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Abstract

The reflection of a plane wave incident on a two-dimensional array of

infinitely long dielectric posts is investigated. The array is infinite in

the direction perpendicular to the propagation vector of the incident wave.

This array is considered to be a model-of the wooden support structure of the

ATLAS simulators. In accordance with this intended application, the maximum

post diameter is assumed to be small with respect to both the wavelength of

the incident wave and the minimum distance between posts.

The impedance per unit length of a single post is first defined and

calculated. Next, the sheet impedance of a single infinite row of identical

posts is defined, and determined in terms of the impedance per unit length of

the individual posts. The reflection from several rows of posts is then

examined. An explicit formula for the reflection coefficient is obtained foz

the case where each row of the array is modelled as an impedance sheet. The

limit where the impedance sheet concept breaks down is pointed out, and a

“method for extending the simpler results to this more general case is indic~ted,
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wave incident on a two-dimensional array of

infinitely long dielectric posts is investigated. The array is infinite in

the direction perpendicular to the propagation vector of the incident wav(z.

This array is considered to be a model of–the wooden support structure of the

ATLAS simulators. In accordance with this intended application, the maximum

post diameter is assumed to be small with respect to both the wavelength of

the incident wave and the minimum distance between posts.

The impedance per unit length of a single post is first defined and

calculated. Next, the sheet impedance of a single infinite row of identical

posts is defined, and determined in terms of the impedance per unit length of

the individual posts. The reflection from several rows of posts is then

examined. An explicit formula for the reflection coefficient is obtained for

the case where each row of the array is modelled as an impedance sheet. The

limit where the impedance sheet concept breaks down is pointed out, and a

method for extending the simpler results to this more general case is ind!Lcated.
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1. Introduction 1

It appears that the best way to determine the effect of the nuclear

electromagnetic pulse on a large aircraft full of electronic equipment is to

stick the large aircraft into a large simulator. The large simulators that

have been proposed for this job have been designated ATLAS I and ATLAS 11 :Ln

previous notes in this series (see references [1] through [4] and also Section

IV of reference [51). These simulators are-essentially parallel-plate trans-

mission lines with appropriate source and termination regions. The electric

field of ATLAS I will be horizontal; the electric f-ieldof ATLAS 11 will be

vertical. The aircraft will be run out onto a platform supported between the

two plates. Figure 1 is a sketch of a possible design for ATLAS 11. This

picture has been taken from ref-erence [51.

A quick look at Figure 1 will reveal that, in addition to the aircraft,

there is quite a bit of its support structure between the simulator plates.

It would be nice if the aircraft would just float in the air between the plates,

since that is the situation it is desirable to simulate. This being impossible,

the next best thing will be done. The support structure will be a trestle, i.e.,

a sparse array of wooden beams, The average relative permittivity within the

trestle will be close to unity. Thus the support structure will reflect
.-

very little energy in the low frequency limit. Nevertheless, there exists the

possibility of enhanced reflections at higher frequencies, in particular at

those frequencies where the length of the incident wave is the same as one of

the characteristic lengths within the array of wood. At those frequencies, one

might expect some sort of stop-band effect within the trestle, and thus a large

amount of reflection of an incident wave. The purpose of this note is to

examine this possibility and to present some basic

importance of trestle reflection effects.

The effect of the trestle in Figure 1 can be

model shown in Figure 2. Figure 2 depicts several

data for estimating the

estimated by studying the

rows of infinitely long

dielectric cylinders. The rows themselves are also infinitely long. The

cross-sections of the cylinders may be of arbitrary shape, but all cross-

sections are identical. A time-harmonic plane wave is incident normally on

the first row of cylinders, The incident wave is plane polarized and its

electric vector is parallel to the generators of the cylinders.

3
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Figure I. A possible design for ATLAS 11.
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This model may be looked upon as a “worst case” model for two reasons.

The first reason is that the reflected field just in front of an array of

finite width and height (which would more accurately represent the real trestle)

would seem clearly , on physical grounds, to be no greater than the reflected

field of an array of infinite width and height. The second reason is that the

wave reflected from an infinite array when the incident electric field is

perpendicular to the generators of the dielectric cylinders will have a smaller

amplitude than the wave reflected in the parallel polarization case to be

studied in this note, Appendix A is a justification of this statement.

Incidentally, Appendix A contains a proof of some interesting bounds on the

diagonal elements of the polarizability tensor of a homogeneous dielectric

body . Appendix A also contains a statement of two integral equations that

can be used for the numerical computation of the elements of the polarizability

tensor. One of these integral equations is not very well known.

For the two reasons mentioned in the preceding paragraph, the numerical

values of the amplitude of the wave reflected from N infinite rows of infinite

cylinders, which we will calculate in this note , can be looked upon as bounds

on the magnitude of the actual reflected field just in front of a real trestle

with N rows of posts.

In the rest of this note, the words “cylinder” and “post” will be used

interchangeably in referring to the infinitely long dielectric cylinders of

the idealized model.

There are two basic assumptions we will make in order to simplify the

problem of calculating the wave reflected from the model array. These assumptions

are quite compatible with the real situation that the model problem represents.

The assumptions are:

(1) The maximum diameter of any post is small compared to the wavelength

of the incident wave.

(2) The maximum diametexof any post is small compared to the minimum

distance between posts.

The reasons for working under these assumptions will become clear as the work

proceeds. In addition to these two basic assumptions, we will often make one,



or more, of three secondary assumptions in order to obtain simple explicit

expressions for the quantities we wish to calculate. These secondary assumptions

are:

(3)

(4)

(5)

If k is the free-space propagation constant corresponding to the

frequency of the incident wave, kd is the propagation constant within

the dielectric of the posts, and A is the cross-sectional area ctfa

post, then (k: - k2)A << 1,

The distance between the rows of the array is not less than the

distance between the individual posts in a row.

The distance between rows of posts and the distance between the

individual posts in a single row are both less than the wavelen:;th

of the incident wave.

These three secondary assumptions are also compatible with the real situation

in most cases of--interest.

In this note we will talk a lot about the impedances of things -- of a

single post, of a row of posts, etc. The reason for this is that a lot of

people seem to have a certain amount of intuitive feeling for impedances, and

this often makes equations involving them a little easier to absorb than the

same equations written in terms of more fundamental physical parameters like

length, permittivity, and frequency.

In the next section, we will define, and give a recipe for calculating,

the impedance per unit length of a single post. We will give a simple

approximate expression for this quantity which is accurate when assumption (3)

is valid. Furthermore, we will calculate the precise error of the approximate

expression when it is applied to the special case of a circular post.

In Section 111, we will derive an expression for the equivalent sheet:

impedance of a single, uniformly spaced, row of posts in terms of–the impedance

per unit.-length of a single post in the row. This sheet impedance is defined

as the sheet impedance of a uniform sheet having the same reflection and trans-

mission coefficients as the actual row of posts. The connection of this sheet

impedance with the well known sheet impedance of a wire grating will also be

discussed.

“’t



In Section IV, we will calculate the reflection coefficient of N rows of

posts when each row of posts is looked upon as a uniform sheet having a sheet

impedance given by the expression derived in Section 111. Under this assumption,

we will be able to derive an explicit expression for the reflection coefficient.

This explicit result depends on the exact inversion of a certain matrix. This

inversion is performed in Appendix B. In Section IV, we will also derive an

equation for the propagation constant of a wave traveling in an infinite medium

made up of uniformly spaced impedance sheets. This propagation constant

manifests the expected stop-band characteristics as peaks in its imaginary part.

In Section V, we will study the accuracy of the solution in Section IV by

examining a more general formulation of the reflection coefficient problem,

including the effects of non-TEM interactions between rows of posts. It turns

out that this formulation gives rise to equations that reduce quite accurately

to those solved in Section IV if assumption (4), concerning the relative

distance between rows of posts and posts in a single row, is valid. Also, in

this section we will give accurate numerical values of the propagation constant

of a wave traveling in an infinite array of posts. In fact, the agreement

between this propagation constant and the one calculated in Section IV will be

used as a measure of the accuracy of the rest of the work of Section IV.

In the last section, we will extract whatever conclusions we can from the

preceding analytical work. We will also point out some directions in which an

extension of the analysis would seem to be fairly straightforward and useful.



11. Impedance Per Unit Length of a Single Dielectric Post

Let us consider the problem of calculating the wave scattered by a single

dielectric post when an incident wave prop-agates in a direction perpendicular

to the post and is polarized with its electric field parallel to the post. This

essentially two-dimensional problem is shown schematically in Figure 3.

Conceptually, the easiest way to treat this problem is to note that the

z component–of the electric field satisfies the two-dimensional Helmholtz

equation

where

outside the post

k: = k; = U2Uoc(&) within the post

and p is the two-dimensional position vector.—

We can rewrite equation (2.1) as

V2Ez(~) + k2Ez(~) = -(k: - k2)Ez(~)

(2.1)

(2.2)

where the right hand side is nonzero only within the post. If we consider the

right hand side of equation (2.2) as known, we can call upon the two-dimensional

Green’s function for the Helmholtz equation (reference [6], p. 811) and write

(2.3)

This equation is really an integral equation for the determination of Ez(&)

within the post. Its numerical solution has been discussed by Richmond [7].
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The integral in

than the maximum lp_’1

~kz m

E:(Q) =~ ~
m=-~

-.

equation (2.3) is the scattered field. If. 1~1 is greater

within the post, this scattered field may be rewritten as

H~l)(kp)eim$
J

Jm(kpl)e ‘im$’[er(p!) - l]Ez(p’)dS (2.4)—
A

.

where

We

of

as

now recall our

integration of

first basic assumption, which implies that, within the range

equation (2.4),

long as the origin of the

kp’ << 1

two-dimensional coordinate system is chosen some-

where

small

it is

near the center of gravity of the cross section of the post. From t:he

argument asymptotic forms of the Bessel functions, it is then clear that

only necessary to keep the m = O term in the sum, and thus

—

J
2 J#)(kp) *[Cr(Q) - _E:(L) + o l]Ez(p ’)Jo(kp’)dS’. (2.5)

But the electric field due to a line current, I, flowing along the z-axis is

given by

“JO1 H(l)
EZ(P) = -~ o (kp), (2.6)

.—

thus the scattered field given by equation (2.5) can be thought of as beir~g

due to an equivalent line current of strength

I =
eq I

-iw [c (~) - co]Ez(~’ )Jo(kp’)dS’ .
A

11



Now, according to our first basic assumption, the incident field will not

vary much over the postts cross section, and so

(2.7)

On the other hand, if cr(~) is large, Ez(~’) could vary quite a bit over the
inc

range of integration, but it will be linearly proportional to E. . Thus the

ratio

(2.8)

will be independent of the amplitude of the incident field (and, according to

equation (2.7), also independent of its precise spatial variation). The

reciprocal of equation (2.8) has the dimensions of

this impedance is the impedance to the flow of the

scattered field. We will denote this impedance by

the ratio given by equation (2.8) itself) as Y ,
P

impedance per unit length;

current generating the

2P and its reciprocal (i.e.,

In the rest of this note, we will make a great deal of use of a special

case of equation (2.8). This special case is the one where assumption (3) of

Section I is valid, i.e.,

(k; - k2)A << 1.

Under this assumption, it easily follows from equation (2.3) that

.

E&) = E;C(P) = E:c—

within the post, and thus (since JO(kp) s 1)

z-’ = Yp = -iwso
P J

Abr(E) - l]ds’ . (2.9)

o

12



If, furthermore, the post can be considered to be homogeneous (this will b,~the

case for the real wooden beams we are concerned with), the above formula simplifies

to

Z-l ‘Y = -iuA(c - co),
P P

(2.10)

and, according to equation (2.6), the scattered field is given by

up

‘:(Q)= ‘+ Einc~‘l)(kp)poo

= ~ (sr - l)E~nc H~l)(kp) (2.11)

Before proceeding further, let us interpret equation (2.10) physically.

It’s not hard. Equation (2.10) is just the difference between the capacit:Lve

admittance between two cross sections of the post a unit distance apart and the

capacitive admittance between the same cross sections with the dielectric post

absent (“fringing” fields are not present in the problem we are considering).

It is the current through this extra admittance that gives rise to scattered fields.

Equation (2.11) holds as long as p is much greater than the maximum

diameter of the post’s cross section (p does not have to be large compared to A).

This equation corresponds to a scattering width given by

This result has been derived by Van Bladel [8], [9].

For the case where the cylinder is circular, equation (2.11) gives

E:(P)
— = ~ (ka)2(sr - l)H~l)(kp)
inc

E.

This approximation to the–field scattered from a homogeneous circular cylinder

13



has been called the “dielectric needle” limit by Van de Hulst [1o]. Its accuracy

has been discussed by Kerker , et al ~11], who have drawn equal error contours in

the ka - ~phme for kp large and various values of $. We prefer here to make

use of the analytic solution to the circular cylinder problem to exhibit the

error in the simple expression (2.10) as an approximation to the exact expression

(2.8). Hopefully, the error in expression (2.10) for other cross-sectional shapes

will be in the same ball park as the one we calculate if we use something like

k(A/?_r)%as the appropriate value for ka.

From equation (2.8) and the analytical solution of the circular cylinder

problem (see, for example, reference [12], 58.6), we can write

J

a
Y= -iw(c - Co)2TiCo Jo(kp)Jo(kdp)pdp
P o

where

co = (2i/n)[kdaJl(kda)H~l)(ka) -kaJo(kda)H~l) {ka)l-l.

carrying out the integration (the integral is a special case of one given in

reference [13], p. 484), and simplifying, Y can be written as
P

4i

{

nJo(x)J1(nx)-Jo(mdJ1(x)
Y= -iw(e - SO)A
P ‘l)(X)-JO(TIX)H1 1nx2(t12-1) TIJ1(TIX)J30 ‘1) (x)

(2.12)

where

X:ka

and

.

From (2.10) and (2.12), it is easy to arrive at the following expression for

R(x,~), the relative error of formula (2.10)

r

14
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lTx2(112-1)

I 1-

Jo(~x)Yl (x)- Yo(x)J1(vx) - ~
R(x,rI)=

i~x2(n2-1)

4
(2.13)

Jo(nx)Jl (x)- JO(X)JI(VX) 4

The magnitude of–this relative error is given, as a percentage, in Table 1 and

Figure 4. From this

in (er about 4 or 5)

ka is less than .1.

specific numbers, we

data we can see that for the wooden posts we are interested

there will not be much error in equation (2.10) as long as

For the rest of this note, whenever it comes to calculating

will therefore use the approximate expression (2.10).

Nevertheless, for the sake of completeness, we will give a brief outline

of how one could calculate Zp (or yp) if assumption (3) (equivalent to equ?~tion

(2.10) for homogeneous posts), were invalid. There are, in fact, several

alternatives. If the post is inhomogeneous, the best way would probably be to

solve equation (2.3) in some manner such as that used by Richmond [7], and then

to use the solution to evaluate equation (2,8) numerically, (Note that under

the first basic assumption it is not--really necessary to keep the Bessel function

in the integrand of equation (2.8); we can set it equal to 1).

If the post is homogeneous, the above method is not necessary and it would

be quite wasteful of computer time. What one really should do for homogeneous

posts is to look for an appropriate line integral equation over the boundary of

the post’s cross section, or some other numerical method that makes maximum use

of the homogeneity of the post (one such other method, due to D. R. Wilton [14],

is quite new). If one prefers the line integral equation method, he must be

satisfied with a pair of coupled equations for Ez(s) and (8/3n)Ez(s), where n—

is the outward normal shown in Figure 3. Based on a two-dimensional Maue

representation for (3/2M)Ez(s) [15], one way of writing this pair of coupled

equations would be

Ez(s) = E:nc(s) -
J

[Gi(Q,Q’) - G“(~,~’)]n,Ez(s’)
c

- [Gi(L,Lf) - GO(Q,L’)]Ezn,(S’) ds’ (2.14)

and
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Table 1. Magnitude of the relative error of equation (2.10)

1

.01

.02

.04

.06

.09

.12

.16

.20

.25

for the case of circular posts (in percent).

2 3 4 5 6 7 8 9

.02 .05 .08 .10 .13 .15 .18

.08 .17 .26 .36 .45 .54 .63

.17 .36 .54 .73 .92 1.11 1,30

.28 ,5’3 .90 1.22 1.53 1.84 2.16

.41 .87 1.34 1,80 2.26 2.73 3.19

.56 1.20 1.84 2.47 3.11 3.75 &.39—

.73 1.56 2.40 3.23 4.07 4.90 5.74

.92 1.99 3.02 4.07 5.13 6.18 7.23

L.12 2.41 3,70 4.99 6.28 7.57 8.86

1.34 2.88 4.44 5.98 7.53 9.08 10.6.2

,21

.72

1.48

2.47

3.65

5.03

6.57

8,28

10.15

12.17

.23

.81

1.67

2.78

4.12

5.67

7.41

9.34

11.44

13.72

.
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Ezn(s) = E::(s) -
J{

[Gi(Q,Q’ ) - Go ~,P_’)]~Ez~ ,(s’)
c

- [Gi(L, P’) -
}

GO(P,P’)]nEzn, (S’) d~’. .—

J
- [k2Gi(p,p’) -

~d––
k2G0(~,~~) ](n*n’)Ez(s’)ds’——

where

“ (l)(kl~-Qil)GO(~,&’) = ; ‘o

“ ‘l)(kdl~-p_’l)G=(~,~’) = ; ‘o

(2.15)
.

and where the subscripts n and s denote partial derivatives in the normal and

tangential directions (see Figure 3). When equations (2.14) and (2.15) have.-

been solved numerically, the surface integral representation for Yp, equivalent

to equation (2.8),

iwc
o

Y=–—
P 1{ }

Ez(s)[Jo(kp)]n - Jo(kp)Ezn(s) ds
inc

E. C

may be used. For small posts (i.e., under assumption (l)), equation (2.16)

reduces to

2
iu&ok

Ij
Yp = -— -

J/
(~2)nEz(s)ds -~ ~zn(s)ds .

E
inc c k2
o

%’

(2.16)

(2.17)

.
If, furthermore, Er is not too large, we may replace EZ(S) by E~nc in the first

integral of equation (2.17) (reducing that integral to AE~nc), and replace the

second integral by

- ‘4B

-.

.



A

J
= V2Ez(p_)dS

A

= -k:
J

Ez(@dS
A

~ _k2AEinc
do

These substitutions thus reduce equation (2.17) back to equation (2.10).

In concluding this discussion of line integral equations, it might be well

to point out that equations (2.14) and (2.15) are equivalent to the two–

dimensional form of=Mtiller’s integral equations [16], [17], and that there are

an inf-inite number of other equivalent- pairs of equations, (see the elegant

discussion by Mitzner [18]).
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111. Sheet Impedance of an Infinite Row of Identical Posts

Let us now turn to the calculation of the equivalent sheet impedance of

a single row of identical posts. In order to do this we must first state

exactly what we mean by “sheet impedance” and what we mean by “equivalent.~’

The sheet impedance of an infinitesimally thin impedance sheet is equal

to the ratio of the tangential electric field at the surface of the sheet to

the jump in magnetic field through the sheet. This definition assumes the

continuity of the tangential electric field through the sheet and implies a

sheet current flowing in the sheet. The sheet impedance concept has useful

applications in modelling the electromagnetic properties of several real objects

such as low-frequency shields [19] and the terminations of transmission-line

simulators [20], [213.

The equivalent sheet impedance of OUE row of posts is the sheet impedance

of the uniform impedance sheet that will give rise to the same electric field

reflection coefficient for a normally incident plane wave as our !tdiscrete

sheetTTof dielectric posts gives rise to. This equality of reflection coeffi-

cients is used in our definiton of “equivalent” because it leads, when we model

several rows of post-sby several sheets in Section IV, to the exact results if

the row spacing is much larger than the interpost spacing.

For comparison purposes, therefore, we must first know the reflection

coefficient of a uniform impedance sheet having sheet admittance Y . We assume
s

the impedance sheet to be in the y-z plane and the incident electric field to be

of the form

E
inc inc ikx

=eE e.— --20

By the definition of Ys and R, the sheet current, EP is given by

Kz = (1 + R)E~nc Y
s

(3.1)

-7

r

while the electric field generated by this current is easily shown to be

20



I

.

KZZO
E: =-—

~iklxl
2

(3.2)

where Z = (Po/Eo)% is the impedance of.free space.o
Now for negative x we have

KZ
ref

Es= E=-~e
-ikx “ -ikx

= RE~nc e .
z z

(3.3)

Therefore, substituting equation (3.1) into equation (3.3) we get

(l+R)Y~Zo

2
=R

Thus, if ys E Y~lYo z Y z
so

, we can see that

2R
Ys=-— l+R

or
Ys

R=-—
2+ys

(3.4)

Now let us calculate the actual reflection coefficient of the row of

posts in Figure 5, and equate it to the R of equation (3.4) in order to

determine the row’s equivalent sheet impedance. In order to do this we will

invoke the two basic assumptions of Section I.

The equivalent current in the post at position (O,md) will be

I = YpEz(O,md),
eq

13.5)

while the field scattered by the post at position (O,md) will be, from equation

(2.6),

E~(x,y) = - ~H(l)(k~x2 + (y
o

- md)2) (3.6)
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But

Ez(O,nd) = E1nc (O,nd) +~’ E~(O,nd)
rn..m

(3.7)

where the prime on the summation means that the n = m term is omitted. Frc}m

equations (3.6) and (3.7) we can write

‘p 1 ~ H(l)(mkd)
Ez(O,nd) = E1nc(O,nd) - ~

m=l 0

or, defining

S1= ~ H(l)(mkd),
m=l 0

and using equation (3,5), we have

If-we define an equivalent sheet current, K through
eq’

K = I /d,
eq - eq

equation (3.10) can be rewritten as

i.e.,

,[

kdKe Z.
K

[
= (Yp/d) E~nc - ; S1 ,

eq

(3.8)

(3.9)

.0.10)

(3.11)

(3.12)

(Y /’d)E~nc
K= (3,13)
eq

l+(Yp/d)Zo(kdSl/2) “

Identifying the sheet current of equation (3.3) with the K of equation
eq

(3.13), we can already write
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(Y.Zo/d)
R.. ~

2+YPZ0 (kdSl)/d
(3.14)

A justification of the identification of K
eq

with the K of equation (3.3)

can be arrived at by noting that, from equations (3.6) and (3.7), the reflected

field is
.-

~ref = ‘Uoleq ~ ~(1)(k~x2+ (Y
- md)2). (3.15)

.

4 0
all m

This series may be transformed by using the Poisson summation formula to

obtain [22]

ZI eiklxl WPI 2nimY/d e-2m~m2-(kd/2n)2 lx~/d
ref

E = - 0 ‘~d
o eq

+2 :’ (3.16)
m= 1

~m2-(kd/2~)2

The entire sum in equation (3.16) is rapidly decaying as lx~ increases (in fact,

when we approximate several rows of posts by several uniform sheets in Section

IV, what the approximation really amounts to is neglecting the contribution of

this sum of evanescent modes to the fields at other rows of posts) and so we e

can identify the reflected field with the first term on the right hand side of

equation (3.16). Thus

ZI KZ
inc

REO =-~=-~, (3.17)

and this justifies our previous identification of K with the K of equation
eq

(3.3) in arriving at equation (3.14).

Now , to get the equivalent sheet impedance of our row of posts, let us

identify the reflection coefficients of equations (3,4) and (3.14). This

identification is in accordance with our definition of equivalent sheet
Y

impedance. Let us also use the notation
.

Y = (YpZo/d).
P

Thus we have

24



Y~ Y
—.
2+y 2+yp (kdSl)

s
(3.18)

and this gives

,’

.

2y

Ys = 2+yp(kdS1-1)

or, denoting y
-1

by z
-1

and ys by Zs,
P P

kdS#
z = Zp +
s 2

(3.19)

(3.20)

In equation (3.20), ZP is the sheet impedance of that uniform sheet t:hat

would be the result of–spreading the dielectric material of the posts into a

uniform sheet. (This identification presupposes the applicability of secor~dary

assumption (3) of the introduction). Thus the second term on the right harld

side of equation (3.20) is the “discreteness contribution” to the equivalent
.

sheet impedance of a row of posts. This term is a function of kd only. Sums

such as S~ (and that of equation (3.15)) have been discussed frequently in the

literature on scattering by gratings and grids (references [22] through [39]

area smpling of this literature; in grating applications, the discreteness

contribution to z is relatively more important than in our dielectric post
s

case,because the Zn of-wire gratings can be quite small). By referring to
r

reference [23] we can rewrite the discreteness contribution to z
s

kdS1-l
F(kd)~ z =-~

{

-* y+ln(~)+ ~

[

1

n=l ~n2-(kd/2~)2

which is valid for kd < 2Tr (i.e., d < A, secondary assumption (5)

in the form

1_—

1/

(3.21)
n

of Section I).

Table 2 is a table of Im F(kd) vs. d/A and vs. kd. A plot of.Im F(kd) vs.

d/A is given as figure 6. From this data, and equation (2.10) rewritten in the

form

id i

‘P = UA(&-Eo)Zo = ($,
kd(n2-1)

(3.22)
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Figure 6. Discreteness contribution to sheet impedance of a row of posts.
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Table 2a. Im F(kd) vs. d/A

—

d[l

.01.

.02

.03

.04

.05

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

Im F(kd)

-.04721

.08055

.10866

.13335

.15551

.17563

.19406

.21102

.22671

.24125

.25475

.26730

._27896

.28982

.29990

.30926

.31793

.32595

,33334

.34014

.34635

.35200

.35712”

.36170

.36577

d/A

.26

.27

.28

.29

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

.40

.41

.42

.43

.44

.45

.46

.47

.48

.49

.50

Im F(kd)

.36933

.37240

.37498

.37709

.37872

.37989

.38060

.38085

.38064

,37998

.37886

.37729

.37526

.37278

.36984

..36644

.36257

.35823

.35342

.34812

.34234

.33605

.32926

.32195

.31411

d/A

.51

.52

.53

.54

.55

.56

.57

.58

.59

.60

.61

.62

.63

.64

.65

.66

.67

.68

.69

.70

.71

.72

.73

.74

.75

27

Im F(kd)

.30572

.29679

.28727

.27718

.26647

.25514

.24316

.23051

.21716

.20308

.18824

.17260

.15614

.13880

.12054

.10130

.08104

.05968

.03717

.01341

-.01168

-.03819

-.06624

-.09596

-.12749

d/A Im F(kci)

.76 -.16098

.77 -.19665

,78 -.23469

.79 -.27536

.80 -.31897

.81 -.36586

.82 -.41646

.83 -.47126

.84 -.53088

.85 -.59606

.86 -.66775

.87 -.74710

.88 -.83565

.89 -.93537

.90 -1.04891

.91 -1.17993

.92 -1.33363

.93 -1.51772

.94 -1.74421

.95 -2.03316

.96 -2.42120

.97 -2.98478

.98 -3.92173

.99 -6.01747

1.00 -~



Table 2b. Im F(kd) vs. kd

kd

.1

.2

.3

.4

.5

.6

.7

.8

.9

L,o

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

Im F(kd)

.06774

.11340

.15071

.18256

.21033

.23483

.25657

.27592

.29316

.30849

.32208

.33404

.34449

.35350

.36115

.36748

.37256

.37640

.37905

.38051

.38081

.37996

.37796

.37481

.37050

.36502

.35836

.35049

.34139

.33103

.31936

kd Im F(kd)

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5..2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.0

6.1

6.2

.30633

.29190

.27600

.25856

.23949

.21870

.19607

.17147

.14476

.11575

.08425

.05000

.01272

-.02793

-.07238

-.12112

-.17478

-.23413

-.30017

-.37414

-.45773

-.55315

-.66352

-.79324

-.94894

-1.14099

-1.38697

-1.71952

-2.20871

-3.04505

-5.08294

.

.

.
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i’

A

it is apparent that at low frequencies F(kd) is negligible compared to z and
P

that, if (r12- l)A/d2 is small, the region where F(kd) is negligible could well

include the entire region kd < .2v. In conjunction with the results in Appendix

A on the relative reflection coefficients of the two polarizat-ions of the

incident. field, this leads us to state that an approximate upper bound on the

reflection coefficient of a trestle array can be obtained by assuming all the

dielectric material to be concentrated in uniform sheets, spaced with a

pericdicity equal to the actual trestle periodicity in the direction of propagation

of–the incident wave.

—

—
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Iv. Reflection From Several Uniformly Spaced Impedance Sheets

This section consists of a calculation of the reflection coefficient of

several uniformly spaced impedance sheets. There are alternative approaches to

this calculation. We will follow the ones that seem, to us, to follow the

actual physics of the problem most closely.

The problem to be solved is shown schematically in figure 7, which indicates

the coordinate system and notation to be used.

First, we will solve the problem where N is infinite, i.e., we will

determine the reflection from an infinite half-space of impedance sheets. The

answer to this problem can be written down immediately, by using physical

arguments, once we define the reflection and transmission coefficients of a

single sheet as r and t and the intersheet phase factor, e
ikD

, as p. The total

reflection coefficient of the half-space is then

Ra = r + tpRmpt -ttpRmprpRmpt + tpRmprpRmprpRmpt + -1- (4.1)

where the first term, r, is due to the reflection from the first sheet. The

next term, tpRQpt, takes care of the wave that is transmitted through the first

sheet, is reflected at the second sheet (note that Rm is the same at the second

sheet as at the first sheet -- it still is the front sheet of an infinite

number of sheets), and then is transmitted back through the first sheet,

Subsequent terms account for the infinite number of multiple reflections that

can occur between the first sheet and the second sheet.

Equation (4.1) contains a series that can be summed in closed form to give

ptpR@pt
pR~ = pr + l.prpRm

which results in the following quadratic equation for pR
m

‘PRJ2 - P’::-<))’PR’J+‘ =0

d)
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Figure 7. Several uniformly spaced impedance sheets.
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But in Section 111 it was shown that the reflection coefficient of a single

sheet is given by

Y5
~.-—

2+ys
(4.3)

‘f

Thus
.

2
t = 2+ys

and

t2 _ r2 _ 2%
2+ys

Substituting these expressions in equation (4.2), we obtain

(pRo)2 +
( )
:(#-P)+(:+P)PRm+l= O,

or substituting for p its value in terms of kD (~27rD/A),we obtain

( )(pRm)2+ 2-~sinkD+coskD pRm+l=O
s

i.e., from equation (3.20)

(pRm)2 + 2([-2izp +i(kdSl -
.)

l)]sinkD + cos kD pRm-f- 1 = O

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

where z
P

is the normalized post impedance (~Zpd/Zo).

If we neglect the discreteness contribution to zs (the argument for doing

this is given at the end of Section III), and use equation (2.10) for the post

impedance (the argument for doing this is in Section 11), equation (4.8) becomes

.

.
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(o

where

(
(pRm)2+ 2:si;DkD

)
+-COS kD (pRm) + 1 = O (4.9)

A(cr-l)
as

dD
(4.10)

and A is the cross sectional area of a post. Note that a is the fractiona~

incre-a-s-e—inthe average dielectric constant of the sheet medium (over the

dielectric constant of free space), and so can be expected to be small in all

cases of-practical importance.

Now defining

it is not difficult to show, from equation (4.9), that

(4.11)

lRml = F - ~F2 -1 F>l_

(4.12)

= 1 Fsl

From equation (4.12) we have chosen to plot the present approximation to

the percentage of–the energy reflected from an infinite half space of impedance

sheets as a function of (2D/A) with u as a parameter. This information is given

in Table 3 and Figure 8.

Let us now turn to the determination of ~, the reflection coefficient

when only N impedance sheets are present. We expect. ~ to approach the reflection

coefficient we have calculated above as N approaches infinity, but we also

expect
.

~ to have quite a different

complete stop bands).

We will determine ~by f-irst

behavior when N is small (there will–be no

calculating the sheets currents flowing in
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Table 3. The percentage of energy reflected from an infinite
number of sheets according to equation (4.12).

(2D/X) a

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

First 2 stop bands

.01

.001

.001

.001

.001

.001

.001

.001

.001

.001

.002

.002

.002

.003

.005

.007

.012

.023

.057

.279

100.000

.229

.071

.037

.024

.019

.015

.014

.013

.013

.9901
1.0000 1

1.9802

2.0000 }

.02

.002

.003

.003

.003

.003

.003

.004

.004

.005

.006

.008

.010

.013

.019

.029

.049

.097

.252

1.421

100.000

.777

.257

.138

.093

.071

.060

.054

.052

.052

.9803
1.0000 t

1.9608
2.0000 1

.04

.010

.010

.010

.011

.012

.013

.015

.017

.020

.025

.031

.040

.055

.079

.123

.212

.436

1.258

11.695

100.000

2.320

,865

,491

.340

.,267

.228

.209

.203

.208

.9615
1.0000

1.9234
2.0000

.08

.037

.038

.040

.043

.946

.051

.058

.068

.081

.099

.125

.166

.230

.340

.547

1.005

2.319

9,437

100.000

Loo.000

5.941

2.591

1.587

1.155

.939

.828

.780

.777

.817

.9262
1.0000 }

1.8543
2.0000 }

.16

.139

.143

.150

.160

.175

.196

.224

.263

.318

.398

.517

.705

1.020

1.604

2.854

6.321

26.100

100.000

100.000

100.000

12.715

6.643

4.505

3.522

3.033

2.815

2.784

2.919

3.243

.8639
1,0000 1

1.7378

2.0000 }

.32

.485

.501

.529

.571

.631

.716

.835

1.004

1.253

1.631

2.239

3.297

5.372

10.403

31.807

100.000

100.000

100.000

100.000

100.000

22.902

14.334

10.951

9.408

8.815

8.892

9.622

11.215

14.293

.7660
1,0000

1.5739

2.0000

.

.
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Figure 8. llb12(in percent) vs. (2D/X) for various values of
a for an infinite number of sheets.
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each of the N sheets due to a normally incident plane wave and Chen computing

the sum of the fields generated by the N sheet currents.

We know from equation (3.3) (or equation (3.16), by neglecting the
th

evanescent modes) that the electric field due to the m sheet current (at

position x = (m - l)D) is given by

ZoKm
Em=-—

~iklx-(m-l)Dl
2

th
at the position of the n sheet this gives

ZK
o m eikD\n-m\

E;=-—
2

Therefore the total electric field at the n
th

sheet, i.e., the sum of

the incident field and the fields radiated by all the sheet currents, is

En = E~nc e
ikD(n-1)

- ~ ~ KmeikDln-ml n = I,N
m= 1

(4.13)

(4.14)

(4.15)

But we know that an alternative expression for En, from the definition of sheet

impedance, is just z~ZoKn, where z; is the n
th

normalized sheet impedance. Thus

we can write the following set of equations for the sheet currents, K
m

E
inc

Zie
ikDln-ml K .A

Z>n + ~
ikD(n-1)

Z. e Y n = l,N (4.16)
m

m= 1

-1
If all the sheet impedances are equal, i.e., z: = zs = ys , we can also write

YN ysE~nc
Kn+:

m!l e

ikDln-m\ K = z eikD(n-l)
m 9 n = l,N

o
(4.17)

.
Once equations(4,17) have been solved for the K , we can use equation

(4.13) to calculate the total field generated by all the sheet.currents and

thus determine the reflected field in the form

36



I

Z.
E
ref . _—

2
e-ib ~ Kme.i(m-l)kD:

m=1
(4.18)

From equations (4.17) and (4.18) it easily follows that if we define

normalized sheet currents by

x:
m

KmZo

E
inc
o

then

where

N
x +>~e

ikDln-ml
x = y~e

ikD(n-1)
n m 9 n = l,N

m= 1

(4.19)

(4.20)

(4.21)

Equations (4.20) and (4.21) constitute our formulation of t~-eN sheet reflection

coefficient problem. Before we solve these equations completely, however, let.

us consider the possibility of a homogeneous solution for x when N is infinite
n

and the sheets are uniformly distributed through all space. Such a soluticm

will lead to the propagation and decay constants of waves propagating in the

sheet medium, and, if the decay of such a wave is quite -small in a length

equivalent to the trestle of an ATLAS simulator, then even in “stop bands”

there will be very little reflection from the finite length trestle. Thus ,

we will have a compact rough estimate of the effect of a

the propagation and decay constants in an infinite sheet

calculate these constants, let us write equations (4.21)

the form

trestle by displaying

medium. In order to

for such a medium in

Y“
xn+-f-~ e

ikD In-m]
x

ikD(n-1)
m

= yse
m.-m

(4.22)

i.e.,
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Y
x +> f

~ikD (n-m) ~ ~ ~ikD@n) ~m=y~eikD(n-l)Xm++
n m..o m=n+l

and from this it follows that

(4.23)

Y
+~e

ikD
?

eikD(n-m) x + : e-ikD
~=!+l e

ikD(m-n) ~ = y eikDn
x

(4.24)
n+l m m s

m.-~

Y~
xn ~ + (iys sin kD)xn +7 e

-ikD ~ ,ikD(n-m)xm

~= 1

Ys .
+~e

,kD ~ eikD(m-n) xm=yseikD(n-2) (4.25)

m=n+ 1

Adding equations (4.24) and (4.25) and subtracting 2 cos kD times equation (4.23)

we obtain

iy

x - 2(COS kD -~sin kD)xn+ Xn_l = o>
n+l

(4.26)

and this homogeneous equation is satisfied by a solution of the form

inf3
x=e
n

where

*Y
cose=coskD-— 2s

sin kD.

(4.27)

Making the same approximations for ys as we have made previously in this section,

and using the definition of a in equation (4.10), equation (4.28) becomes

0=6r+i6 = COS-lCCOS kD-~kD sinkD]. (4.29)
i

9D

.

.

In table 4 and figures 9 and 10 we present.values of Or - kD and 6i calculated
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Table 4a. Phase change per section of an infinite sheet-medium.

2D/A

([
.05

.10
c

.15

.20

.25

.30

●35

.40

.45

.50

.55

.60

.65
—

.70

.75

.80

‘.85

.90

.95

1.00

2D/A
.,

.9900

.9905
%,

.9910

.9915

.9920

.9925

.9930

a = .01

Pass Bands

6r-kD

.00078

.00157

.00235

.00313

.00392

.00470

.00549

.00628

.00706

.00785

.00865

.00944

.01024

.01104

.01185

.01268

.01353

.01446

.01570

.00000

2D/A

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Stop Bands

ei 2D/A

.0000 .9935

.0062 .9940

● 0090 .9945

.0109 .9950

.0123 .9955

.0134 .9960

.0142 .9965

ei

.0148

.0153

.0155

.0156

.0156

.0153

.0149

6r-kD

.01571

.01684

.01776

.01861

.01945

.02027

,02109

.02191

.02274

.02356

.02439

,02524

.02609

.02697

.02788

.02885

.02994

.03136

.03437

2D/A
‘i

.9970 .0144

.9975 .0136

.9980 .0126

.9985 .0112

.9990 ● 0094

.9995 .0069

1.0000 .0000

2D/A

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

,70

.75

.80

.85

● 90

.95

1.00

2D/~

.980

.981

.982

.983

.984

.985

.986

39

a = .02

Pass Bands

6r-kD

.00156

.00313

.00469

.00626

.00782

,00939

.01097

.01254

.01412

.01571

.01730

,01891

.02053

.02217

.02385

.02559

.02745

.02963

.03337

.00000

2D/A

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

ei

.0000

.0107

.0170

.0211

.0241

.0264

.0281.

Stop Bands

2D/A

.987

.988

.989

.990

●991

.992

.993

ei

.0294

.0303

.0309

.0311

.0310

.0306

.0298

.994

.995

.996

.997

.998

.999

1.000

O1:-kD

.03013

.03290

.03494

.03678

.03854

.04026

.(14198

.(14369

.C14541

.C14714

.04890

.05071

.05256

.05451

.05661

.05898

.06192

.06655

.08319

ei

.0287

.0271

.0251

.0224

.0188

.0137

.0000

1



Table 4b. Phase change per section of an infinite sheet medium.

2D/A

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

2D/A

.960

.962

.964

.966

.968

.970

.972

a = .04

Pass Bands

EpcD

.00311

.00622

.00934

.01246

.01559

.01872

.02187

.02503

,02822

.03142

.03466

.03794

.04129

.04472

.04831

.05216

.05658

.06262

.07994

.00000

2D/1

1.05

1.10

1.15

1,20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

L.75

1.80

1.85

1.90

1.95

2.00

ei

.0000

.0128

.0299

.0393

.0459

.0509

.0548

Stop Band

2D/A ei

.974 .0576

.976 .0596

.978 .0609

.980 .0615

.982 .0615

.984 .0607

.986 .0593

.988

.990

.992

.994

.996

.998

1.000

Or-kD

.05608

.06304

.06780

.07190

.07574

.07947

.08316

.08685

.09058

.09439

.09831

.10241

,10678

.11156

.11707

,12398

.13432

.15874

ei

.0571

.0540

.0500

.0447

.0376

.0274

.0000

2D/A

.05

.10

.15

.20

.25

.30

.35

.40

.45

● 50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

2D/h

.925

.930

.935

.940

.945

40

a = .08

Pass Bands

0~-kD

.00616

.01233

.01851

.02471

.03094

,03720

.04351

.04988

.05633

.06287

.06955

.07642

.08356

.09110

.09934

.10890

.12161

.14666

.00000

2D/i

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Skop Band

ei 2D/A e
i

,0000 .950 .1128

,0531 .955 .1177

,0781 .960 .1202

,0940 .965 .1205

.1051 .970 .1185

0r-kD

.10035 4.

.11734

.12865 .

.13813

.14684

.15525

.16357

.17198

.18062

.18963

.19923

.20971

.22162

.23594

.25500

.28598

.38814

2D/A e
i

.975 .1142 .

.980 .1073

.985 .0971 _.

.990 .0826

.995 .0607

1.000 .0000

Q.



Table 4c. Phase change per section of an infinite sheet medium.

2D/A

r .05

,10

e
.15

.20

.25

.30

.35

.40

.45

.50

*55

.60

— .65

— .70

.75

.80

.85

2D/A

.860

.865

.870
<.

.875

.880
,.

.885

.890

.895

.900

.905

0.= .16

Pass Bands

t3r-kD 2D/A

.01210 1.05

.02423 1.10

.03641 1.15

.04866 1.20

.06101 1.25

.07350 1.30

.08618 1.35

.09910 1.40

.11234 1.45

.12600 1.50

,14024 1.55

.15533 1.60

,17170 1.65

.19017 1.70

.21261 1.75

.24438 1.80

.31611 1.85

Stop Bands

‘i
2D/A 0

i

.0000 .910 .2191

.0416 .915 .2242

.0958 .920 ,2279

.1267 .925 .2303

.1495 .930 .2315

.1675 .935 .2313

.1822 .940 .2300

.1944 .945 .2273

.2044 .950 .2233

.2126 .955 .2179

Or-kD

.17180

.21024

.23657

,25868

.27908

.29894

.31897

.33978

.36201

.38655

.41478

.44935

.49628

.57558

2D/A 8
i

;960 .2111

.965 .2025

.970 .1921

*975 .1794

.980 .1641

.985 ● 1451

.990 .1209

.995 .0872

1.000 .0000

2D/A

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.7.5

,80

.85

2D/A

.76

.77

.78

.79

.80

.81

.82

.83

.84

41

a = .32

Pass Bands

Or-kD

.02341

.04690

.07057

.09453

.11889

.14379

.16944

.19609

.22411

.25405

.28685

.32416

.36945

.43186

.55546

2D/A

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1,75

1,80

1.85

Stop Bands

ei 2D/A 8
i

.0000 .85 .4094

.1101 .86 .4186

.2018 .87 .4244

.2583 .88 .4271

.3001 .89 .4267

.3329 .90 .4231

.28204

.36166

.41984

.47070

.51946

.56915

.62245

.68270

.“75563

.8541O

1.02648

2D/A 0
i

.94 ,3742

.95 .3514

.96 .3229

.97 .2869

.98 .2401 .

.99 .1738

.3591 .91 .4163 1.00 .0000

.3801 .92 .4061

.3967 .93 ,3922
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Figure 9. Phase change per section of a wave in an infinite sheet medium.
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Figure 10. Decay constant per section in stop band of an infinite sheet medium.
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from equation (4.29). We

have taken kD through the

the real trestle, and NOi

have used the same values of a

first stop band. If there are

is small, for all kD in a stop

as for table 3 and

N rows of posts in

band, there will be

very little reflection even within the stop band. We note in passing that ic

is not difficult to show that for small values of a the maximum value of Oi in

the first stop band is about (aTr/2),and this agrees quite well with the numerical

data for a less than a tenth.

Turning now to the calculation of ~ from equations (4.20) and (4.21), it

is shown in Appendix B that the solution of the set of equations

xn-tc~e ikDkm/x =Y, ●

n = l,N (4.30)
m nm= 1

can be written in either of two equivalent forms. The first of these forms is

x= Y‘~~(y~+~ , m+ym-l)- 2 COS kDy
n m. 1

where, by definition,

.

.

(4.31)

(4.32)

(4.33)

N
and the matrix Gnm is given explicitly by

~N
. ~e-ikD

sin(N+l-m)6-sin(N-m)6][e-ikD sin n6-sin(n-1)0] n<m
m

sin @e‘ikD[2 sin N6-eikD sin(N-1)6-e-ikD sin(N+l)6]

(4.34)

= [e-ikD sin(N+l-n) O-sin(N-n)6][e-ikD si-nm6-sin(m–1)0]
n>m

sin Oe‘ikDC2 sin N8-eikD sin(N-1)6-e-ikD sin(N+l)6]
.

where

44
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—

i

cos e S cos kD - ic sin kDe (4.35)

The second form of the solution of equations (4.30) is

N
x =Yn- 2icsinkD ~ GNy.
n ~=1 nmm

(4.36)

For c equal to (ys/2) and yn equal to yseikD (n-1)9 as we have in equation

(4.21), equation (4.31) gives

x = 2iys
n

sin (kD)G~l, (4.37)

and 6 is given by equation (4,28),

From equations (4.37) and (4.34) we thus have, as the solution to equations

(4.21)

-ikD
x = 2iy

e
sin kD”

sin(N+l-n) O-sin(N-n) 0
n s

(4.38)
2 sin NO-e

ikD -ikD
sin(N-l)tl-e sin(N+l)6

Using this expression, one could calculate ~ from equation (4.20), but

is simpler to note that equation (4.21), written for n = 1, is just

‘1 -Ys~=Ys”

Thus

~ = -1 + +YS>

(4.39)

(4.40)

or, using equation (4.38),

~ = 2i sin kD.
e‘ikD sin Ne-sin(N-1)6

ikD
- 1. (4.41)

2 sin Nt3-e
-ikD

sin(N-1)0-e sin(N+l)6

45



Algebraic simplification reduces equation (4.41) to

(l-e2iN0)Rm
RN =

~_e2i(kD+N0) R2 ‘
m

where

-ikD -i6
Rm~_e ‘e

ikD -iO
e -e

(4.42)

.

.

(4.43)

is the reflection coefficient when N is infinite.

It can be shown that expression (4.43), with 6 given by equation (4.29) is

identical to the Rm given by the solution to quadratic equation (4.7). It can

also be shown that equation (4.42), for N = 1, reduces quite nicely to the

reflection coefficient of equation (4.3). These mathematical manipulations

will not be presented here, but those readers interested in that sort of thing

should have little difficulty in performing them.

Special simplifications occur in equation (4.42) if ys is assumed to be

pure imaginary. In particular if we approximate ys, as we have done before,

by (-ikDa), then @ is given by equation (4.29) and so is either purely real

(pass bands) or of the form nn + i6i (stop bands). Let us examine these cases

individually. In the case of a pass band we have

1%12= (1-~iN’r)(’-~2iNer)lRJ2
2iN8r 2ikD

(4.44)

l-e e lR~l

4 sin2 N@r\Rm12
=

2iN@ *2 -2iNi3
l+lRm14-R~ e2ikD e ‘-R. e-2ikD e

r
(4.45)

But from the alternative expression for R. implied by equation (4.9) it is clear

that in a pass band e
ikD

Rm is real. Thus we can write

4 sin2NerlRm12

l~lz = 2 2ikD Cos 2N6
l+lRm14-2Rm e

r

.

(4.46)
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Again, since e
ikD

R. is real, we can write e
2ikD 2

Rm = \Rm12 and so obtain

/

4 sin2N0rlRm12

1~12 =
l+\Rm\4-21Rm12 cos 2N6

r

4 sin2 NeclR@12
=

(1-\Rm\2)2i-41Ro\2 sin2 N8r

{

(1-lRm12)2

/

-1

= sin2 NOr + sin2 N6r

41RQ12
(4.47)

But, using expression (4.12) it is not hard to show that

(1-lR@12)2
F2-1

41R012 =
(4.48)

Thus from equations (4.47) and (4.48) we have, in a pass band of an N

sheet structure whose y is -ikDa,
s

sin2 NOr

lq2= 2
sin NOri-F2-l

(4.49)

where 6r is given by equation (4.29) and F is given by equation (4.11).

Similar considerations lead us to the conclusion that, in a stop band of

an N sheet structure whose y is -ikDa,
s

sinh2 NOi

lq2 =
sinh2 Nfli+l-F2

(4.50)

where again 8i is given by equation (4.29) and F is given by equation (4.11).

We have chosen to display the data on 1~12 in the form of linear plots

of l~\ against 2D/A with a and N as parameters. Figures 11, 12, 13, and 1.4

contain this information for N values of--l, 2, 4, and 8 respectively. From the

definition of a, the lower--avalues shown are in the range to be expected ofiany

trestle structure that fulfills its electromagnetic purpose. Some of the I~1

data is also given in tabular form in table 5.
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The following curves and tables are perhaps the most relevant numerical

information in this note for purposes of trestle analysis. In Section V we ‘o

will get an idea of how close these 1~1 values are to the values that would

be calculated if the discreteness of the sheets were kept in consideration and

if evanescent mode interactions were also retained. .

In closing this section we can note the form that some of the results

take for very small a values. It follows from equation (4.29) that if (2D/A) .

is not too close to unity we can write, for small a,

Or - kDs~ (2D/A),

while within the first stop band we have

(4.51)

(4.52)

where

6=1 - (2D/A). (4.53)

If equation (4.52) is substituted in equation (4,50), and N@i is small, we have

the approximate \~l for small a in the first stop band as

I%I-*.

The1~1in the first pass band would be less than that given by equation (4.54).

(4.54)
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Figure 12. 100IF$I vs. 2D/~ for N = 2 and various a.
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Figure 13. lool~] vs. 2D/A for N = 4 and various a.
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Table 5a. loo]~] vs. 2DIA for a = .01 and various N.

2D/A

.04

.08

.12

.16

.20

.24

.28

.32

.36

.40

.44

.48

.52

.56

.60

.64

.68

.72

.76

.80

,,
.84

.88
.,

.92

.96

1.00

N 1

.063

.126

.188

.251

.314

.377

.440

.503

.565

.628

.691

.754

.817

.880

.942

1.005

1.068

1.131

1.194

1.257

1.319

1.382

1.445

1.508

1.571

2

.125

.243

.350

.440

:507

.548

.558

.534

.476

.381

.250

.083

.116

.345

.599

.874

1.164

1.461

1,760

2.051

2.329

2.584

2.809

2.997

3.140

53

4

.241

.426

.509

.468

,307

.061

.219

.465

.615

.622

.467

.166

.229

.637

.956

1.087

.946

.482

.305

1.367

2.599

3.863

4.997

5.842

6.271

8

.423

,453

.056

.407

.502

.120

.404

.578

.203

.414

.698

.323

.441

.897

.522

.493

1.267

.912

.602

2.127

1.960

.919

5.845

10.540

12.468

16

.449

.394

.112

.506

.334

.235

.569

.262

.384

.644

.164

.584

.743

.014

.888

.885

.260

1.438

1.131

.898

2.805

1.786

3.689

13.441

24.375



Table 5b. lool~l vs. 2D/L for a = .02 and various N.

2D/A

.04

.08

.12

.16

.20

.24

.28

.32

.36

.40

.44

.48

.52

.56

.60

.64

.68

.72

.76

.80

.84

.88

.92

.96

1.00

.126

.251

.377

.503

.628

.754

.880

1.005

1.131

1.257

1.382

1.508

1.633

1.759

1.885

2.010

2.136

2.261

2.387

2.512

2.638

2.764

2.889

3.015

3.140

2

.249

.487

.700

.878

1.012

1.091

1.109

1.060

.940

.747

.480

.144

.258

.720

1.232

1.785

2.366

2.961

3.557

4.137

4.687

5.190

5.632

5.996

4

.483

.850

1.013

.927

.601

.104

.454

,941

1.231

1.230

.903

.287

.510

1.319

1,938

2.163

1.829

.843

.790

2.957

5.441

7.948

10.148

11.736

6.271 12.468

8

.844

.897

.097

.822

.990

.208

.832

1.141

.352

.876

1.383

.563

.970

1.792

.916

1.151

2.565

1.618

1.541

4.403

3.546

2.816

12.855

21.577

24.375

16

.890

.796

.193

.997

.706

.408

1.130

.606

.675

1.307

.477

1.045

1.563

.280

1.627

1.976

.084

2.722

2.781

.963

5.583

.5.275

4.988

31.403

44.991

.

.

.

.
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Table 5c. 1001~1 vs. 2D/A for a = .04 and various 1?.

2D/~

.04

.08

.12

.16

.20

.24

.28

.32

..36

.40

.44

.48

.52

.56

.60

.64

.68

.72

.76

.80

.84

.88

.92

.96

1.00

N 1

.251

.503

.754

1.005

1.257

1.508

1.759

2.010

2.261

2.512

2.764

3.015

3.266

3.516

3.767

4.018

4.269

4,519

4.770

5.020

5.271

5.521

5.771

6.021

6.271

2

.499

.972

1.398

1.752

2.014

2.167

2.195

2.086

1.833

1.433

.886

.197

.623

1.562

2.599

3.714

4.881

6.071

7.255

8.400

9.476

10.449

11.219

11.973

12.468

4

.964

1.695

2.009

1.818

1.149

.143

.973

1.926

2.462

2.400

1.681

.394

1.224

2.815

3.960

4.254

3.378

1.169

2.331

6.836

11.838

16.689

20.732

23.418

24.375

8

1.681

1.759

.132

1.678

1.924

.285

1.754

2.210

.484

1.932

2.688

.780

2.271

3.520

1.282

2.927

5.137

2.294

4*419

9.139

5.135

10.026

29.883

43.219

44.991

16

1.744

1.623

.264

1.927

1.548

.564

2.198

1.509

.950

2.611

1.504

1.507

.3.278

1.535

2.429

4.467

1.620

4.249

7.058

1,889

9.286

16.359 .

5.730

68.438

70.898
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Table 5d. 1001~1 vs. 2D/L for a = .08 and various N.

2D/L

● 04

.08

.12

.16

● 20

.24

.28

.32

.36

.40

.44

.48

.52

.56

.60

.64

.68

.72

.76

.80

.84

.88

.92

.96

1.00

N 1

.503

1.005

1.508

2.010

2,512

3.015

3.516

4.018

4.519

5.020

5.521

6.021

6.521

7.020

7.518

8.017

8.514

9.011

9.507

10.003

10.497

10.991

11.485

11.977

12.468

2

●997

1.942

2.786

3.483

3,989

4.269

4.291

4.033

3.480

2.625

1.471

,031

1,673

3.608

5.732

7.993

10.335

12.693

15.001

17.194

19.209

20.986

22.471

23.615

4

1.926

3.365

3.946

3*497

2,089

.029

2.190

4.003

4.895

4..531

2.838

.063

3.235

6.258

8.127

8.039

5.410

.002

7.925

17.435

27.103

35.469

41.512

44.732

24.375 44.911

8

3.336

3.379

.029

3.468

3.604

.059

3.809

4.063

.092

4.453

4.882

.125

5.629

6.361

.138

7.947

9.322

.005

13.590

16.943

1.950

39.210

6.5.805

74.752

70.898

16

3.350

3.351

.057

3.525

3*531

.118

3.911

3.940

.184

4.604

4.708

.250

5.825

6.150

.276

8.129

9.195

.009

13.287

17.884

3.889

29.990

82.466

95.829

89.537

.

.
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v. Reflection From Several Rows of Posts -- a More General Approach

In this section we will outline a more general and more accurate approach

to the calculation of the reflection from several rows of posts than the effective

sheet impedance method of- the previous section. We will still assume that:the

incident wave is normally incident on the rows, and this implies that the

equivalent currents are the same in all the posts of any given row. Thus$, if

th
the equivalent current in any post of the n row is In, if all post impedances

are Y and if–the transverse post spacing is d while the longitudinal post
P’

spacing is D, it is clear from equations (2.6) and the definition of Y that
P

{
In = Yp E~nc e

ikD(n-1) u!_I
~ ~ I ~’ H(l-)(k~j2d2 + (n - m)2D2)}-— (5.1)

m
m= 1 j=-m 0

where the prime on the inner summation means that the term

is omitted. Using previously develop-ed transformations of

sum ([22] or Section III), and defining

Z.In
xz—
n

dE
inc
0

Y
o–~

Ys = Yod ‘

we may rewrite equation (5.1) as

‘N ‘N

x +>~e
ikD\n-ml

x =y~e
ikD(n-1) ‘s

n m 1+ T m=lm= 1

where

where n = m and j = O

the Hankel function

P
n-mxm

PO=;
1[
n+2iy+ln(~)+~

(

1 1_—
n

‘=1 ~n2-(d/A)2 )11
e-nkD~(mL/d) ‘-l

P =2i~
n

m= 1
~(mA/d) 2-l

(5.2)

(5.3)

(5.4)
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When equations (5.2) have been solved for the Xn, the reflection coefficient,

~, can be found from equation (4.20).

The first thing to notice about equations (5.2) is that, when [(y~/2)Pn_m]

‘nIn-ml] equations (5.2) reduceis neglected in comparison with [bm + (y~/2)e ?

to equations (4.21) if the discreteness contribution to ys is neglected (and

this is what we did in computing the numerical results of Section IV).

The next thing to notice about equations (5.2) is that if one keeps the

P. term but neglects all other Pn terms (it is clear that if d/A is small P.

will really be much the largest of the Pn’s), and rearranges equations (5.2)

appropriately, the result is the set (4.21) with ys being now given by equation

(3.19).

The third thing to notice is that if very accurate solutions of the

multiple post problem were desired, a numerical solution to equations (5.2), as

they stand, could be effected. We believe the other approximations we have

made in going from the actual trestle reflection problem to equations (5.2)

justify our slightly further approximation to equations (4.21), which possess

an analytical solution. To test the accuracy of the step from equations (5.2)

to equations (4.21) we will use equations (5.2) to calculate the phase change

per row of posts in an infinite post medium. A comparison between this phase

change and that of table 4 (Section IV) will give an idea of the accuracy to

be expected from the other numerical results of Section IV.

To calculate the phase change per row of posts in an infinite medium we

assume that n and m

(5.2) and substitute

result is

may go from minus infinity to plus infinity in equation
in$

x . e , with the forcing term being set to zero. The
n

o

ein%+>y eikDln-ml eim6 . $_z ~ p eirn6 (5.5)
m=.cu m=-m n-m

or * relabling indices,

o

eine+~ y
eikDlpl ein8 eip6

= $ ~ I’peinO eip6
p.- p..cn

(5.6)

58



0

1+>~ e
ikDlpl ~ip6 _ ‘s m~“ ~ ~eiPe

p-m p.do p
(5.7)

Assuming k to be complex (with a positive imaginary part), temporarily, in

order to get convergent sums, and then letting the imaginary part of k approach

zero, we get

o 0
iy

1
s sin kD.—

2 COS kD-cos 8

\

-(2nD/d)/n2-(d/1)
2 I

+y ;
1* cos ‘a-e

(5.8)

‘=1 ~n2-(d/~)2 cosh (2~D/d)~n2-d/A)2 -Cos e
)

or, in terms of the parameters we have previously used, i.e., substituting

Y: = -i(kD)a (5.9)

IcDz’rrx (5.10)

d/2D : r (5.11)

we can write

-TrXcl
l-y-”

sin TX

~[
-inarx2~+ i y + In(?) + ~

(

1 1.
Cos ‘i’rX-cose )11-—

n
‘=1 dn2-(xr)2

2W
1,

-(n/r)/n2-(xr)2
rarx

+~ ~
cos O-e

-(5.12)
-.-

‘=1 /n2-(xr)2 cosh (m/r)~n2-(xr)2 -Cos e

For small r the right hand side of this equation approaches zero .anc[we

return to equation (4.28). But even for r not so small, the right hand side

doesn’t have too much effect on the 0 roots of the above equation, as we c:an

see by comparing table 6 (the solution of equation (5.12)) with table 4.
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Table 6a. Phase change per row of an infinite post medium.

2D/A

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

r=.1

8r-kD

.00078

.00157

.00235

.00313

.00391

.00469

.00544

.00628

.00703

.00778

.00862

.00934

.01016

.01090

.01163

,01248

.01322

.01416

.01547

eixd

.0001

.0008

.0026

.0062

.0121

.0209

.0330

.0492

.0700

.0960

.1278

.1659

.2109

.2637

.3248

.3955

.4776

.5760

.7159

c1= .01

r = .2

6r–kD 0iX104

.00078 .0002

.00157 .0015

.00235 .0052

.00313 .0123

.00391 .0241

.00469 .0415

.00544 .0657

.00627 .0980

.00700 .1393

.00775 ,1908

.00857 .2535

.00929 .3287

.01011 .4174

.01085 .5209

.01157 ,6408

.01240 .7790

.01313 .9391

.01406 1.1303

.01529 1.4014

r = .4

0~-kD

.00078

.00157

.00235

.00313

.00390

.00468

.00544

.00626

.00698

.00770

.00852

.00924

.01006

.01079

.01151

.01233

.01305

,01397

.01509

eixd

.0004

.0031

.0104

.0247

.0479

.0825

.1307

.1945

.2760

.3773

.5004

.6474

.8203

1.0215

1.2536

1.5201

1.8278

2.1938

2.7099
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Table 6b. Phase change per row of an infinite post medium.

2D/~

,05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

● 70

.75

,80

.85

.90

.95

●

r=.1

Or-kD

.00156

.00313

.00469

.00625

.00780

.00936

.01092

.01248

.01404

.01560

.01716

.01872

.02028

.02184

.02340

.02505

.02680

.02884

.03231

f3ixlo4

.0004

.0031

.0104

.0246

.0478

.0826

.1310

.1953

.2778

.3808

.5065

.6574

.8362

1.0460

1.2910

1.5776

1.9194

2.3573

3.1580

a = ,02

r = .2

0r-kD

.00156

.00313

,00469

.00625

.00779

.00934

.01088

.01241

.01394

.01546

.01699

.01850

.02002

.02154

.02309

.02467

.02634

.02829

.03158

eixlo4

.0008

.0061

.0207

.0489

.0953

.1643

.2601

.3871

.5495

.7514

.9970

1.2908

1.6373

2.0420

2.5124

3.0599

3.7093

4.5360

6.0319

r=.4

t3r-kD

.00156

.00312

.00468

.00622

.00776

.00929

.01081.

.01232

.01381

.01529

.01676

.01822

,01968

.02113

.02258

.2407

.02563

.02744

.03048

eixlo4

.0015

.0123

.0415

.0974

.1893

.3255

.5140

.7626

1.0787

1.4697

1.9427

2.5047

3.1634

3.9277

4.8094

5.8284

7.0273

8.5398

11.234
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Table 6c. Phase change per row of an infinite post medium.

2D/i

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

,60

.65

.70

.75

.80

.85

.90

.95

r= .1

er-ld) eixlo4

.00311 .0015

.00622 .0122

.00932 .0411

.01242 .0969

.01551 .1890

.01859 .3259

.02167 .5164

.02474 .7692

,02781 1.0931

.03087 1.4969

.03394 1.9900

.03701 2.5826

.04014 3.2870

.04326 4.1192

.04652 5.1036

.04997 6.2866

.05387 7.7810

.05915 10.005

.07357 17.831

a = .04 a

r= .2

6r-kD 0iX104

.00311 .0030

.00621 .0243

.00930 .0816

.01239 .1928

.01545 .3750

.01849 .6448

.02150 1.0183

.02452 1.5111

.02749 2.1385

.03046 2.9154

.03340 3.8571

.03634 4.9801

.03929 6.3037

.04229 7.8533

.04527 9.6692

.04846 11.829

.05204 14.524

.05684 18.469

.06955 31.484

r=.4

6r-kD 6iX104

.00311 .0061

.00620 .0487

.00928 .1624

.01233 .3822

.01535 .7401

.01832 1.2661

.02126 1.9885

.02415 2.9330

.02700 4.1232

.02980 5.5814

.03255 7.3288

.03527 9.3877

.03796 11.784

.04064 14.552

.04334 17.750

.04616 21.497

.04928 26.095

.05341 32.667

.06390 52.528

.

,

.
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VI. Concluding Remarks

The analysis presented in this note has been sufficient ‘coput some Eairly
-:

good bounds on the amount–of reflection that a trestle support structure will

cause. One simply assumes all the wood of the tre-stle to be in sheets, perpen-

dicular to the incident wave and having the same periodicity as thereal trestle

in the direction of propagation of the incident wave. A bound on the reflected

energy can then be found from the tables and curves of Section IV.

Should more accurate calculations be found necessary at some future time,

there are many ways in which the work of the present note could be extended.

Ten of-these, in approximate order of increasing dif-ficulty are as follows:

1. It would not be a very difficult matter to extend the work of ths

present note, which considered only normally incident waves, to the

case where the incident wave arrives at some arbitrary angle. The

generalized sum transformation formulas exist (in [22] for example).

The easiest generalization would be to the case where the incident

wave propagation vector is still perpendicular to the posts but not

perpendicular to the rows of–posts. However, the more general case

could also be handled.

2. It would be fairly easy to extend the work of Appendix A to the :?oint

where numerical values for reflection coefficients of–the other

polarization could be computed. This polarization is not as important

in reflecting waves, but the calculation would have some use if the

bounds discussed at the beginning of–this section should prove too

rough.

3. One could readily extend the frequency

tions presented here. We have limited

most part, to frequency values through

range, somewhat, of-the calcula-

te computations here, for the

the first stop band. A little

care should be taken in invoking the sum transformation formulas at

wavelengths close to the transverse post spacing. Otherwise no

difficulty should be encountered. The extension of the frequency range

-
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imagined here should not be such that there is more than the TEM

propagating mode within the post medium. Thus we can still restrict

ourselves, with good accuracy, to considering only TEM interactions

among sheets with a modified y~.

4. At frequencies higher than those that can be handled by extension 3,

one could still calculate reflection coefficients by numerically

solving equation (5.2). This would be necessary at frequencies high

enough that non-TEM propagating modes could exist (i.e., A < d).

5. For very thick posts, or at higher frequencies, it may be necessary

to take into account higher order terms in the series (2.4). This

would complicate the whole analysis somewhat, but it could still be

carried through in a.straightforward manner.

6. If it is necessary to take into account more than one post direction,

for example alternate rows of horizontal and vertical posts, the

analysis could be carried out by allowing for spatially varying

equivalent currents in the posts. The currents could be assumed to

be Fourier series in the variable along their length, the fundamental

period of the Fourier series being the distance along their length

between posts of the perpendicular rows.

7. If it is necessary to take into account the finite width of the actual

trestle post arrays, the simplification of equal equivalent currents

in each post becomes impossible. In this case the number of simul-

taneous equations to be solved in order to determine the pose equivalent

currents increases tremendously, but, if there are less than a hundred

posts altogether the problem could still be readily handled numerically.

8. If the finite length of the posts is also to be treated the problem

becomes just as complicated as that of calculating the reflection

from several dozen wires. There is no difficul~y in principle, but

.

.

s

.
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.

the necessary computer times could well be prohibitive.

9. The effect of the interconnections between the posts would be a

further complication of the finite length post problem.
-.

Techniques

exist for handling crossed wire problems. Presumably they could be

taken over and applied to the crossed “dielectric wire” problem.

10. For larger posts at higher frequencies it may be necessary to use one

of–the integral equation techniques mentioned in Section II to calculate

the modal coefficients for extension 5 above. The development of a

computer program to solve equations (2.14) and (2,15), for example,

would be a time consuming project.

.-

w
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The

In this appendix we will

Appendix A,

Other Polarization

give arguments for neglecting any incident wave

polarization other than the one considered in the main body of the note. We ‘

will do this by demonstrating that, over most of the frequency range we are

interested in (including the first stop-band frequency, where the inter-row

spacing is about a half wavelength), the reflection coefficient of a single row

of dielectric posts when the incident magnetic field is parallel to the posts

is less ehan half the reflection coefficient of the single row of posts when

the electric field is parallel to the posts. We will assume this to be sufficient

evidence for the statement that, for almost all interesting frequencies, the

reflection from several rows of posts will be a maximum when the incident

electric field is parallel to the posts. Thus a rough bound on the reflection

from a trestle can be obtained by assuming all the dielectric material to be

concentrated into posts or sheets parallel to the electric field of the incident

wave.

The proof, that an H-wave is reflected from a row of dielectric posts

less than half as much as an E-wave, is rather lengthy, but it can be broken

up into three shorter, logical parts.

First we will look at the H-wave scattering from a single dielectric

post in the frequency range where equation (2.10) is valid. The result will be

a field proportional to ~, the normalized transverse static electric polarizability

per unit length of the post. (i.e., the transverse

unit length induced in the post, ~, is related to g

where A is the cross-sectional area of the post and

field) .

electric dipole moment per

E
ext

is the external electric—

Next, we will show that ~, the reflection coefficient when an H-wave is

incident on a row of posts having a plane of symmetry perpendicular to the

incident wave vector, is proportional to ayy(kA/2d)(sr - l)EY, where Ey is the

electric field at any post due to the incident wave and the scattering from all

the other posts. This results in a relatively simple relationship between the

reflection coefficient and a , analogous to the representation of the reflection

coefficient of an E-wave by ~~e right hand side of equation (3.18).
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Finally, we will derive bounds on a In fact we will show that a is
YY “ YY

no greater than unity, and thus, for most frequencies of interest, we will,be

able to see simply that. 1~1 s %lR\ , where R is the reflection coefficient for

an E-wave.

To discuss the scattering of–an H-wave from a single dielectric post we

will use the notation of figure 3, the incident magnetic field now being given
inc

by ~
inc ikx

= ~zHo e . Invoking Green’s theorem and the radiation condition,

the total magnetic field can then be written (suppressing the subscript on Hz)

in the form

H(Q) = Hinc(~) +
j{

H(~’)Gn, (Q,Q’) –
}

- G(P,Q’)Hn, (~’) ds’
c

where

“ (l)(k]Q - Q’])
G(P_,L’) = -$Ho

(Al)

(A.2)

‘l)(kp) ++ ~ Jm(kp ’)H~l)(kp)cosm($ -$’)= ~ Jo(kp’)Ho (A.3)
m= 1

and, in equation (A.3), it is assumed that p is greater than p’ .

The contribution of–the first (zero-order) term on the right hand

side of equation (A.3) to the integral on the right hand side of-equation

(Al) may be calculated in a fairly straightforward manner when p is greater

than any lp_’I within the post. Denoting H outside the post by He and H

inside the post by Hi, we have

10 z J{ ‘l)(kp)] -He(Q’)[; Jo(kP’)Ho
1

[~ Jo(kp’)Hjl) (kp)]Hen, (~’) ds’
c n’
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J\

Jo (kp‘)

“ ‘~)(kp) V’” Hi(~’)@Jo(kp’) - ~AH
’40 I

VHi(~’) dS’

A r

H‘~)(kp) ~; Ho=—
()

V’Hi(~’)” V’Jo(kP’) 1 - ~ + Hi(g’)v’2Jo(kd)
r

Jo(kp’)V’2Hi(p_’)

1
dS ‘

E
r

The second two terms of the integrand cancel, giving us

Cr–l

J

aH(P’)—~ H(~)(kp) ~
1.=-40 ~ ap’

Jl(kp’)p’dp ’d@

r

Cr-l

J
‘l)(kp) ~ ~.- ? Ho iusE$(p ’,$’)Jl(kp’)p’dp ‘d+’

r

or, since

J

2Tr

o ‘$(p’’$’)p’do’ = j
Ends’

around— —
circle

. 1 vxE.ds’——
Jover
circle

= iwB
~

H(~’)dS’
o

over

circle

= iwpoH(Q)O(np’2),

we have
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k’ ~(l)(k~) ‘r-l

IJ

pJl(kp)dS
I .—

40
— H(Q)O

o e
A

2
r 1

E ‘1

=Hjl)(kp) ~ H(Q)O[(ka)4]
r

yhere “a” is some typical.dimension of the cross section of the post.

The above pattern of calculation can be followed in determining the

contributions of the other terms on the right hand side of equation (A.3)

to the integral of equation (Al). The result is that the terms of.order two
4

or higher contribute only to order (ka) or higher, but that the first order

term, which we will hereafter take as the dominant term at the frequencies we

are interested in, contributes a term of order (ka)2. In particular, if_the

x - y plane is a plane of post symmetry (which we will now assume; the proof

carries through in general -- it just gets messier),

ck2 (1)_—
11 = 4 ‘1 J

(kp)cos ~ (Z - co)Ey(~)dS
A

ck2 (l)(kp)cOS +Py,= -~H1

where

is the transverse dipole moment

\
P(p)dS——

A

J
(s - co)E(p)dS——

A

(A.4)

(A.5)

per unit length induced in the dielectric post.

Making use of equation (A.4), we can now write the reflected H-wave

from an infinite row of dielectric posts, when the incident wave vector is

normal to the row, as
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‘ef(x,y) =.? :
x (@k&2 + (y -~d)2H

1 ) (A.6)
T

‘=-~ 4X +(y-md}z

Invoking the Poisson summation formula, and differentiating with respect

to x, the reflected Ey field can then be written in the form

thus

E~ef(x,y) +~e-ib as x+-m,
o

i.e.,

(A.8)

We can now define a normalized dipole moment per unit length through

❑ (c - &o)AayyEy
‘Y

where E is the field at any particular dipole due to the incident wave and
Y

(A.9)

all the other dipoles (it is assumed that E is approximately uniform over
Y

the post), and thus we can rewrite equation (A.9) as

.

(A.1O)

.

But it can be shown that
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where

ikp
. E.i*c+--Ys

2cod 2

. Einc +
i(Er-l) ~

o 2 Ta yyEys 2

inc
E.

= l-i(sr-l) (kA/d)ayy(S2/2)

@ E@nkd)
s2:~ .’

m
m= 1

(All)

(A.12)

Combining equations (A.1O) and (All), we have

(cr-l)(kA/d)(a /2)
(A.13)1~1 = l-i(s -l)(kA/d)(~yyS2/2)

r

This is to be compared with the other reflection coefficient, easily derived

from the results of Section III,

(cr-WW)
/R1 =

l-i(sr-l)(kA/d) (kdS1/2)

.

—
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Thus we see that, except when kd is very close to those values where S1

blows up (and S1 does not blow up in the first, and most interesting, stop

band if the inter-row spacing is greater than half the spacing between posts

in a row, which is a weakened version of secondary assumption 4, Section I),

(A.14)

Before we go on to prove that a is less than unity, it might be well
YY

to point out that S2 can be transformed to a more easily computable sum by

the following manipulations

Im~12i

j

‘zH(l).— _—
2+

o (mz)dz
x ~=1 mm o [

2f f
[

1 1.—
2~m

11
dz

‘=1 4(27rm)2-z2

[
+;; 2Trm- v’(2rm)2-x2 -~],

m= 1

.-

9)

4

.,
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but we will not determine any numerical values of–S2 in this note. The above

transformation is merely for future reference, since it does not seem to be

well known.

Now let us examine the normalized polarizability a We are dealing
YY ●

now with electrostatics, and so let us talk in terms of potentials. Let $il~c

be the potential of the incident electric ~ield and $ be the potential of the

total electric field. From the fact that

j
IV($ - @inc)12 dS 20,

A

where the integration is over the cross section of the post, we have

i.e.

(A.15)

.

We will determine an appropriate expression for (~ - ~lnc) on the surface

now. Denoting potentials in the exterior region by a superscript e and

potentials in the interior region by a superscript i, we have, in the exter!Lor
—

region,

oe=Oinc+ j [OeGn, - G$:,]dsl
c

and
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JO = [@iGnr -G$@ds’.
c

Subtracting these two equations, and using the boundary conditions

we can say that, in the exterior region, or on the surface,

Equation (A.16), when substituted into inequality (A.15), leads to

(A.16)

(A.17)

But it is clear that the double integral in this inequality is a positive

quantity since it can be thought of as being proportional (with a positive

proportionality constant) to the total electrostatic energy corresponding to

a surface charge

Now let us

uniform field in

distribution $:. Thus

specialize to the case where @lnc is the
inc inc

the y-direction (i.e., $ = -E. y).

~

inc
$ $~cds=

J
(v@ ‘*C) 2dS

c A

= (Efic)z A,
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(A.18)

potential of a

We then have

(A.19)

*
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while, from equation (A.5) and the definition of a
YY ‘

-1
a = (AEJnc) jAEydS
YY

-1

J
. (AE~nc) __y@(n”e )ds

c

(A.20)

Thus, combining equations (A.19) and (A.20) with inequlity (A.18), we

have

< 1,
aYY

and thus, from equation (A.14)

(A.21)

(A.22)

Inequality (A,22) is our reason for neglecting the H polarization in the

main body of the text and our reason for saying that a rough bound on the

reflection coefficient of a trestle structure can be obtained by assuming all

dielectric material to be concentrated into the posts parallel to the incident

electric field vector.

Before bringing this appendix to a close, there are two points ofigeneral

interest about the immediately preceding electrostatic work.

The first point is that it was never essential to use the two dimensional

character of our problem in proving inequality (A.21). The same inequality

will hold for any diagonal element of the polarizability tensor of–a three-
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dimensional dielectric blob in the form

where

proof

.
the induced dipole is given by ~ = Eo~*~Xnc.

The second point of interest is that, while working on the analytical

of inequality (A.21), two integral equation formulations of the dielectric

blob problem became evident. These two equations are for the determination of

either the surface potential or the exterior normal derivative of surface

potential (from either of which, the complete field distribution can be

determined by quadrature) when a dielectric blob is immersed in an incident

electric field. The two equations may be written in the forms

&r-l
4(E) “&+inc(r) - 2Er+l I

Gn,(~,~’)$(~’ )dS’
cr+~

c

2Er cr.-l

@n(r_)
J= = ‘NC(X) -2 ~ ‘n(l’Z’)On’ (l’)ds’*

r r c

(A.22)

(A.23) 0

The first of these is well known (see, for example, [401, p. 75). The second

is not so well known, but should be just as useful for numerical work. In

fact, while equation (A.22) would seem to be appropriate for E close to unity,
r

equation (A.23) may be more appropriate as Cr gets large.
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Appendix B

A Matrix Inversion

In Section IV we found it necessary to solve the set of equations

Xn+c

This appendix gives the

j e
ikDln-m\ x = ~

l<n<N. (B.1)
m n

method of solving the above set.

To start with, let us look at the above set in the range 1 < n < N.

Then we can write any of the remaining equations in any of the three following

forms

xn+c f eim(n-m)xm+c m.~+~e
ikD(m-n) x

= Yn (B.2)
m

m= 1

x + cei~ ~ eikD(n-m) ~m+ce-ikD

~=!+l e

ikD(m-n) x
n+1 = Yn+~ (B,3)

m= 1
m

x + ce
-ikD ~ eikD(n-m) xm+ce-ikD

m=~+l e

ikD(m-n) x
+ 2ic sin kDx

n-l
n=yn_l (:B.4)

m=1 m

Equations (B.3) and (B.4) come about by the replacements n + n f 1 in equation

(B.2), while adjusting the limits on the sums to be the same as those in

equation (B.2) by adding or subtracting appropriate terms. Now, if we add

equations (B,3) and (B.4) and from the sum subtract 2 cos kD times equation

(B.2), we obtain

x - 2(COS kD - ic sin kD)xn + Xn ~ = yn+l - 2 cos kDy + yn ~. l(B.5)
n+ 1 n

This equation, as we said above, is true in the range 1 < n < N. Let us see

what we have to do to make it true for 1 < n < N. By looking at equation (B.5)

for n = 1 and n = N, it can be seen that (B.5) can be assumed to be true in the

total range of n if we define
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ikD
Y. ❑ e Y~

ikD
‘N+l

~e yN

and we set

(B.6)

(B.7)

.

●

ikD
x =e

‘1
(B.8)

o

ikD
‘N+l = e ‘N

(B.9)

Thus equations (B.1) are equivalent to the difference equation (B.5) with

the boundary conditions (B.8)

(B.6) and (B.7). Let us find

“Green’s function” defined by

and (B.9) and with the subsidiary definitions

the solution to equations (B.5) by finding a

G - 2 cos 6G +Gn_l ~= 6n,m
n+l ,m n,m 9

along with boundary conditions equivalent to (B.8) and (B.9) and auxiliarY

definitions equivalent to (B.6) and (B.7). In equation (B.1O), 6n,m is the

Kronecker delta function, and we have written

COS 6 = COS kD

Once G is found we can clearly
n,m

x= f ~n,m(Ym+~-n
m= 1

(B.1O)

(B.L1)ic sin kilo

write the solution for x in the form
n

2 COS kDym +Ym_l)
.!

*

or, equivalently,
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x~ = f @n,m-~- 2.COS kDGn ~ +
m= 1 9

G
n,m+l)ym

-G y + ‘n,lyo - ‘n,N+lyN+ ‘n,@’N+l”n,o 1 (B.13)

Thus, assuming for the moment the symmetry of G= ~,,,,,,(i.e., that G =G ),n,m m,n
it follows from equation (B.13), by using equations (B.6) through” (B.ll)Y that

N
x= Yn - 2ic sin kD ~ Gn,mym.
n

m= 1
(B.14)

Equations (B.12) and (B.14) are two alternative representations of the solution,

Xn, of equation (B.1). It–remains to determine an explicit formula for G
n,m”

From this explicit formula, the symmetry that we required above will be obvious.

The solution of.equation (B.1O) for either n > m or n < m must be a linear

combination of the two homogeneous difference equation solutions. Let us look

at the case n < m. Then it follows from direct substitution in the homogeneous

difference equation that

G =Asinn8+Bcosn0 n<m (B.15)n,m

is a solution, where A and B are to be determined. Boundary condition (B.8)

implies

Asin0+13cose=e
-ikD

B

and thus

G
n,m

= & {sin 6 cos no - .0s 0 sin ne + e-ik” sin ne] n . m

.=..—.

= * {e-ire‘in “ - ‘in(n- ‘)e}

-== 79

n<m. (B.16)



Similarly

G = L {e-i’” sin(~ + ‘ -n) - s~n@ - n))$ n>m, (B.17)
n,m sin 6

or, in order to assure equality of the two expressions when n = m, we may write

G =K
n,m

G =K
n,m

e-ikD
sin n6-sin(n-1)0

–ikD
e sin m6-sin(m-1)6

-ff<m

-ikD
e sin(N+l-n)6–sin(N-n)6
-ikD

n>m

e sin(N+l-m)6-sin(N-m)6

(B,18}

(B.19)

In order to determine K, we substitute the above expressions in equation

(B.1O) for n=m

1 -2KCOS6=K

and find

-ikD
e sin(N-m)9-sin(N-p-1)6 + ~

..-
e‘Iku sin(N+l-p)O-sin(N-p)6

e-ikD
sin(m-1)6-sin(m-2)8

..-
e‘=W sin mO-sin(m-1)6

(B.20)

When K is determined from equation (B.20) and substituted back in equations

(B.18) and (B.19) the result, after algebraic simplification is

G
= [e‘i’” sin(N+l-m)O-sin(N-m)O]~e-ikD sin ne-sin(n-l)e]

n,m
sin 6e‘i’”[2 sin N6-eikD sin(N-l)O-e-i’” sin(N+l)6]

G
. ~e-ikD

sin(N+l-n)O-sin(N-n)6][e-ikD sin m6-sin(m-1)6]
n,m -ikD

sin 6e [2 sin NO-eikD sin(N-1)6-e-ikD sin(N+l)6]

Thus the solution of equations (B.1) is completed.

0

n < m (B.21)

n>m (B.22)

./

0
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