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Abstract
..

This note extends the previous Worli done in the area of SEM analysis of
linear wire antennas and scatterers so as to include impedance loading of
the structure. In addition, the concept of a far-field natural mode is
introduced and related to the natural current modes. Four particular
antennas are analyzed, one being unloaded and the other three having
special forms of resistance loading. The current and far field modes,
natural frequencies and coupling coefficients are defined for each case,
and the step excited time domain radiated fields are presented.
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1. Introduction

One type of EMP simulator consists of a linear antenna which is

center fed by a pulse generator. In order to shape the waveform of the

radiated electromagnetic pulse, it is possible to add some Iossy material

along the antenna to dampen out the oscillations b time which normally

occur in transient excited perfectly conducting antennas. This note begins

a study of this class of EMP simulators by the Singularity Expansion

Method (SEM). This technique basically describes the radiating behavior
--

of, the ant~n”na (Loaded or unloaded) in terms of natural frequenciess for the

exterior boimdary value problem -and their corresponding residues. Once,. -.
fhe.se quantities have been determined, the general transmitting and

,- ..r. ,.
receiving ‘prob~e___ fo_q the linear wiy~ in question. can be easily constructed.

This technique has be”e~ “di-~cussed and illustrated in Refs. 2, 3, 7, 11,

12, 13~ 14, and 19.

Other investigatoi~-have consid’er-ed the analysis of this class of..
Merewether(i5S ‘6) ‘- ““”=” “4EMP sirntilators, __ has presented the integral equation

s:~lution: for currents on “&nantenna “ha~ing ‘luriped re sis%ive elements.

Wu, King “and Shen
(18,22)

have investigated the behavior of an antenna... ... .,-.:,...
having a ‘resf_stive ,load which varie,s .~nversely as the_ distance from the

. . . . . . . . .. . . . ..

ends ‘df ~he wire, by”usi~g an approxirn’ate integral equation analysis.

13aurn(1) Sfici Wright and pre~~~~(zl)-’”- “’ “have all considered transmission line
=.

models for ,the loaded antenna and, the loaded, infinitely long radiating
14,5,6)

antenna has been analyzed by Le,e and Laiham among others.

The present note is, then, a continuation of the work begun by the

above investigators. In Section II the formulation for impedance loaded,.-

linear ant ennas is discussed and the definitions of the natural frequencies,

modes and coupling coefficients are reviewed in a format consistent with
(19)

a previous note. Section 111deals with the far-field natural modes

and how the construction of the time domain response of the radiated field

is obtained.

4



I,.

As an example of this technique applied to radiating antennas, four

1 49 cases are discussed at length: Section IV treats the unloaded radiating

I ant erma, Section V deals with the uniformly loaded wire, Section VI dis -
I

cusses the linearly loaded wire,1 and the special loading proportional to
1
I?>
I

I

I1
(
1

1

(h - IZI)-l is investigated in Section VII,

As will be seen, this last class of loading is the most suitable for

EMP simulation purposes, as the end reflections of the current on the
.

wire are considerably reduced.

9B
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diameter d

radius a

Impedance Load
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Figure 1. Linear impedance loaded EMP simulator.
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II. Integral Equation for the Loaded Ant-enna

Consider a thinj linear antenna of length L = 2h and radius a (or

diameter d) which is fed from a finite source gap located at the midpoint

of the structure. It is assumed that the antenna is loaded by an impedance

loading function A which is, in the general case, dependent upon both posi -

tion and frequency. Figure 1 shows the geometry of this problem,

To understand the radiating properties of this antenna (for both

transient and steady state signals) it is first necessary to determine the

behavior of the currents on the wire which are excited by the voltage source

on the antenna. Assuming that the wire is thin enough so that only the

axial current need be considered, it is possible to find these currents b,y

solving a Pocklington type integro-differential equation as described in

Ref. (19). Using the complex frequency s = ju + o and assuming a tem-
Stporal variation of e , the relation for the tangential component of the

electric field scattered by the unknown wire current I is written as

“oEsca(z’s)=~hl(z’’-$)K(z’z’;s)dz
The Kernel K is the exact kernel and is given by

1
2rr ~-sR/C

K(z, z’; s) = ~
4vR

add
o

(1)

(2)

where R = [(z-z’)2 + 4a2sin2(@ /2)]1’2.

Using an impedance loading function, it is assumed that the total

tangential electric field and the current on the wire surface are related

by
# Ot

(z, s) = A(z, s) I(z, s) (3)

7—.



Noting that Elnc + Esca = EtOt, with Elnc being the incident tangential

electric field produced by the source gap, Eqs. (1) and (3) become
o

Einc(z, S) = fi(z,s)I(z, S)

-*~:’(z’’s)(--$)K(z’;s)dzdz’ ‘4)

It has been verified that the incident field produced by the source

gap is, to a good degree of approximation, zero outside of the gap and

equal to Vo(s)/A in the” gap, where the parameter A denotes the size of

the gap.

As pointed out by Baum,
(3)

the integral equation in (4) can have non-

trivial solutions at certain complex frequencies, Sa, for E1nc = O. If

lnc =#O, the solution then diverges.E“ The current which exists for no

forcing function at a singular point sa, has been referred to as a natural ‘

current mode, and is a solution to the homogeneous version of Eq. (4)

which has the form

&a Ma(z) = O (5)

where the operator S is defined as
a

(d’
-Ca( ) = A(z, sa)( ) -+ ~

aodz

Ma(z) is the natural current mode

S2 h

)J
.—

c’
( )K(z, z’; sa)dzr .

-h

which has an arbitrary magnitude.

The natural mode Ma is, in general, a complex quantity. For conven-

ience, it is possible to normalize M ~ such that its peak value is purely

real and has the value of unity. Hence, the magnitude of Ma will be

chosen to be

(6)

.
.
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In a s:

(Ma(z)) =10 (7)
max —

milar manner, a coupling vector C (z) can be defined from—... a
the adjoint operator l; as

. .

For the symmetric operator as obtained from the electric field integra L

equation formulation, the mode and coupling functions are identical,

C.a(z) = ,M (z) (9)
Q

where Ca has been normalized in the same fashion as M
CY”

The solution for the current in Eq. (4) then takes on the form

?7 (s)M (Z)
I(z, s)=~(3a-as_sa (lo)

CY Q

for assumed simple poles. The sum is over all poles in the complex s

plane. The term q is the coupling coefficient and determines how much
Q

of each mode is excited by the incident or driving field. This coefficient
.-

has the form “’

I
h

‘“ q$s) = Ca(z)Elnc(z, s)dz .
-h

(11)

.
The fact or @ is a normalizing factor given by Baum as

Q

[1pa= ‘ca(z)-$- 1
-1

Ja(lda(z)) dz
-h Q

(12)

As mentioned by Baum, there is another representation for 1(z, s)

which is of the form

9“-,



— n (S )M (z)
(13)

an entire function of s, The

domain response through a

contribution due to singulari -

where q is no longer a function of s and F is
e

entire function does not contribute to the time

pole contribution, but may give an early time

ties at infinity. This remains to be verified numerically.

The time domain response of the current can be evaluated by per-

forming the integral

[

o O+jm
1

I(z, t)=—
2rj

l(z, s) est ds

40 - ‘w03

(14)

or, by closing the integral at infinity, and using Cauchy!s integral theorem,

St
I(z, t) = ~ ~a~ ~(s@)M@(z) e a U(z, t) + waveform singu-

C larity response. (15)

U(z, t) is a Heaviside step function used to insure causality and is discussed

later. Here, an additional term has been included to account for the possi-

bility of the structure responding to a singularity y in the incident waveform.

For the step excited linear antenna, there is a waveform pole at s = 0,
G

but the current on the linear wire antenna does not respond to this particu-

lar pole, so this term can be omitted.

The numerical solution of Eq. (4) is obtained by first casting it into

matrix form by using the method of moments, and then determining the

natural resonances of the structure by searching for those frequencies

(complex in general.) for which a unique solution exists with no forcing

function. The resulting matrix equation has the form

.
.

“

*
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o (16)

~ :—

[1with the matrix [Z (s)] resulting from the last portion of Eq. ( 14) and ZL

being a matrix depending on the parameter A. For a simple pulse expan~
-“1 [1sion for the current, Z

L
is a diagonal matrix.

[“1 andF]asm “$’16’Denoting the sum of the matrices ~#
takes on the form

r=w=)l”m (17)

and the analysis then proceeds exactly as in the case of the unloaded wire
(19)

scatterer. The natural frequencies are defined as those s such that
Q

.—

[1‘det ZT(sQ) = O .

r]The natural current modes M are the non-trivial solutions to
c1

and the coupling vector [1C; is the solution to the transpose equation

[1For this integral equation, Z; is symmetric, so

(18)

(19)

(20)

(21)

From these quantities, the frequency domain representation. of the

wire current is

.,
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(22)

[1where Fe(s) is the entire function of s.

Transforming to the time domain,

is given as

the time dependent antenna current

As explained in Ref. (19), the unit Heaviside matrix serves to enforce

causality in the case of a s tattering problem. In the antenna problem where

a small source gap is turned on at t = O and there is no other incident field

ori the wire, it may be assumed that all of the contributions of the forcing

[
vector V(sa)] occur simultaneously, so that the Heaviside matrix is simply

the identity matrix.

For a step function in time of magnitude V. for the excitation voltage,

[–1-[-1 -[1the forcing vector has the form V(s) - V. /s, where the vector V. de-

scribes how the driving voltage is distributed over the antenna surface.

For example, using a point-match solution of the integral equation (1) and

with the voltage source in the jth cell or zone on the anteima, the n dimen -

[1
—

sional vector V
() ()

has the components V. i = O i = 1.. , n; Vo ‘v
oj 0“

r —1 i+j
Since the driving function ~V(s)] has a pole at s = O, it is also neces-

sary to evaluate the antenna response for this frequency. As discussed in

Ref. (19), for currents on a linear structure, this contribution is zero, so

Eq. (23) becomes

[xl = x dix21TP‘s:
poles’ Q

(24)

for a step excited linear antenna. Note that since the poles occur in com-

.

“

.

plex conjugate pairs or with only a real part, the resulting summation for

[iti] is a real function.
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depends on both the functional
=

[1system matrix Z
T

B-ecause the form

o of the loading and the magnitude of such loading, it is expected that bc)th

the-locations of the .n.atural frequencies and the forms. of the natural modes

will be a function of the loading parameters. This is observed in Sections
-, V, VI, and VII.

.
,,

,- .. .

,. . .

-,. ,

. .

..’



IH. Natural Far Field Modes

In the past work relating to SEM, investigators have considered the

distributions of currents and charges on the surface of an obstacle as

evaluated at a natural frequency to be defined as a natural mode of the’

obstacle. In an analogous manner, one may consider the radiation problem

and define the natural radiated modes to be those electric and magnetic

fields tangential to the sphere at infinity which are produced by the natural

current and charge modes on the obstacle. As in the near field modes,

these radiated modes are defined only at the natural frequencies, S@.

To develop the expressions for the far field natural i-nodes, the case

of the thin-wire will be presented first so as to illustrate the method and

the definitions. The results can be expressed in the more general notation

used in Ref. (3) and will be reported in a future note by Baum.

Consider the antenna shown in Figure 2. It is assumed that the cur-

rent I(z) flowing on the antenna wire has been previously determined by the

use of SEM. It is well known that the $ component of the electric field at

a point 7i produced by a ~ directed current of moment I dz is

Idz
-sri/c

[

5+1 1
dE6 (~i;S) = —

47feo sin @ie T 7+7
c r. cr. sr.

1 1 L1 (25)

where again the complex frequency s = (a + jti) has been employed.

In the far field, it is noted that the 1/r~ and 1/r~ terms contribute

negligibly to the expression. Keeping only the 1 /ri term and integrating

over the known current distribution, the total radiated field is given by

1
h

1
-srifc

EO (Fi, S) = — I(z’,s) sin eie — dz! .
4r6 -h ;

o c r.
1

-.

(26)
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;.I(z, s)dz
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Z =-h

by currentFigure d. Electric field radiated
element Idz flowing on wire antenna.
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Iiigt]rc}usly speaking, butll o i and ri are [unctions of z 1, but by making the

customary approximations

ris r. (for ri not in the exponential)
. .

ei=e
o

r.sr - Z[cos@ o (for ri in the exponential)1 0

Eq. (26) then takes the following form

Zosin@o -sro/c s h

J

:Zfcos$
roE6 (ro, s) = I(z’, s)e ‘dz ‘ .

4T e ,:
-h (27)

Noting that the continuous representation the current is given by Eq. (10) as

n(s)M (z)
1(2, s)= ~ p “ a“ (28)

CY
a poles

where the coupling coefficient

s -s
Q

q is defined by Eq. (11), Eq, (27) then

becomes
-sro/c

20 sin O. e

-1
s“ ~av (s) h

J

:Z’cose
roE@(r, s) =

4T
C (zt)e ‘dz’

c s -s
Q Q -h Q

+ possible entire function Of (S) . (29)

As in the frequency domain representation for the wire current, this

equation has singularities at s = s As a result, the time-domain response
CY”

can be evaluated by the Cauchy theorem. Thus
s

Z. sin@ o

x

s

J

h +Z’cose s (t-rO/c)

roE6 (0 Ost) ‘ 4n P~+rl(sa) C (zi)e ‘dz’e a
c1

c1 -h

●

I-

.
.

“ U(t - ro/c) (30)

16
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9)

where it has been assumed that the effect of the entire function on the in-

tegral at infinity can be neglected.

It is possible to define a normalized natural electric field mode

ea(Oo) by

s

1
Qz’cose

/#F)e (O @ ‘C ~z, )ec
Cz Go L

‘dz’
-h a

(31)

where L = 2h. The constant ~~) is such that (ea(60))max = 1, and the nat-

ural mode (also coupling vector in this formulation) has been similarl~’

‘orma’ized ‘“,@Q(z)lmax ‘
= 1. With this definition, the time domain re -

sponse for the radiated field becomes

ZO sintl
roEO(Oo, t) = ~n 0~Pa6~F)(~)qQ(sa) ea(00)esa(t-rO’c)U(t - ro/c)

CY
(32)

which is of the same basic form as the tire-e domain expression for the

current.

Putting this last relation in discrete vector notation like that used in

Ref. (1 9), and assuming a step excitation voltage, the radiated

comes

for (t - ro/c) >0.

. ..—

17

field be-

(33)



IV. Numerical Re suits: The Unloaded Antenna

The following sect ion treats the analysis of the thin-wire antenna

having an a/h ratio of .01. The pole locations, current mode vectors and

coupling vectors are the same as those presented in IN 102 where the thin

scatterer was treated, but the coupling coefficients and, therefore, the

time domain re suits are different. In addition, the far field quantities are

presented here. In all cases to be considered, enough data will be pre -

sented so that the time domain responses of the structures can be computed

for any driving source.

As a result of searching the complex s plane for the singularities of

Eq. (4) with A(z, s) = O, a number of natural resonances for this structure

have been found as indicated in Figure 3. As done previously, the numer-

ical search procedure was a Newton- Rhapson method. For this relatively

simple structure, this searching procedure proved to be efficient, but for

other, more complex obstacles, it has been quite cliff icult to find all of the

poles within a particular region. One method which has been employed by

Shumpert is to actually plot contours of constant determinant of the system

matrix in the complex s plane. Although this is relatively costly in terms

of computer time, it is a sure way to determine all of the pole locations.

Figure 4 shows the contour plots for the dashed region in Figure 3.

Since the poles occur in layers, the parameter a has been replaced

by the parameters ,/ and n, ~ referring to the layer number and n to the

pole within any layer. In addition, the poles occur in complex conjugate

pairs, which is not indicated in Figure 3.

After solving the homogeneous integral equation of the natural f re -

quencies, the natural current modes can be determined. Figures 5 through
.

9 show the real and imaginary parts of the normalized natural current
.

modes (and the normalized coupling vectors) for various n and 1 values.

Once the natural current mode is determined, the natural far field

‘ode ‘1, n
(0) can be determined by a simple operation on the current mode,

18
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as indicated in Eq. (31). In Figures 10 through 13, the magnitudes of the

normalized far field modes are plotted in polar form. Note that only half

of the polar plot is given, as the field is symmetric about the antenna axis

t = O. More precise plots of the real and imaginary parts of these far-

field modes are given in Figures 14 through 18 for various values of n

and }.

Aside from the natural modes and pole locations, it is necessary to
(F)

have the values for the normalization factors fla and #a in order to

compute the time domain responses for the antenna current or the radiated

fields from Eqs. (24) and (33). Table I presents these coefficients, along

with the natural frequencies arid coupling coefficients. The coupling coef-

ficients for the center fed antenna having a source of width A are computed

for a step wave in time and have been defined as

J
A/2

Einc(z’ )dz ,
7?(SJ = Ca(z’) s ,

-A/2 a

where the incident field Elnc = Vo/A. For the problem

coupling coefficient is defined for a gap of total width A

the tot al antenna length.

In addition to the above, the decay times for each

(34)

at hand, this

=.l Lwhere Lis

of the natural

modes are presented. This is given the symbol Ta and is defined as the

time such that the contribution of each pole falls to 1/e of its value at T = O.

As expected, the larger the index n or ~, the faster the contributions at-

tenuate in time.

Using the quantities presented above, it is now possible to determine

the behavior of the antenna in the time and frequency domains. The delta

function spectrum for the current at the input of the antenna was calculated

by Eq. (22) and is presented in Figure 19, along with the corre spending

quantity as determined from the direct integral solution. Notice that the

agreement is rather poor, even though poles in the second layer have been

included in the sum. For this analysis the eighteen poles given in Table I

have been used.

.

. .
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TABLE I
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- .082

- .120

.147

- .169

- .188

- .205

- .220

- ,234

- .247

- .260

--.270

- .279

-2.174

-2’.506

-2..725

-2,89.0

-3.025

-3.139

.926

1,897

2.874

3.854

‘4.835

5.817

.6.800

7.783

.8.767

9.752

10.7.33

11.709

G.o

1.347

2,.477

.3.544

4.581

“5.603

Current Normalization

3,583 1.000

4.062 1.115

4.426 -1.307

4.iJ24 1.499

5.113

5.425

5.715

.5,976

6.286

6.538

6.664

6.875

- ,898

-1,023

-1.248

2,.538

3.62i’

5.026

‘ 2h = Total Antenna Length

1.453

i.607

1.775

1.849

2.144

2.360

2.657

2.258

0.’0

-,.167

-.794

-.375

1.”413

2.220

Field Normalization
~e(P(F))

Im(/3~F)).- -

19.631

.295

-6.748

- .216

6.298

.360

-5.040

- .264

4.166

.155

-3.700

- .255

31.396

i’.599

-20.607

‘9.249

1!3.478

1.800

.144

-11,433

.228

7.319

.314

-.5.565

.255

4.%00

.4264

- 3.927

.117

3.462

0.0

-26.298

-6,:335

-12.”78?

- 7.,028

-10.512

Coupling Coeff. (xlO1)
Step Excitation ‘J:’

~ Im(q )

-.302 -3.41

0.0 0.0

.0’77 1.04

0,0

-.034

0.0

.024

0.0

-.019

0.0

,016

0.0

0.0

.912

0.0

.072

0.0

-.062

....
Coupling Coefficient is for a Center Driven Antenna with Gap A=. 16.

0.0

-.558

0.0

.346

0. Q

- .224

0.0

.146

0.0

0.0

- ,494

0.0

.350

0.0

-.150

Doc8y
Time
cralh

7.760

5.306

4.330

3.766

3.386

3.104

2.694

2.729

2.578

2.446

‘2.358

“2.282

.392

.’254

.-234

.220

.2io

.202
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Figure 19. Plot of the magnitude of the input current at the unloaded antenna
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the dashed represents conventional integral equation results.



one possible reason for the discrepancy between the two curves may

be due to the fact that the entire function [Fe (s)] in Eq. (22) was not in-

cluded in the evaluation of the frequency domain response. Another pos-

sibility for this discrepancy between the two results may be that not

enough poles have been taken in the first layer to adequately represent the

driving voltage which is non zero only over the small region A..———
The time domain responses of the antenna current at the input (z = 0)

and at z = -&h/2 are presented in Figure 20a, and the behavior of the linear

charge dens ity at z = h is shown in Figure 20b. These are for a step func-

tion excitation of the antenna. For the charge at z = -h, the behavior is

the negative of that shown here, due to the symmetry of the problem. For

comparison purposes, Figure 21 shows the same data as computed by the

conventional frequency domain integral equation method and converted to

the time domain by the Fast Fourier Transform. In addition, an indepen-

dent check with re suits supplied by Miller
(17)

shows excellent agreement.

Figures 22 and 23 present the radiated field roE@ /V. in the time do-

main for a nurnbe r of different observation angles as computed by Eq. (33).

Again, the antenna is step function excited. The se re suits compare favor-

ably with those determined by Miner and with those reported earlier by
~iu. (8) It should be noted in passing that the re suits obtained by SEM are

not extremely accurate for early time unless a large number of poles are

taken in the summations. For an accurate early time description of the

radiated fields, valid for (et/h)(l - COSO) < 1 the reader is referred to Ref.

(20), where the properties of an infinite cylindrical antenna are discussed.

.

.
.
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V. Numerical Re suits: The Uniformly Loaded Antenna

@
The radiate d fields of the unloaded antenna as presented in the last

section do not look much like those encountered in a nuclear EMP, due to

the marked oscillations in time. One way to modify the radiated fields is

to add resistive loading along the structure, so as to reduce the end effects

which cause the oscillations. In this section, a resistive load of the form

A(z) = C1/L ohms/meter is studied. Other forms of the loading, which. are

slightly more effective for reducing the end effects, will be studied in suc-

ceeding sections.

With the constant load A(z), it is expected that the pole locations, Sa,

as well as the natural modes will be a function of the constant C
1.

Figure i

24 shows the pole trajectoriess for the uniformly loaded antenna of a/h :: .01.

As the value of Cl increases, the poles in the first-layer move generally in

the -a direction, indicating that their contributions in time attenuate more

rapidly. The behavior of the ~ = 2 poles is not as simple and has not been

thoroughly investigated, but it is known that these are not extremely im -

port ant in determining the late time behavior of the antenna.

The behavior of the 1?= 1, n = 1 pole deserves special attention. As

the loading is increased, this pole moves on a curved arc down to the -a

axis, at which point a double pole is formed with its conjugate pole. As

the loading is further increased, this double pole splits, one pole moving

to -~ and the other to O along the ~ axis. This behavior_is completely

analogous to that encountered in a resonant R- L-C circuit. At the point

where the double pole first is formed, the circuit is referred to as being

critically damped. The other two cases are overdamped and underdamped.

The same terminology can be applied to the antenna problem. From

Figure 24, it is noted that for Cl = 1683~, the antenna may be defined as

being critically damped. The large dots indicate the positions of the other

poles for this value of loading.

.—— ..- . . 43



This value of critical loading should be a function of the wire radius.
!

As shown in Figure 25, the critical value of Cl is a linear function of Q =
0;

2 In (2h/a).

The natural modes (and coupling vectors) are presented in Figures
i

26 and 27 for the ~ = 1 poles only, and are seen to be quite similar to those :;

of the unloaded antenna.

Figures 28 and 29 show the magnitudes of the far field natural modes
.1
AZ

for 1 = landn=l**- 6 in polar form. Figures 30 and 31 show the real

and imaginary parts of the same far field modes,

The data presented in Table 11 is sufficient to determine the time do-

main behavior of the antenna current and the radiated fields, which are

shown in Figures 32 through 35. Note that the current does not oscillate

in time, but shows an exponential like decay~ The radiated field, which is

proportional to the time derivative of the current, has one zero crossing,

but never oscillates in time. H is apparent that the end effects are observ-

able in both the input current and t$e radiated f~eldis. A lQadjng which is

heavier on the ends will suppress some of these effqcts. o

.
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Pole a
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1
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1
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1

2

.2

n

1

2
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4

5
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7

8
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11

12

1

2

TABLE II

Data for Critically Damped Uniformly Loaded Antenna
of a/h = .01 ($2=10.59)

Loading Function is $2(z) = C, /L; C, = 1683f2

Natural Frequency
s@L/c#

uL/cr

- .772

-1.032

-1.127

-1.191

-1.241

-1.282

-1.318

-1.349

-1.377

-1.403

-1.425

-1.445

-1.796

-2.476

U!.sz

.023

1.465

2.523

3.543

4.549

5.548

6.544

7.538

8.530

9.522

10.510

11.494

0.0

1.136

Current Normalization

(x 103)
Re(~a) Im(Pa)

1.784 7.159

3.009 1.635

3.159 1.319

3.427 1.282

3.846 1.509

3.977 1.375

4.240 1.454

4.216 1.514

4.721 1.646

4.951 1.746

5.167 1.541

5.495 1.742

-2.416 0.’0

- .683 3.452

J. L

Field Normalization

Re(f3(F)) Im(j3~))
u

19.106 .004

4.749 -12.193

-9.547 - 5.7’54

-5.750 7.986

7.218 5.170

5.643 - 5.815

-5.935 - 4.552

-4.846 5.085

4.227 5.056

5.183 - 3.368

-4.310 - 3.947

-4.000 3.752

20.278 0.0

-9.802 9.325

Coupling Coeff. (xlO1)
Step Excitation **

Re(rj ) &X!lZ

- .412

0

.533

0

- .221

0

.122

0

- .075

0

.047

0

0.0

-1.051

-, 125

0

.849

0

-.429

0

.251

0

-.156

0

,098

0

0

-.473

-L = 2h = Total Antenna Length

Decay
Time
q

.825

.617

.565

.534

.513

..496

.483

.472

.462

.454

.447

.441

.354

.257
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Another class of loading distributions that maybe useful inEMP

simulation is the linear loading, described by the function A(z) = C2 IZI/L2.

This loading is investigated in this section. AS before, a/h = .01.
..

The data presented here is in the same form as in the previous two
..

.

sections. Figure 36 shows the pole trajectories as a function of the con-

stant C2 and Figure 37 shows C2 as a function of fi?for critical damping.

The natural current modes are shown in Figures 38 and 39, while the radi=

ated field modes are presented in Figures 40 through 43. The time domain

responses of the currents, charge and far fields are shown in Figures 44

through 47, and Table 11 gives the normalizing constants.

Referring to Figure 44a, it is seen that the end effects in the current

which occur at ctlh x 2 are much less than in the previous uniformly loaded

case. This is due to the fact that the

in the present case, and this tends to

fle cte d at the antenna ends.

loading is much heavier near the e rids

alleviate the traveling waves re -
●

.

.
.
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1
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1
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1

2

3

4

5

6

‘7

8

9
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Natural Frequency
S&L/cm:*

CJL/cr Wk

TABLE 111

Data for Critically Damped Linearly Loaded Antenna
of a/h = .01 (Q= 10.59)

Loading function is f2(z) = C21z l/L2; C2 = 9584$2

- .834

-1.529

-1.416

-1.590

-1.634

-1.703

-1.739

-1.786

-1.814

-1.851

>k

.031

1.296

2.237

3.383

4.381

5.414

6.414

7.425

8.422

9.425

Current iNormalization

(x 103)
Re(pa) Im(~a)

1.485 42.536

3.222 .222

5.238 .631

3.609 -.282

4.052 -.718

3.563 -.928

3.682 -.985

3.578 -1.166

3.643 -1.399

3.911 .436

Field Normalization

~e(pw’)) (F)
Im(Ba )c1

23.660 - .019

8.85

-6.527

-6.953

5.199

6.868

-4.506

-7.275

2.192

5.177

-14.374

-5.542

7.618

6.958

-5.593

-6.908

3.438

7.142

-5.143

Coupling Coeff. (xl 01 )

Step Excitation ‘*>*

Re(ri ) Im(n )

-3.321 -.173

0 0

- .666 -.987

0 0

,210 .537

0 0

.102 .355

0 0

- .054 -.237

0 0

.763

.416

.449

.400

.390

.374

.366

.356

.351

.344

L = 2h = Total Antenna Length
.!..,,
““’’’coupling Coefficient is for a Outer Driven Antenna with gap A = . IL.
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VII. Numerical Results: The (h - iz i)- 1 Loaded Antenna

The final class of resistance loading to be treated in this note is de-

scribed by the function A(z) = C3/(h - IZI). In this mariner, the loading is

infinite at z = ~h and has a value A(0) = C3/h at z = O. This class of load-
(18, 22)ing has been studied by King, Shen, and Wu. By using an approxi-

mate solution to Hallen!s integral equation, it was found that the current

consisted of only an outward propagating wave for the correct value of

loading. Similarly, Liu and Sengupta
(9, 10)

have studied this problem us-

ing a numerical solution to the integral equation for the loaded structure.

As before, the data in this section is in the same form as in the pre -

vious sections. The pole trajectoriess as a function of C3 are shown in

Figure 48 while the plot of C3 vs 42 for critical loading is in Figure 49.

The natural current and field modes are given in Figures 50 through 55

and the time domain results are shown in Figures 56 through 59. Table

111gives the other pertinent data for this case.

In comparing the re suits of Liu and Sengupta for this class of loading

functions, it is seen that at z = 0, C3/ h = r. where r. is their loading

function, defined by Eq. (12) in their note. For the antenna of h/a = 100. ,

they considered values of r. = 240, 480, and 720 ohms/meter, and showed

the time domain radiated fields at various angles of observation. For the

present problem, C3/h has been chosen to be 445.9 ohms/meter and the

re suits are very similar to those by Liu and Sengupta. The method em-

ployed here offers a precise way to define the critical value of loading.

As a final curve, Figure 60 shows the value of aoL/ Cm for the three

classes of loading considered here as a function of the parameter $?. Ii is
-1

obvious that the (h - tz i) loading has the maximum darnping for the

thicker antennas.

“’”/

●

“
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TABLE IV

Datafor Critically Damped, (h-lzl)-l Loaded Antenna
of a/h = .01 (n = 10.59)

Loading Function is Q (z) = C3/(h-lzl); C3 = 445.9Q

I
,.:

Decay

Time
CTah

.766

.~g?

.358

.325

.311

.287

.274

!.:

Natural Frequency
saL/c@

a L/cr PL!.sI

Current Normalization

(x 103)
Re(Da) Im(Ba)

Coupling COeff. (xlO1)
Step Excitation **

Re(q ) Im(q )

-3.795 -.147

0 0

.426 .517

0 0

- .228 -.223

0 0

.175 .039

Field Normalization

Re(~(F)) Im(fl(F))0 m
Pole a

1 n—. -
I

I 11 - .831 .030 .555 42.392 23.874

3. 24? .

-9.777

-2.127

6.859

1.448

-.256

.14. 620

-3.364

8.190

2.200

-6.088

- .963

-1.563 1.533 3.845 ~. 553

CQ 13
F

1 4

-1.777 2.607 4.636 2.954

-1.956 3.643 3.846 5.293

15 -2.097 4.662 5.019 5.764

16 -2.219 5.676 11.851 8.547

17 -2.321 6.686 -3.461 .932 -5.534

.,,+
L = 2h = Total Antenna Length

.,.J.
““’Coupling Coefficient is for a Center Driven Antenna with Gap A = . lL.
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VIII. Conclusion..

0 The analysis of a radiating antenna by using SEM has been co~sid~red

in this note, with emphasis of the application to a linear EM I? simulator,

The extension of ~E~ to include impedance loaded structures was outlined,
,i., and the concept of a far-field natural mode was presented.
.

As an example, the center fed, line ar antenna was treated in detail

# for three specific types of resistance loading; as well as the unloaded case.

Pole locations, mode functions (current and far field) and normalizing coef-

ficients were presented, as well as some time history curves for the input

current, end charge density and radiated fields.

As is apparent from the curves, the loading function of the form

A(z) = C3/ (h - tZI) is such that the reflections of current at the ends o:Fthe

antenna are not visible at the input of the antenna. This loading is a suit-

able choice for use in an .EMl? simulator of thi-s type.
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