homogeneous
.

solution). For E~c (z) 3 0 we can integrate (Al) to get

I
h

aG(z - z’)j(z’)dz’ = A cosh(yz) i-B sinh(yz) (A2)
-h

where A and B are constants of integration to be determined from the end

conditions j(th) = 0. Of course, A and B are both functions of a and h.

Next, we assume that there exists a solution of (A2) such that j(z) is

continuous for -h < z < h. Under this assumption we will investigate the left

hand side of (A2) in the limit as a + 0. Here and in the following a + O

actually means that a/h + O but for simplicity we just say a + O. For that

reason we split the integral in (A2) into three parts:
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J
z-&

11= -h
aG (z - zt)j(z’)dzt

~

z+&

12 = z-c
aG(z - z’)j(z’)dz’

I

h
I, = aG(z - z’)j(z’)dz’

where e is such that Iysl << 1 but s >> a. This

possible when a + O. From (A3) it can be shown

1111 + 1121 < 4nhae-llj

and

13
= K(~,a)j(z) + j’(z)

where

choice of z is obviously

hat

(A4)
max

(A3)

z lT/2

H
-1/2

K(s,a) = 8a (4a2 sin2~ + 32) d~dq.
JOJO

Interchanging the order of integration in (A6) one obtains

I
Tr/2

K(c,a) = -8a ln{tan[r/4 - 1/2 arctan(s/2a sin V)l)dV.
o

For c << a we have

(A’5)

(A6)

(A7)
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K(s,a) = 4va In(c/a) -1-O(a/e).

Thus , in the limit as a + O {AZ) has the following solution

j(z) = lAcosh(yc) +B sinh(yc)]/14ma In(c/a)].

The end conditions, j(fh) = O, imply that

A cosh(yh) t B sinh(yh) = O.

The set of equations (A1O) has a nontrivial solution provided that

Y = inn/2h.

(A8) ●

(A9)

(A1O)

(All) ●

Therefore, the natural frequencies of a thin wire are given by (All) and the

current distribution of the natural modes are

[

sin(nnz/2h), n even
jn(z) =

cos(nmz/2h), n odd
(A12)

The quantities yn = inn/2h and jn(z) are represented graphically in

Section IV. r

.
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