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- Abstract

.
.

A mode theory is introduced to derive th& solutions for the electric
and magnetic fields near the center of TORUS. The main interest of this
note is the fields on the plane of TORUS up to one-fourth of the radius from
the center. This analysis decomposes the fields into various Fourier

modes which depend only on the coordinate system being chosen. Even
if the antenna properties are unknown, one may still calculate the Fourier

modes which are independent of source distribution and independent of the
frequency dependent loading impedance. As the loading impedance and
source function are determined, one can compute the excitation factor of
each mode, which. is related to the current distribution on the antenna. -
Loaded with a uniform resistance, the frequency response with a delta-
function source and the transient behavior of the fields with a step-
function excitation are shown for various cases. The possibility of
extending the mode method to other symmetric types of antenna is also
discussed.
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I. Introduction

In the previous note [1], the fields at the center of a full circular

TORUS (Fig. l-l) and a vertically oriented TORUS (Fig. 1-2 with $1 = 0)

on a perfectly conducting earth have been studied. There, a special

toroidal coordinate system as shown in Fig. 1-3 was introduced and

its relationship with the conventional rectangular, cylindrical and

spherical coordinates has been discussed in detail. The general solu-
“(

tions for the electric field E and the magnetic field H in space have also
,-

been obtained. For the field components expressed in cylindrical

coordinate-s (qJ, $, z), but with toroidal coordinates (k’, ~’, @ ‘) for

the surface current J components, the fields are

(1.1)

- Y’b(,“ I IG@jr ) a+ bcos(~’)1 sin(~’) sin ($ - 4 ‘)J (E’, (#‘)
SE!

M

(1.’)
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- y2bJ~,G(~7''la+bcOs(~')ll-cOs(~')J.E,(~*$@')ld$'d$' ‘̀1”3’

.

-~ ‘)JS (~’,1# ‘)
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(1.4)

-+ ‘)JS (g’, $ ‘)
E’

1-cos(~’)Js

I
(~’,$ ‘) dg’d$ ‘,
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Here, “a’! is the major radius and “b” is the minor radius of the toroid;

20 is the characteristic impedance of free space, about 377 ohms;

G(E i?) is the Green’s function defined as

e--y 7-F

G(; ~’) = > (1.7)
47r~F-Fl

and

2
;-;’

()
=[~-a-b cos(~’)]2+ [z+ bsin(~’)]2+4Ysin2 ~ [ a+ bcos(~’)]

(1.8)

Since the field solutions are in integral form, some Fourier

expansion techniques were suggest e-d to simplify these equations. Under

the assumption that b2 << a2 ancl kb << 1, J may be neglected and the

total current may be written as ‘c

1($) = 2rb Js (~). (1.9)

$

This current was Fourier ex-panded as

I($ ) = ~ In e-in$ . (1.10)
n=. ~

For a delta-function voltage source V. and a total loading impedance Z

uniformly distributed on the TORUS, it was found that

-13-



where

and
n- 1

cn=T-
1

2 ~Zo 2m+l +o =
In (4n). (1. 14)

techniques for the integralAnalytical approximations and numerical

of the Anger- Weber function Sm have been given in detail in Mathematics

Note 25 [2] ; y. is Euler Ts constant, numerically about O. 5772157;

I and 1(0 are the zero order of the modified bessel functions of the
o

first and second kind respectively.

In order to produce a plane-wave-like field at. the center of

TORUS, it has been found that the suitable loading impedance on

TORUS is a pure resistance

R. = Zo[ln(8a /b) - 2] (1.15)

This load will be used for Z in the following analysis. For conven-

ient comparisons, the field will be normalized to the fields at the

center at low frequencies as given below:

Vozo

‘o ‘ 2aRo ‘

v
~o= 0

2aRo “

(1. 16)

(1,17)

.

.’

II

-14-



II. Current on the Toroidal Surface

Let’s normalize the current in Eq. (1. 10) by its D. C. values

Vo/R That is,
0“

ihj) =RoI(~)/vo= io+2 ~ in cos(n~ ),
n=l

(2. 1)

where

in=i-n=/t+72 a[@-+* (Kn-,+-4\-’*(2.2)
.

The current mode In is plotted in Fig. 2-l-with respect to ka for n from

O to 10 for Z = Ro. Here, in is a function of-loading-impedance and
.

without load, the peak of In will occur at ka = n. For a pure resistive

load, the peak of in appears near ka = n. For” a given mode, the amplit-

ude of in increases as the b over a ratio is reduced. Although it has

been shown by Wu [ 3] that in is inversely proportional to n2 for large

n, the peak of in actually decreases very slowly as n increases for

small n. Therefore, it seems necessary to include a sufficient number

of modes in order to get the-total current distribution by Eq. (2. 1).

However, we will show in the following chapters that only a few modes

are necessary for the fields near the center.

Figure 2-2 gives an example-of i ($ ) for a given ka. Since a

delta-gap source was used to approximate the actual drive terminals

in the mathematical model, the result shall not apply to ~ = 0. Other

than this point, the figure shows a very nice convergence after adding

for more than 25 terms of Fourier components. The real part of

current shows a faster convergence with the summation of as little as

ten terms because a pure resistance R. is used for the load, Here,

-15-
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.

.

ln(2ra/b) = 10 (or b/a = O. 042) was used in order to compare with the

calculation from direct integrations by Licking, et al. [ 4]. Both results

appear similar except that in this note a somewhat lower amplitude is

obtained due to a loading resistance. The computation here, of course,

is much faster as compared to their numerical integration because

analytical expressions were used for the integral of the Anger- Weber

function [ 2 ] .

III. Fourier Expansions for the Green’s Function

The field near the center is the main interest of this study. Let

~ = $ a, the field on the plane of TORUS, namely z = O and the range

of y from O to O. 25 will be considered first in this note. Since
2 2

a >> b was assumed, Eq, (1. 7) now becomes

-ikaD

G(~,~, O) = ‘4naD

where

D = [(v - 1)2-1-4qJsin2(~)]
1 /2

(3. 1)

(3. 2)

This Green’s function may be written in terms of Fourier coefficients

G(qI, ~,O) = ~ a-l Gn(qJ )e
- in@

n=-~
(3. 3)

.

-19-



where

Gn(+ ) —— 1

z J
27r

o

e-ikaD

47rD

= G-n(+ ). (3. 4)

It will be very time- consuming to calculate Eq. (3. 4) by direct

numerical integration. Since y < 0.25 is the range of interest, one

may use some Taylor expansion technique to reduce Eq, (3. 4) into an
3

analytical form. Neglecting terms of the order of ~ and higher,

2

Dz I-qcos(+)+g [1-cos(zq$)] (3. 5)

and

D-’ = 1++ cos(@+< [1+~-(z+h (3. 6)

Therefore, for n> O, Eq. (3. 4) becomes

.,

2T -ika [1 - + cos(~)+ tp2(1-coS(2@)/4]ein$

Gn(t) ) = &
J

e d~

o
4X [1 - * Cos(+) + ; (1 - COS(24))]

.

+4!? 2.

I -ika[ 1- + COS($)] i(l+3coS(2$)leind [ l+! CoS(#)+ ~e
= e

8r2
o

*

2

x II++ COS(2+)] d$

-20-



For a periodic function,
[5]

37

cos[m~ - ka! sin(~ )] d$
77

. e-i(ka-m~/2) J (ka* )
m

So, an analytical expression for Eq, (3. 7) is now obtained,

(3. 8)

-21-



~-ika(l +y2/4)+inr~2

I

2

Gn(y ) =
47f

(l+~)Jn(kay)

This formula

decreases as

- ~ (3+ika) [~n+2(ka$)+tn_2 (ka! )]

the maximum n needed to consider is probably around 15. The error

in Eq. (3.9) for n S 15 is less than 107’o. Actually, the field depends on

Gn in a very complex manner. An analytical expression for the G
n

certainly is much desired. Moreover, the computation for Eq. (3, 9)

is hundreds of times faster than for direct integration. Figures 3-1

and 3-2 give examples for Gn for y = O. 1 and $ = 0.25. The peak of

Gn decreases as n increases; this is also a general tendency observed

for the in. This phenomenon becomes more apparent as we move

toward the center. On the other hand, the number of oscillations for

Gn increase with respect to the frequency as ~ increases.

Iv. Fourier Modes for the E-Field

h the following analysis, we will consider that the TORUS is located

in free space, i. e., ~ = ik = iu~~. Using Eq. (1. 9) and neglecting

J by assuming b2 << a2,
E

Eqs. (1. 1) and (1. 2) will be reduced to

0

(3. 9)

is very accurate for n = O, 1, 2, 3 and the accuracy

n increases. Since ~ < 0.25 is the range of interest,

,

●

-22-



.08

.06

.02

0

.01

.008

.006

0

A. Gnfor O<n<5

1

%

10 20 30 40

.004

*
.002

0
0

ka *

I I I I I I I

B. G forn26
n

n.

10 20 30 40
ka

50

50

Figure 3-1. Gn(v) for q = O. 1

-23-



.08

.06

—.04
*C

.02

0

A. Gnfor05n<5

0

.03

, 02

*C

.01

00

10 20
● ka

30 40 50

B. Gnforn26

n.6

10 20 30 40 50

“

ka

Figure 3-2. Gn(y) for ~ = O. 25



(4e 2)

And EZ(V, ~ , o) is identically zero by symmetry.

For locations near the center, the Green’s function depends

only on+ and ~ as given in Eq. (3. 1). Therefore Eqs. (4. 1) and (4. 2)

now become

a
277

YE (y, $, O)=
Ov JGo

J
27

+ k2a2 G(*, 4- @ ‘, o) sin($ -+’) 1($ !) d~~, (4. 3)
o

-25-



If this field is normalized to its D. C. value at the

Eq. (1. 16), one obtains

center given in

(4. 5)

(4. 6)

They are finally reduced to

Now, we may define the Fourier modes for the E-field as

follows:

(4. 9)

,.

.

-26-



‘~ (!,+, O) = N+ (+, o) ~-ln@
n n

1( )

2n2
N+ (y, o)=-2~ —

[
Gn(* ) + ika Gn+l(+ ) + Gn ~

+ ika
(*)1

n -1

It is not difficult to show that

Nynw = - NV (+, 0),

(-n)

N (Ip, o) =0
V.

and

(*, 0).N+n@s 0)=‘+(_n)

(4. 10)

.

(4. 11)

(4. 12)

(4. 13)

(4. 14)

Then the electric field can be written in terms of these Fourier modes:

and

+,(),0) ‘ ioN4 (4,0)+2 ~ i N (+, o)cos(mj).
n=l n @no

(4. 17]’

-27-



The above analysis concentrates on the plane of TORUS for the

purpose of demonstration. Actually, the mode expansion te~hniqUe is

also valid at other locations. So, we may write the field in terms

of the Fourier modes in the following general form: —

E’(qf,$,z)= f in~(+,c#,z)
nn.-w

(4. 18)

+

These Fourier modes ~ are the general solutions for a circular loop
n

and are completely independent of the loading impedances as well as

the source functions of the antenna. They are equivalent to the mode

structures in a waveguide and can be calculated in advance regardless

of the current distribution on the loop. The factor ! n may be con-

sidered as the excitation factor of each mode. It depends on the antenna

property such as the source functions and the loading impedances; and

in this case, a over b ratio. Here, i n may be calculated analytically

such as that described in Chapter H or numerically such as that dis-

cussed in references [ 6, 7, 8] . Figures 4-1 to 4-4 give some example

of the mode structures. Near the center (e. g., ~ = O. 1), the zero

order mode dominates the ~ component in the low frequencies up to

ka = 30 and the first order mode dominates the ~ component for ka up

to 15. Although some other modes might become important at higher

frequencies, the amplitude for mode numbers greater than five decays

very fast as n increases. Away from the center (e. g., q = 0.25), a

few modes still dominate the field at very low frequencies. But then,

one would require about 15 modes as ka approaches 50. Therefore, at

low frequencies or at Iocations very close to the center (symmetry point),

only a few modes are important. As the frequency increases or as one

moves away from the center, then more and more modes have to be

taken into account to get the field pattern. The highest frequency

-28-
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presented in this note by the mode theory is for ka = 50. This is because

the analytical formula.f.or the current given in Chapter II is only valid

up to this region and one should not regard this as the frequency limit

for the mode theory. Nevertheless, the mode theory is convenient for

calculating the field at low frequencies since some simpleasymptotic

formulas can be used for high frequencies.

v. E-Field as a Function of $ and ~ in the Frequency Domain

Because of symmetry, only the first order mode will contribute

to the electric field and the zero order mode to the magnetic field at

the center. We will show here that Eq. (4-. 16) for @ = 7r/2 and Eq.

(4. 17) for # = O as y ~ O actually converges to that obtained in the pre-

vious note [ 1] by a different method.

The Fourier component of the Green’s function Gn(q) derived in

Eq. (3. 9) is related to the Bessel function which has the following

property

where r (n) is the Gamma function. Therefore, from Chapter IV,

$++‘0,0, 0) “ limN (q)#’1 ++0 +1—

=-47i1_lim 1()2
— G1(I}) + ika[G2($) + Go($)]

~ ‘o
yika

I
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‘-il(ika+l+—
i;a ) e

-ika
(5. 2}

M
a Jl(ka q)

= - i ~e-ika lirn
2i 1+~Jo(kay) + ika ~o(ka+)

m aq
$+0 I

‘- ‘le-ikaK+J(~‘+)+ikal
iI(ika+ 1 + ~ ,-ika

@

=-
)

(5.3)
ika

Equations (5. 2) and (5. 3) agree with our previous analysis using a

different approach [1]. Figure 5-1 gives examples for the electric

field very close to the center of TORUS calculated by the mode method

and is identical to what has been obtained in SSN 1’60. ,

In the following plots, we wiH set the turn-on time for the source

at
.

t=- ~(a-b)2 -
i

2+a(b-a) COS(4) + $ 2a2 c (5, 4)

In other words, the fields at various locations start to build up at t = 0,

Using the results in Chapters H and IV, the relative field strength for

the electric mode i nNn in ~ and q directions is shown in Figs. 5-2 and

5-3 at various distances from the center. The first order mode dominates @
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—

the field very close to the center. The other modes gradually become

important as we move away from the center. Actually, at very low

frequencies, the first order mode can aImost represent the total field

in quite a wide distances from the center. At intermediate frequencies,

however, many modes have significant field strength away from the

center. But still, the higher the order of the mode, the smaller

the field strength so that only a limited number of modes could give

us a reasonably close value of the actual field. How much contri-

butions from each mode to the total field also depends on the sin(n @ )

and cos(n$ ) factors in Eqs, (4. 16) and (4. 17). Taking $ = 7r/2 for

instance, all the even order modes do not contribute to the field E
Y

and all the odd order modes do not contribute to E
#“

Figure 5-4 gives the field pattern for various number of modes

used in the summation. Although y = 0.25 is a little far away from the

symmetry point (the center), we actually only need four modes for

.

.

frequencies below ka = 10. As the frequency goes higher, more and

more modes have to be taken into account. With 25 modes used, the

field shows a very nice convergence for frequencies up to ka = 50. However,

at such a high frequency, one probably can use the asymptotic expan-

sion for the radiation field from a circular cylindrical antenna, which

will be discussed in detail in Chapter IX. The mode method is particu-

larly useful at low frequencies where no analytical formula is available. .

In the frequency range of our interest, ka < 50, probably as low as

14 modes will give us a nice field pattern. So, in the latter calculations, .

we will take the round-off integer part of + /0. 18 as the number of modes

to be used in the summation, in addition to the zero order mode. This

is set for this note only and some other criteria should be used for

different frequency and space ranges of interest as well as the accuracy

requirements for the field pattern.

c1
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V’f. Fourier Modes for the H-Field

From Eqs, (1. 4) to (1. 6) one can see that the dominant term for

the H-field on the plane of TORUS near the center is

(6.1)

The Green’s function may be written in terms of 1# and $ such that

Substituting the Fourier expansion formula for the Green’s function

as well as the current into the above equation and norma}zing the

H-field by its D. C. value at the center which is H = &, one
o

0
obtains

.

(6.3)
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After some manipulation, this equation finally reduces to

And similar to Chapter IV, one may define the Fourier modes for the

H field as follows:

and

M (+,+, O) = M (+, o) e-’n~ .z z
n n

(6.5)

(6. 6)

These modes are completely independent of the loading impedances of

the antenna and in this case,

Mz (+, O) = M (+, o) (6.7)
n ‘(-n)

Therefore, the magnetic field distribution can be written as

HZ(+,+,O) = ~ inMz(1-P,$,o) = ioMz(qJ,o)+ 2 ~ inMz (1+,0) Cos(n$)
n.-m n o n=l n

(6.8)
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Examples of the Fourier modes M is shown in Figs. 6-1
z

and 6-2. There are the general soluti.o~s for the magnetic field for a

circular loop antenna and are independent of the loading impedance and

source. These modes have the similar characteristics as that of the

electric field. At low frequencies, only a few modes are important

and the field strength of the higher order modes decreases very fast

as n increases. Again, the mode theory is applicable to other planes

of interest so that one may write the magnetic field in terms of the

Fourier modes in a general form as follows:

(6. 9)

Here, Mn depends only on the space parameters so that it can be cal-

culated in advance. When the loading impedance and the source function

are given, then one can compute the excitation factor i n and the field

can be found readily. For locations near to the symmetry point, only

a few modes are necessary.

VII. H-Field as a Function of q and @ at Low Frequencies

Using the mode equation (6. 8), we can show that only

order mode contributes to the magnetic field at the center.

~ (q--o, $, 0) = i l’m M (qJ,0)
z o $+0 z

o

al

the zero

.

.
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~ioe [
-ika ika 1 ika

—+-+—
1

222 ‘z 1
= iO(l +ika) e-ika (7. 1)

This is in agreement with our previous derivation [1]. As shown in

Fig. 7-1, the field is identical to what has been obtained isSSN 160,

Ina manner similarto Figs. (5-2) and (5-3), the relative

field strengths are plotted for the magnetic modes I M at various
nz

distances from the center. As shown in Fig. 7-2, the ze?o order mode

is the most important at very low frequencies. It even dominates the

field at inte-rmediate frequencies as long as the observation point is

very close to the center, From these figures, one can conclude that

only a limited number of modes are nece-ssary for frequencies up to

ka = 50 and this is the main advantage of the mode theory.

For a sinusoidal field in free space, one may write the Maxwell[s

equations in terms of the propagation constant k = u ~~ and the

characteristic impedance Z o=- as follows:
o

-+
VXE = +-ipou H

-+
= - ikZ OH ; (7. 2)

= ik~/Z
0“

(7. 3)
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Normalizing ~ and = by Eqs. (1. 16) and (1. 17), we get

+ +

VxE=-ik H (7. 4)

and
4

Vx~=ikE . (7. 5)

These fields, according to our analysis in this note, can be represented

by the electric and magnetic modes defined in Eqs. (4. 18) and (6. 9).

That is,

Although the excitation factor j n depends on the loading impedance as

well as the source distributions, it is not a function of space. So, the

relationships between the electric and magnetic modes are easily

obtained:

M=+’vx ii “
n n’

(7.8)

i =+vxiil
n n“

(7. 9)
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VIII. E and H Fields at High Frequencies

.

In the previous chapters, we have-obtained the electric and

magnetic field distributions at low and intermediate frequencies. For

high frequencies, one may use the far field formula for an infinitely

long cylindrical antenna since the currents are largest near the gen-

erator. The other part of the antenna, whether it is curved or straight,

has very little effect on the field near the center where it is in the

far zone. Referring to [9], [10] and Fig. 1-3, it is not difficult to

show that

-ikafi- 2+ COS (~)~*2
E =-2ie

e 7r[l -+ cos(~)]

R.

( )1
1

-1

r
()

H ‘2)[kbsin (6?)] - i (~) ~ csc(@) ti~2)[kb sin(8)]
o a

o 0

(8. 1)

where

~=tan-11-4J Cos((+)

q sin ($)
(8. 2)

and Z = R. in Eq, (1. 15) is the loading impedance used in this note.

The field components can now be obtained:

(8.3)

(8. 4)

and

HZ= ZoEe (8. 5)

for the high frequencies

—
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For an observation point near the center at (y, ~ , o), the closest

point of the source is at (1 - b/a, o, o). The distance between them is:

d. J[a-b-yacos($)[2+ ~ asin($)12 = ~(a-b)2 - 2ya(a-b) cos(~ )+qj2a2

(8.6)

So, the fields on the observation point will be t = d/c seconds later after

the turn-on of the source, where c is the speed of light (3 x 108 misec).

In the following plots, we will set the turn-on time for the source

at

~=- J(a-b)2
I

- 2~a(b-a) COS($ ) + ~2a2 c. (8. 7)

In other words, the field equations in the ‘frequency domain should be
ikd

multiplied by a factor e . This includes Eqs, (8. 1) for the high

frequencies, and Eqs. (4. 16), (4. 17) and (6. 8) for the low frequencies.

Figure 8-1 shows E in mode expansions as well as the asymptotic
4

forms for $ = 0.25 and ~ = O with various b/a ratio. The low and high

frequency formulas agree very well at the intermediate frequencies.

This fine agreement also appears in Figs. (8-2) and (8-3) for E
v

and E at $
4

= r/4, and Hz at $ = O. This fact in addition to the com-

parisons in Chapters V and VH fox fields at the center seem to indicate

that the mode formulas we have derived are correct.

So, according to these figures, one may use the mode equations

for fields at low frequencies and then switch to high frequency asymptotic

formula at ka = 20 for b/a equal or less than O. 05. For b/a = O. 1,

the switching point may be chosen at ka = 6.

.

*

8
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IX. Parameter Studies for Fields Near the Center in

Frequency and Time Domains

Using the techniques of the past chapters, we plot in the following

pages the fields near the center of the toroid in the frequency domain

for a delta-function source and in the time domain for a unit-step func-

tion source. The load is a uniform resistance Z = R. and ~ = O. 1

as well as @ = O. 25 are selected for these figures . The ratio b/a

considered includes O. 1, 0.05, 0.01 and O. 001. The figures in the fol-

lowing pages are-shown as examples only. Since the theory and the

program are developed, one can readily generate the fields at any other

locations of interest.
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-1o5-



X. Summary

In this note, mode method is introduced to calculate the near field
- .—

of an antenna. We have derived the electric modes Nn and magnetic

modes M for the toroidal antenna. They are a function of the coordin-
n

ate systems used and are independent of the antenna properties. The

amplitude for the higher order modes decreases as the distance from the

symmetry point increases. In a toroid, the symmetry point is the center.

The Fourier component of the current on the toroid in is regarded as the

excitation factor which is a function of the loading impedance as well as

the source and is decreased in amplitude as n increases. As we have

found in SSN 160, the zero order mode contributes to the magnetic field

and the first order mode contributes to the electric field at the center.

Then, the higher order modes become more and more important as we

move away from the center. For example, the summation of as little as

four modes already well approximates the field at * = O. 05 for ka up to

50. On the other hand, fourteen modes are necessary in order to ade-

quately represent the field at ~ = O. 25. However, as we move further

away from the center, particularly when q is c~ose to one, then a lot of

modes have to be considered [ 11 ]. For * greater than one, the number

of modes needed will decrease as ~ increases because there is another

symmetry point at infinity. This is similar to the characteristic modes

for the far field introduced in [ 12, 13]. However, the characteristic

modes are chosen to orthoganalize the power patterns and depend not

only on the loading impedance but also on the source function. They have

to be calculated each time if the load and the source of asymmetric dis -

tributions are used.

For these mode structures defined in this paper, one needs only to

calculate them once for each type of antenna. The loading impedance and

the source function only affect the excitation factors in, the only

*

●
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parameters which have to be computed from time to time for various

loading conditions. Although i could be calculated separately for a
n

uniform load, as shown in this note, it would couple with each other for

various n in a-non-uniform loaded antenna and the current computati-on

is certainly mope involved. The mode expansion technique introduced

in this note only simplifies the calculation for the fields, not for the

current. One still has to find out the cu~rent distribution on the antenna

by conventional methods such as experimental measurements or theoretv

ical analysis including the numerical computation.

Although, only a simple example on a circular loop antenna is

given in this note, mode theory is also applicable to other types of

antennas, and it is very useful and convenient for calculating the field

near the symmetry points even in the near zone. Actually, one may

consider these mode formulas for symmetry types, such as the toroi.dal,

cylindrical or spherical shapes, et-c. , of ant-enna as some kind of special

functions and tabulate them in a general engineering handbook. Once the

loading impedance and the source function of the antenna are determined,

one may calculate the excitation factor for each mode and compute the

field immediately.
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