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Application of the Singu.larity Expan's.ion Method
to the Analysis of Impedance Loaded Linear Antennas

F. M. Tesche
The Dikewood Corporation |
Albugquerque, New Mexico 87106

Abstract

This note extends the previous work done in the area of SEM analysis of
linear wire antennas and scatterers so as to include impedance loading of
the structure. In addition, the concept of a far-field natural mode is
introduced and related to the natural current modes. Four particular
antennas are analyzed, one being unloaded and the other three having
special forms of resistance loading. The current and far field modes,
natural frequencies and coupling coefficients are defined for each case,
and the step excited time domain radiated fields are presented.
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I. Introduction

One type of EMP simulator consists of a linear antenna which is
center fed by a pulse generator, In order to shape the waveform of the
radiated electromagnetic pulse, it is possible to add some lossy material
along the antenna to dampen out the oscillations in time which normally
occur in transient excited perfectly conducting antennas. This note begins
a study of this class of EMP simulators by the Singularity Expansion
Method (SEM). This technique basically describes the radiating behavior
of the antenha (loaded or unloaded) in terms of natural frequencies for the
exterio’r bonn'dary value broblem and their corresponding residues. Once
these quantltles have been determmed the general transmlttlng and
rece1v1ng problem for the l1near ere in questlon can be eas1ly constructed,
This technlque has been d1scussed and 1llustrated in Refs 2, 3, 7, 11,
12, 13, 14, and 19. )

Other 1nvest1gators have con51dered the analys1s of this class of
(15,16)

,EMP s1mulators Merewether has presented the integral equation

solutlon for currents om'an antenna hav1ng lumped resistive elements.
Wu, ng”and Shen(18_ 22) have 1nvest1gated the behav1or of an antenna

hav1ng a resistive load wh1ch Varles 1nversely as. the dlstance from the

ends of the wire, by usmg an approx1mate 1ntegral equatlon analy51s

(21)

Baum(l) dnd Wright and Prewitt have all consuiered transmlssmn line

models for the loaded antenna and the loaded 1nf1n1tely long radiating

(4 5,6) among others.

antenna has been analyzed by Le,e and Latha
The present note is, then, a continuation of the work begun by the
above investigators, In Section II the formulation for impedance loaded
linear antennas is discussed and the definitions of the natnral frequencies,
modes and coupling coefficients are reviewed in a format consistent with
a previous note. (19) Section III deals with the far-field natural modes
and how the construction of the time domain resnonSe of the radiated field

is obtained.

B

-



As an examplé of this technique applied to radiating antennas, four
cases are discuséed at length: Section IV treats the unloaded radiating
antenna, Section V deals with the uniformly loaded wire, Section VI dis-
cusses the l_inearly_ loaded wire, and the special loading proportional to
(h - Izl)—1 is investigated in Section VTI,

As will be seen, this last class of loading is the most suitable for
EMP simulation purposes, as the end reflections of the current on the

wire are considerably reduced.



diameter d
radius a

Impedance Load of i
A (z) ohms/L,

L Source of
V _volts
N o
LR z =-h

Figure 1, Linear impedance loaded EMP simulator,



~II. Integral Equation for the L.oaded Antenna

Consider a thin, linear antenna of length L = 2h and radius a (or
diameter d) which is fed from a finite source gap located at the midpoint
of the structure. I_f is assumed that the antenna is loaded by an impedance
loading function Awhich is, in the general case, dependent upon both posi-
tion and frequency. Figure 1 shows the geometry of this problem.,

To understand the radiating properties of this antenna (for both
transient and steady state signals) it is first necessary to determine the
behavior of the currents on the wire which are excited by the voltage source
on the antenna. Assuming that the wire is thin enough so that only the
axial current need be considered, it is possible to find these currents by
solving a Pocklington type integro~differential equation as described in
Ref, (19). Using the complex frequency s = jw + ¢ and assuming a tem-:
poral variation of eSt, the relation for the tangential component of the

electric field scattered by the unknown wire current I is written as

sca B d2 s2

s€ E~ " (z,s) = Iz',s)| —= - == | K(z,z';s)dz’ (1)
o 2 2
-h dz c

The Kernel K is the exact kernel and is given by

1 2 e-—sR/C
fia) = e 2)
K(z,z";s) 27ra./0‘ TR ad¢ (

where R = [(z-z')2 + 4a? Sin2(¢ /2)]1/2.

Using an impedance loading function, it is assumed that the total
tangential electric field and the current on the wire surface are related
by

tot
E (z,s) = Alz,s) I(z, s) (3)



tot

Noting that E'7¢ + E°®® = £'%", with E'™ being the incident tangential

electric field produced by the source gap, Eqgs. (1) and (3) become

inc 1 h d2 s2
E " (z,s) = Az, s)l(z, s} - — f Wz',s)|[——= - —= }|K(z, z";8)dz! (4)
S€ 2 2
ovY-h dz c

It has been verified that the incident field produced by the source
gap is, to a good degree of approximation, zero outside of the gap and
equal to Vo(s)/z’_\ in the gap, where the parameter A denotes the size of
the gap.

(3)

the integral equation in (4} can have non-

for EC = 0. 1If

As pointed out by Baum,
trivial solutions at certain complex frequencies, Sq¢
Einc # 0, the solution then diverges. The current which exists for no
forcing function at a singular point Sy has been referred to as a natural
current mode, and is a solution to the homogeneous version of Eq. (4)

which has the form

' .ﬂaMa(z) =0 (5)

where the operator .Ba is defined as

1 d2 s h
£a( ) = A(?,Sa)( ) - T el T3z 3 f_h( )K(z,z';sa)dz' . (8)

Ma(z) is the natural current mode which has an arbitrary magnitude.
The natural mode M, is, in general, a complex quantity. For conven-
ience, it is possible to normalize Ma such that its peak value is purely
real and has the value of unity. Hence, the magnitude of Ma will be

chosen to be




it
[

(Ma(z)) (7)

max

Ina sunllar manner, a couplmg vector C (z) can be deflned from

+
the adJomt operator £ as

e @ =0, | 8)
4G | |

For the symmetric operator as obtained from the electric field integral
equation for‘murlatibn, the mode and coupling functions are identical,

C (z)=M (z) , 5 (9)
0% [0

where Ca has been normalized in the same fashion as Ma'

The solution for the current in Eq. (4) then takes on the form

: n (S)M (z) - '
Uz, 8) = zs (10)

- Q’

for assumed sunple poles. The sum is over all poles in the complex s
plane. The term n, is the coupling coefficient and determines how much
of each mode is exc:lted by the incident or dr1v1ng field. This coefficient
has the form

h

n"(s)=f C (2)ETz,s)dz . (11)
o [0%

The factor BQ is a normalizing factor given by Baum as

h 4 -1
B = / C (z)(—i—— £ (M (z))dz (12)
: Ih o S @ @

a

As mentilolned'by Baum, tﬁef:e is anoth'er;'represe'ntation for I(z, s)

which is of the form



n (s )M (2) |
1(z,8) = » B —2 . + T _(z,5) (13)
[24

where n is no longer a function of s and Fe is an entire function of s, The
entire function does not contribute to the time domain response-through a
pole contribution, but may give an early time contribution due to singulari-
ties at infinity. This remains to be verified numerically.
The time domain response of the current can be evaluated by per-
forming the integral
o Fieo
z,t) = 51—- [ I(z,s) eSt ds (14)
Yo

o

or, by closing the integrél at infinity, and using Cauchy's integral theorem,

S t
Kz,t) ZB ] {s )M (z)e U(z,t) + waveform singu-
larity response. (15)

U(z,t) is a Heaviside step function used to insure causality and is discussed
later. Here, an additional term has been included to account for the poSSi—-
bility of the structure responding to a singularity in the incident waveform.
For the step excited linear antenna, there is a waveform pole at sQ =0,
but the current on the linear wire antenna does not respond to this particu-
lar pole, so this term can be omitted.

The numerical solution of Eq., (4) is obtained by first casting it into
matrix form by using the method of moments, and then determining the
natural resonances of the structure by searching for those frequencies

(complex in general) for which a unique solution exists with no forcing

function. The resulting matrix equation has the form

10



_ ——

ﬁ ([z<s)] + [zl(_s)]) [1?;)] - [ws)} (16)

T

with the matrix [Z(s)] resulting from the last portion of Eq. (14) and [ZL:|

being a matrix depending on the parameter A, For a simple pulse expan~

————

sion for the current,: [ZL:| is a diagonal matrix.

- —_— p—__

Denoting'the sum of the matrices [Z:| and [ZL:| as [ZT:|, Eq. (16)

takes on the form

29 [10)] = [ves) (1)
and the analysis then proceeds exactly as in the case of the unloaded wire

(19)

scatterer, The natural frequencies are defined as those s such that
' , : : o

”det[zT(sa)} =0, (18)

The natural current modes |M :|are the non-trivial solutions to
@

e ] o,

and the coupling vector [C-—a/:l is the solution to the transpose equation
[Z' (s )}T[c }= 0. (20)
: T "o o : B ‘

e

For this integral equation, [ZT:| is symmetric, so

AU

From these quantities, the frequency domain representation. of the

wire current is

11
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e - 3 o, Leallel [0 ] 22

where [Fe(s)] is the entire function of s,
Transforming to the time domain, the time dependent antenna current

is given as

—_—

st
[1(’5)] z B [M }[ ] {U(t):l[v(s ﬂ @ + possible response
of antenna at pole

poles

As explained in Ref. (19), the unit Heaviside matrix serves to enforce
causality in the case of a scattering problem. In the antenna problem where
a small source gap is turned on at t = 0 and there is no other incident field

on the wire, it may be assumed that all of the contributions of the forcing

vector [V(sa)} occur simultaneously, so that the Heaviside matrix is simply
the identity matrix,

For a step function in time of magnitude V _ for the excitation voltage,

the forcing vector has the form [V(s)] = [VO:I/S, where the vector [Voi\ de-
scribes how the driving voltage is distributed over the antenna surface.
For example, using a‘point-match solution of the integral equation (1) and
with the voltage source in the jth cell or zone on the antenna, the n dimen-
sional vector [\7;] has the compon_e_rits (vo)i =0 i ; 1 .. n; (vo)j = VO.
Since the driving function |V(s}| has a pole at ; = 0, it is also neces-
sary to evaluate the antenna response for this frequency. As discussed in

Ref, (19), for currents on a linear structure, this contribution is zero, so

Eq. (23) becomes
@) 3 skl W
poles ,

for a step excited linear antenna. Note that since the poles occur in com-
plex conjugate pairs or with only a real part, the resulting summation for

[1(7)] is a real function.

12




]éeéaﬁ.’sé i:he system rxiatrix [-Z-.;] depends on both the functional form

‘. of the loading and the magnitude of such loading, it is expected that both
the locations of the natural frequencies and the forms of the natural modes

will be a function of the loadiﬁg parameters. This is observed in Sections

V, VI, and VIL

13



II1, Natural Far Field Modes

In the past work relating to SEM, investigators have considered the
distributions of currents and charges on the surface of an obstacle as
evaluated at a natural frequency to be defined as a natural mode of the
obstacle. In an analogous manner, one may consider the radiation problem
and define the natural radiated modes to be those electric and magnetic
fields tangential to the spheré at infinity which are produced by the natural
current and charge modes on the obstacle. As in the near field modes,
these radiated modes are defined only at the natural frequencies, S,

To develop the expressions for the far field natural modes, the case
of the thin-wire will be presented first so as to illustrate the method and
the definitions, The results can be expressed in the more general notation
used in Ref, (3) and will be reported in a future note by Baum.

Consider the antenna shown in Figure 2. It is assumed that the cur-
rent I(z) flowing on the antenna wire has been previously determined by the
use of SEM. It is well known that the é\ component of the electric field at
a point Fi produced by a 2 directed current of moment Idz is

-SI‘./C

— Idz . i 8
g} = : + + 2
dEe (ri,s) 4”60 sing e (25)

where again the complex frequency s = (o + jw) has been employed.
In the far field, it is noted that the 1/1r'i2 and l/ri3 terms contribute
negligibly to the expression. Keeping only the 1/ri term and integrating

over the known current distribution, the total radiated field is given by

L " wsrile g
E (r,,s)= / I(z',s)sin ¢ .e dz' . (26}
6 1 dre_J i czri

14
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Figure 2, Electric field radiated by current
' element Idz flowing on wire antenna,
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Rigorously speaking, both ei and r, are lunctions of z', but by making the

customary approximations

r.xro (for r, not in the exponential)

r.~r -z'cosg (for r, in the exponential)
i 0 o i _

Eq. (26) then takes the following form

Z sing -sr /c h Ez'cose
0 o o c 0
r E {r ,8)=———e = I(z',s) e dz',
o 9 o 4 e
-h (27)

Noting that the continuous representation the current is given by Eq. (10) as

< n (s)MQ(z)
I(Z,S) = . Baf—é—T—S—-— ’ (28)
apoles a

where the coupling coefficient n is defined by Eq. (11), Eq, (27) then

becomes
-sr /c s :
Z sing e B n(s) —z'cos@
= o o = - .§. t c 0 1
rOEe(r,s) y . Z f Ca(z Je dz
< -
+ possible entire function of (s) . (29)

As in the frequency domain representation for the wire current, this

equation has singularities at s = s , As a result, the time-domain response
o .

can be evaluated by the Cauchy theorem. Thus

Z sme ———z 'cos@ s (t-rO/c)
roEe(ao,t) Z 3 ——n(s )f C (z')e dz'e ¢

‘Ui ~r /c) (30)
O

16



where it has been assumed that the effecf of the entire function on the in-
tegral at infinity can be neglected.
It is possible to define a normalized natural electric field mode
ea(Oo) by
h —z'cos 6
B(F) (0 )= 1f c (zWe © © 4z (31)
L h @

where L = 2h. The constant B(F) is such that (e (6 )) = 1, and the nat-

‘ _ a ‘@ 0 /max

ural mode (also coupling vector in this formulation) has been similarly

normaliied so (C (z)) = 1. With this definition, the time domain re-
\a max '

sponse for the radiated field becomes

Z rsmO s (t-r /c)
r Eg (0 Zﬂ ﬂ(F)( )77 (s )e (0 ye @ ° Ut - ro/c)
(32)

which is of the Vsamre basic form as the time domain expression for the
current,
Putting this last relation in discrete vector notation like that used in

Ref. (19), and assuming a step excitation voltage, ‘the radiated field be-

comes
_ Z sin@ s, L [V ] s (t-r /c)
—— 3 _ O 0 (F) ) —T " 0o \(—, @a o
[ By = =2 Zajﬂaﬂa ( . ([ Jd = )[ea]e (33)

for (t - ro/c) > 0.

17



IV. Numerical Results; The Unloaded Antenna

The following section treats the analysis of the thin-wire antenna
having an a/h ratio of . 01. The pole locations, current mode vectors and
coupling vectors are the same as those presented in IN 102 where the thin
scatterer was treated, but the coupling coefficients and, therefore, the
time domain results are different. In addition, the far field quantities are
presented here. In all cases to be considered, enough data will be pre-
sented so that the time.ldomain responses of the structures can be computed
for any driving source.

As a result of searching the complex s plane for the singularities of
Eq. (4) with A(z,s) =0, a number of natural resonances for this structure
have been found as indicated in Figure 3. As done previously, the numer-
ical search procedure was a Newton-Rhapson method. For this relatively
simple structure, this searching procedure proved to be efficient, but for
other, more complex obstacles, it has been quite difficult to find all of the
poles within a particular region. One method which has been employed by
Shumpert is to actually plot contours of constant determinant of the system
matrix in the complex s plane. Although this is relatively costly in terms
of computer time, it is a sure way to determine all of the pole locations.
Figure 4 shows the contour plots for the dashed region in Figure 3.

Since the poles occur in layers, the parameter a has been replaced
by the parameters / and n £ referring to the layer number and n to the
pole within any layer. In addition, the poles occur in complex conjugate
pairs, which is not indicated in Figure 3.

After solving the homogeneous integral equation of the natural fre-
quencies, the natural current modes can be determined. Figures 5 through
9 show the real and imaginary parts of the normalized natural current
modes (and the normalized coupling vectors) for various n and £ values.

Once the natural current mode is determined, the natural far field

mode e n(9) can be determined by a simple operation on the current mode,

»

18
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Figure 4,

Contour plot of the constant determinent surface for the
thin~wire, showing the first three poles in layers £=1 and 2.
(Courtesy of T. Shumpert.)
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as indicated in Eq. (31). In Figures 10 through 13, the magnitudes of the
normalized far field modes are plotted in polar form. Note that only half
of the polar plot is given, as the field is symmetric about the antenna axis
t = 0. More precise plots of the real and imaginary parts of these far-
field modes are given in Figures 14 through 18 for various values of n
and £. |

Aside from the natural modes and pole locations, it is necessary to
have the values for the normalization factdrs ‘Ba and ,9(aF) in order to
compute the time domain responses for the antenna current or the radiated
fields from Egs. (24) and (33). Table I presents these coefficients, along
with the natural frequencies and coupling coefficients. The coupling coef-
ficients for the center fed antenna having a source of width A are computed

for a step wave in time and have been defined as

Af2 inc, ,
n(s )=f c (Z‘)E—(Z-)dz' , (34)
a -A/2 (03 SQ’

where the incident field E7°C = V_/4. For the problem at hand, this
coupling coefficient is defined for a gap of total width A = . 1L where L is
the total antenna length.

In addition to the above, the decay times for each of the natural
modes are presented. This is given the symbol Ty and is defined as the
time such that the contribution of each pole falls to 1/e of its value at T = 0.
As expected, the larger the index n or [/, the faster the contributions at-
tenuate in time.

Using the quantities presented above, it is now possible to determine
the behavior of the antenna in the time and frequency domains. The delta
function spectrum for the current at the input of the antenna was calculated
by Eq. (22) and is presented in Figure 19, along with the corresponding
quantity as determined from the direct integral solution. Notice that the
agreement is rather poor, even though poles in the second layer have been
included in the sum., For this analysis the eighteen poles given in Table I

have been used.
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TABLE I |
Data for Unloaded Wire of a/h = .01 (2=10. 59)

Current Normalization

Natural Frec!‘uency 3 Field Normalization Coupling Coeff, (xlOl) Deca:

Pole a s, L/ex* (x 107) 53] i3] Step Excitation ** Time,

y T TTer Wller Re(l-fa) Im(Ba) Re(ﬁa ) Im(ﬁa ) Reln) Toln) 'E,;.T

1 1 - .082 . 928 3.583 1,000 19,631 - .144 -.302 -3.41 7. 760
1 2 - .120 1,897 4,062 1,115 . 295 -11.433 0.0 - 0.0 5,306
1 3 - .147 2.874 4, 426 -1.307 -8. 748 - ,228 L 077 . 1,04 4,330
1 4 ~ .169 3.8b4 4,724 1,499 ] - .21% 7.318 0,0 0.0 3,766
1 5 - .188 4,835 5.113 1,453 6. 298 L314 -.034 -. 558 3,386
1 6 - . 209 5.817 5,425 1.607 . 360 ~ 5,565 0,0 0,0 3.104
1 7 - - . 220 _6.800 5, 716 1,775 -5,040 - .255 L. 024 , 346 - 2,894
1 8 - 234 7.783 5,976 1.849 - . 254_ 4600 0,0 0,0 2.720
1 ] -~ . 2417 B, 167 6, 286 2,144 4,166 .'284 -,019 - .224 - 2.578
1 0 - .260 9,752 6,538 2,360 . 195 - 3,927 0.0 . 0.0 2, 448
1 11 - .270 10, 733 6. 664 2,657 -3,700 - - 111 . 016 .146 '2.358
1 12 - ,279 11,709 6.875 2.7258 - .255 3.462 0,0 .0 2,282
2 b -2,174 0.0 - ,898 0,0 31,396 0,0 ‘0,90 0.0 L2992
2 2 -2.506 1,347 -1, 023 -.167 7.599 -26,298 .912 - ,494 .254
2 3 -2.1725 2.477 -1, 248 -.794 -20. 607 ~-6,335 0.0 0,0 234
-2 4 -2.890 3,544 2,538 -.375 9,249 ~12,782 . 072 . 350 . 220
2 5 -3.025 4, 531 - 3,627 1,413 10,478 - 7,028 0,0 0.0 . 2i0
2 B -3.139 5. 603 5,026 2,220 1.800 ~10,612 -.062 -.150 202

e
e

L = 2h = Total Antenna Length

e
KR

Coupling Coefficient is for a Center Driven Antenna with Gap A =, 18,
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Figure 19, Plot of the magnitude of the input current at the unloaded antenna
as a function of kL., The solid line represents SEM results, and
the dashed represents conventional integral equation results.



One possible reason for the discrepancy between the two curves may

be due to the fact that the entire function [F—e(?)] in Eq. (22) was not in-
cluded in the evaluation of the frequency domain response. Another pos-
sibility for this discrepancy between the two results may be that not
enough poles have been taken in the first layer to adequately represent the
driving voltage which is non zero only over the small region A.

The time dorﬁain responses o?the antenna current at the input (z = 0)
and at z = th/2 are presented in Figure 20a, and the behavior of the linear
charge density at z = h is shown in Figure 20b. These are for a step func-
tion excitation of the antenna. For the charge at z = -h, the behavior is
the negative of that shown here, due to the symmetry of the problem. For
comparison purposes, Figure 21 shows the same data as computed by the
conventional frequency domain integral equation method and converted to
the time domain by the Fast Fourier Transform. In additipn, an indepen-

(17)

dent check with resulis supplied by Miller shows excellent agreement.

Figures 22 and 23 present the radiated field roEO/vo in the time do-

main for a number of different observation angles as computed by Eqg. (33).
Again, the antenna is step function excited. These results compare favor-
ably with those determined by Miller and with those reported earlier by
Liu. (8) It should be noted in passing that the results obtained by SEM are
not extremely accurate for early time unless a large number of poles are
taken in the summations. For an accurate early time description of the
radiated fields, valid for (ct/h}{1 - cos6) < 1 the reader is referred to Ref.

(20), where the properties of an infinite cylindrical antenna are discussed.
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V. Numerical Results: The Uniformly Loaded Antenna

The radiated fields of the unloaded antenna as presented in the last
section do not look much like those encountered in a nuclear EMP, due to
the marked oscillations in time. One way to modify the radiated fields is
to add resistive loading along the structure, so as to reduce the end effects
which cause the oscillations. In this section, a resistive load of the form
A(z) = Cl/L ohms/meter is studied. Other forms of the loading, which are
slightly more effective for reducing the end effects, will be studied in suc-
ceeding sections.

With the constant load A(z), it is expected that the pole locations, S,
as well as the natural modes will be a function of the constant Cl' Figure
24 shows the pole trajectories for the uniformly loaded antenna of a/h = .01.
As the value of C1 increases, the poles in the first-layer move generally in
the -¢ direction, indicating that their contributions in time attenuate more
rapidly. The behavior of the £ = 2 poles is not as simple and has not been
thoroughly investigated, but it is known that these are not extremely im-
portant in determining the late time behavior of the antenna.

The behavior of the £ = 1, n = 1 pole deserves special attention. As
the loading is increased, this pole moves on a curved arc down to the -o
axis, at which point a double pole is formed with its conjugate pole. As
the loading is further increased, this double pole splits, one pole moving
to -» and the other to 0 along the ¢ axis. This behavior is completely
analogous to that encountered in a resonant R-L~C circuit. At the point
where the double pole first is formed, the circuit is referred to as being
critically damped. The other two cases are overdamped and underdamped.

The same terminology can be applied to the antenna problem. From

Figure 24, it is noted that for C, = 16838, the antenna may be defined as

1
being critically damped. The large dots indicate the positions of the other

poles for this value of loading.
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This value of critical loading should be a function of the wire radius.
As shown in Figure 25, the critical value of C1 is a linear function of £ =
2 In (2h/a).

The natural modes (and coupling vectors) are presented in Figures
26 and 27 for the £ = 1 poles only, and are seen to be quite similar to those
of the unloaded antenna.

Figures 28 and 29 show the magnitudes of the far field natural modes
for/=1landn=1---6 m polar form. Figures 30 and 31 show the real
and imaginary parts of the same far field modes.

The data presented in Table II is sufficient to determine the time do-
main behavior of the antenna current and the radiated fields, which are
shown in Figures 32 through 35. Note that the current does not oscillate
in time, but shows an exponential like decay, The radiated field, which is
proportional to the time derivative of the current, has one zero crossing,
but never oscillates in time. It is apparent that the end effects are observ-
able in both the input current and the radiated fields. A loading which is

heavier on the ends will suppress some of these effects.
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TABLE II

Data for Critically Damped Uniformly L.oaded Antenna
of a/h = .01 (2=10, 59)

Loading Function is Q(z) = Cl/L; C1 = 16832

Current Normalization

€9

Natural Frequency 3 Field Normalization Coupling Coeff. (x10%) Decay
Pole a SaLIC”"K x 107 {F) {F) Step Excitation ** Time
T —Tem Crs  Re) Tm(B_) Re(f)  Im(B,") Hetn) TGy ot I
1 1 - .72 .023 1.784 7.159 19,106 . 004 - 412 -.125 .825
1 2 -1.032 1. 465 3. 009 1.635 4,749 12,193 0 0 .617
1 3 -1.127 2.523 3.159 1.319 -9,547 - 5.754 .533 .849 .565
1 4 -1.101 3.543 3.427 1. 282 -5.750 7.986 0 0 .534
1 5  -1.241 4.549 3,846 1. 509 7.218 5,170 - 221 -.429 .513
1 6  -1.282 5.548 3.977 1.375 5,643 - 5,815 0 0 . 496
1 7 -1.318 6. 544 4.240 1.454 -5.935 - 4,552 .122 . 251 .483
1 8 -1.349 7.538 4.216 1.514 -4.846 5. 085 0 0 .472
1 9 -1.377 8. 530 4,721 1.646 4,221 5. 056 - .075 -.156 . 462
1 10 -1.403 9.522 4,951 1.746 5.183 - 3.368 0 0 .454
1 11 -1.425 10. 510 5.167 1.541 -4,310 - 3,947 . 047 ,098 . 447
1 12 -1.445 11. 494 5. 495 1,742 4. 000 3,752 0 0 . 441
2 1 -1.796 0.0 -2, 416 0.0 20,278 0.0 0.0 0 .354
2 2 2,476 1.136 - .683 3,452 -9.802 9. 325 -1.051 -.473 .257
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VI. Numerical Results: The Linearly Loaded Antenna

Another class of loading disiributions that may be useful in EMP
simulation is the linear loading, described by the function A(z) = C2 |zl/L2.
This loading is investigated in this section. As before, a/h =.0L.

The data presented here is in the same form as in the previous two
sections. Figure 36 showé the pole trajectories as a function of the con-
stant C2 and Figure 37 shows C2 as a function of £ for critical damping.
The natural current modes are shown in Figures 38 and 39, while the radi-
ated field modes are presented in Figures 40 through 43. The time domain
responses of the currents, charge and far fields are shown in Figures 44
through 47, and Table II gives the normalizing constants.

Referring to Figure 44a, it is seen that the end effects in the current
which occur at ct/h = 2 are much less than in the previous uniformly loaded
case. This is due to the fact that the loading is much heavier near the ends
in the present case, and this tends to alleviate the traveling waves re-

flected at the antenna ends.
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Figure 41, Polar plots of the magnitude of the normalized far field modes e
for £=1 poles of a constant slope resistively loaded antenna.
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TABLE III

Data for Critically Damped Linearly Loaded Antenna
of a/h = .01 (Q=10,59)

Natural Frequency

Loading function is Q(z) = Cl zl/L2; C

Current Normalization

(x 103)

Pole «a SaL/CTr*

I n oLfcr jwL/cr Re(Ba)
1 1 - .834 . 031 1.485
1 2 -1.529 1,296 3,222
1 3 -1,416 2,237 5.238
1 4 -1.590 3.383 3.609
1 5 -1.634 4, 381 4. 052
1 6 -1.703 5.414 3.563
1 7 -1,739 6.414 3.682
1 8 -1,786 7.425 3.578
1 9 -1.814 8.422 3.643
1 10 -1.851 9.425 3.911

2

Field Normalization

mB)  re@Y) @)
42,536 23. 660 - ,019
L 222 8. 85 -14,374
. 631 ~-6.527 ~5,.542
-. 282 -6,.953 7.618
-.718 5.199 6,958
-.928 6,868 -5,593
-.985 -4,506 -6,908
-1,166 -7,275 3.438
-1, 399 2,192 7.142
. 436 5.177 -5,143

L. = 2h = Total Antenna Length

= 958402

Coupling Coeff, (x10)
Step Excitation **

Re(n) T
-3.321 -.173
0 0
- .666 -.987
0 0

. 210 . 537
0 0
.102 . 355
0 0

- ,0564 -, 237
0 0

Coupling Coefficient is for a Outer Driven Antenna with gap A= ,1L.

Decay
Time
c‘ra/ h

. 763
. 416
. 449
. 400
. 390
. 374
. 366
. 358
. 351

. 344
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VII. Numerical Results: The (h - lzl)—1 Loaded Antenna

The final class of resistance loading to be treated in this note is de-
scribed by the function A(z) = CS/(h - 1z1}). In this manner, the loading is

/h at z = 0. This class of load-
(18, 22)

infinite at z = th and has a value A(0Q) = C3

ing has been studied by King, Shen, and Wu. By using an approxi-
mate solution to Hallen's integral equation, it was found that the current
consisted of only an outward propagating wave for the correct value of

loading. Similarly, Liu and Sengupta' ™’ **)

have studied this problem us-

ing a numerical solution to the integral equation for the loaded structure.
As before, the data in this section is in the same form as in the pre-

vious sections. The pole trajectories as a functi_on of'C3 are shown in

Figure 48 while the plot of C, vs £ for critical loading is in Figure 49.

The natural current and fieldSmodes are given in Figures 50 through 55
and the time domain results are shown in Figures 56 through 59. Table
III gives the other pertinent data for this case.

In comparing the results of Liu and Sengupta for this class of loading
functions, it is seen that at z = 0, C3/h =r where r is their loading
function, defined by Eq. (12) in their note. For the antenna of hf/a = 100.,
they considered values of ro = 240, 480, and 720 ohms/meter, and showed
the time domain radiated fields at various angles of observation. For the
present problem, C3/h has been chosen to be 445. 9 ohms/meter and the
results are very similar to those by Liu and Sengupta. The method em-
ployed here offers a precise way to define the critical value of loading.

As a final curve, Figure 60 shows the value of a-oL/Cfr for the three
classes of loading considered here as a function of the parameter £. It is

obvious that the (h - lzl)"1 loading has the maximum damping for the

thicker antennas.
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Figure 48, Pole trajectories for wire of a/h= .01 as a

function of the constant C3 (in kilohms).
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Figure 49. Plot of the constant Cg for critical loading of the form .

A(z) = Cg/h-[z].
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Data for Critically Damped, (h—lzl)—1 Loaded Antenna

Looading Function is Q(z) = CS/(h-—|z|); C3 = 445, 9Q2

TABLE IV

of a/h=.01(Q =10.59)

Current Normalization

L. = 2h = Total Antenna Length

O

Natural Frequency 3 Ficld Normalization Coupling Coeff. (x10") Decay
s Llex® (x 10°) R ‘Time
Pole a o @) e Re(B(F)) Im(B(F)) Step Excitation ** o
] n aLlcr jwL/cx o o a o Re(n) Im(n) “Ta
1 1 - .831 . 030 . 555 42, 392 23.874 ~.256 ~3. 795 -. 147 . 766
1 2 ~1,563 1,533 3.845 1,583 3.247 =14, 620 0 0 . 407
1 3 =-1.777 2.607 4,636 2,954 -9, 7717 -3.364 .426 . 017 .358
1 4 -1,956 3.643 3. 846 5,293 2,127 8.190 0 0 .325 -
1 5 -2.097 4,662 5,019 5.764 6.859 2.200 - .228 -, 223 . 311
1 6 -2.219 5.676 11, 851 8.547 1,448 -6.088 -0 0 . 287
1 1 -2.321 6,686 -3.461 .932 -5,534 - .983 .175 . 039 274

Coupling Coefficient is for a Center Driven Antenna with Gap A = . 1L,
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Figure 56. Time history plots of (a) the current at the

input of the antenna and at z = + h/2 and (b),

the linear charge density at z=h for the (h-|z l)_

resistively loaded antenna, with Cg = 445.9Q,
a/h = .01 and using the poles in Table IV.
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of Table IV.
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The analysis of a radiating antenna by using SEM has been considered
in this note, with emphasis of the application to a linear EMP simulator.
The extension of SEM to include impedvance loaded structures was outlined,
and the concept of a far-field natural mode was presented.

As an example, the center fed, linear antenna was treated in detail
for three spécific 'fypes of resistance lo'adi'ngf,' as well as the unloaded case.
Pole locations, mode functions (current and far field) and normalizing coef-
ficients Were'prese'n"ted,' as well as some time history curves for the input
current; end chargé deﬁéity and rédiafed fields; |

As is apparent from the curves, the loading function of the form
A(z) = C3/(h ~ 121) is such that the reflections of current at the ends of the
antenna are not visible at the input of the antenna. This loading is a suit-

able choice for use in an EMP simulator of this type.

817



10,

11,

IX. References

Baum, C. E., "Resistively Loaded Radiating Dipole Based on a
Transmission Line Model for the Antenna,' Sensor and Simulation
Notes, Note 81, April 1969, '

Baum, C, E., "On the Singularity Expansion Method for the Solution

of Electromagnetic Interaction Problems,' Interaction Notes, Note 88,

December 1871,

Baum, C. E., "On the Singularity Expansion Method for the Case of
First Order Poles,' Interaction Notes, Note 129, October 1972,

Latham, R, M., and K, S,H. Lee, ""Pulse Radiation and Synthesis
by an Infinite Cylindrical Antenna,' Sensor and Simulation Notes,
Note 73, 1969,

Latham, R. M., and K,S.H. Lee, '"Radiation of an Infinite Cylindri-
cal Antenna with Uniform Resistive Loading,'' Sensor and Simulation

Notes, Note 83, 1970,

Latham, R. M,, and K, S, H, Lee, '""Transient Properties of an
Infinite Cylindrical Antenna,' Radio Science, Vol. 5, No. 4,
pp. 715-723, 1970,

Lee, S. W,, and B, Leung, '"'The Natural Resonance Frequency of
a Thin Cylinder and its Application to EMP Studies, ' Interaction
Notes, Note 96, February 1972,

Liu, Y. K., "Time Domain Analysis of Linear Antennas and
Scattering," Ph,D, Dissertation, University of California at
Berkeley, June 1972,

Liu, Y-P., and D, L, Sengupta, 'Transient Waveforms Radiated
by a Resistively Loaded Linear Antenna,' presented at the 1972
Fall FULMEN Meeting, University of Michigan,

Liu, Y-P,, D. L. Sengupta, and C-T, Tai, ''On the Transient
Waveforms Radiated by a Resistively Loaded Linear Antenna,"
Sensor and Simulation Notes, 1973,

Marin, Lennart, and R. W, Latham, '""Analytical Properties of the
Field Scattered by a Perfectly Conducting, Finite Body,' Interaction
Notes, Note 92, January 1972,

28



@

9

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Marin, Lennart, "Application of the Singularity Expansion Method to
Scattering from Imperfectly Conducting Bodies and Perfectly Conduct-
ing Bodies within a Parallel Plate Region, " Interaction Notes, Note
116, June 1972.

Marin, Lennart, "Natural-Mode Representation of Transient Scatter-
ing From Rotationally Symmetric, Perfectly Conducting Bodies and
Numerical Results for a Prolate Spheroid, " Interaction Notes, Note
118, August 1972,

Martinez; Joe P., Zoe Lynda Pine, and F. M. Tesche, "Numerical
Results of the Singularity Expansion Method as Applied to a Plane Wave
Incident on a Perfectly Conducting Sphere, " Interaction Notes, Note
112, May 1972.

Merewether, David E., "Transient Pulse Transmission Using Im-
pedance Loaded Cylindrical Antennas," Sensor and Simulation Notes,
Note 70, February 1968.

Merewether, D. E., "Transient Electromagnetic Fileds Near a Cy-
lindrical Antenna Multiply-Loaded with Lumped Resistors, " Sensor
and Simulation Notes, Note 71, August 1968.

Miller, E. K., "Some Computational Aspects of Transient Electro-~
magnetics, " Lawrence Livermore Laboratory Report, UCRL-51276,
1972. (Also personal communication. )

Shen, L. C., and R. W. P. King, "The Cylindrical Antenna with
Nonreflecting Resistive Loading," IEEE Trans. on Antennas and Prop-
agation, AP-13, November 1965, p. 998.

Tesche, F. M., "On the Singularity Expansion Method as Applied tc
Electromagnetic Scattering from Thin Wires, " Interaction Notes,
Note 102, April 1972.

Tesche, F. M., and Zoe Lynda Pine, "Pulse Radiation by an Infinite
Cylindrical Antenna with a Source Gap with a Uniform Field, " Sensor
and Simulation Notes, Note 159, October 1972,

Wright, D. L., and J. F. Prewitt, "Transmission Line Model of Re-
diating Dipole, " presented at the 1972 Fall FULMEN Meeting, Univer-
sity of Michigan, November 1972. (Also subject of forthcoming Sen-
sor and Simulation Note. )

Wu, T. T., and R. W. P. King, "The Cylindrical Antenna with Non-
reflecting Resistive Loading, " IEEE Trans. on Antennas and Propaga-
tion, AP-13, May 1965, pp. 369-373.

89



