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* Abstract

A mode theory is introduced to derive the solutions for the electric
and magnetic fields near the center of TORUS. The main interest of this
note is the fields on the plane of TORUS up to one-fourth of the radius from
the center. This analysis decomposes the fields into various Fourier
modes which depend only on the coordinate system being chosen. Even
if the antenna properties are unknown, one may still calculate the Fourier
modes which are independent of source distribution and independent of the
frequency dependent loading impedance. As the loading impedance and
source function are determined, one can compute the excitation factor of

_each mode, which.is related to the current distribution on the antenna. -
Loaded with a uniform resistance, the frequency response with a delta-
function source and the transient behavior of the fields with a step-
function excitation are shown for various .cases. The possibility of

extending the mode method to other symmetric types of antenna is also
discussed.
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I. Introduction

In the previous note [1], the fields at the center of a full circular
TORUS (Fig. 1-1) and a vertically oriented TORUS (Fig. 1-2 with &j‘l = 0)
on a perfecily conducting earth have been studied. There, a special
toroidal coordinate system as shown in Fig. 1-3 was introduced and
its relationship with the conventional rectangular, cylindrical and
spherical coordinates has been discussed in detail. The general solu-
tions for the electric field E and the magnetic field H in space have also
been obtained. For the field components expressed in cylindrical

coordinates (¢, ¢, z), but with toroidal coordinates (X', &', ¢ ') for

3

the surface current J components, the fields are

Zl ff ‘G(F: £) {58_‘ [(a + b cos(&")) JSfr(‘g"‘, ¢ ':] [ba—é-“j ,(gr’{b ‘{Hdg'dtﬁ '

g (15 "
-y bff v, [a+bcos(§’ )} ‘ sin(g')cos(¢ - ¢ ')JS (g ¢ "

: o

+ sin (¢ ~¢‘)JS (g', ¢')Jd§'d¢ " (1.1)
. G

-ﬁll-—*

;nl

-

v 9 prgliinq] _§_ ! 1 t 1 1 1 ! %
75, —EIJ;‘G(r,r)‘Bg,l(aercos(’g"))JS (£, 4 )]+[b8¢,J (8", 4 )]}d's as

-

- bffG(_' “Ya+bcos(g’ )} [sm(g )sin (¢ - ¢ ’)J (g', ¢
3

dg'de !, (1.2)

+coslg -¢"N (£, ¢")
S
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dg!dé 1

Y _ 0 = o ! | _?_ togt
25 % IJ;'G(r, ?)‘5—5,— |(a+beost ))JSS'(E 6 )]+[ba¢‘JSé (AR

-ygbff GE ¥ |a+beos(eN] |- cosens | (e, |aeass (1.3)
] g! ,

and
Hzé_af G(??')[a+bcos(§’)} - cos(gVJ_ (g ¢"jde'dg’
VRRTERN) S 3

- by ﬂ G(?,?w[awcos(s*)]{sm (gMsin(é -¢ 1M, (£,47)

z ), g
+cos (6 "QSI)JS (EI,QSI) dg'dg ! (1.4)
d)l

Hy = b%fL,G(F, ?')[a+bC°S(§')] L sin{gf cosls -¢ I, (&% 40

3

+sin($ - ¢ ')qu5 r(‘i;-", ¢ ')\ de'd¢! -bg%ﬂs‘!G(?, ) [a+bcos(§’)

—cos(g"‘)JS (E‘,é‘)\dg'dg&‘, (1.5)
SI

H, < 3 f_[S‘lG(?,?‘)xy [a+bcos(§')iEsin(&”)sin(cﬁ 3, (84

a—?ﬁﬂé‘G(f’, ) [a-i-b cos(&j‘)l

(g6

<l

+cos(¢ -6 DT (', 6 ')\dg‘dcﬁ' -
S(l’)t

‘- sin(g" cos($ - ¢ ')JS (8", ¢')+sin(¢ -c{a’)JS deg'dé .

g ¢

(1.86)
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Here, "a' is the major radius and 'b" is the minor radius of the toroid;

Z0 is the characteristic impedance of free space, about 377 ohms;
G(r, 1) is the Green's function defined as

Glr, o) = S . (1.7)

and

Pl

=¥ —a-bcos(g’)]2 +[z+bsin(g')]2 + 4y sin2<%§>—’>[ a+bcos ("]

(1.8)

Since the field solutions are in integral form, some Fourier
expansion techniques were suggested to simplify these equations, Under
the assumption that b2 << a2 and kb << 1, JS may be neglected and the
g

total current may be written as

(¢) =27b T (). (1.9)
%

This current was Fourier expanded as

= -ing
I =
¢)= > I e , (1.10)
n=-oco
For a delta-function voltage source V, and a total loading impedance Z

uniformly distributed on the TORUS, it was found that

nan ika
<ika> T3 <Kn-l - Kn+1>] ;

(1.11)

I =1 =V {Z+7Z a
n -n o} o}

~13-



where
K =L m(ﬁ)-ws&a) , (1.12)
o a7 b o]
_1 nb nb
X —57[ KO(& ) Io (?) POy mpylkady (119
and n-1 .
Cp= 72 mZ=O SmEl In (4n). (1.24)

Analytical approximations and numerical techniques for the integral
of the Anger-Weber function Sm have been given in detail in Mathematics
Note 25[2] ; 75 is Euler's constant, numerically about 0,5772157;
Io and Ko are the zero order of the modified bessel functions of the
first and second kind respectively.

In order to produce a plane-wave-like field at the center of
TORUS, it has been found that the suitable loading impedance on

TORUS is a pure resistance
R_=Z_[In(8a/b) - 2] (1.15)

This load will be used for Z in the following analysis. For conven-
ient comparisons, the field will be normalized to the fields at the
center at low frequencies as given below:

vV Z
0 o

Eo "~ ZaR_ ¢ (1.16)
0
Vo

Ho B 2aRO ' 7 (1.17)

-14-
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I1. Current on the Toroidal Surface

Let's normalize the current in Eq. (1. 10) by its D. C, values

V /R . That is,
(o] (o]

i1(¢) = ROI(gb)/VO = 1,72

g

in cos(ng ), (2.1)

where SRR 2K o
n

: : Z Zo n ika
= = { m—— —_— -+ -
Wl R T I T 5 (K 17K

(2,2)

The currént mode in is plotted in Fig. 2-1 with respect to ka for n from
0 to 10 for Z = RO. Here, |rl is a function of-loading-impedance and
without load, the peak of In will occur at ka = n, For a pure resistive
load, the peak of In appears near ka =n, For a given mode, the ampli-
tude of ln increases as the b over a ratio is reduced, Altho2ugh it has
been shown by Wu[3] that hlisinversebfproporﬁonaltorl for large
n, the peak of In actually decreases very slowly as n increases for
small n, rJl.‘herefore, it seems necessary to include a sufficient number
of modes in order to get the total current distribution by Eq. (2. 1),
However, we will show in the following chapters that only a few modes
are necessary for the fields near the center,

Figure 2-2 gives an example of i((ﬁ) for a given ka. Since a
delta~gap source was used to approximate the actual drive terminals
in the mathematical model, the result shall not apply to § = 0. Other
than this point, the figure shows a very nice convergence after adding
for more than 25 terms of Fourier components., The real part of
current shows a faster convergence with the summation of as little as

ten terms because a pure resistance RO is used for the load, Here,

-15-
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Figure 2-2, i((ﬁ)) for Z/Zo = In(8a/b) - 2 and ka = 9
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In(27a/b) = 10 (or b/a = 0,042) was used in order to compare with the
calculation from direct integrations by Licking, et al. [4]. Both results
appear similar except that in this note a somewhat lower amplitude is
obtained due to a loading resistance. The computation here, of course,
is much faster as compared to their numerical integration because
analytical expressions were used for the integral of the Anger-Weber

function [ 2].

III. Fourier Expansions for the Green's Function

The field near the center is the main interest of this study., Let
Y =ya, the field on the plane of TORUS, namely z = 0 and the range

of y from 0 to 0.25 will be considered first in this note. Since
2

2
a >> b" was assumed, Egq. (1, 7) now becomes
-ikaD

_ €
G(q,s,qS,O) = -Z;‘_—a—D— (3.1)

where

1/2

D = [(p - 1)+ 4y sin” ) (3. 2)

This Green's function may be written in terms of Fourier coefficients
= 1

Gly, 4,00 = > a Gn(q,)e‘m‘15 (3.3)

n=-ow

-19-



where
27 -ikaD
1 ing
Gn(q;) iy J; 5 ¢ d¢
=G (qj ). (3.4)

It will be very time-consuming to calculate Eq. (3.4) by direct
numerical integration. Since y < 0.25 is the range of interest, one
may use some Taylor expansion technique to reduce Eq. (3. 4) into an

analytical form. Neglecting terms of the order of y 3 and higher,

2
D=1-y cos((ﬁ)—k%— [1-cos(2¢ ) (3.5)
and
-1 2
D "=1+yg COS(gb)'i'-LEZ— [1+3cos(2¢)] (3.6)

Therefore, for n> 0, Eq. (3, 4) becomes

;B ika [1-¢ cos(@)+ 4;2 (1-cos(2¢))/4] ing
G (y) =5 f © © 4
n'? 27 2
© 47 [1-y cos(¢) +%— (1 - cos(24))]

. 2
_ 11{35]5 5
: -ika[1l-ycos(d)] _ind 2
~ £ 5 f e 1 o e [1+y cos(q5)+£4—(1+3005(2¢)]
3
o

2
x[1+l—k—z‘1’-— cos (24)] dé

-20~
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. 2 27
_ oikay” /4 [ -ika [1-¢ cos(¢)] ing
= e e
8
o

2 . . 2 . . '
[<1+H’4—> + 4 (4o L 3 rika) (10 47 )} . (3.7

(5]

For a periodic function,

37
b oL [T _-ika[l-y cos(§) by o ke fz Jikey cos(9) img
m 27 2
0 T
T2
_ e-i,ka j‘ﬂ e-ikaq;sin((ﬁ) eimqs 61@2_77 o
27 e
—i(ka-—I%Zr-) . o
_ e f oL [mé -kay sin(é )] a6 + f ei[qu -kaysin(¢ )] dé}
27
O -
. mm
) e—l(ka——z—)fw cos[m¢ - kay sin(¢)] a5
A T
~i(ka - /2)
= et mr J-m(kaq:) (3.8)

So, an analytical expression for Eq. (3. 7) is now obtained,

-21-



-ika(l +y 2/4)+in1r/2
e B -
47

2
- L2
Gn(llj) (1+ 47)Jn(katp)

2
- - Brika) [J (kag)+ ] (kay)]
+—§’—i[In+l(kaLp)—In_1(ka¢)] =G_(y) (3.9)

This formula is very accurate for n=0, 1, 2, 3 and the accuracy
decreases as n increases, Since g < 0,25 is the range of interest,

the maximum n needed to consider is probably around 15. The error
in Eq. (3.9) for n < 15 is less than 10%. Actually, the field depends on
Gn in a very complex manner. An analytical expression for the Gn
certainly is much desired. Moreover, the computation for Eq. (3. 9)
is hundreds of times faster than for direct integration. Figures 3-1
and 3 -2 give examples for Gn fory =0.1andy =0,25. The peak of
Gn decreases as n increases; this is also a general tendency observed
for the 'n" This phenomenon becomes more apparent as we move
toward the center. On the other hand, the number of oscillations for

Gn increase with respect to the frequency as ¢ increases.

IV, Fourier Modes for the E-Field

In the following analysis, we will consider that the TORUS is located
in free space, i, ez,, 0% =21k = /K € . Using Eq. (1. 9) and neglecting
JS by assuming b~ << a”, Egs. (1.1) and (1. 2) will be reduced to

-2 -
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o ¥
+k2a
ik 1
—— R, ==
z,B Ty

- oy O (") Dy
G( ,r)—aé, [277 ”dg do
”dg’dé', (4.1)

G(Z, ) -5%, F(%T'—)] }dg’d@'

G(Z, T") cos(¢ -¢ ") {%‘—)H dg'dg

G(¥, ') sin(§ -¢ ") l: )

And EZ(LV, ¢, 0) is identically zero by symmetry,

For locations near the center, the Green's function depends

only ony and ¢ as given in Eq. (3. 1),

now become

27
yl¥:8.0 = ——f

Therefore Eqgs. (4.1) and (4. 2)

0¢'

Gy, é- ¢, al‘“”]sb

9 9 27
+ ka f G(q;,q’)—(ﬁ', 0) sin(¢ -¢ ") I(¢ ") de ', (4.3)
o)

BI(g"
Gly, -6, 0 8(2,)1 dg'

Gly, ¢ -¢ ', o) cos(g -¢") L(g ')J do ', (4.4)

-25-



If this field is normalized to its D, C. value at the center given in

Eq. (1.16), one obtains

;
:
:

halle o)

E,¢ )—8——3-—2772(}()‘“““‘”"Oo('i)‘in‘ﬁ'd'
gle-8. 00 = g 84;_[ m'¥ e 2 ind e ¢

They are finally reduced to

Z‘x’ < |f2n\ | -ing
E.\y(q;,cﬁ, o) e -am InKE)Gn(q’) *ka [Gn-l-l(q’) B Gn—l(q’)l}e
(4.7)

- “ : 21’12 . -ing
Eqs(np,ﬁﬁ, o) = Z -27zfln‘<qj ) Gle) 1ka{Gn+l(q; ) + Gn_l(rp)l e .
n -oo
(4.8)
Now, we may define the Fourier modes for the E-field as
follows:
N (y,6,0) =-iN (g, 0) e_in(15 (4.9)
n Yn

-26 =



n

_ 2n ! .
N-‘Jg (p,0) =27 {<_1T<—£> G () -ika |G, (y) - Gn-l(q’)]] , (4.10)

Nqs (¢,¢,O)=N¢ (g, 0) o1 (4.11)
n n

2
- 2n :
Nqsn(u,;, o) = -27 <qJ ika> G (p) +ika|G () + G (y )“ (4.12)

It is not difficult to show that

Nugn(qs,o) = - NW (y, o), (4.13)
(-n)
N (y,0)=0 ' o (4.14)
Yo
and
N, (g,0) =N, (g, o). (4,15)
(bn q)(—n)

Then the electric field can be written in terms of these Fourier modes:

¢¢] e e]
Eyly. 6.0 = Z imN‘%J (y,6,0) = -2 Z | N, (g0 sin(ng)  (4.16)
n=-oco n n=1 n
and
ij . L m =
E¢(¢,¢, o) = HZ;OO Iansn(Lp,qS, o) = IoNd)o(q;, o) + 2 n;l |nN¢n(l[J, o) cos(ng).

(4.17)
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The above analysis concentrates on the plane of TORUS for the
purpose of demonstration. Actually, the mode expansion technique is
also valid at other locations. So, we may write the field in terms

of the Fourier modes in the following general form:

[o0]

E i N
(w, 6,20 = > i N _(¢6,2) (4.18)
n=-o
-—
These Fourier modes Nn are the general solutions for a circular loop

and are completely independent of the loading impedances as well as

the source functions of the antenna, They are equivalent to the mode
structures in a waveguide and can be calculated in advance regardless
of the current distribution on the loop. The factor in may be con-
sidered as the excitation factor of each mode. It depends on the antenna
property such as the source functions and the loading impedances; and
in this case, a over b ratio., Here, in may be calculated analytically "
such as that described in Chapter II or numerically such as that dis-
cussed in references[6, 7, 8] . Figures 4-1 to 4-4 give some example
of the mode structures, Near the center (e.g., ¢ = 0.1), the zero
order mode dominates the ¢ component in the low frequencies up to

ka = 30 and the first order mode dominates the y component for ka up
to 15, Although some other modes might become important at higher
frequencies, the amplitude for mode numbers greater than five decays
very fast as n increases. Away from the center (e.g., ¢ = 0. 25), a
few modes still dominate the field at very low frequencies. Bui then, .
one would reguire about 15 modes as ka approaches 50. Therefore, at

low frequencies or at locations very close to the center (symmetry point),

only a few modes are important, As the frequency increases or as one

moves away from the center, then more and more modes have to be

taken into account to get the field pattern. The highest frequency
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presented in this note by the mode theory is for ka = 50, This is because

the analytical formula for the currernt given in Chapter II is only valid
up to this region and one should not regard this as the frequency limit
for the mode theory. Nevertheless, the mode theory is convenient for
calculating the field at low frequencies since some simple-asymptotic

formulas can be used for high frequencies.

V. E-Field as a Function of y and ¢ in the Frequency Domain

Because of symmetry, only the first order mode will contribute
to the electric field and the zero order mode to the magnetic field at
the center. We will show here that Eq. (4. 16) for ¢ = /2 and Eq.
(4.17) for ¢ =0 as ¢~ 0 actually converges to that obtained in the pre-
vious note [ 1] by a different method.

The Fourier component of the Green's function Gn(q;) derived in

Eg. (3.9) is related to the Bessel function which has the following

propertiy

n

~ 1 b4
J-n(X) = T o) (-2—> for x <<1 (5.1)

where I (n) is the Gamma function. Therefore, from Chapter IV,

: lim
(y =~ 0,0,0) _ 21 N, (g)
E¢ Lp O, 0, O o~ Lp"‘O qsl 4}

N o 2 :
= -drly il—nfo <m> G () +ika [Gyly) + G ()]

=33~



~ . ile—ika Lim i(ﬁ) [Il(kaqs) -% i .TO (kay)] +[ika Io (kay)]
2{5"’0

o+ -ika | 2 [fukal @ .] ..

== bye @g{@”z—) -4 v

= - il (ika + 1 +i—lj—a-) o ika | (5.2)

E (g0, n/2,00= - 2 | lim N (g
LP 14’—*0 1

g—47rillim

(Ei‘a') G;(q:) -ika [Gz(qs) - GO(Lp)l

o
. 8J. (kay
o 1 ~ika .. 2 . 1 1 .
= - Ile ;1_{1; <IE£) [l———{ﬂ;— T3 Jo(kaq:)] + ika J—O(kaqj)
o 1 -ikajf 2 ika 1 .
= e <11:5) <‘§— ¥ 5) +1ka\
= - i1<ika +1 +I1_{15) L (5.3)

Equations (5, 2) and (5. 3) agree with our previous analysis using a

different approachil]. Figure 5-1 gives examples for the electric

field very close to the center of TORUS calculated by the mode method

and is identical to what has been obtained in SSN 160, a
In the following plots, we will set the turn-on time for the source

at

t= - \[(an-b)2 - 2ga(b-a) cos(g) + y 232 /c (5.4)

In other words, the fields at various locations start to build up at t = 0.
Using the results in Chapters Il and IV, the relative field strength for
the electric mode inNn in ¢ and g directions is shown in Figs. 5-2 and

5-3 at various distances from the center. The first order mode dominates .'
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the field very close to the center. The other modes gradually become
important as we move away from the center. Actually, at very low
frequencies, the first order mode can almost represent the total field
in quite a wide distances from the center. At intermediate frequencies,
however, many modes have significant field strength away from the
center. But still, the higher the order of the mode, the smaller
the field strength so that only a limited number of modes could give
us a reasonably close value of the actual field, How much contri-
butions from each mode to the total field also depends on the sin(n¢)
and cos(né )} factors in Egs. (4,16) and (4.17). Taking ¢ = n/2 for
instance, all the even order modes do not contribute to the field E

and all the odd order modes do not contribute fo E | .

Figure 5-4 gives the field pattern for various number of modes
used in the summation, Although ¢ = 0.25 is a little far away from the
symmetry point (the center), we actually only need four modes for
frequencies below ka = 10, As the frequency goes higher, more and
more modes have to be taken into account., With 25 modes used, the
field shows a very nice convergence for frequencies up to ka = 50. Iowever,
at such a high frequency, one probably can use the asymptotic expan-
sion for the radiation field from a circular cylindrical antenna, which
will be discussed in detail in Chapter IX. The mode method is particu-
larly useful at low frequencies where no analytical formula is available,
In the frequency range of our interest, ka < 50, probably as low as
14 modes will give us a nice field pattern. So, in the latter calculations,
we will take the round—offinteger‘partoftp/0.18 as the number of modes
to be used in the summation, in addition to the zero order mode, This
is set for this note only and some other criteria should be used for
different frequency and space ranges of interest as well as the accuracy

requirements for the field pattern,
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From Egs.

VI.

Fourier Modes for the H-Field

the H-field on the plane of TORUS near the center is

H
z

27r\V 8#

f YaG(F, ¥') cos(é-¢") L") dg' d¢’

1 0 —- . 1 1 1 1
Zﬁ?"ﬂff aG(¥, ) sin(4 - ¢') I$" dE'dg" .

The Green's function may be written in terms of

27

BLPO

(1.4) to (1.6) one can see that the dominant term for

(6.1}

y and ¢ such that

19 2n
) y 99 f Gly,$-6" sin(é - ¢") L($*) dd' .
QO

f s Gly, 6 - ¢ cos(@- ¢ L") g’

(6.2)

Substituting the Fourier expansion formula for the Green's function

as well as the current into the above equation and normalizing the
0

H-field by its D, C. value at the center which is HO =

obtains

49—
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n=-co
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one
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n=-

0
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o ing

Gm(lli) e—im((ls -¢ ')Sin<(2§ _‘¢ ) Z | —11’1(15 1 (ﬁ
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After some manipulation, this equation finally reduces to

_ 3 1 1 1 1
H, @.¢,0 = n§:~:oo 2rl_ [Gnﬂ(cp) + Gn_l(w)} + o [Gnﬂ(tp) + Gn_l(q;)}
n
# 2 Gy @) - Gn_lm} : (6. 4)

And similar to Chapter IV, one may define the Fourier modes for the

H field as follows:

MZn(q;, o) =27 {Gr'ﬁl(q;) + G;l_l(q;)} + % G 1y (e) + G__1(y)
+ f[c;nﬂ(q,) - Gn_l(wJ (6. 5)
and
M .g,0 =M (40 gTimé (6. 6)
n n

These modes are completely independent of the loading impedances of

the antenna and in this case,
M_ (y,0) =M (g, o) (6.7)
. Z
(-n)

Therefore, the magnetic field distribution can be written as

n

X . X »
Hote 0,00 = 30 oM, 6,0 =0, @00 +2 50 1, M, (4,0 cos (n6)

n==-co 0 n

(6.8)

43~



Examples of the Fourier modes MZ is shown in Figs. 6-1
and 6-2, There are the general solutions for the magnetic field for a
circular loop antenna and are independent of the loading impedance and
source, These modes have the similar characteristics as that of the
electric field. At low frequencies, only a few modes are important
and the field strength of the higher order modes decreases very fast
as n increases, Again, the mode theory is applicable to other planes
of interest so that one may write the magnetic field in terms of the

Fourier modes in a general form as follows:

o0

Hw. 6,20 = X7 i,

n=-oo

=]

n (g, ¢, Z? (6,'9),,

Here, Mn depends only on the space parameters so that it can be cal-
culated in advance. When the loading impedance and the source function
are given, then one can compute the excitation factor in and the field
can be found readily. For locations near to the symmetry point, only

a few modes are necessary.

VII, H-Field as a Function of ¢y and ¢ at Low Frequencies

Using the mode equation (6. 8), we can show that only the zero

order mode contributes to the magnetic field at the center.

Hz(l{J—’O,(ﬁ,O)E I Him M (g, 0)

0 y>0 Z
{2 o

~ a1 lmoql 1
> 47 Iol‘b__)O [Gy(g) + m Gl(zp)]
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=i (1+ika) ™
This is in agreement with our previbus deri&ation [1]. As shown in
Fig. 7-1, the field is identical to what has been obtained is SSN 160,

In a manner similar to Figs. (5-2) and (5-3), the relative
field strengths are plotted for the magnetic modes in MZ at various
distances from the center. As shown in Fig. 7-2, the zePo order mode
is the most important at very low frequencies. It even dominates the
field at intermediate frequencies as long as the observation point is
very close to the center., From these figures, one can conclude that
only a limited number of modes are necessary for frequencies up to
ka = 50 and this is the main advantage of the mode theory.

For a sinusoidal field in free space, one may write the Maxwell's
equations in terms of the propagation constant k = w \/u-o—;O_and the
cr;haractei:cii;stic impédance ZO :‘/—MOT: as follows:

VxxE = —luowH
= -ikZ H (7.2)
O
A4 Xﬁ = iweE
O
= ikE/Z . (7.3)
O
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Normalizing E and H by Egs. (1.16) and (1.17), we get

v xE =-icH (7. 4)
and R
v x H =ixE . (7.5)

These fields, according to our analysis in this note, can be represented

by the electric and magnetic modes defined in Eqgs. (4. 18) and (6. 9).
That is,

8

I, =
In=-o0

V x i
n

— © —
N ik Z i M
n - n n
n=-o
® —
M =ik z i N. (7.7)
= n = i n
In=-oo n=-o

Although the excitation factor in depends on the loading impedance as
well as the source distributions, it is not a function of space. So, the
relationships between the electric and magnetic modes are easily

obtained:

50~

(7.6)
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VIII., E and H Fields at High Frequencies

In the previous chapters, we have obtained the electric and
magnetic field distributions at low and intermediate frequencies. For
high frequencies, one may use the far field formula for an infinitely
long cylindrical antenna since the currents are largest near the gen-
erator. The other part of the antenna, whether itis curved or straight,
has very little effect on the field near the center where it is in the
far zone. Referring to{9], [10] and Fig. 1-3, it is not difficult to
show that

: _ 91 re-ika \/I;_Z'q;cos ((ﬁr)r +(;;2

0 71 -y cos()]
. -1
<Z§> HC()2)[kb sin(0)] - i (S) (ZZO—> csc(8) H1(2>[kb sin (6)]
(8.1)
where—
5 - oL L- y cos(g) (8.2)
y sin(¢)

and Z = RO in Eq, (1,15) is the loading impedance used in this note.

The field components can now be obtained:

EL[:J =~ Ee cos (6 - ¢) (8. 3)

rm
f

p ‘—EQ sin (6 - ¢) (8.4)

and

H =z E

z o -6 (8.5)

for the high frequencies
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For an observation point near the center at (y, ¢, o), the closest

point of the source is at (1 -b/a, o, o). The distance between them is:

d = \/[a ~b-ya cos(q‘j)]2 + lq; a sin (¢ )] 2. \/(;L—b)z - 2yala-b) cos(é )+q:232

(8.6)
So, the fields on the observation point will be t = d/c seconds later after
the turn-on of the source, where c is the speed of light (3 x 108 m/sec).
In the following plots, we will set the turn-on time for the source

at

t= - Jla- B)? - 2ga(b-a)cos(¢ ) + Lpzaz /c. (8.7)

In other words, the field equations in the frequency domain should be
multiplied by a factor elkd, This includes Egs. (8. 1) for the high
frequencies, and Eqgs. (4, 16), (4.17) and (6. 8) for the low frequencies.

Figure §-1 shows E, in mode expansions as well as the asymptotic

forms for ¢ = 0,25 2nd ¢ = 0 with various b/a ratio. The low and high
frequency formulas agree very well at the intermediate frequencies,
This fine agreement also appears in Figs. (8-2) and (8-3) for E,
and Egé at ¢ = r/4, and H_at¢ =0. This fact in addition to the com-
parisons in Chapters V and VII for fields at the center seem to indicate
that the mode formulas we have derived are correct,

So, according to these figures, one may use the mode equations
for fields at low frequencies and then switch to high frequency asymptotic
formula at ka = 20 for b/a equal or less than 0.05., For b/a =0.1,

the switching point may be chosen at ka = 6.
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IX. Parameter Studies for Fields Near the Center in
Frequency and Time Domains

Using the techniques of the past chapters, we plot in the following
pages the fields near the center of the toroid in the frequency domain
for a delta-function source and in the time domain for a unit-step func-
tion source. The load is a uniform resistance Z = RO and ¢ = 0.1
as well as y = 0.25 are selected for these figures. The ratio b/a
considered includes 0.1, 0.05, 0.01 and 0.001. The figures in the fol-
lowing pages are-shown as examples only. Since the theory and the
program are developed, one can readily generate the fields at any other

locations of interest.
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X. Summary

In this note, mode method is introduced to calculate the near fleld
of an antenna. We have derived the electric modes N and magnetlc
modes M for the toroidal antenna. They are a functlon of the coordin-
ate systems used and are independent of the antenna properties. The

amplitude for the higher order modes decreases as the distance from the

symmefry point increases. In a toroid, the symmetry point is the center.

The Fourier component of the current on the toroid in is regarded as the
excitation factor which is a function of the loading impedance as well as
the source and is decreased in amplitude as n increases. As we have
found in SSN 160, the zero order mode contributes to the magnetic field
and the first order mode contributes to the electric field at the center,
Then, the higher order modes become more and more important as we
move away from the center. For example, the summation of as little as
four modes already well approximates the field at ¢ = 0. 05 for ka up to
50, On the other hand, fourteen modes are necessary in order to ade-
quately represent the field at y = 0.25. However, as we move further
away from the center, particularly when ¢ is close to one, then a lot of
modes have to be considered [11]. For ¢ greater than one, the number
of modes needed will decrease as y increases because there is another
symmetry point at infinity. This is similar to the characteristic modes
for the far field introduced in [12, 13]. However, the characteristic
modes are chosen to orthoganalize the power patterns and depend not
only on the loading impedance but also on the source function. They have
to be calculated each time if the load and the source of asymmetric dis~
tributions are used.

For these mode structures defined in this paper, one needs only to
calculate them once for each type of antenna. The loading impedance and

the source function only affect the excitation factors in’ the only
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parameters which have to be computed from time to time for various
loading conditions. Although in could be calculated separately for a
uniform load, as shown in this note, it would couple with each other for
various n in a-non-uniform loaded antenna and the current computation

is certainly more involved, The mode expansion technique introduced

in this note only simplifies the calculation for the fields, not for the
current. One still has to find out the current distribution on the antenna
by conventional methods such as experimental measurements or theoret=

ical analysis including the numerical computation.

Although, only a simple example on a circular loop antenna is
given in this note, mode theory is also applicable to other types of
antennas, and it is very useful and convenient for calculating the field
near the symmetry points even in the near zone. Actually, one may
consider these mode formulas for symmetry types, such as the toroidal,
cylindrical or spherical shapes, etc., of antenna as some kind of special
functions and tabulate them in a general engineering handbook. Once the
loading impedance and the source function of the antenna are determined,
one may calculate the excitation factor for each mode and compute the

field immediately.
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