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Abstract

The reflection of a plane wave incident on a two-dimensional array of
infinitely long dielectric posts is investigated. The array is infinite in
the direction perpendicular to the propagation vector of the incident wave.
This array is considered to be a model of the wooden support structure of the
ATLAS simulators. In accordance with this intended application, the maximum
post diameter is assumed to be small with respect to both the wavelength of
the incident wave and the minimum distance between posts.

The impedance per unit length of a single post is first defined and
calculated. Next, the sheet impedance of a single infinite row of identical
posts is defined, and determined in terms of the impedance per unit length of
the individual posts. The reflection from several rows of posts is then
examined. An explicit formula for the reflection coefficient is obtained for
the case where each row of the array is modelled as an impedance sheet. The

limit where the impedance sheet concept breaks down is pointed out, and a

‘method for extending the simpler results to this more general case is indicated.
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I. Introduction \

It appears that the best way to determine the effect of the nuclear
electromagnetic pulse on a large aircraft full of electronic equipment is to
stick the large aircraft into a large simulator. The large simulators that
have been proposed for this job have been designated ATLAS I and ATLAS II in
previous notes in this series (see references [1] through [4] and also Section

IV of reference [5]). These simulators are essentially parallel-plate trans-

‘mission lines with appropriate source and termination regions. The electric

field of ATLAS T will be horizontal; the electric field of ATLAS II will be
vertical. The aircraft will be run out onto a platform supported between the
two plates. Figure 1 is a sketch of a possible design for ATLAS II. This
picture has been taken from reference [5].

A quick look at Figure 1 will reveal that, in addition to the aircraft,
there is quite a bit of its support structure between the simulator plates.

Tt would be nice if the aircraft would just float in the air between the plates,
since that is the situation it is desirable to simulate. This being impossible,
the next best thing will be done. The support structure will be a trestle, i.e.,
a sparse array of wooden beams. The average relative permittivity within the
trestle will be close to unity. Thus the support structure will reflect

very little energy in the low frequency limit. Nevertheless, there exists the
possibility of enhanced refiections at higher frequencies, in particular at
those frequencies where the length of the incident wave is the same as one of
the characteristic lengths within the array of wood. At those frequencies, one
might expect some sort of stop-band effect within the trestle, and thus a large
amount of reflection of an incident wave. The purpose of this note is to
examine this possibility and to present some basic data for estimating the
importance of trestle reflection effects.

The effect of the trestle in Figure 1 can be estimated by studying the
model shown in Figure 2. Figure 2 depicts several rows of infinitely long
dielectric cylinders. The rows themselves are also infinitely long. The
cross—sections of the cylinders may be of arbitrary shape, but all cross-
sections are identical. A time-harmonic plane wave is incident normally on
the first row of cylinders. The incident wave is plane polarized and its

electric vector is parallel to the generatoré of the cylinders.
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Figure 1. A possible design for ATLAS ITI.
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This model may be looked upon as a "worst case" model for two reasons.
The first reason is that the reflected field just in front of an array of
finite width and height (which would more accurately represent the real trestle)
would seem clearly, on physical grounds, to be no greater than the reflected
field of an array of infinite width and height. The second reason is that the
wave reflected from an infinite array when the incident electric field is
perpendicular to the generators of the dielectric cylinders will have a smaller
amplitude than the wave reflected in the parallel polarization case to be
studied in this note. Appendix A is a justification of this statement.
Incidentally, Appendix A contains a proof of some interesting bounds on the
diagonal elements of the polarizability tensor of a homogeneous dielectric
body. Appendix A also contains a statement of two integral equations that
can be used for the numerical computation of the elements of the polarizability
tensor. One of these integral equations is not very well known.

For the two reasons mentioned in the preceeding paragraph, the numerical
values of the amplitude of the wave reflected from N infinite rows of infinite
cylinders, which we will calculate in this note, can be looked upon as bounds
on the magnitude of the actual reflected field just in front of a real trestle
with N rows of posts.

In the rest of this note, the words '"cylinder" and '"post™ will be used
interchangeably in referring to the infinitely long dielectric cylinders of
the idealized model.

There are two basic assumptions we will make in order to simplify the
problem of calculating the wave reflected from the model array. These assumptlons
are quite compatible with the real situation that the model problem represents.

The assumptions are:

(1) The maximum diameter of any post is small compared to the wavelength
of the incident wave.
(2) The maximum diameter of any post is small compared to the minimum

distance between posts.

The reasons for working under these assumptions will become clear as the work

proceeds. In addition to these two basic assumptions, we will often make one,



or more, of three secondary assumptions in order to obtain simple explicit
expressions for the quantities we wish to calculate. These secondary assumptions

are:

(3) If k is the free-space propagation constant corresponding to the
frequency of the incident wave, kd is the propagation constant within
the dielectric of the posts, and A is the cross-sectional area of a
post, then (kj - kz)A << 1,

(4) The distance between the rows of the array is not less than the
distance between the individual posts in a row.

(5) The distance between rows of posts and the distance between the
individual posts in a single row are both less than the wavelength

of the incident wave.

These three secondary assumptions are also compatible with the real situation
in most cases of interest.

In this note we will talk a lot about the impedances of things -- of a
single post, of a row of posts, etc., The reason for this is that a lot of
people seem to have a certain amount of intuitive feeling for impedances, and
this often makes equations involving them a little easier to absorb than the
same equations written in terms of more fundamentél physical parameters like
length, permittivity, and frequency.

In the next section, we will define, and give a recipe for calculating,
the impedance per unit length of a single post. We will give a simple
approximate expression for this quantity which is accurate when assumption (3)
is valid. Furthermore, we will calculate the precise error of the approximate
expression when it is applied to the special case of a circular post.

In Section III, we will derive an expression for the equivalent sheet
impedance of a single, uniformly spaced, row of posts in terms of the impedance
per unit.-length of a single post in the row. This sheet impedance is defired
as the sheet impedance of a uniform sheet having the same reflection and trans-
mission coefficients as the actual row of posts. The connection of this steet
impedance with the well known sheet impedance of a wire grating will also te

discussed.



In Section IV, we will calculate the reflection coefficient of N rows of
posts when each row of posts is looked upon as a uniform sheet having a sheet
impedance given by the expression derived in Section III. Under this assumption,
we will be able to derive an explicit expression for the reflection coefficient.
This explicit result depends on the exact inversion of a certain matrix. This
inversion is performed in Appendix B, In Section IV, we will also derive an
equation for the propagation constant of a wave traveling in an infinite medium
made up of uniformly spaced impedance sheets. This propagation constant
manifests the expected stop-band characteristics as peaks in its imaginary part.

In Section V, we will study the accuracy of the solution in Section IV by
examining a more general formulation of the reflection coefficient problem,
including the effects of non-TEM interactions between rows of posts. It turns
out that this formulation gives rise to equations that reduce quite accurately
to those solved in Section IV if assumption (4), concerning the relative
distance between rows of posts and posts in a single row, is valid. Also, in
this section we will give accurate numerical values of the propagation constant
of a wave traveling in an infinite array of posts. In fact, the agreement
between this propagation constant and the one calculated in Section IV will be
used as a measure of the accuracy of the rest of the work of Section IV,

In the last section, we will extract whatever conclusions we can from the
preceeding analytical work. We will also point out some directions in which an

extension of the analysis would seem to be fairly straightforward and useful.



II. Impedance Per Unit Length of a Single Dielectric Post

Let us consider the problem of calculating the wave scattered by a single
dielectric post when an incident wave propagates in a direction perpendicular
to the post and is polarized with its electric field parallel to the post. This
essentially two-dimensional problem is shown schematically in Figure 3.
Conceptually, the easiest way to treat this problem is to note that the

z component of the electric field satisfies the two-dimensional Helmholtz

equation
vE (o) + K°E_(5) = 0 (2.1)
z = c z 2 - ‘ -
where 7
2 _ .2 2 .
kc = k" = w BoE, outside the post
2 _ .2 _ 2 s
kc = kd = uoegl) within the post

and p is the two-dimensional position vector.

We can rewrite equation (2.1) as
2 2 2 2
v EZ(Q) + k EZ(Q) = -(kc -k )EzQz) (2.2)

where the right hand side is nonzero only within the post. If we consider the
right hand side of equation (2.2) as known, we can call upon the two~dimensional

Green's function for the Helmholtz equation (reference [6], p. 811) and write

inc
Z

i

Ez(g) = E (p) + 4 JA(ki - kz)Hél)(klﬂ.‘ Ef])Ez(Bj)ds' (2.3)

This equation is really an integral equation for the determination of EZ(Q)

within the post. Its numerical solution has been discussed by Richmond [7].
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Figure 3. Scattering from a single post.
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The integral in equation (2.3) is the scattered field. Ifﬁlgj is greater
than the maximum |Ef| within the post, this scattered field may be rewritten as
B =8 T 50y [ 5 o0 G - 1T eoast a0

z & 4 m eIe A D 0 r& z & ’

L]

where
e.@) = e)/e.

We now recall our first basic assumption, which implies that, within the range

of integration of equation (2.4),
ko' << 1

as long as the origin of the two-dimensional coordinate system is chosen some-
where near the center of gravity of the cross section of the post. From the
small argument asymptotic forms of the Bessel functions, it is then clear that

it is only necessary to keep the m = 0 term in the sum, and thus

2
550 ~ 3 1 1) [ Ce, (@ - 1J8,(o")J_(kp")as’. (2.5)
A

But the electric field due to a line current, I, flowing along the z-axis is

given by

wy I
_ o~ ..(1)
E,(0) = - —— B (k0), (2.6)

thus the scattered field given by equation (2.5) can be thought of as being"

due to an équivalent line current of strength

qu = -iw JA[GQQ) - eO]Elel)Jo(kp')ds'.
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Now, according to our first basic assumption, the Incident field will not ‘

vary much over the post's cross section, and so

E;nc(g) ~ E;nc(o) _ inc

i
=

(2.7)

On the other hand, if ¢ (p) is large, E (p ) could vary quite a b1t over the
range of integratiom, but it will be llnearly proportional to E . Thus the

ratio

—d- = - due JAtsr(g) - 1IE, (0" /E " T5 (ke ") as” (2.8)

E;.nc

will be independent of the amplitude of the incident field (and, according to

equation (2.7), also independent of its precise spatial variation). The

reciprocal of equation (2.8) has the dimensions of impedance per unit length;

this impedance is the impedance to the flow of the current generating the

scattered field. We will denote this impedance by Zp and its reciprocal (i.e.,

the ratio given by equation (2.8) itself) as Yp. ’
In the rest of this note, we will make a great deal of use of a special

case of equation (2.8). This special case is the one where assumption (3) of

Section I is waglid, i.e.,
- KA << 1.
Under this assumption, it easily follows from equation (2.3) that
E (o) ~ () = E

within the post, and thus (since J_(kp) = 1)

7" = Yp = —iwso JA[er(g) - 17d4s*. (2.9)

12



If, furthermore, the post can be considered to be homogeneous (this will be the
case for the real wooden beams we are concerned with), the above formula simplifies

to
zZ © = Yp = ~igA(e - eo), (2.10)

and, according to equation (2.6), the scattered field is given by

WH .
) = - 7> v B Hé”(kp)
_ ik’ e, - nere gD )y (2.11)
A €r ) 0 P )

Before proceeding further, let us interpret equation (2.10) physically.
It's not hard. Equation (2.10) is just the difference between the capacitive
admittance between two cross sections of the post a unit distance apart and the
capacitive admittance between the same cross sections with the dielectric post
absent ("fringing" fields are not present in the problem we are considering).
It is the current through this extra admittance that gives rise to scattered fields.
Equgtioh (2.11) holds as long as p is much greater than the meximum B

diameter of the post's cross section (p does not have to be large compared to A).

This equation corresponds to a scattering width given by

*
E°(0,$)ES (p,4)pdd
z z 3.2
GSC = Tim = (E - 1)2 _&_A_
inc 2 T 4
pe |E 7]

This result has been derived by Van Bladel [87], [9].

For the case where the cylinder is circular, equation (2.11) gives

50 ka)?(e. - 1D (ko)
Einc T4 a €r fo) P
(0]

This approximation to the field scattered from a homogeneous circular cylinder

13



has been called the "dielectric needle" limit by Van de Hulst [10]. TIts accuracy
has been discussed by Kerker, et al [11], who have drawn equal error comntours in
the ka - /E;-plane for kp large and various values of ¢. We prefer here to make
use of the analytic solution to the circular cylinder problem to exhibit the
error in the simple expression (2.10) as an approximation to the exact expression
(2.8). Hopefully, the error in expression (2.10) for other cross-sectional shapes
will be in the same ball park as the one we calculate if we use something like
k(A/?r)l/2 as the appropriate value for ka.

From equation (2.8) and the amalvtical sclution of the circular cylinder

problem (see, for example, reference [12], §8.6), we can write

a
Yp = —ig(e - EO)ZﬂCO JOJO(kD)JO(de)DdD

where
c, = (Zi/w)[kdaJl(kda)Hél)(ka) - kaJo(kda>H§1)<ka)j‘1.

carrying out the integration (the integral is a special case of one given in

reference [13], p. 484), and simplifying, Yp can be written as

. nd (x)J, (nx)-J_(nx)J, (x)
Y = -iw(e - € )A 412 { ° (i) o %1) } (2.12)
P mx"(n"=1) nJ; (nx)H "7 (x)-J_(nx)H; ™7 (x)
where
X = ka
and
1
n = (er)2

From (2.10) and (2.12), it is easy to arrive at the following expression for
R(x,n), the relative error of formula (2.10)

’

14



RGx,n) = {“Xz(nz—l) [Jo(”X)Ylb‘)"‘Yo(X)‘Jl(”X) _ } LSl NN
4 Jo(nx)Jl(x)— JO(X)Jl(nx) 4 7

The magnitude of this relative error is given, as a percentage, in Table 1 and

Figure 4. From this data we can see that for the wooden posts we are interested

in (er about 4 or 5) there will not be much error in equation (2.10) as long as

ka is less than .1, For the rest of this note, whenever it comes to calculating

specific numbers, we will therefore use the approximate expression (2.10).

Nevertheless, for the sake of completeness, we will give a brief outline
of how one could calculate Zp (or Yp) if assumption (3) (equivalent to equation
(2.10) for homogeneous posts), were invalid. There are, in fact, several
alternatives. If the post is inhomogeneous, the best way would probably be to
solve equation (2.3) in some manner such as that used by Richmond [7], and then
to use the solution to evaluate equation (2.8) numerically. (Note that under
the first basic assumption it is not really necessary to keep the Bessel function
in the integrand of equation (2.8); we can set it equal to 1).

If the post is hombgeneous, the above method is not necessary and it would
be quite wasteful of computer time. What one really should do for homogensous
posts is to look for an appropriate line integral equation over the boundary of
the post's cross section, or some other numerical method that makes maximum use
of the homogeneity of the post (one such other method, due to D. R. Wilton [14],
is quite new). If one prefers the line integral equation method, he must be
satisfied with a pair of coupled equations for Ez(s) and (B/Bn)Ez(s), where n
is the outward normal shown in Figure 3. Based on a two-dimensional Maue
representation for (a/an)Ez(S) [15], one way of writing this pair of coupled

equations would be

E, (9 = B (s) - JC [6" (o") - €%, B ()

- [Gi(p_,g') - Go(g,g_')]Ezn'(S') ds' (2.14)

and

15
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£, (8) = ELoS(s) - J {f6h et - "Iz, (s

c

- 6% (ue") - 620", (s} ds'

- J[kgGi(g,Q_') - 1%¢% (0,0 I (arn"YE (s ")ds’ (2.15) ‘
‘ |

where

i

GO(E:Q') = Z Hél)(klﬂ - E'I)

(D

6 (") = 7 iy Geglo - o' D

and where the subscripts n and s denote partial derivatives in the normal and
tangential directions (see Figure 3). When equations (2.14) and (2.15) have
been solved numerically, the surface integral representation for Yp’ equivalent Q

to equation (2.8),

iweo

YP T T inc J {Ez<s)[Jo(kp)]n - Jo(kp)Ezﬂ(s)}dS (2.16)
E c
0

may be used. TFor small posts (i.e., under assumption (1)), equation (2.16)

reduces to

Lwik 9 1
Y " T ;- L(g (e - LEZn<s>ds§. (2.17)
O =

If, furthermore, Er is not too large, we may replace EZ(S) by E;nc in the first
integral of equation (2.17) (reducing that integral to AE;HC), and replace the

second integral by :

18



Ezn(s)ds = Jn-VEZQ&)ds
c

[e] »

2
= jz EZ(Q)dS

- -k J E (5)ds
A Y4

2, _inc
=~ —deEO

These substitutions thus reduce equation (2.17) back to equation (2.10).

In concluding this discussion of line integral equations, it might be well
to point out that equations (2.14) and (2.15) are equivalent to the two-
dimensional form of Miiller's integral equations [16], [17], and that there are
an infinite number of other equivalent pairs of equations, (see the elegant

discussion by Mitzner [ 18]).
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TIII. Sheet Impedance of an Infinite Row of Identical Posts

. Let us now turn to the calculation of the equivalent sheet impedance of
a single row of identical posts. In order to do this we must first state
exactly what we mean by "sheet impedance" and what we mean by '"equivalent."

The sheet impedance of an infinitesimally thin impedance sheet is equal
to the ratio of the tangential electric field at the surface of the sheet to
the jump in magnetic field through the sheet. This definition assumes the
continuity of the tangential electric field through the sheet and implies a
sheet current flowing in the sheet. The sheet impedance concept has useful
applications in modelling the electromagnetic properties of several real objects
such as low-frequency shields [19] and the terminations of transmission-line
simulators [20], [21]. ; o

The equivalent sheet impedance of our row of posts is the sheet impedance
of the uniform impedance sheet that will give rise to the same electric field
reflection coefficient for a normally incident plane wave as our ''discrete
sheet' of dielectric posts gives rise to. This equality of reflection coeffi~
clents is used in our definiton of "equivalent' because it leads, when we model
several rows of posts by several sheets in Section IV, to the exact results if
the row spacing is much larger than the interpost spacing. 7

Yor comparison purposes, therefore, we must first know the reflection
coefficient of a uniform impedance sheet having sheet admittance YS. We assume

the impedance sheet to be in the y-z plane and the incident electric field to be

of the form

By the definition of YS and R, the sheet current, K, is given by

K, = (1+ R)Ei‘nc Y (3.1)

while the electric field generated by this current is easily shown teo be

20



K Z
s zZ 0 ik|x|

1
where Zo = (uo/zzo)/2 is the impedance of free space. Now for negative x we have

ES - Eref ___o e—lkx _ RElnc e—lkx. (3.3)

Therefore, substituting equation (3.1) into equation (3.3) we get

(1+R)YSZo

__—-——i-—_=R

Thus, if y_ = YS/YO =Y Z , we can see that

_ 2R
b
or
Vs
R= - 2+yS (3.4)

Now let us calculate the actual reflection coefficient of the row of
posts in Figure 5, and equate it to the R of equation (3.4) in order to
determine the row's equivalent sheet impedance. 1In order to do this we will
invoke the two basic assumptions of Section I.

The equivalent current in the post at position (0,md) will be

qu = YPEZ(O,md), (3.5)

while the field scattered by the post at position (0O,md) will be, from equation
(2.6),

wu I
ES(x,y) = - ~—EZEE-H§1>(k/x2 + (v - md)?) (3.6)

21
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p

But

R %y
S
C0,nd) + ) EC (0,nd)

=—00

EZ(O,nd) = E

where the prime on the summation means that the n = m term is omitted.

equations (3.6) and (3.7) we can write

inc quIe < (L)
E_(0,nd) = E"C(0,nd) - —F=1 ] H " (mkd)
m=1

or, defining

s, = 1 Hél)(mkd),

m=1

and using equation (3.5), we have

If-we define an equivalent sheet current, Keq’ through

K = qu/d,

equation (3.10) can be rewritten as

inc deegzo
Keq = (Yp/d) EO - 5 S1 s

inc
(Yp/d)EO

eq 1+(Yp/d)Zo(del/2)

(3.7)

From

(3.8)

(3.9

(3.10)

(3.11)

(3.12)

(3.13)

Identifying the sheet current of equation (3.3) with the Keq of equation

(3.13), we can already write
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@ézd/d)

= - (3.14)
2+Yp20(del)/d

R

A justification of the identificatiomn of Keq with the K of equation (3.3)
can be arrived at by noting that, from equations (3.6) and (3.7), the reflected

field is

wp T
el o220 7y Wand v - n?). (3.15)
all m )

This series may be transformed by using the Poisson summation formula to

obtain [22]

z I elle\ we I ©  2mimY/d -2n¢h2—(kd/2ﬂ)25Xl/d
ref _ c_e9q o <9 £ =
E = - 2d + 2

(3.16)

m=1 /ﬁz—(kd/Zﬂ)z

The entire sum in equation (3.16) is rapidly decaying as [xl increases (in fact,
when we approximate several rows of posts by several uniform sheets in Section
IV, what the approximation really amounts to is neglecting the contribution of
this sum of evanescent modes to the fields at other rows of posts) and so we
can identify the reflected field with the first term on the right hand side of
equation (3.16). Thus

. Z1 K
inc _ o’eq _

o 2d

Z
e% o (3.17)

’

and this justifies our previous identification of Keq with the K of equatiocn
(3.3) in arriving at equation (3.14)}.

Now, to get the equivalent sheet impedance of our row of posts, let us
identify the reflection coefficients of equations (3.4) and (3.14). This 7
identification is in accordance with our definition of equivalent sheet

impedance. Let us also use the notation
= (Y Z /d).
YP p%o

Thus we have
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b

y Y

S = D , (3.18)
2+yS 2+yp(del)

and this gives

2yp
Vs T Zty_(kds -D) (3.19)
P 1
or, d ti -1 b and -1 by z
» Genoting Yp y zp 0 ys y s?
del—l
z_ = zp + — (3.20)

In equation (3.20), zp is the sheet impedance of that uniform sheet that

would be the result of spreading the dielectric material of the posts into a
uniform sheet. (This identification presupposes the applicability of secondary
assumptioﬁ (3) of the introduction). Thus the second term on the right hand
side of equation (3.20) is the "discreteness contribution' to the equivalent
sheet impedance of é row of posts. This term is a function of kd only. Sums
such as Sl (and that of equation (3.15)) have been discussed frequently in the
literature on scattering by gratings and grids (references [22] through [39]
are a sampling of this literature; in grating applications, the discreteness
contribution to zZg is relatively more important than in our dielectric post
case,because the z_ of wire gratings can be quite small). By referring to

reference (23] we can rewrite the discreteness contribution to z in the form

KkdS. -1 . @
F (kd) s.__Z}__ - - %?-- %%g-{y + ln(%%) + 7 [ L —-%]} (3.21)
| | o=l | 2 o om 2

which is valid for kd < 2n (i.e., d < X, secondary assumption (5) of Section:I).
Table 2 is a table of Im F(kd) vs. d/A and vs. kd. A plot of Im F(kd) vs.
d/)\ is given as figure 6. From this data, and equation (2.10) rewritten in the

form

id i d
> (3.22)

z = =
P wA(e—eo)ZO kd(nz-l)
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Figure 6.

Discreteness contribution to sheet impedance of a row of posts.




d/» Im F(kd)

01 .04721
.02 .08055
.03 .10866
.04 .13335
.05  .15551
.06 .17563
.07 19406
.08 .21102
.09 22671
.10 .24125
11 .25475
12 .26730
.13 .27896
14 28982
.15 .29990
.16 30926
17 31793
.18 .32595
.19 .33334
.20 .34014
.21 .34635
.22 .35200
.23 .35712°
24 36170
.25 36577

Table 2a.
d/» Im F(kd)
.26 .36933
.27 .37240
.28 .37498
.29 .37709
.30 .37872
.31 .37989
.32 .38060
.33 .38085
.34 .38064
.35 .37998
.36 .37886
.37 .37729
.38 .37526
.39 .37278
.40 .36984
41 ,36644
42 .36257
W43 .35823
LG4 .35342
.45 .34812
.46 .34234
47 .33605
.48 .32926
.49 .32195
.50 31411

Im F(kd) vs. d/A

27

d/x

.51
.52
.53
.54
.55

.56
.57
.58
.59
.60

.61
.62
.63
.64
.65

.66
.67
.68
.69
.70

71
.72
.73
.74
.75

Im

1

|

F(kd)

.30572
.29679
.28727
.27718
26647

.25514
. 24316
.23051
21716
.20308

. 18824
17260
.15614
.13880
. 12054

.10130
.08104
.05968
.03717
.01341

.01168
.03819
06624
.09596
.12749

1.

d/x

.76
77
.78
.79
.80

.81
.82
.83
.84
.85

.86
.87
.88
.89
.90

.91
.92
.93
.94
.95

.96
.97
.98
.99
00

Im

F(kd)

.16098
.19665
.23469
.27536
.31897

.36586
41646
47126
.53088
.59606

.66775
.74710
.83565
.93537
.04891

.17993
.33363
.51772
74421
.03316

.42120
.98478
.92173
.01747
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Table 2b.

Im F(kd)

.06774
.11340
.15071
.18256
.21033
.23483
.25657
.27592
.29316
.30849
.32208
.33404
.34449
.35350
.36115
.36748
.37256
.37640
.37905
.38051
.38081
.37996
37796
.37481
.37050
.36502
.35836
.35049
.34139
.33103
.31936

Im F(kd) vs. kd

28

kd

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

5.9
6.0
6.1
6.2

Im

1

|

-1
-1
-2

F (kd)

.30633
.29190
.27600
.25856
.23949
.21870
.19607
17147
14476
.11575
.08425
.05000
.01272
.02793
.07238
J12112
L17478
.23413
.30017
37414
45773
.55315
. 66352
.79324
. 94894
.14099
.38697
.71952
.20871
.04505
.08294




it is apparent that at low frequencies F(kd) is negligible compared to zp énd
that, if (n2 - l)A/d2 is small, the region where F(kd) is negligible could well
include the entire region kd < 2m, In conjunction with the results in Appendix

A on the relative reflection coefficients of the two polarizations of the

incident field, this leads us to state that an approximate upper bound on therr
reflection coefficient of a trestle array can be obtained by assuming all the
dielectric material to be concentrated in uniform sheets, spaced with a

periodicity equal to the actual trestle periodicity in the direction of propagation

of the incident wave.
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IV. Reflection From Several Uniformly Spaced Impedance Sheets

This section consists of a calculation of the reflection coefficient of
several uniformly spaced impedance sheets. There are alternative approaches to
this calculation. We will follow the ones that seem, to us, to follow the
actual physics of the problem most closely.

The problem to be solved is shown schematically in figure 7, which indicates
the coordinate system and notation to be used.

First, we will solve the problem where N is infinite, i.e., we will
determine the reflection from an infinite half-space of impedance sheets. The
answer to this problem can be written down immediately, by using physical
arguments, once we define the reflection and transmission coefficients of a
single sheet as r and t and the intersheet phase factor, eikD, as p. The total

reflection coefficient of the half-space is then
R, =1 + tpR pt + tpR prpR pt + tpR_prpR prpR pt + + 4.1)

where the first term, ¥, is due to the reflection from the first sheet. The
next term, tpR pt, takes care of the wave that is transmitted through the first
sheet, is reflected at the second sheet (note that R_1is the same at the second
sheet as at the first sheet -- it still is the front sheet of an infinite
number of sheets), and then is transmitted back through the first sheet,
Subsequent terms account for the infinite number of multiple reflections that
can occur between the first sheet and the second sheet.

Equation (4.1) contains a series that can be summed in closed form to give

PEpR_pt

PR l-—prpR°°

=pr+

o]

which results in the following quadratic equation for PR

2 (1-p%(t%-r?)
(pRm) - (—Lp'r————)(pRm) +1=0 (4.2)
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inc

N impedance sheets of
normalized sheet impedance zg

Figure 7. Several uniformly spaced impedance sheets.
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But in Section III it was shown that the reflection coefficient of a single

sheet is given by

s (4.3)
r = - —— (4.3
2+ys
Thus
2
t = (4.4)
2-l-ys
and
2=y
2 2 s
t -1r = W : : (4.5)
s
Substituting these expressions in equation (4.2), we obtain
2 2 1 1
(PR )™ + (~— (=-p) + =+ p))pR +1=0, (4.6)
°° v, P P =
or substituting for p its value in terms of kD (=2wD/)), we obtain
2 VA
(pRm) + 2|~ ;f-51n kD + cos kDJpR_+ 1 = 0 (4.7)
s
i.e., from equation (3.20)
(pRm)2 + Z(E—Zizp + i(de1 - 1)Jsin kD + cos kD)pR°o +1=0 (4.8)

where zp is the normalized post impedance (EZpd/Zo).
If we neglect the discreteness contribution to z (the argument for doing
this is given at the end of Section III), and use equation (2.10) for the post

impedance (the argument for doing this is in Section II), equation (4.8) becomes
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(pRm)2 + 2(%%5@ +-cos kD)(pRoo) +1=0 (4.9)

where

A(sr—l)
[¢3 ET (4.10)
and A is the cross sectional area of a post. Note that o is the fractionsl_
increase in the average dielectric constant of the sheet medium (over the
dielectric constant of free space), and so can be expected to be small in all
cases of practical importance.

Now defining

2 sin kD

§in XU 1
Pl + cos kD, (4.11)

it is not difficult to show, from equation (4.9), that

1

<«

'F—/Fz—l! F>1_
(4.12)

From equation (4.12) we have chosen to plot the present approximatioﬁrto
the percentage of the energy reflected from an infinite half space of impedance
sheets as a function of (2D/)) with ¢ as a parameter. This information is given
in Table 3 and Figure 8.

Let us now turn to the determination of RN, the reflection coefficient
when only N impedance sheets are present. We expect RN to approach the reflection
coefficient we have calculated above as N approaches infinity, but we also
expect RN to have quite a different behavior when N is small (there will_be no
complete stop bands).

We will determine RN by first calculating the sheets currents flowing in
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Table 3. The percentage of energy reflected from an infinite
number of sheets according to equation (4.12).

(2p/2) .01 .02 .04 .08 .16 .32
.05 .001 .002 .010 .037 .139 485
.10 .001 .003 010 .038 143 .501 .
.15 .001 .003 .010 . 040 .150 .529
.20 .001 .003 011 043 .160 571
.25 .001 .003 .012 .046 175 .631
.30 .001 .003 .013 , 051 .196 .716
.35 .001 . 004 .015 .058 .224 .835
.40 .001 .004 .017 .068 .263 1.004
45 .001 .005 .020 .081 .318 1.253
.50 .002 .006 .025 . 099 .398 1.631
.55 .002 .008 .031 125 .517 2.239
.60 .002 .010 .040 .166 .705 3.297
.65 .003 .0I3 .055 .230 1.020 5.372
.70 .005 .019 .079 .340 1.604 10.403
.75 .007 .029 .123 547 2.854  31.807
.80 .012 .049 .212 1.005 6.321 100.000
.85 .023 .097 436 2,319 26.100 100.000
.90 .057 .252 1.258 9,437 100.000 100.000
.95 .279 1.421 11.695 100.000 100,000 100.000
1.00 100.000 100.000 100.000 100.000 100.000 100.000
1.05 229 A77 2.320 5.941 12.715 22.902
1.10 .071 .257 .865 2.591 6.643 14.334
1.15 .037 .138 491 1.587 4,505 10.951
1.20 .024 .093 .340 1.155 3.522 9.408
1.25 .019 .071 .267 . 939 3.033 8.815
1.30 .015 .060 .228 .828 2.815 8.892 -
1.35 014 .054 .209 .780 2.784 9.622
1.40 013 052 .203 77 2,919 11.215 -
1.45 .013 .052 .208 .817 3.243 14.293

First 2 stop bands .9901} .9803} .9615} .9262} .8639} .7660}
1.00007 1.0000° 11,0000’ 11,0000’ 1,0000' 1.0000

1.9802} 1.9608} 1.9234} 1.8543} 1.7378} 1.5739}
2.0000° 2.0000° 2.00007 2.0000' 2.00007 2.0000
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Figure 8. lRwF (in percent) vs. (2D/A) for various values of
o for an infinite number of sheets,
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each of the N sheets due to a normally incident plane wave and then computing 0
the sum of the fields generated by the N sheet currents.
We know from equation (3.3) (or equation (3.16), by neglecting the
evanescent modes) that the electric field due to the mth sheet current (at
position x = (m - 1)D) is given by .

ZoKm eiklx—(m-l)D]

» > (4.13) .

at the position of the nth sheet this gives

Z K ,
om elkDIn-m] (4.14)

m = 2

[=]

Therefore the total electric field at the nth sheet, i.e., the sum of

the incident field and the fields radiated by all the sheet currents, is

N
inc _ikD(n-1 1kD | n-
E" = E"C e (n-1) _ 5 z K e [l 1y (4.15) ®

But we know that an alternative expression for En, from the definition of sheet
impedance, is just ZZZoKn’ where z: is the nth normalized sheet impedance. Thus

we can write the following set of equations for the sheet currents, K,m

N | | Einc
n 1 ikD|n-m o ikD(n-1) .
z K+ ] e R =——e , n=1,N (4.16)
=] o}
If all the sheet impedances are equal, i.e., z: =z, = ygl, we can also write
inc
- N , vy E \
5“1 Z ¢ i+0|n-m] k=20 Ml gy (4.17) ]
m=1 o

Once equations(4.17) have been solved for the K » we can use equation
(4.13) to calculate the total field generated by all the sheet currents and

thus determine the reflected field in the form
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z , N .
pref o - o THkx 7o Hm-DkD, (4.18)
2 m
m=1
From equations (4.17) and (4.18) it easily follows that if we define
normalized sheet currents by
sz
x = oo (4.19)
E
o}
then
-ikD N
e Z imkD
= _ % e (4.20)
RN 2 el m
where
Vs ¥ ikD|n-m]| ikD(n-1)
_2_. z e xm = yse ; n = 1,N (4.21)

Equations (4.20) and (4.21) constitute our formulation of the N sheet reflection
coefficient problem. Before we solve these equations completely, however, let
us consider the possibility of a homogeneous solution for X when N is infinite
and the sheets are uniformly distributed through all space. Such a soluticn
will lead to the propagation and decay constants of waves propagating in the
sheet medium, and, i1f the decay of such a wave is quite small in a length
equivalent to the trestle of an ATLAS simulator, then even in 'stop bands"
there will be very little reflection from the finite length trestle. Thus,
we will have a compact rough estimate of the effect of a trestle by displaying
the propagation and decay constants in an infinite sheet medium. In order to
calculate these constants, let us write equations (4.21) for such a medium in
the form

®

EE' ) eikD[n-m[ x = ySeikD(n—l)

(4.22)

m=-—co

i.e.,
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vy . _ N o . _ . _
s E elkD(n m) < ’s z elkD(m n) x =y elkD(n 1)

e + — + — (4.23)
n 2 D mo2 i m s
and from this it follows that
Ys ik = ikD{(n-m) Vs -1ikD - ikD (m-n) ikDn
X +5oe 2 e x t5e Z e x =vye (4.24)
= m=n+1
v . n ,
. . ’s —ikD ikD (n-m)
x 1t (1ys sin kD)xn t 5 e ) e X
m=1
y . © , _ , _
+ Eé-elkD z elkD(m n) x = yselkD(n 2) (4.25)

m=n+1

Adding equations (4.24) and (4.25) and subtracting 2 cos kD times equation (4.23)

we obtain

iy
s . _
X 2(cos kD - 5 sin kD)xn + X 4= 0, (4.26)

and this homogeneous equation is satisfied by a solution of the form
x = e ? (4.27)
where
iy

cos 6 = cos kD - —ii sin kD. (4.28)

Making the same approximations for yg as we have made previously in this section,

and using the definition of o in equation (4.10), equation (4.28) becomes
8 =6, +1i0; = cos_l[cos kD - %-RD sin kD]. (4.29)

In table 4 and figures 9 and 10 we present values of Gr - kD and Gi calculated
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2D/ X

.05
.10
.15
.20
.25
.30
.35
.40
.45
.50
.55
.60
.65
.70
.75
.80
.85
.90
.95
1.00

2D/

.9900
.9905
.9910
.9915
.9920
.9925
.9930

Table 4a.

a

= .01

Pass Bands

6 -kD 2D/
.00078 1.05
.00157 1.10
.00235 1.15
.00313 1,20
.00392 1.25
.00470 1,30

. 00549 1.35
.00628 1.40
.00706 1.45
.00785 1.50
.00865 1.55

. 00944 1.60
.01024 1.65
01104 1,70
.01185 1.75
.01268 1.80
.01353 1.85
01446 1,90
.01570 1.95
.00000 2.00
Stop Bands

Gi 2D/X ei

.0000 .9935 .0148
.0062 ,9940 .0153
.0090 .9945 .0155
.0109 .9950 .0156
.0123 .,9955 .0156
.0134 ,9960 .0153
.0142 .9965 .0149

8_-kD 2D/
.01571 .05
.01684 .10
01776 .15
.01861 .20
.01945 .25
.02027 .30
.02109 .35
.02191 .40
.02274 45
.02356 .50
.02439 .55
.02524 .60
.02609 .65
.02697 .70
.02788 .75
.02885 .80
.02994 .85
.03136 .90
.03437 .95
1.00

20/x e 2D/
.9970 .0l44 .980
.9975 .0136 .981
.9980 .0126 .982
.9985 ,0112 .983
.9990 .0094 .984
.9995 ,0069 .985
1.0000 .0000 .986

39

o

= .02

Pass Bands

er-kD 2D/ X
.00156 1.05
.00313 1.10
.00469 1.15
.00626 1.20
.00782 1.25
.00939 1.30
.01097 1.35
.01254 1.40
.01412 1.45
.01571 1.50
.01730 1.55
.01891 1.60
.02053 1.65
.02217 1.70
.02385 1.75
.02559 1.80
.02745 1.85
.02963 1.90
.03337 1.95
.00000 2.00
Stop Bands
ei 2D/x ei
.0000 .987 .0294
.0107 .988 .0303
.,0170 .989 .0309
.0211 .990 .0311
.0241 ,991 .0310
.0264 .,992 .0306
.0281 - .,993 .0298

Phase change per section of an infinite sheet medium.

2D/ X

.994
.995
.996
.997
.998
.999
1.000

8_-kD
T

.03013
.03290
03494
.03678
.03854
04026
04198
04369
04541
04714
04890
.05071
.05256
.05451
.05661
.05898
.06192
.06655
.08319

ei
.0287
.0271
.0251
L0224
.0188
.0137

.0000



Table 4b. Phase change per section of an infinite sheet medium.

o = .04 @ = .08
Pass Bands Pass Bands
2D/ x 6_-kD 2D/ X 6 .-kD 2D/ A 8 -kD 2D/ 6 ,~kD
.05 .00311 1.05 .05608 .05 .00616 1.05 .10035
.10 .00622 1.10 .06304 .10 .01233 1.10 .11734
.15 .00934 1.15 .06780 . .15 .01851 1.15  .12865
.20 .01246 1.20 .07190 .20 .02471 1.20 .13813
.25 .01559 1.25 .07574 .25 .03094 1.25 14684
.30 .01872 1.30 .07947 .30 .03720 1.30 .15525
.35 .02187 1.35 .08316 .35 .04351 1.35 .16357
.40 .02503 1.40 .08685 .40 .04988 1.40 .17198
45 .02822 1.45 .09058 45 .05633 1.45 .18062
.50 03142 1.50 .09439 .50 .06287 1,50 .18963
.55 03466 1.55 .09831 .55 .06955 1.55 .19923
.60 .03794 1.60 .10241 .60 .07642 1.60 .20971
.65 .04129 1.65 .10678 .65 .08356 1.65 22162
.70 04472 1.70 11156 .70 .09110 1.70 .23594
.75 .04831 1.75 .11707 .75 .09934 1.75 .25500
.80 .05216 1.80 .12398 .80 .10890 1.80 .28598
.85 .05658 1.85 .13432 .85 .12161 1.85 .38814
.90 .06262 1.90 .15874 .90 14666 1.90
.95 .07994 1.95 .95 1.95
1.00 .00000 2.00 1.00 .00000 2.00
Stop Band Stop Band
2D/ X 6, 2D/ 0, 2D/ 6, 2D/ 8, 2D/ 8, 2D/ 8,
.960 .0000 .974 .0576  .988 .0571 .925 .0000 .950 .1128  .975 .1142
.962 .0128 .976 .0596 .990 .0540 .930 .0531 .955 .1177 .980 .1073
.964  .0299 .978 .0609  .992 .0500 .935 ,0781 .960 .1202  .985 .0971
.966 .0393 .980 .0615  .994 .0447 .940 ,0940 .965 .1205 .990 .0826
.968 .0459 .982 .0615 .996 .0376 .945 .1051 ,970 .1185 .995 .0607
.970 .0509 .984 .0607  .998 .0274 1.000 .0000

.972 .0548 .986 .0593 1.000 .0000
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2D/

.10

.20
.25
.30
.35
.40
45
.50
.55
.60

.75
.80
.85

2D/X

.860
.865
.870
.875
.880
.885
.890
.895
.900
.905

9

9

.0000
L0416
.0958
.1267
. 1495
.1675
.1822
.1944
. 2044

Table 4c. Phase change per section of an infinite sheet medium.

o = .1

6

Pass Bands

r-kD 2D/
01210 1.05
02423 1.10
.03641 1.15
.04866 1.20
.06101 1.25
.07350 1.30
.08618 1.35
.09910 1.40
11234 1.45
.12600 1.50
14024 1.55
15533 1.60
17170 1.65
19017 1.70
21261 1.75
24438 1.80
31611 1.85
Stop Bands
2D/ ei
.910 .2191
915 .2242
.920 .2279
.925 .2303
.930 .2315
.935 .2313
.940 ,2300
.945  ,2273
.950 .2233
.955 .2179

.2126

2D/
.960
.965
.970
.975
.980
.985
.990
.995
1.000

erka

.17180
.21024
.23657
.25868
.27908
.29894
.31897
.33978
.36201
.38655
41478
44935
49628
.57558

2111
.2025
.1921
.1794
.1641
<1451
.1209
.0872
.0000

41

2D/ A ei 2D/ A 8

a = .32

Pass Bands

2D/x Gr—kD 2D/ A
.05 .02341 1.05
.10 .04690 1.10
.15 .07057 1.15
.20 .09453 1.20
.25 .11889 1.25
.30 .14379 1.30
.35 .16944 1.35
.40 .19609 1.40
.45 .22411 1.45
.50 . 25405 1.50
.55 - .28685 1.55
.60 .32416 1.60
.65 .36945 1.65
.70 .43186 1.70
.75 .55546 1.75
.80 1.80
.85 1.85

Stop Bands

i
.76 .0000 .85 L4094
77 .1101 .86 .4186
.78 .2018 .87 4244
.79 .2583 .88 4271
.80 .3001 .89 4267
.81 .3329 .90 .4231
.82 .3591 .91 4163
.83 .3801 .92 4061
.84 .3967 .93 .3922

1.

1

2D/

.94
.95
.96
.97
.98
.99
00

Or—kD
. 28204
.36166
.41984
47070
.531946
.56915
52245
.Hh8270
.75563
85410
.02648

8

(3742
.3514
.3229
. 2869
. 2401
.1738
.0000
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from equation (4.29). We have used the same values of o as for table 3 and
have taken kD through the first stop band. If there are N rows of posts in
the real trestle, and N@i is small, for all kD in a stop band, there will be
very little reflection even within the stop band. We note in passing that it
is not difficult to show that for small values of o the maximum value of Si in
the first stop band is about (amn/2), and this agrees quite well with the numerical
data for o less than a tenth.
Turning now to the calculation of RN from equations (4.20) and (4.21), it

is shown in Appendix B that the solution of the set of equations

N
Xn + c Z
m=1

ikD 1~ -
e l i X = Yoo n=1,N (4.30)

can be written in either of two equivalent forms. The first of these forms is

N

N
X, = mzl Gnm(ym+1 - 2!cos kDy  + ym_l) (4.31)
where, by definition,
_ 1kD
yO = € Yl (4.32)
_ 1ikD
el T vy (4.33)

and the matrix sz is given explicitly by

GN _ [e_lkD sin(N+1—m)G—Sin(N—m)ejte_lkD sin no-sin(n-1)6] <
oo sin ee—lkD[Z sin Ne—elkD sin(N-l)e-e—lkD sin(N+1)6]
(4.34)
_ [e—lkD sin(N+l—n)e—sin(N—n)ej[e—lkD,gip mb-sin(m-1)6] n>m
sin Ge—lkDEZ sin NB—elkD sin(N—l)G—e—lkD sin (N+1)6]
where
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cos 6 = cos kD - ic sin kD. (4.35)

The second form of the solution of equations (4.30) is

N

. . N
X =y, - 2ic sin kD Z Gnmym' (4.36)
p=1
For ¢ equal to (ys/2) and Y, equal to yselkD(n—l), as we have in equation
(4.21), equation (4.31) gives
x_ = 24y sin (KD)GV (4.37)
n s nl’

and ® is given by equation (4.28).
From equations (4.37) and (4.34) we thus have, as the solution to equations

(4.21)

e_ikD sin(N+1-n)8-sin(N-n)#6

2 sin Ne—elkD sin(N—l)e-e_lkD sin(N+1)8

x, = 21yS sin kD (4.38)

Using this expression, one could calculate RN from equation (4.20), but

is simpler to note that equation (4.21), written for n = 1, is just

x; = YRy = Vg W(4.39)
Thus
Ry = -1 + xl/ys, (4.40)
or, using equation (4.38),
R, = 2i sin kD- e—iiz R S 1. (b.4D)
2 sin N6-e sin(N-1)6-e sin(N+1)8
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Algebraic simplification reduces equation (4.41) to

(l_e?_lNe)Roo
R = - , (4.42)
N 1-e21(kD+Ne) Ri
where
e—ikD_e—ie
Roo = = m (4.43)
e -e

is the reflection coefficient when N is infinite.

It can be shown that expression (4.43), with 6 given by equation (4.29) is
identical to the R _ given by the solution to quadratic equation (4.7). It can
also be shown that equation (4.42), for N = 1, reduces quite nicely to the
reflection coefficient of equation (4.3). These mathematical manipulations
will not be presented here, but those readers interested in that sort of thing
should have little difficulty in performing them.

Special simplifications occur in equation (4.42) if Yo is assumed to be
pure imaginary. In particular if we approximate Yg» as we have done before,
by (-ikDa), then 8 is given by equation (4.29) and so is either purely real
(pass bands) or of the form nrm + iei (stop bands). Let us examine these cases

individually. 1In the case of a pass band we have

2iN0 —ZiNBr 2
9 <1—e r)(l-e )‘le

IRyl” = ZiNe_ 200 (4.44)
1-e e 3:
4 sin2 NGrilez
= . . (4'45)
: 2iN6 2 . ~2iN8
l*llea"Ri o2ikD r_R: o~2ikD r

But from the alternative expression for R implied by equation (4.9) it is clear

ikD

that in a pass band e R is real. Thus we can write
| [2 4 sin® Ner\lez
= - (4.46)
RN 1+|Rm|4—2Ri ezlkD cos ZNGr
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i 2i 2
Again, since elkD R 1is real, we can write e 1kD R = I

—— o

lez and so obtain

[ee]

4 sin® N8 IR |2
Ryl = —
1+IRm! —ZIRm] cos 2N6
4 sin® NerlRwlz
- (-{r |5 %4 R |* sin® me_
. (a-lr B’ , 7 |
= sin Ner ———%— + sin Ner (4.47)
4IR, |

But, using expression (4.12) it is not hard to show that

- 1D .
— = Ff -1 (4.48)

4R, |2

Thus from equations (4.47) and (4.48) we have, in a pass band of an N

sheet structure whose Vo is -1ikDa,

sin2 Né

rg? = — . (4.49)
sin” Ng_+F -1
T
where er is given by equation (4.29) and F is given by equation (4.11).
Similar considerations lead us to the conclusion that, in a stop band of

an N sheet structure whose Vs is -ikDa,

sinh2 N6,
i

1% - ~(4.50)

IRy

sinh2 N6i+1—F2
where again ei is given by equation (4.29) and F is given by equation (4.1%1).
We have chosen to display the data on [RNIZ in the form of linear plots
o of ‘RNl against 2D/) with o and N as parameters. Figures 11, 12, 13, and 14
contain this information for N values of 1, 2, 4, and 8 respectively. From the
definition of o, the lower.a values shown are in the range to be expected of-any
} trestle structure that fulfills its electromagnetic purpose. Some of the !RNI

_ data is also given in tabular form in table 5.
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The following curves and tables are perhaps the most relevant numerical

information in this note for purposes of trestle analysis.

In Section V we

will get an idea of how close these IRNI values are to the values that would

be calculated if the discreteness of the sheets were kept in consideration and

if evanescent mode interactions were also retained.

In closing this section we can note the form that some of the results

take for very small o values. It follows from equation (4.29) that if (2D/))

is not too close to unity we can write, for small o,

aT
8, - kD =~ R (2D/2),

while within the first stop band we have

Qi ~ ¥§(a - 8},
where

§ =1 - (2D/)).

(4.51)

(4.52)

(4.53)

If equation {(4.52) is substituted in equation (4.50), and Nei is small, we have

the approximate {RNl for small o in the first stop band as

IRyl ~

(4.54)

The ‘RNI in the first pass band would be less than that given by equation (4.54).
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Table 5a. lOOIRNI vs. 2D/A for o = .0l and various N.

N 1 2 4 8 16
2D/)
.04 .063 .125 241 .423 449
.08 .126 .243 426 453 .394
.12 .188 .350 .509 .056 112
.16 .251 .440 .468 407 .506
.20 314 .507 .307 .502 . 334
24 .377 .548 .061 .120 .235
.28 440 .558 .219 404 .569
.32 .503 .534 465 .578 .262
.36 .565 476 615 .203 .384
.40 .628 .381 622 414 644
A .691 . 250 467 .698 .164
.48 . 754 .083 .166 .323 .584
.52 .817 .116 .229 41 743
.56 .880 . 345 .637 .897 .014
.60 .942 .599 .956 522 .888
.64 1.005 874 1.087 .493 .885
.68 1.068 1.164 . 946 1.267 .260
.72 1.131 1.461 .482 .912 1.438
.76 1.194 1.760 .305 .602 1.131
.80 1.257 2.051.  1.367 2.127 .898
.84 1.319 2,329 2.599 1.960 2.805
.88 1.382 2.584 3.863 . 919 1.786
.92 1.445 2.809 4,997 '5.845 3.689
.96 1.508 2.997 5.842 10.540 13.441
1.00 1.571 3.140 6.271 12,468 24,375
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Table 5b. 100]RN1 vs. 2D/) for o =

2D/ X

1.

.04

.08
.12
.16
.20

.24
.28

.32
.36
.40

Ah
48
.52
.56
.60

.64
.68
.72
.76
.80

.84
.88
.92
.96
00

[SS T o T - R (O T S e e e T e

L L D NN

.126
.251
.377
.503
.628

.754
.880
.005
.131
.257

.382
.508
.633
.759
.885

.010
.136
.261
.387
.512

.638
764
.889
.015
.140

.249
487
.700
.878
1.012

1,091
1.109
1.060
.940
L7487

480
144
.258
.720
1.232

1.785
2.366
2.961
3.557
4.137

4,687
5.190
5.632
5.996
6.271

54

.483
.850
1.013
.927
.601

.104
.454
941
1.231
1.230

.903
.287
.510
1.319
1.938

2.163
1.829
.843
<790
2.957

5.441
7.948
10.148
11.736
12.468

.02 and various N.

844
.897
.097
.822
.990

.208
.832
1.141
.352
.876

1.383
.563
970

1.792
916

1.151
2.565
1.618
1.541
4.403

3.546
2.816
12.855
21.577
24,375

16

.890
.796
.193
.997
.706

.408
1.130
.606
.675
1.307

477
1.045
1.563

.280
1.627

1.976
.084
2.722
2.781
.963

5.583
5.275
4,988
31.403
44,991



Table 5c. lOOIRN[ vs. 2D/x for o = .04 and various N.

N 1 2 4 8 16
2D/
.04 .251 .499 . 964 1.681 1.744
.08 .503 .972 1.695 1.759 1.623
.12 . 754 1.398 2.009 .132 . 264
.16 1.005 1.752 1.818 1.678 1.927
.20 1.257 . 2.014 1.149 1.924 1.548
.24 1.508 2.167 <143 .285 .564
.28 1.759 2.195 .973 1.754 2,198
.32 2.010 2.086  1.926 2.210 1.509
.36 2.261 1.833 2.462 484 .950
.40 2.512 1.433 2,400 1.932 2.611
A4 2.764 .886 1.681 2.688 1.504
.48 3.015 .197 .394 .780 1.507
.52 3.266 .623 1.224 2.271 3.278
.56 3.516 1.562 2.815 3.520 1.535
.60 3.767 2.599 3.960 71.282 2.429
.64 4.018 3.714 4,254 2.927 4,467
.68 4.269 4,881 3.378 5.137 1.620
.72 4.519 6.071 1.169 2.29% 4.249
.76 4.770 7.255 2.331 4.419 7.058
.80 5.020 8.400 6.836 9.139 1,889
.84 5.271 9.476 11.838 5.135 9.286
.88 5.521 10.449 16.689 10.026 16.359
.92 5.771 11.219  20.732 29.883 5.730
.96 6.021 11.973  23.418 43,219 68.438
1.00 6.271 12.468  24.375 44,991 70.898
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Table 5d.

2D/ X

.04
.08
12
.16

.20

.24
.28
.32
.36
40

44
48
.52
.56
.60

.64
.68
72
.76
.80

.84
.88
.92
.96

IOOIRNl vs. 2D/ for o

.503
1.005
1.508
2.010

2.512

3.015
3.516
4,018
4.519
5.020

5.521
6.021
6.521
7.020
7.518

8.017
8.514
9.011
9.507
10.003

10.497
10.991
11.485
11.977
12.468

.997
1.942
2.786
3.483

3.989

4.269
4.291
4.033
3.480
2.625

1.471

.031
1.673
3.608
5.732

7.993
10.335
12.693
15.001
17.194

19.209
20.986
22.471
23.615
24.375

56

1.926
3.365
3.946
3.497
2.089

.029
2.190
4,003
4.895
4.531

2.838

.063
3.235
6.258
8.127

8.039
5.410
.002
7.925
17.435

27.103
35.469
41.512
44.732
44.911

3.336
3.379

.029
3.468
3.604

.059
3.809
4.063

.092
4,453

4.882
125
5.629
6.361
.138

7.947
9.322
.005
13.590
16.943

1.950
39.210
65.805
74.752
70.898

3
3

3
3

3

3.

.08 and various N.

16

.350
.351
.057
.525
531

.118
.911
940
.184
.604

.708
.250
.825

6.150

13
17

3
29
82
95
89

.276

.129
.195
.009
.287
.884

.889
.990
466
.829
537



V. Reflection From Several Rows of Posts -- a More General Approach

In this section we will outline a more general and more accurate approach

to the calculation of the reflection from several rows of posts than the effective

sheet impedance method of the previous section. We will still assume that the
incident wave is normally incident on the rows, and this implies that the
equivalent currents are the same in all the posts of any given row. Thus, if
the equivalent current in any post of the nth row 1is In, if all post impedances
are Yp, and if the transverse post spacing is d while the longitudinal post

spacing is D, it is clear from equations (2.6) and the definition of Yp that

<]

I ] §1)<k/ &+ @-m >} (5.1

m=1 j=—e

I =v {Elnc e1kD(n-l) _wn
n plo 4

i o~

where the prime on the inner summation means that the term where n =m and j =0
is omitted. Using previously developed transformations of the Hankel function

sum ([22] or Section III), and defining

z 1
_ o'n
¥ F inc
dE
o
Y
© - _BP_
Vs =¥ d
o
we may rewrite equation (5.1) as
o o
N N
_§_ 1kD|n—m| _ .0 1kD(n—1) _g
2 Z T Vg © 2 Z Pn—me (5.2)

where

P = -% ;”{T + Zi[ + ln(2>\) + nzl (—-———-—-——1 - %):H - (5.3)

/%= (d/0)
m —nkD/(mK/d)z—l
P =21 § & (5.4)
n m=l 2 -
(mr/d) “-1

57



When equations (5.2) have been solved for the X s the reflection coefficient,
Rys can be found from equation (4.20).

The first thing to notice about equation§ (5.2) is that, when [(yZ/Z)Pn_m]
is neglected in comparison with [5nm + (yZ/Z)elkD o 1, equations (5.2) reduce
to equations (4.21) if the discreteness contribution to Vs is neglected (and
this is what we did in computing the numerical results of Section IV).

The next thing to notice about equations (5.2) is that if one keeps the
PO term but neglects all other Pn terms (it is clear that if d/ix is small P0
will really be much the largest of the Pn's), and rearranges equations (5.2)
appropriately, the result is the set (4.21) with Yo being now given by equatilon
(3.19).

The third thing to notice is that if very accurate solutions of the
multiple post problem were desired, a numerical solution to equations (5.2), as
they stand, could be effected. We believe the other approximations we have
made in going from the actual trestle reflection problem to equations (5.2)
justify our slightly further approximation to equations (4.21), which possess
an analytical solution. To test the accuracy of the step from equations (5.2)
to equations (4.21) we will use equations (5.2) to calculate the phase change
per row of posts in an infinite post medium. A comparison between this phase
change and that of table 4 (Section IV) will give an idea of the accuracy to
be expected from the other numerical results of Section IV.

To calculate the phase change per row of posts in an infinite medium we
assume that n and m may go from minus infinity to plus infinity in equation
(5.2) and substitute X = eine, with the forcing term being set to zero. The

result is

o o)
. y. . _ . vy, @ .
elne + -8 z elkD[n m| elme _’s Z P elme (5.5)
2 2 n-m
Nn==—00 m==~0o
or, relabling indices,
o )
ing _ ’s =  _ikD|p| ins ipe _ ’s ing _ipd
e + 5 ) e e e =5 ) Pe e (5.6)
p=-w p=-—o P
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Q
7s
2

p

1+

;oGHDlel et _Zs p (5.7)

- pme P

Assuming k to be complex (with a positive imaginary part), temporarily, in
order to get convergent sums, and then letting the imaginary part of k approach

zero, we get

, O o
iy . y
s sin kD _’s
- 2 cos kD-cos 8 2 Po(d/k)
2 2
L@ -(27D/d)Vn = (d/))
n id z 1 . cos B-e (5.8)
A =1 2 2 2 2 '
= h -{d/x) cosh (2rD/d)Vn"-d/A)" -cos
or, in terms of the parameters we have previously used, i.e., substituting
yz = -1 (kD)a (5.9)
kD = gx (5.10)
d/2D = r (5.11)
we can write
1 - T2 sin Tx = —iﬂarxz T+ily + &) + E 1 1
2 cos Tx-cos 6 2 ¥ 2 n=1 -3 D
/n"=(xr)
2 2
2 o« _ —(n/t)/n“ - (x1)
+ wa;x Z 1 , _Cos B-e (5.12)

n=1 /nz-(xr)2 cosh (ﬂ/r)/:;z—(xr)2 -cos 6

For small r the right hand side of this equation approaches zero.and we
return to equation (4.28). But even for r not so small, the right hand side
doesn't have too much effect on the 6 roots of the above equation, as we can

see by comparing table 6 (the solution of equation (5.12)) with table 4.
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Table 6a.

2D/

.05
.10
.15
.20
.25

.30
.35
40
45
.50

.55
.60
.65
.70
.75

.80
.85
.90
.95

er—kD
.00078
.00157
.00235

.00313
.00391

.00469
.00544
.00628
.00703
.00778

.00862
.00934
.01016
.01090
.01163

.01248
.01322
01416
.01547

.0209
.0330
.0492
.0700
. 0960

L1278
.1659
.2109
.2637
L3248

.3955
4776
5760
.7159

§8_-kD G.X].O4
T i

.00078 .0002
.00157 .0015
.00235 .0052
.00313 .0123
.00391 .0241

. 00469 L0415
. 00544 .0657
.00627 .0980
.00700 <1393
.00775 .1908

. 00857 .2535

.00929 .3287
.01011 4174
.01085 .5209
.01157 6408
.01240  .7790

.01313 .9391
.01406 11,1303
.01529 1.4014

60

Phase change per row of an infinite post medium.

T A
8 kD eix104
.00078  .0004
.00157  .0031
.00235  .0104
.00313 .0247
00390 L0479
.00468 .0825
.00544  .1307
.00626 1945
.00698 .2760
.00770  .3773
.00852 5004
.00924 L6474
.01006  .8203
.01079 1.0215
.01151 1.2536
.01233 1.5201
.01305 1.8278
.01397 2.1938
.01509 2.7099



Table 6b. Phase change per row of an infinite post medium.

* -0
r=.,1 r = ,2 r = .4
2D/x Br—kD eix104 er-kD 8i><104 Gr—kD Gi><104
.05 .00156 .0004 .00156 .0008 .00156 .0015
.10 .00313 .0031 .00313 .0061 .00312 L0123
.15 .00469 .0104 . 00469 .0207 00468 L0415
.20 .00625 L0246 .00625 .0489 .00622 L0974
.25 .00780 0478 .00779 .0953 .00776 .1893
.30 .00936 .0826 .00934 .1643 .00929 .3255
.35 .01092 L1310 .01088 .2601 ,01081L .. .5140
.40 .01248 .1953 01241 .3871 .01232 7626
45 01404 .2778 .01394 .5495 .01381 1.0787
.50 .01560 .3808 01546 L7514 ,01529 1.4697
.55 .01716 .5065 .01699 .9970 01676 1.9427
.60 .01872 .6574 .01850 1.2908 .01822 2.5047
.65 .02028 .8362 .02002 11,6373 .01968 3.1634
.70 .02184 1.0460 .02154 2.0420 02113 3.9277
.75 .02340 1.2910 .02309 2.5124 .02258 4.8094
.80 .02505 1.5776 .02467 3.0599 . 2407 5.8284
.85 .02680 1.9194 .02634 3.7093 .02563 7.0273
.90 .02884 2.3573 .02829 4.5360 02744 8.5398
.95 .03231 3.1580 .03158 6.0319 .03048 11,234
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Table 6¢c. Phase change per row of an infinite post medium.

o= .06 @
r=.1 r = .2 r = .4
2D/ o -kb e.x10" o_-kp 6 x10* §_-kD e.><104
r i T i r i
.05 .00311 .0015 .00311 .0030 .00311 .0061
.10 .00622 .0122 .00621 .0243 .00620 .0487
.15 .00932 L0411 .00930 .,0816 .00928 L1624
.20 .01242 .0969 .01239 .1928 .01233 .3822
.25 .01551 .1890 .01545 .3750 .01535 .7401
.30 .01859 .3259 .01849 L6448 .01832 1.2661
.35 .02167 .5164 .02150 1.0183 .02126 1.9885
.40 .02474 7692 .02452 1.5111 .02415 2.9330
.45 .02781 1.0931 .02749 2.1385 .02700 4.1232
.50 .03087 1.4969 .03046 2.9154 .02980 5.53814
.55 .03394 1.9900 .03340 3.8571 .03255 7.3288
.60 .03701 2.5826 .03634 4.9801 .03527 9.3877
.65 .04014 3.2870 .03929 6.3037 .03796 11.784
.70 .04326 4.1192 .04229 7.8533 .04064 14,552
.75 .04652 5.1036 .04527 9.6692 .04334 17.750
.80 .04997 6.2866 .04846 11.829 .04616 21.497
.85 .05387 7.7810 .05204 14.524 .04928 26,095
.90 .05915 10.005 .05684 18.469 .05341 32.667
.95 .07357 17.831 .06955 31.484 .06390 52.528
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VI. Concluding Remarks

The analysis presented in this note has been sufficient to put some fairly

-

good bounds on the amount of reflection that a trestle support structure will

cause.,

One simply assumes all the wood of the trestle to be in sheets, perpen-

dicular to the incident wave and having the same periodicity as thereal trestle

in the direction of propagation of the incident wave. A bound on the reflected

energy can then be found from the tables and curves of Section IV.

Should more accurate calculations be found necessary at some future time,

there are many ways in which the work of the present note could be extended.

Ten of~these, in approximate order of increasing difficulty are as follows:

1.

It would not be a very difficult matter to extend the work of the
present note, which considered only normally incident waves, to the
case where the incident wave arrives at some arbitrary angle. The
generalized sum transformation formulas exist (in [227] for example).
The easiest generalization would be to the case where the incident
wave propagation vector is still perpendicular to the posts but not
perpendicular to the rows of posts. However, the more general case

could also be handled.

It would be fairly easy to extend the work of Appendix A to the vpoint
where numerical values for reflection coefficients of-the other
polarization could be computed.rrThis polarization is not as important
in reflecting waves, but the calculation would have some use if the
bounds discussed at the beginning of this section should prove too

rough.

One could readily extend the frequency range, somewhat, of the calcula-
tions presented here. We have limited the computations here, for the
most part, to frequency values through the first stop band. A little
care should be taken in invoking the sum transformation formulas at
wavelengths close to the transverse post spacing. Otherwise no

difficulty should be encountered. The extension of the frequency range
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imagined here should not be such that there is more than the TEM
propagating mode within the post medium. Thus we can still restrict
ourselves, with good accuracy, to considering only TEM interactions

among sheets with a modified Ve

At frequencies higher than those that can be handled by extension 3,
one could still calculate reflection coefficients by numerically
solving equation (5.2). This would be necessary at frequencies high

enough that non-TEM propagating modes could exist (i.e., X < d).

For very thick posts, or at higher frequencies, it may be necessary
to take into account higher order terms in the series (2.4). This
would complicate the whole analysis somewhat, but it could still be

carried through in a straightforward manner,

If it is necessary to take into account more than one post direction,
for example alternate rows of horizontal and vertical posts, the
analysis could be carried out by allowing for spatially varying
equivalent currents in the posts. The currents could be assumed to
be Fourier series in the variable along their length, the fundamental
period of the Fourier series being the distance along their length

between posts of the perpendicular rows.

If it is necessary to take into account the finite width of the actual
trestle post arrays, the simplification of equal equivalent currents

in each post becomes impossible. 1In this case the number of simul-
taneous equations to be solved in order to determine the post equivalent
currents increases tremendously, but, if there are less tham a hundred

posts altogether the problem could still be readily handled numerically.
If the finite length of the posts is also to be treated the problem

becomes just as complicated as that of calculating the reflection

from several dozen wires. There is no difficulty in principle, but
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10.

the necessary computer times could well be prohibitive.

The effect of the interconnections between the posts would be a
further éomplication of the finite length post problem. Techniques
exist for handling crossed wire problems. Presumably they could be

taken over and applied to the crossed ''dielectric wire' problem.

For larger posts at higher frequencies it may be necessary to use one
of“the integral equation techniques mentioned in Section II to calculate
the modal coefficients for extension 5 above. The development of a
computer program to solve equations (2.14) and (2.15), for example,

would be a time consuming project.
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Appendix A

The Other Polarization

In this appendix we will give arguments for neglecting any incident wave
polarization other than the one considered in the main body of the note. We
will do this by demonstrating that, over most of the frequency range we are
interested in (including the first stop-band frequency, where the inter-row
spacing is about a half wavelength), the reflection coefficient of a single row
of dielectric posts when the incident magnetic field is parallel to the posts
is less than half the reflection coefficient of the single row of posts when
the electric field is parallel to the posts. We will assume this to be sufficient
evidence for the statement that, for almost all interesting frequencies, the
reflection from several rows of posts will be a maximum when the incident
electric field is parallel to the posts. Thus a rough bound on the reflection
from a trestle can be obtained by assuming all the dielectric material to be
concentrated into posts or sheets parallel to the electric field of the incident
wave.

The proof, that an H-wave is reflected from a row of dielectric posts
less than half as much as an E-wave, is rather lengthy, but it can be broken
up into three shorter, logical parts.

First we will look at the H-wave scattering from a single dielectric
post in the frequency range where equation (2.10) is valid. The result will be
a field proportional to g, the normalized transverse static electric polarizability
per unit length of the post. (i.e., the transverse electric dipole moment per

t
unit length induced in the post, p, is related to ¢ through p = a(e - eO)AEéX s

. ext . .
where A is the cross-sectional area of the post and E is the external electric

field).

Next, we will show that RH’ the reflection coefficient when an H-wave is
incident on a row of posts having a plane of symmetry perpendicular to the
incident wave vector, is proportional to ayy(kA/Zd)(er - l)Ey, where Ey is the
electric field at any post due to the incident wave and the scattering from all
the other posts. This results in a relatively simple relationship between the
reflection coefficient and uyy’ analogous to the representation of the reflection

coefficient of an E-wave by the right hand side of equation (3.18).
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Finally, we will derive bounds on ayy' In fact we will show that a__ is
no greater than unity, and thus, for most frequencies of interest, we will be
able to see simply that,]RH] < %|R|, where R is the reflection coefficient for
an E-wave.

To discuss the scattering of_an H-wave from a single dielectric post we
will use the notation of figure 3, the incident magnetic field now being given
by H?nc = nginC eikx. Invoking Green's theorem and the radiation condition,
the total magnetic field can then be written (suppressing the subscript on Hz)

in the form

H(p) = Hinc(g) + j {H(Qf)Gn.(g}gf) - G(Q)Qf)Hn,(Ef)}ds' (a.1)
c
where )
G(p,p') = %-Hél)(klg.— o' (A.2)
= %‘Jo(kp')Hél)(kD) + %'mzl Jm(kp')Hél)(kp)cos n(d - ¢") (A.3)

and, in equation (A.3), it is assumed that p is greater than p'.

The contribution of the first (zero-order) term on the right hand
side of equation (A.3) to the integral onm the right hand side of -equation
(A.1) may be calculated in a fairly straightforward manner when p 1s greater
than any LQ'I within the post. Denoting H outside the post by He and H

inside the post by Hi’ we have

o}
ih

- 1y (1) i 1y (1) ' '
o jc{He(g )EZ J (ko ")H (kp)]n‘ - IZ J (ko ")H_ (kp)]Hen|(g )}ds

- _]; (l) ' __3_ 1 t ____B_ 1 t
=7 B (ko) JC[He(Q‘) o T ko) = I (ke') o H_ (o ) Jds
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i

o 4

i
A
i

A

The second

or, since

we have

(1) 1y _0 1y _ _O 9 t '
H " (ko) JC H ") oo J (ko ") c. o H (p')(ds
(1) J (kp')

1 (ko) J;'-%Hi(g')vwo(kp‘) - = VHi(g')éds'

' ty.of ' __L_ 1 t2 t
V'H (p") V'S (ko )(1 = +H, (DT (ko)

(1)
H (ko) JA

1 |2 1
Jo(kp )V Hi(g )Eds'

€
r

two terms of the integrand cancel, giving us

. -1 ¢ 3H(")
= ik (1) €r — PN At gt agt
I=-7 H (kp) = J 507 Jl(kp Yo'dp'dd
r A
ik (1) €r_l
= -3 b (ko) : JAiweE(b(p',¢')J1(kp‘)p‘do'd¢‘

2T
J E (0',0")p"de’ J E-ds'
o ¢ around

circle

= J UxE-dS'
over

circle

iwuo J H(p')ds'
over

cirecle

. 2
1wuoﬁ(g)0(wp' )5
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) —1
() I =4 (1)(kp) H(0)0

I‘

J oJl(kp)dsf
A 2

a -1

B (ko) 5 g B (ka) “J

where "a'" is some typical dimension of the cross section of the post.

The above pattern of calculation can be followed in determining the
contributions of the other terms on the right hand side of equation (A.3)
to the integral of equation (A.l). The result is that the terms of order two
or higher contribute only to order (ka)4 or higher, but that the first order
term, which we will hereafter take as the dominant term at the frequencies we
are interested in, contributes a term of order (ka)z. In particular, if the

X - y plane is a plane of post symmetry (which we will now assume; the proof

carries through in general ~- it just gets messier),
PR S CO P (e - ¢ )E_(p)ds
) 1 % 1 p)cos ¢ A € €, y-Q
ck? (1)
= - = H(kp)eos ¢p, (A.4)
where
p = | R(p)ds
7\
= (¢ - € YE(p)ds (A.5)
A o=

is the transverse dipole moment per unit length induced in the dielectric post.
Making use of equation (A.4), we can now write the reflected H-wave
from an infinite row of dielectric posts, when the incident wave vector is

normal to the row, as
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[20]

ck™p &
TR R S RSO S H§l)<k/x2 +(y - md)z) (4.6)

m==e /k2+(y—md)2

Invoking the Poisson summation formula, and differentiating with respect

to x, the reflected Ey field can then be written in the form

ref _ 1 3H
Ey G,y) = -iwe  3x L
o
p k . © 2_ 2
- EX“E' o ikx ) Z cos(g%ﬁz)e(zﬂxfd)/ﬁ @ ’ X <0 (A7)
0 m=1
thus
p k i
Eref(x,y) +-Ez—— e Tkx as X - — o, (A.8)
b eod
i.e.,
p k
Ry = __-117555 (A.9)
2e dE
o o

We can now define a normalized dipole moment per unit length through

= (e - e JAa E
( 0) yYy ¥

pY
where EY is the field at any particular dipole due to the incident wave and
all the other dipoles (it is assumed that EY is approximately uniform over

the post), and thus we can rewrite equation (A.9) as

(e ~1) E
- _r 7 kA A
RH - 2 d Otyy Einc (4.10)

But it can be shown that
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inc ick
E =E
y 0 2weo Y o md
. ikp
_ pinc
B t2ead S
)
i(e -1)
_ pinc r kA
= EO + > a OtnyyS2
Einc
= — (A.11)
1 i(sr-l)(kA/d)ayy(Sz/Z)
where
= H{P (nka)
82 = z —_—— (A.12)
m=1
Combining equations (A.10) and (A.ll), we have
(e_-1)(ka/d) (a_ _/2)
N T S TV LCGEY (4.13)
r yy 2

This is to be compared with the other reflection coefficient, easily derived

from the results of Section III,

(e?—l)(kA/d)
1—i(er—l)(kA/d)(del/2)

7] -
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*

Thus we see that, except when kd is very close to those values where S1

blows up (and S, does not blow up in the first, and most interesting, stop

1
band if the inter-row spacing is greater than half the spacing between posts

in a row, which is a weakened version of secondary assumption 4, Section 1),

;{h 2 otyy/Z (A.14)

Before we go on to prove that ayy is less than unity, it might be well

to point out that S2 can be transformed to a more éasily computable sum by

the following manipulations

Hfl)(mx) 1 XHEl)(mx)
L= 3z Ll —=
I SN N SRR G ¢
== mzl - - + JOzHO (mz)dzg

-_F 1 _x  ix rzy _ 1
5t 2 4+n[l“<ﬂ9‘4]

[oo]

+ 21 Z [ZWm - /(ZHm)z - X2 "'EE"] »

* =1
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but we will not determine any numerical values of’S2 in this notg. The above
transformation is merely for future reference, since it does not seem to be
well known. ' ’

Now let us examine the normalized polarizability ayy' We are dealing
now with electrostatics, and so let us talk in terms of potentials. Let ¢1nc
be the potential of the incident electric field and ¢ be the potential of the
total electric field. From the fact that
inc

j [v(o - ¢ )]2 ds = 0,
A

where the integration is over the cross section of the post, we have

inc

f V(o - 6170 - 617%)ds = 0
. |

J VL6 - 6T 7( - $T7%)Jds = 0
A

J b - 6™ - 6™ ds = 0
c n

J pRC oIn¢ 4 J (4 - 67" = f 6427 (4.15)
C C C

; . , ' inc .
We will determine an appropriate expression for (¢ - ¢~ ) on the surface
now. Denoting potentials in the exterior region by a superscript e and
potentials in the interior region by a superscript i, we have, in the exterior

region,

e _ ,inc e _ e '
=6 | e - e

and



i i .
0 = JC[¢ G\ - G¢n,3ds .

Subtracting these two equations, and using the boundary conditions

¢e - ¢1
e —
¢n - €r¢ns

we can say that, in the exterior region, or on the surface,

inc
- (e

i
¢ =0 - 1) Jce¢n de'. (A.16)

Equation (A.16), when substituted into inequality (A.15), leads to

n n

J §1 o1mC 4o (e - 1) J J 617 6410 dsds' » j 4627 ds. (4.17)
C c cC Cc

But it is clear that the double integral in this inequality is a positive
quantity since it can be thought of as being proportional (with a positive
proportionality constant) to the total electrostatic energy corresponding to

a surface charge distribution ¢;nc. Thus

J 9617 ds < J $7° 61 as (4.18)
c Cc

. a1 inc |, .
Now let us specialize to the case where ¢ is the potential of a

uniform field in the y-direction (i.e., ¢1nc = _E;nc ¥). We then have
J ¢:mc ¢1nc ds = j (V¢1nc)2ds
c o A
; 2
= (E;nc) A, (A.19)
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while, from equation (A.5) and the definition of @yy’

S |
= (AR J E dS
o A Y

Q
I

yy

f
1
~
o>
&
o

o
o]
A4
1
—
._\
Q2
|&
0O,
wn

|
N
o=
t=
M-
B
@]
~r
|
—_
—
Rs
~
I
jo
G
~
Y
0]

L2 . '
- (AE;HC ) J 967 ds | (A.20)

o

Thus, combining equations (A.19) and (A.20) with inequlity (A.18), we

have

o <1, (a.21)
vy

and thus, from equation (A.1l4)

[Ry/R| 5 1/2. (4.22)

Inequality (A.22) is our reason for neglecting the H polarization in the
main body of the text and our reason for saying that a rough bound on the
reflection coefficient of a trestle structure can be obtained by assuming all
dielectric material to be concentrated into the posts parallel to the incident
electric field vector. ‘ B

Before bringing this appendix to a close, there are two points of general
interest about the immediately preceding electrostatic work.

The first point is that it was never essential to use the two dimensional

character of our problem in proving inequality (A.21). The same inequality

will hold for aﬁy diagonal element of the polarizability tensor of a three—
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dimensional dielectric bleb in the form

Pxx < (sr - 1)v

where the induced dipole is given by p = eog;génc.

The second point of interest is that, while working on the analytical
proof of inequality (A.21), two integral equation formulations of the dielectric
blob problem became evident. These two equations are for the determination of
either the surface potential or the exterior normal derivative of surface
potential (from either of which, the complete field distribution can be
determined by quadrature) when a dielectric blob is immersed in an incident

electric field. The two equations may be written in the forms

g -1

b = =25 6@ - 2 I J G_, (x,z")6(x")ds’ (a.22)
r r c
2€r inc,. E:r"1

¢, (x) = E;;T ¢ (@) -2 ] JCGnQE‘E')¢n'(E-)dS . (A.23)

The first of these is well known (see, for example, [40], p. 75). The second
is not so well known, but should be just as useful for numerical work. 1In
fact, while equation (A.22) would seem to be appropriate for e, close to unity,

equation (A.23) may be more appropriate as €. gets large.
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Appendix B

A Matrix Inversion

In Section IV we found it necessary to solve the set of equations

X +c eikDIn—m| X

n 2 0= Ty 1 <n<N, (B.1)
m=1

This appendix gives the method of solving the above set.
To start with, létj@stldbi"atrthe above set in the range 1 < n < N.

Then we can write any of the remaining equations in any of the three following

forms
2 ikD (n-m) X ikD (m-n) .
x + ¢ Z e x +c z e X =y (B.2)
n m m n
m=1 m=n-+1
ikD © ikD(n-m) ~ikD N ikD(m-n) ,
+ ce Z e X +ce z e X =3 B.3)
n+l m m n+l
m=1 m=n-+1
-ikp 2 ikD (n-m) -ikD X ikD (m-n) .
+ ce Z e X +ce z e x  + 2ic sin kDx_=vy (B.4)
n-1 m m n “n-1
m=1 m=n+1

Equations (B.3) and (B.4) come about by the replacements n + n + 1 in equation
(B.2), while adjusting the limits on the sums to be the same as those in
equation (B.2) by adding or subtracting appropriate terms. Now, if we add
equations (B.3) and (B.4) and from the sum subtract 2 cos kD times equation

(B.2), we obtain

x - 2(cos kD - ic sin kD)xn + x - 2 cos kDyn + Vo1 ‘B.5)

n+l n-1 =~ Yn+l
This equation, as we said above, 1s true in the range 1 < n < N. Let us see

what we have to do to make it true for 1 < n < N. By looking at equation (B.5)
for n =1 and n = N, it can be seen that (B.5) can be assumed to be true in the

total range of n if we define
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Yo 5 e vy (B.6)
e 8 vy (B.7)
and we set
X, = eikD Xy (8.8)
Xl = eikD L (B.9)

Thus equations (B.l) are equivalent to the difference equation (B.5) with
the boundary conditions (B.8) and (B.9) and with the subsidiary definitions
(B.6) and (B.7). Let us find the solution to equations (B.5) by finding a

"Green's function'" defined by

Gn+l,m - 2 cos eGn,m + Gn—l,m = Gn,m (B.10)

along with boundary conditions equivalent to (B.8) and (B.9) and auxiliary

definitions equivalent to (B.6) and (B.7). In equation (B.10), Gn o is the

b
Kronecker delta function, and we have written

cos 6§ = cos kD ~ ic sin kD. (B.11)

Once Gn n is found we can clearly write the solution for X, in the form
»

x_ = ¥ Gn,m(ym+1 - 2 cos kDy_ + ym_l) (B.12)

or, equivalently,
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-2
(Gn,m—l cos kDGn,m * Gn,m+l)ym

ke
I
=]
I b~122

-G,y *G, v, -6 (B.13)

n,o n,1l7o n,N+lyN + Gn,NyN+lL,

a i i . . =
Thus, assuming for the moment the symmetry of Gn,m (i.e., that Gn,m Gm,n>’

it follows from equation (B.13), by using equations (B.6) through (B.1l), that

N

x =y - 2ic sin kD mzl Gn,mym' (B.14)

Equations (B.12) and (B.l4) are two alternative representations of the solution,
X of equation (B.l). It remains to determine an explicit formula for Gn, .
From this explicit formula, the symmetry that we required above will be obvious.
The solution of equation (B.10) for either nm > m or n < m must be a linear
combination of the two homogeneous difference equation solutions. Let us look
at the case n < m. Then it follows from direct substitution in the homogeneous

difference equation that

G = A sin n6 + B cos nb n<m (B.15)
n,m

is a solution, where A and B are to be determined. Boundary condition (B.8)

implies
A sin © + B cos & = e_ikD B
and thus
Gn,m = 3150 {sin 6 cos n6 - cos © sin né + e_ikD sin ne} n<m (
=3B {e-ikD sin n8 - sin(n - 1)6} n < m. Eﬁ.lé)
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Similarly

C _
G _ { ikD

a,m - 5in sin(N+ 1 - n) - sin(N - n)}, n > m, (8.17)

or, in order to assure equality of the two expressions when n = m, we may write

e-lkD sin nf-sin(n-1)6
G = K -
n,m e—lkD

n <m (3.18)
sin mf-sin(m-1)8

-ikD . .
G - g e sin{N+1-n)6-sin(N-n)8 0> m (3.19)

Rl e_lkD sin(N+l-m)6-sin(N-m)8

In order to determine K, we substitute the above expressions in equation

(B.10) for n

m and find

-ikb

-ikD
_ e
1 - 2K cos 6 = K e—ikD

sin(N-m)6-sin(N~-p-1)6 +x 8 sin(m-1)0-sin(m~-2)9
Koo

sin(N+1-p)8-sin(N-p)6 e sin mé-sin(m-1)6
(B.20)

When K is determined from equation (B.20) and substituted back in equations

(B.18) and (B.19) the result, after algebraic simplification is

. _ [e"lkD sin(N+1—m)e—sin(N—m)6][e_lkD sin nf-sin(n-1)6] n<m (B.21)
R sin ee_lkD[Z sin No-el*P sin(N—l)e*e_lkD sin(N+1)6 ]
[P sin(vt1-n)e-sin@-n)elle”™™ sin mo-sin(m-1)o]
¢ - 3 nxm (B.22)
n,m ikD

sin Be_lkD[2 sin NB-elkD sin(N-1)6-e sin (N+1)6]

Thus the solution of equations (B.l) is completed.
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