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This note extends the

Weapons Laboratory

“Abstract ‘-

formalism of the singularity expan-
sion method (SEM) beyond the currents (and char~es) in~uce~ on
objects of finite size in free space to include the associated
fields . These are the scattered fields if a wave is incident
on the object of interest, or the total fields if the object
is an antenna with appropriate sources. From the current on
the object the scattered or radiated fields can be calculated
and these fields can be expanded in terms of natural modes.
Using retarded time concepts one can define retarded natural
modes and far natural modes for the electromagnetic field quan-
tities . From these there ‘results what are in effect both time
and frequency domain pattern functions for far fields.
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. . .

There seemed to be no use in waiting by the little door,
so she went back to the table, half hoping she might find an-
other key on it, or at any rate a book of rules for shutting
people up like telescopes: this time she found a little bot-
tle on it (“which certainly was not here before~” said Alice),
and tied round the neck of the bottle was a paper label with
the words “DRINK ME” beautifully printed on it in large let-
ters.

Zt was all very well to say “Drink me,” but the wise lit-
tle Alice was not going to do that in a hurry. “No, 1’11 look
first,” she said, “and see whether it’s marked ‘poison’ or not,”
for she had read several nice little stories about children
who had got burnt, and eaten up by wild beasts, and other un-
pleasant things, all because they woutd not remember the sim-
ple rules their friends had taught them, such as, that a red-
hot poker will burn you if you hold it too long; and that if
you cut your finger ve~y deeply with a knife it usually bleeds;
and she had never forgotten that if you drink much from a bot-
tle marked “poison,” it is almost certain to disagree with you
sooner or later.

However, this bottle was not marked “poison,” so Alice
ventured to taste it, and finding it very nice (it had, in
fact, a sort of mixed flavor of cherry tart, custard, pineap-
ple, roast turkey, toffy, and hot buttered toast), she very
soon finished it off. ,

“What a curious feeling!” said Alice. “I must be shutting
up like a telescope.”

And SCIit was, indeed; . . .

—,

.

(Lewis Carroll,
Alice in Wonderland)

.



1. Introduction

Previous work has considered the singularity expansion of
currents and charges on objects, at least as the primary em-
phasis. In particular there is now a modest amount of infor-
mation on this method as it applies to the currents and
charges on finite size objects (refs. 1 through 10) . While

. this has primarily” be&n ”sta”ted-interms of th-ere”sponse of the
object to an incident—electromagnetic wave (the interaction or
scattering problem as in figure 1A) the method applies to an-
tenna problems (with sources on the antenna as in figure lB)

b as well. The results for finite size objects carry over with
the coupling coefficients describing the-coupling of the poles
to ti-eantenna source”s=ln”steaciof the incident field. Integ-
ral equations can be written to describe the scattering and
antenna problems for the currents and charges on the object.
The given (or known) excitatic)n term in the integral equation
corresponds to,the incident field in the scattering problem
and to the sources in the antenna problem, so the formalism is
very similar for the two cases.

A previous notes discusses the first order pole terms in
the singularity expansion for current and charge densities.
This note extends these considerations to radiated and scat-
tered fields. The convenient implied integral notation of the
previous note is used in this extension.

0

We first consider
some of the properties of the field natural modes from which
we define retarded natural mocles and far field natural modes
(associated with finite size objects). Using the free space
Green’s function one can then calculate the various field and
potential quantities from the current on the object. From
these expressions one can calculate field and potential natu-
ral modes from current natural. modes. The fields and poten-
tials can then be singularity expanded in terms of these modes,
although there is some flexibi..lityin our choice of the forms
of the resulting coefficients associated with entire functions
of the complex frequency s.

The remainder of the note can be roughly divided into two
parts. In the first part consisting of sections II through IV
the natural modes are considered from a differential equation
point of view for definitions and properties. In the second
part consisting of sections V through VIII the natural modes

,. are considered from the viewpoint of their integral relations
to the current density natural modes; this gives explicit fOr-
mulas with_normalizing constants for calculating the field and

*’ potential natural modes from the current density natural modes.
A recent note16 treats the numerical calculation of the far
field natural modes and the resulting far fields from a loaded
linear antenna, showing a practical implementation of some of
the concepts discussed in this note.

3
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II. Fields and Potentials

This section considers electromagnetic fields and pot-en-
tials from a differential equation point–o-f view as
to similar considerations for the natural modes for

a prelude
fields anti

potentia-ls. Write Matiell’s equations as

3-SJii- m

S& + 3

(2.1)

v

“ Jm = -Sbm

o The tilde - over the quantity indicates the Laplace

v

transform
Laplace
In equa-

(in general two sidedr over ~ime with the resuiting
transform variable being s, the complex Lfrequency.
tions 2.1 the magnetic current density ~m and magnetic charge
density ~m are added for completeness sake and are generally
taken to b.ezero (as.being unphysical) but can be useful as
fictitious quantities in certain cases. For much of our con-
siderations we will
which one has

be considerin~ free space regions for
from the c)bje~t of interest)

= Jm =

= Pm =

— —-

P

(2.2)

= lJo
.-

objects some region of space (volume V with
contain current and charge densities as well
and permittivi.ty which are possibly different

For finite size
surface S) will
as permeability

..– . . .
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from the free space values. These effects can all be lumped
into the electric and magnetic current densities so that the
fields and potentials can be calculated as integrals over
these quantities as will be discussed later.

Combining the equations 2.1 appropriately we have wave
equations (transformed) as

[v xv x+yz]$=-s~o?i- 17x$m
b

(2.3)

where w and s have been taken as their free space values so as
to be independent of the coordinates and where the free space
propagation constant, propagation speed, and wave impedance
are

(2.4)

.

There are alternate forms for equations 2.3 using the operator
identity

(2.5)

which implies

[V2 - y2]i= “spo3 + #- VP -i-v x 3m
o

(2.6)

[V2 - y2]#i= - “-v x 3 + s&03m + +- Vpm
o

In solving Maxwell’s equations for the scattering or an-
tenna problem for finite size objects the scattered fields or
resultant fields, as appropriate, must satisfy certain bound-
ary conditions including those at large distances from the ob-
ject. This boundary condition at infinity is the radiation
condition which can be stated for the electromagnetic fields
as15

*
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.4)
lim (2.7)

1.r-km

+ ;r

or
●

( )1
3(2, s)

x

Zoiw,s)[(-
-Zoiw

r

;(; ,s)

,s)

) (2.8)b
lim
r+m

iu) for the
condition.

where s is evaluated on the imaginary axis (s =
historical derivation and use of this radiation
Later in this note the inteqral form for the fields in terms
of the currents on a finite-size object is considered. In
this integral form the radiation condition is contained ex-
plicitly in the form of the terms with a leading term of e-Yr/r
for large r (distance from the object). This effectively ana-
lytically continues the radiation condition from the iu axis
into the rest of the complex frequency plane. Note that equa-
tions 2.7 and 2.8 only apply to radiated or scattered fields
from finite size objects, and not to incident fields. As
stated in equations 2.7 and 2.8 the radiation condition applies
in the right half plane including the lo axis, i.e. , for Re[s]o
> 0.—

Associated with the electromagnetic fields we have the
vector
can be

and scalar
calculated

potentials from which the field quantities
as14

-~v x
E
o

(2.9)

ii ‘Vxz=—.. - vim - Sim
-1

referred to as antipotentials+
0 as electric potentials and Am

where Am and @m are some$imes
might also refer to A and* One

and magnetic potentials.@m as potentials satisfy

-.
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[V2 - -- y2]i = -I@

[V2 - y2]ti= -+
o

(2.10)

[V2 - -- ymm= -&03m

[V2 - Y%q= -+m
o

and have the Lorentz gauge relations

v*- X+ N“”
(2.11)

-=-5=0
‘* Xm+c2m

The radiation condition for the potentials (radiated or
scattered) is12~14

(2.12)

l__r[&+y]im=6

~here Re[s] ~ O. Note that the cartesian components of ~ (and
Am) each sat~sfy scalar differential equations of the same
form as @ (and @m). The general form for large r is e-Yr/r as
with the fields (for finite size objects) . This will app ar
@ the explicit integrals for the potentials in terms of 3 r Pr

Jm, ~m On the object. Note+that generally we will be con-
cerned with+the case where Am and @m are both zero so that
often only A and @ are used.

8
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magnetic field vectors
.—.—

be combined < .The electric and
asll,15

can

-

(2.13)

nagnetic current densities can be simi-and the electric and
larly combined as

(2.14)

Given F+ and ~. the electric and magnetic fields can be read-
ily reconstructed. Since we are+usuall~ concerned with only
electric cu$rent densities then K+ and K- are usually the same
~hing, but Jm can be also reconstructed from the two forms of
K. In this form the Maxwell equations for the-combined field
and current density vectors reduce in free space to

[VX- “ = qizo~qqiy]~q (2.15)

or

can be

(2.16)

defined bySimilarly

Qq ~

the combined charge density

(2.17)P+q#Pm
o

—

so that we have the relations

.

v“
B

= aQ-m q (2.18)

9



The radiation condition for this combined field vector from
equations 2.7 becomes

(2.19)

and setting the currents to zero at large r gives (from equa-
tion 2.15)

(2.20)

which is a rather compact form. Again note for these last two
equations we constrain Re[s] > 0 and consider only radiated or
scattered fields.

Another form for the combined field equations is found by
combining equations 2.3 to give

[Vxvx + yz];q=[-5Y.10 +qizovx]iiq (2.21)

This will be useful in some of the later explicit solutions
involving Green’s functions.

The combined field concept can be extended to combined
potentials. Define

(2*22)
@q = Q + qiZoOm

The combined field is then

3 = -VT
q

q + [-s + qicVx]F
q

The combined potentials satisfy

[V2 - Yz]ijq=-$6
oq

v

(2.23)

(2.24)

‘d

.
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with the

v“

Lorentz gauge

(2.25).

combined potentials have properties like the
radiation

Thus the
electric

much
Theand magnetic potentials separately.

condition for the combined potentials .becomes

b

(2.26)

+y]oq=o

O for the radiation condition.where Re[s] >—

11
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111. Natural Modes for Fields and Potentials

One of the important parts of a pole term in a singular-
ity expansion is the natural mode. This is the spatial dis-
tribution function for the electromagnetic quantity of inter-
est at the natural frequency Sa of interest. The complex nat-
ural frequency Sa is a frequency at which a pole occurs in the
complex frequency plane. At such a natural frequency Max-
well’s equations have a solution (the natural mode or modes)
with no forcing function (incident field and/or sources set
equal to zero) . This section considers the natural modes for
fields and potentials from a differential equation point of
view. Later sections will give integral definitions of the
various natural modes.

previous notes~#8 have considered the current and charge
density modes and how to calculate them from general integral
equation formulations. Let us now consider natural modes for
various other quantities from a differential equation point of
view based on the differential equations discussed in section
11. One use of the combined form for the fields and poten-
tials is to help in defining the interrelations among the var-
ious combined quantities for the natural modes for the fields
and potentials. Besides making the natural modes dimension-
less one can also define a set of normalizing constants (also
dimensionless) which relate the various natural mode quanti-
ties and can be chosen for convenience in the

Let ‘us
the current

3(:,s)

begin with the current densities.
density in the forml~8

=32(;,s) +33(;,s)

problem at hand.

one can write

(3.1)

where E. has dimensions of volts per meter (and might be an
incident field amplitude or normalized antenna source magni-
tude) and Z is an appropriate normalizing constant with dimen-
sions of conductivity (Sin-l). The object part of the normal-
ized response for the case of first order poles is

.

b

.



and the waveform part is

(3.3)

Here fp (s) is the Laplace transform of the waveform function
for the incident wave=or_the_antenna .sourges and may apply to
two polarizations (p = 2,3) for the case of an incident wave.

w

For the case of higher order poles the delta function re-v

sponse has the general form

In .gen.eral..orle_sh_oul.d_include_t_h_e_.entirefunction ~ in the ex-
pansion for completeness although studies have shown cases in
which it is not needed. In expanding the object and waveform
parts of the response higher order poles can be included by
considering the behavior of the waveform function and couplin~
coefficients near s = sa. The present note is primarily
cerned with the case of first order poles, na = 1.

Reviewing the steps in calculating the terms in the
gularity expansion for the current usinq the abbreviated

con-

sin-
in-

tegral notation introduced in a previou= note we have8

Integral equation

solutionForm of

a

Natural frequencies, natural modes,
and coupling vectors

.—.
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n=o

co

T= E (s - S/5n

I-i=o

Here ~ is the kernel
antenna or scatterer

(3.5)

Expansion near Sa

v

Coupling coefficient at Sa

of s~me in$egral equation describing the
and I and U are respectively the normal-

ized $xcitation and normalized current response.- The natural
mode v for the current is chosen to be dimensionless and the
coupling coefficient h has dimension inverse seconds.

Two common forms of coupling

(Sa-s)t’ <l;l.>
Ha(s) = e

<fi;*l,:>

coefficients are

Class 1 coupling coefficient
for turn on time tr

(3.6)

Fia (s) =<fi;~(s)> Class 2c0upling coefficient
(convolution form)

<$;?,;:>
.!-

These are not the only forms but are useful
some of the options to be encountered later
more general coefficients for the field and

for illustrating
in discussing the
potential modes.

In calculating the natural modes for the current density b
one usually normalizes the mode function in some convenient
way, such as by making an appropriate component of it have
maximum value 1. The choice of this normalization also af-
fects the numerical values for the coupling coefficient.

..

What has been discussed in terms of the natural modes for
~ on finite s~ze objects can be applied to the magnetic cur-
rent density ‘fmas well, provided one has some defining

0’

14
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equation for ~m such as an appropriate integral equation. We
~ill not be concerned with calculational procedures involving
Jm in this note. However, one can write a general form for Jm
directly analogous to equation 3.1 as

‘-- (5*)
3 (:, s) = EoZoZ~ (2,s)
‘P P

(3.7)
-$(3m) - (3m) - (~m)
v
P

(2,s) = :P(S)3P (2,s) = 3P (3,s) + Vp (?,s)
o w

Note that an additional $actor Z. is introduced to make the
delta function response U~ dimensionless. This is consistent
with the form of the combmed current density in equation 2.14.
One can then expand the magnetic current density in a form like
that in equation 3.4 as

-+ (;m) z ~(3m) -n
u
P

(:,s) = fim (:l,s)va (s - Su) u

a a

- (3m)
-+ ?i (:l,:,s)

P (3.8)

The same formalism carries over from current density (electric)
to magnetic current density with appropriate subscripts m
added to the coupling coefficients to distinguish them.

The combined current density natural modes then take the
form from equation 2.14 as

(3*$,)

where ~& is a constant independent of the excitation (assuming
nondegenerate modes) since these natural modes are solutions
of the homogeneous equations,, Note that we have

— --
++,—— –_, ._-—

%
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.

(3.10) o
so that for nondegenerate modes at a simple pole the coupling
coefficients should have the same frequency dependence for the
two types of current density provided the same form of coupling
coefficient is used. Since the coupling coefficient types all
reduce to the same thing at s = Sa then some ambiguity in cal-
culating rI&can be eliminated.

Within the restriction that Pm+= O+one can describe per-
meable object response in terms of Jm, J, or some combination
of the two. @ this context there is some flexibility in
choosing how Kq is defined but the end results for the fields
must be independenti of this choice.

From the current density modes various other modes can be
derived through the differential equations in section II.
Consider the charge density modes which we define from equa-
tions 2.1 and 2.18 as

(Pm) a (tm)
Va =+ “:

a a

(3.11)

Note that one coefficient aa is chosen for both electric and
magnetic types of modes so that the combined modes have the
same form. Here aa is chosen to be dimensionless (in contrast
to its choice in two previous notes1~8). The resulting elec-
tric and magnetic charge density modes are dimensionless. For
a given magnitude of the current density modes as one goes to
higher frequencies (sa) the spatial derivatives tend to get
larger; this is offset somewhat by dividing the result by ya
so as to keep ~aal near 1 for magnitudes of the charge density
modes near 1.

u

——

b

.

—

16



.

For some purposes it may be convenient to set au = 1.
—

This would be appropriate in considering $-vector current den-
siti$s (electric and magnet~.c) combining J and p on one hand,
and Jm and PM on the other. The 4-vector (and 4-tensor) form
of Maxwell’s equations is not considered here but may provide
some useful insight into the natural mode relations. Perhaps
4-vector forms can be considered in future notes.

In converting current density expansions to charge den-.
sity expansions one applies equations 2.1 to equations 3.1,
3.7! and .?:9.=.===.= ________.. .The e_xpansiorlsfor p, pm, and Qg have addi-
tional coefficients l/(sac) in the pole terms m their respec-b
tive expansions with the modes switched from current density
(vector) to charge density (scalar).

Consider next the vector and scalar potential natural
modes which can be related through the Lorentz gauge as

(Om) au ~-cim)--‘“”
v =-— V“vag Y.

-w=.

($q) _ aa ~ (Zq)
vcl”-< V“va

(3.12)

which have the same forms as equations 3.11. This occurs be-
cause the vector and scalar potentials are related to the cur-
rent and charge densi-ties through the same forms of equations
as in equations 2.10 and 2.24.

In converting vector potential expansions (either electric,
magnetic, or combined) to the corresponding scalar potential
expansions one includes an additional factor of c/aa when re-
placing the vector potential natural mode by the corresponding
scalar potential natural mode. Letting au = 1 would be con-
venient in considering 4-vector potentials.

In relating the vector and scalar potentials to the cur-
rent and _charge densities for natural mode definitions one can
modify equations 2.24 to the form

17



+
.2+ (Q

[V2 - Y:I::cq) = -bayav

($ ) (Qq)
[V2 - y:]va q = +ayj

[V2 - Yj];y= 2+ (3)
-bayav

(3.13)

(Pm) (Pm)
[V2 - y:]va = -bay;v

This assures dimensionless potential modes and gives a dimen-
sionless constant ba for choosing potential mode normalization
if desired. One can set ba = 1 for convenience in certain
cases.

In converting electric or combined current density expan-
sions to corresponding vector potential expansions an addi-
tional coefficient of ~o/(bay~) appears; in converting elec-
tric or combined charge density expansions to scalar potential
expansions an additional coefficient

J
of l/(sobay~) appears

which is a coefficient of Zo/(aqbaya) related to the current
density. For converting magnetic current density to magnetic
vector potential the additional coefficient is &o/(bay~) ; for
converting magnetic charge density to magne ic scalar poten-

$tial the additional coefficient is l/(~obaya) which becomes a
coefficient of l/(Zoaabay~) when related to the magnetic cur-
rent

2.15

density expansion.

Next we have the field natural modes. From equations
let us write

~(tq) Jikq)
[Vx - qiya]va = qicayava

(3.14)

.

u

18



where the ya is included with the combined current natural rode
to correspond to the-VX and ya operating on the combined field
mode. A set of coefficients Ca is included to give some flex-
ibility in the mode normalization; Ca may be set to 1 if de-
sired. Note that we use this equation to define the electric
and magnetic field modes as well with additional constants.
This will b-e useful when considering far field modes. -.

Another set–of equations for the field natural modes
comes from equations 2.3 and 2.21. This gives wave equations
(transformed) for the field natural modes relating them to the
current density natural modes as

(iq) (iq)
[vxvx-T-y:]Ta = CUE-Y: + qiyuVx]Ta

[vx+x-+-”~w(i)
.,[ -=_===

2+-(3) (Jm)
c~ -yava - yaTl:vx3a 1 (3.15)=

act

~v-xvx +- y-:]@ = Ca
[

+(j)
yavxva

where a factor of ya is used with each term not having a VX

4)

operator for dimensional consistency. Note that the Ca coef-
ficient must also be included so as to make the relations of
the field and current density consistent with equations 3.14.
The first of equations 3.15 can be derived by operating on
both sides of the first of equations 3.14 with the operator
VX + qiya.

In converting combined current density natural mode ex-
pansions to those for the combined field an additional coeffi-
cient ZO/(CaYa) appears with each term. The same ~dditional
term appears when calculating the electric field (E) expansion
but the addition~l factor reduces to l/(cuya) when writing the
magnetic field (H) expansion from the current density expan-
sion. Note that rI&/Zo is al-ready included with the magnetic ‘
current density before it is combined with the electric cur-
rent density.

Now relate the field and potential natural modes.
equations 2.23 together with the various coefficients
included with the various modes we have

From
to be

19
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*(3 )
f

($ )

[

/+&.4_vvq+-l +:
a 1 aaya ua a

The Maxwell field equations can be
ral modes as

In

~x+(ii) -@) -+(3)
= yava -1- Cayava

a

+ (3) +(3) = Ca
v “ Va = -Cav “ Va

(P)~ yava
a

(Zqq

If

T/x ;a

(iim)
Vx;a

}

written for

-+) J3m) c (Pm)
v ● vu = -ca?l;v “ Va = $Yan;va

a

combined form we have

(Fq) ~ (Q
[Vx - qiya ]ta = qicayava

(fiq) (Xq) Ca
v ● ; =-cav “ :a =

(Qq)

a
~ yava
a

(3.16)

the natu-

(3.17)

(3.18)

Let us now try to summarize the normalizing conventions
for the natural modes. The various quantities have an expan-
sion for the delta function response in the form (for simple
poles)

20
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:(i) +’
~ (rrs)

where ~ is the
be a scal~r in

Sa)
-1

a

(3.19)

quantity to be expanded and where it might also
which case v is also a scalar. Note the entire

function K added for completeness. As it will turn out from
later portions of this note there are other convolution forms
involving the natural modes_which change the form for s # Sa;
the difference can also be included with the entire function.
It need not concern us here as it will not affect the addi-
tional coefficient Y.

Choosing Y = 1 for the case t~at ~ is the current density
~ or the combined current density Kq”then equation 3.19 is in
a form consistent with the form of the current density expan-
sions in equations 3.1 through 3.6. Table 1 lists the addi-
tional coefficient Y associated with ~arious electromagnetic
quantities. Note that the factor EoZfp is needed to multiPIY
by the delta function response as in equations 3.1 so as to
obtain the desired electromagnetic quantity.

21



current
densities

charge
densities

vector
potentials

scalar
potentials

fields

Electromagnetic
quantity

I (or X)

i 3
q’

~m

Qq,FI

@m

Additional
coefficient

Y

1

aac

&ozorl:

aabay~

Z.

caYa

1
caYa

Table 1. Additional Coefficients Needed in
Expansion of Electromagnetic Quantities

.

..

.
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IV. Retarded and Far-Field Forms for Fields, Potentials,
and Associated Natural Modes

When dealing with radiated or scattered fields, particu-
larly at large distances from the object, it is convenient to
define a retarded- time-as

t*=@ (4.1)

where r = \~ \ is the distance from the coordinate origin as
indicated in figure 1. In the complex frequency domain this
time
fine

shift corresponds to multiplication by eYr. Thus we de-
retarded electromagnetic quantities from

(4.2)

where ~ here is a vector or scalar quantity, or even a matrix
quantity if desired.

Now the fields, potentials, Green’s functions, etc. be-
have as e-Yr/r for larqe r. The retarded quantities then fall
off as l/r. This suggests that far field quantities be de-
fined as

o

..= lim reYri(;,s)
r+m

Here r~f is independent of r and is written in
tion to point out that it is an r times field
product that is being calculated.

time

(443)

this combina-
(potential, et:c.)

The ret_arded and far field definitions have equivalent
domain forms as

3ret(at*) = i(b)

r~f(;,t*) = lim r3ret(’~,t*)
r+m

= lim r~(~,t) with t* constant

(4,,4)
. .

.

r+m

23
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The choice of coordinate origin ~ = 3 is arbitrary as
long as it is within a finite distance of the finite size ob-
ject of interest. However there are advantages to choosing
r = d to be at the “center!’of the object in some sense so as
to equalize as much as possible the transit times of radiated
or scattered waves out $0 a given r in all directions from the
object. In particular r = b should be chosen to lie on points,
lines, and planes of symmetry to the extent possible. This
will retain the object symmetry properties in the retarded and
far-field quantities, thereby simplifying their computation
and the understanding of their properties. This symmetry will
also carry over into the retarded and far-field natural modes.

Next we define retarded natural modes from the general
equation

where this also
field modes are

applies to scalar quantities etc.
defined through

(4.5)

The far

(4.6)

In this definition the retarded and far-field natural modes
are still dimensionless. A characteristic length la (dimen-
sion meters) is introduced for giving some flexibility in nor-
malizing the far-field modes. This length la might be chosen
as some dimension of the object independent of a. It could
also be chosen as l/Ya or l/(daya) where da would be another
dimensionless constant.

Having chosen the form for the far-field modes there are
various relations anmng them. Since the fields and potentials
fall off as e-Yr\r then the radiation condition relations in
section 11 can be used to find far field relations by multiply-
ing by eYr (the factor r being already included) . Equation
2.20 can then be written for the far field natural modes as

s

.
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* (Fq)
[qi + ~rx]vf =8

u

(4.7)

.- .-
. + -@) = -v-@)

erxv
fa fa

field natural modes areso that the electric and maqnetic
trans”verse in the far field-and form a~ orthogonal set of vec:-
tors including the radial unit vector er.

In spherical coordinates (r,e,@) we have the differential

. . .

v 2= J- ~(r2Xr)
r2- ar

??=;
-[

1
r r sin(6)

1 — -?-(sin(6)Xo)
+ r sin(~) ~e

.

x (4.8)1&(sin(0)Xo) - r sin(e)v

~or quantities with dependence at
x’ (6,$)e-Yr/r + 0(e-yr\r2) we can

large r of the form
write these differential OE)-

inclu”deonly theerators so as to
e-Yr/r, giving

.-.

resulting terms of order



.

Vx = -gryX + 0(e-yr/r2)

v ● i = -yXr i-0(e-yr/r2)

(4.9)

Vxz= :6YX0 - g$yxe -f-O(e ‘yr/r2)

= + X * + o(e-yr/r2)

The potential functions then have the far-field form of
the Lorentz gauge condition (from equation 2.25) as

[ 1limreyr -Y6 +~f = O
r+m qrcq

[ 1

limreyr -y~ +~; = O
r+cu rc

[

1limreyr -YX + ~t = 0
r+cn m c-

r

This has a natural mode

LIL J

form from equations 3.12 as

($q) (tq)
‘fa =av

a fa
r

(Q) (i)vfa = aavfa
r

(Om) (Im)
Vfa = aa~fa

r

(4.10)

(4.11)

The natural modes for the fields and potentials can be related
in the far field from equations 3,16 ~iving

.

v

._
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(Oq)
Vg + [-1 -

‘(3

(4.12:)
{% \

.!- ‘cl

and similarly

#

(4.13)

Thus the far field natural modes are simply related to the
transverse part of the far potential nat&~l modes.

Having defined the far.fields and far potentials by mul-
tiplying by reYr and letting r + ~ then we can write a general
equation fieldfor the delta function response in the far for
the case of first order poles as

= z -@(:r) (s@l,s)Yfvf
cl

L4

a

(4.14)

-L

.

electro-The Y coefficients for the
magnetic quantities in equati~n 3.19 and
ried over directly to far field and potential expansions as in
equations 4.14. The length coefficient La or the dimension-
less coefficient da enters directly. Note that an entire
function is included in equations 4.14. There are also other

of
be car-
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for~s for the expansion in equation 4.14 involving operators
on vfa which keep it as the far natural mode for s = Sa but
alter it for s + sa. Even with such changes the Yf coeffic-
ients will still be the same.

.

i?

.
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v. Free Space Green’s Function

In calculating the fields and potentials as integrals
over the currents one uses scalar and dyadic Green’s functions
appropriate to free space. These are introduced in various
books.13r14~15 Note that no boundary conditions or effects of
media are included, The radiation condition at infinity is
included, however. This section considers some of the charac-
teristics and representations of the free space Green’s func- ~~
tions .

For
function

It

In

[V2

lim
r+a

the scalar wave equation
which satisfies

we have the scalar Green’s

- ‘(2]6.(+,3’;s) = -6(:-3)

(5.1)

‘[k+‘w-=0
has the explicit representation

that

I 6(;-3) =
v.

e-c
m

v

v

terms of a spherical Bessel function

A differential equation for 60 in
obtained from

Go can be

(5.2)

(5.3)

written asl-

.

(5.4)

then be

.



(5.5)

where a prime is used to indicate differentiation with respect
to the argument of the Bessel function, L. In terms of the
complex frequency s we then have

.

[1
32
—- 1 6.(2,:’;s) = o
a#

A first order differential equation
plex frequency s can be obtained by

[ 1

~+ 1 5.(;,3’;s) = o\:::ll

[++ +O=”s)=0

= o

(5.6)

with respect to the com-
inspection as

(5.7)

(with ~ - :’ assumed constant) . Note that Go and its deriva-
tives with respect to ~ ar$ never zero in the finite s plane,
excluding s = O, for Ir - r’ I nonzero but finite.

For the vector wave equation we have the dyadi.cGreen’s
function for free space which satisfies

[Vxvx + y%o(:,h) =6(1-2’):
+

lim r[VX + y~rx]~o(;,;’;s) =$
r+cn

+

(5.8)

where ~ is the identity dyadic. It has a representation in
terms of the scalar Green’s function as

+

.
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+ Vv”1[Go(; ,;
Y

;s) =

= (5.9)1+Vv 5.(2,: ’;s)
Y

functionsBoth the scalar and dyadic free space Green’s are
symmetric in the form=

GO(:,3’;S) = 6.(: ’,:;s)

—

4-
Go(;,;’;s) = 6.(2,2;s)

(5.10)

3+
Go(;,;’;s)

where the superscript T indicates the dyadic or matrix trans--
pose.

In obtaining a more explicit form for the dyadic Green’s
function introduce a spherical coordinate SyStem R, 9R, ~R

a)

centered on r = r’ with

(5.11.)

The polar and -a-zimuthalangles eR and (#)Rare given from some
convenient choice of an axis through the origin R = O and a
convenient choice of the direction @R = O perpendicular to
this axis. Using the differential operators for spherical cc}-
ordinates from equations 4.8 we have

VGO(;,3;S) =

._=
+ 1 -2—- - yR-l]e-yR‘R 4T[ R (5.12)

.
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The gradient of the scalar Green’ s function itself is important
for some integrals as indicated elsewhere. There are alternate

forms in which this result is found such as

+

= vEo(Lm’s) x T

where

+ +
+

‘R
x?= -f x :*

(5.13)

(5.14)

By inspection a first order differential equation for V~o
and it; other forms

{[ 1c’:+— a
SR2 % +

as above is

/
1 VGO(2,;’;S) = 3

(5.15]

1[ 1~+la t.— + 1 VGO(LP;S)
\

=6
G 8C

where ~R and R (and thus ~ -
+
r’) are assumed constant. Simi-

larly a second order differential equation can be obtained as

(5.16)

“
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= -_ --

equa-Using ‘equation
is

5.5 (with R constant) another second order

o tion

~2
—- 2
.aG2

Ig V&o(;,:’is) =
1 (5.17)

Next we need13.

..-. —.—. . . .. . . .-. — A

(5.18)

V’(k.l(c):R) = [vkl(c)l:R + kl(W:R

these we findFrom

Vveo(:,:’; s)

=

the

(5.19)
—

This gives dyadic Green’s function as

+-++
Go(r,r’;s) =

,

.

. (5.20)

——



Considering the dyadic Green’s function as the sum of a
radial and a transverse part we have

(5.21)

For constant
with respect

R we can find first order differential equations
to the complex frequency (with R constant) as

(5.22)

These have rather complicated coefficients. Second order dif-
ferential equations (for constant R) can be derived from the
defining differential equations for spherical Bessel functions
as

o

For use in calculating the potentials and fields at large
distances we need the far Green’s functions. Considering
first the scalar Green’s function we define the far scalar
Green’s function following the procedures in section IV as

.,

.
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theFor.the gradient of the scalar Green’s function in far
field we have

r(V50(J,1’; s))
f

.
.!-

(5.25)
\

+ G

f) = r(V x to(i?,F’;s))
f f

*
r(V~o(Y,Z’;s) x

-..

.L

have

J-

For the far dy.adic._Gree_n’s_fl~n.ctj~n

,––..– .–

60 Gr,:’;s) =
G-

;s) = lim
r+-coJ_

q (Zr,;
- ‘f

(5.26

functionsNote that a.sdefined here the various far Green~s
are conveniently dimensionless.

As in the case of the fields and potentials in section I.V
the retarded forms of the free space Greenfs functions are ob-
tained by multiplying by eYr to give

60 (;,F’;s) 5 eyr50(J,2’;s)
ret

(V60(2,2’;s)) “:eyrV50(l,?’; s)
ret.

:
(v60(y,:’;s) X I) = (V X ~o(:,~’;s))

ret ret
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(5.27)
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The far fields are

—



o
VII. Field and Potential Natural Modes from Current

Natural Modes

Now we are in a position to express the field and poten-
tial natural modes as integrals over the current or charge -
density natural modes. Including the constants introduced in
the differential equations for the natural modes in section
III for normalization purposes the potential and field natural

. .

.—

modes are

/0)
0.

-. (Qm)
v
a

+.(;)
a

9

(P)
baY:<~oa+ >

(Qq)
baY:<~oa?va >

(7.1)

where
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V50 = Vdo(:, a;sa}
cl

—.

e
(7.2)

The fa~ potential and field natural modes are found by
multiplying both sides of equations 7.1 by (r/la)eyar and let-
ting r + ~. This gives

(@m)

‘fa

bay:

<La ~of ‘
a

(Pm)
v.>

.

0

0’-

.
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) (7.3)

o > L
u‘a ‘a

—

~ (Fq)
Vfa = <% ,J%)> --+a

++
eerr

+’

i]

-L

+ qier x ●

‘a

where

.L

_ .:

= go (:r,;’;sa)
f

.

(7.4)
:
9o

fu

To round.out the inteqral for the natural modes
for fields and potentials ~onsider some
for current and charqe densities. Surface current and chartie

common idealizations

densities can be defined through
.

i$(Ls) = its (1s,s)6(:s ● (:-;s))
c1

_s (;s,s) = oAS(Q “ i
-q

(7.5)

. .

where the subscript s refers to the coordinates of the surface
of int:rest or the surface electromagnetic quantities and

●

where ns is the unit vector normal to the surf-a-cc. Similarly
if the current is confined to a line path we have
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where the subscript R refers to the coordinates of the line of
interest or the line electrorrtag~eticquantities (current and
charge per unit length)$ where n~ is a convenient unit normal
to the line (path) and T! is the unit tangent vector of the
pa~h. ~The delta functions should be interpreted such that
&(r - r’) is one (or zero) when integrated over a volume
(three dimensions) while each of the delta functions in equa-
tions 7.5 and 7.6 has a scalar argument and as such integrate
to one (or zero) when integrated in the direction Jone+dimen-
~ion~ of the+vect~r which dot (scalar) multiplies r - r‘ , i.e. ,
nsr n~, and T~ x ni.

The natural modes for current and charge densities can be
similarly modified to include idealized surface and line cur-
rent and charge densities. I order to keep the modes dimen-

9sionless, factors of Ya and Ya are introduced as

(7.7)

(Q ) (QS )
q (;) = Va q (ZJY;%GS “v (i+)

a

and
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(i, );(iq)
a (2) , .

Y./

o

(7.8)

+(Q )
v~ q (2) = v

Cx
.

(it, ) (Q. )
) + VA, ‘q (;,, ) = o(ri

LL

Equations 7.5 through 7.8 are written in terms of the combined
current and charge densities but also apply separately to the
electric and magnetic current and charge densities as well due
to the way they related through equations 2.14 and 2.17.

In calculating the field and potential natural modes as
integrals over surface or line current density natural modes
the integrals reduce from volume to surface or line integrals
respectively, and factors of y~l and y&2 respectively are in-
cluded with the coefficients. For the case of surface current
and charge densities then the modes for the combined
tials and fie_ldshqve__the__representations

poten-

~ (Tq)
v
c1

(Qs )

baya<~ ,Va q >

‘a

(@q)
Va

~ (Fq)
vu
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(7.9)

For the case of line current and charge densities the combined
potentials and fields have the representations

($ )
(QL )

*q= ba<~o ,Va ‘>
a c1

(7.10)

These formulas can be split to give the electric and magnetic
quantities separately or one can simply multiply the right

side of equations 7.1 and 7.3 by Y;l and use surface modes and

integrals, or multiply the right side of the same equations by
yfi2and use line modes and integrals in place of the volume
modes and integrals. Note that with the constants aa, ba, ca~

—
—

81
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and la (or da) to be chosen at convenience one can still in-
clude any yu dependence in these coefficients as one wishes.

Including surface and line current densities with the
definitions in this section the results for the additional co-
efficients for the pole terms for the various electromagnetic
quantities as in table 1 can still be used. However the coef-
ficient (~)__used__inthe expansion of the current density as in

● equations 3.1 in defining the normalized response needs to be
generalized. Consider then the three forms

@ +
~p(?,s) = EOZVp (r,s) volume density

~ ~-l$~s)+
00

(r,s)
P

surface density

3
+@ .+

~ (?,s) = EOLZO Vp (rrs) line density
P

(7.11.)

where Z (perhaps equal to (8zo)-~) ha~ dimensions Sin-l, Z.
(impedance of free space) has dimensions S, and lZ~l has di-
mensions Sm. The characteristic length !4 (dimension m) may be
some specific size of the object (radius, overall lengthl
etc.).

One can then summarize the coefficient relations for the
various types of current densities and natural modes as in
table 2.

current ->,. v

Additional Additional.
coefficient for coefficient

Normalizing natural nmdes ~ for far
ceofficient (see table 1) natural modlss

—.

densities
-1

L (or (!ZZO) )‘q Y

surface current ;
densities z-’

o Y
‘f

= !/aY
‘q

line current
densities Y ‘f = ,!aY

Table 2. Coefficients for Use with Various ??orms
of Current Densities and Natural Modes
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VIII. Alternate Forms for Pole Terms for Fields and
Potentials

In the previous sections we have taken the pole terms in
the SEM expansion of the current density (equations 3.1) and
extended the result to include fields and potentials by re-
placing the current density natural modes by field and poten-
tial (and far field and far potential) natural modes with ap-
propriate additional coefficients. In this process the coup-
ling coefficients fiahave not been changed in form and various
previously developed forms for ha (such as in equations 3.6:
classes 1 and 2) can all be used in the formulas in this note.

In a form analogous to the class 2 (convolution) coupling
coefficients one can start with the expansion of the current
density normalized delta function response (equation 3.4).
Operate on this response term by term in the sum by the appro-
priate Green’s function which is left as a function of s (not
just su). The spatial nmde that results is the natural mode
for s = sa, but not in general for s # Sa. One could rewrite
equation 3.19 in the form

a

+ possible entire function (8.1)

The coefficient Y stays the same as in tables 1 and 2 but the
mode function changes. At s = sa we have the natural mode

(8.2)

The convoluted mode is found by using 60 instead of ~oa in the
natural mode formulas (as well as far natural mode formulas)
in section VII. There is the possible exception of the com-
bined charge and combined scalar potential modes since the
charge is derived from the current and one might use

(8.3]

instead of changing s to Sa in equations 3.11.

The class 2 or convoluted modes can then be defined for
the combined quantities as

46
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;(C )
vu q (:, s)

‘-=(Q )
<~ooaq (3>

(8.4)or

,.

;(3- )
vu q (;, s)

..

The corresponding far modes are

@ )
q (:r, s)

‘fa

(8.5)
‘cl

-(3 )
Tf q (:r,s)

cl

These combined modes can be readily split into the correspond-
ing electric and magnetic modes. The normalized delta func-
tion response for the far quantities
the first of equations 4.14 as

is written by modifying

(8.6)+ possible entire function

..
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Note that various other changes of Sa to s can be used to
change the form of the expansion for possible advantages in
various regimes of frequency and\or time.

Thus we can define class 1 and class 2 modes (and perhaps
other classes as well) . The class 1 modes are the natural
modes (or far natural modes) while the class 2 modes involve a
convolution in the time domain. This type of class division
corresponds directly to the classes of coupling coefficients.
One can combine the class of coupling coefficient with the
class of mode to give what one might term the expansion form
which might be expressed as

~ = (class of coupling coefficient, class of mode) (8.7)

This symbolic vector (or matrix, or whatever else it is ex-
panded to for flexibility) can be used to label the form of
the singularity expansion used in a particular study. The
simplest expansion form is (1,1) for pole terms but this is
not necessarily the most useful for certain purposes, such as
convergence at early times or high frequencies.

&
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4D This note has considered the singularity expansion of po-
tentials and fields for the _case of first order pole terms.
These potentials and fields can be either scattered or radi-
ated from an antenna, but in both cases the object is assumed
t-obe of finite size. The potential and field natural modes
can be related to the current and charge density modes through
differential equations. Using the appropriate free space
Green’s functions evaluated at the natural frequencies the po-
tential and field natural modes can be expressed as integrals
over the current and charge density natural modes.

——.——=——.—=

The potential and field natural modes can be modified to
give retarded and far natural modes. The far natural modes
have various properties that are somewhat simpler than the
more general natural modes for all distances from the object
of interest.. The far natural modes for the fields give an-
tenna and scattering patterns applicable to both frequency and
time domains. Thus we seem to have at least one form of
answer to the question of what is a time domain antenna pat-
tern. Note, however, that the definitio~ of retarded and far
natural modes relies on a definition of r = ~ which might be
considered the center of-the o~jec .

f
For objects with suffi--

cient symmetry the choice for r = is clear, but for more
general object shapes this choice is not so clear but needed

a)

nonetheless.

There is some flexibility in the choice of the form of
the singularity expansion for potentials--and fields. Not only
can one combine various types of frequency dependence with the
coupling coefficients, but also with the natural modes (and
retarded and far natural modes) as well. These various expan-
sion forms are associated with the presence or absence of a _.
separate entire function in the expansion. The various forms
have their own convergence properties for the series so that
different forms may be most appropriate for different portions
of the time and/or frequency domains.

‘?

There are many interesting and practical questions asso-
ciated with the singularity expansion of potentials and fields
that require further investigation. These include how to
handle second order poles, cc)nvergence rates of the series
under various conditions, relations to other types of modes,
and efficient numerical procedures. In any event various
proble_ms involving specific types of antennas or scatterers
can be solved. This will help give insight into some of these
more general theoretical questions while at the same time gen-
e-rating useful response data.
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Advice From a Caterpillar

The Caterpillar and Alice looked at each other for same
time in silence: at last the Caterpillar took the hookah out
of its mouth, and addressed her in a languid, sleepy voice.

“Who are gou?” said the Caterpillar.

This was not an encouraging opening for a conversation.
Alice replied, rather shyly, “I-I hardly know, sir, just at
present— at least I know who I #as when I got up this morning,
but I think I must have been changed several times since then.”

“what do you mean by that?” said the Caterpillar sternly.
“Explain yourself!”

“I can’t explain rnysez~, I’m afraid, sir,” said Alice,
“because I’m not myself, you see.”

(Lewis Carroll,
Alice in Wonderland)
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