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Abstract

The Singularity Expansion Method is employed to determine the

transient response of a thin-wire scatterer arbitrarily oriented above

an infinite perfectly conducting ground plane. An integro-differe ntial

equation is f~rmulated for the current on the scatterer in terms of

the complex frequency, s = a + ju. The method of moments is used

to reduce this integro-differential equation to a system of linear

algebraic equations. The Singularity Expansion Method is then applied

to determine the exterior natural resonances of the scatterer, the

natural modes associated with these resonances, and finally the tran-

sient response of the scatterer to a unit step incident wave. The

analytical and numerical techfiiques used, to obtain the various terms -

in the singularity expansion representation of the transient response

are discussed, and results are presented for several different orien-

tations of the scatterer with respect to the ground plane.
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I. INTRODUCTION

The Singularity Expansion Method for the transient analysis

of antenna and scattering problems was formalized and discussed in

general by Baum [ 1] . Several other investigators [2], [ 3], [4] have

also considered natural resonance techniques for conducting bodies.

Analytical and numerical procedures for the determination of the

transient response of a thin cylindrical scatterer using the Singularity

IZkpansion Method have been developed and outlined by Tesche [5] .

Similar techniques were used by Martinez, et al [6] to determine the

transient response of a perfectly conducting sphere. Marin [7] has

also applied this method to determine the natural resonances and tran-

sient response of a prolate spheroid. The numerical results obtained

heretofore by application of the Singularity Expansion Method have

demonstrated that this approach has several advantages over the

classical approach (time harmonic analysis with Fourier inversion) for

determining the transient response of conducting bodies isolated in

free space.

The purpose of this note is to investigate these advantages for

solving problems concerning the interaction between conducting bodies

or between a conducting body and a ground plane. In particular, this

note presents the transient analysis of a wire scatterer above a ground

plane using the Singularity Expansion Method. A Poc klington type

integro-different ial equation is formulated for the current induced on

a thin-wire scatterer above a ground plane in terms of the complex

frea<uency, s = o + ju. This integro-differe ntial equation is reduced to

a system of algebraic equations by the method of moments. Finally,

the Singularity Expansion Method is applied to determine the tran-

sient response of the wire current to a unit step incident wave.

The exterior natural resonances and natural mode vectors

are calculated and presented for various orientations of the scatterer

with respect to the ground plane. The behavior of these quantities as

.
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a function of the angle of inclination and height above the ground are

plotted and tabulated for a wide range of these parameters. Typical

time do.rnain results for the current at several points on the scatterer

are also included for several different wire orientations.

The results obtained using the singularity expansion method

are compared with those given by Tesche [8] for the same geometry.

These comparisons serve to correlate the data of the two studies

and lend added confidence to the applicability of the Singularity

Expansion Method to problems of this type.

II. FORJMULATION

Consider the thin wire scatterer arbitrarily oriented above

a perfectly conducting ground plane as shown in Figure 1. Nlote

that the geometry as well as the parameters defining the geometry

are identical with those in reference [8] . This greatly simplifies the

comparison of the data of these two studies to be presented in a later

section. As indicated in the figure, the total wire length is L, the

distance from the center of the wire to the ground plane is h, and

the angles ~ and @ together determine the angle of inclination of the

scatterer with respect to the ground plane. The geometry may be

simplified by the introduction of a new angle, ~, which represents

the angle measured between the wire scatterer and its projection in

the ground plane. Figure 2 shows the wire and its image in terms

of the new angle ~.

With the standard thin- wire approximations, one can write

the expressions for the scattered vector and scalar potentials of the

wire current and charge, l.($) and po($), and the image current and

charge, 11(~) and pl(~), as

L

(1)



where

and

o

L *

o

.
L

1/2

[
-~ ($-~l)z + a2 I

G&$’) = e

[ 1
1/2

(g-g’)2 + a2

G1(E, ?’) =

(3)

(5)

~-Y[(lL-$-K’lsin~ -2h)2 +(1~-~’l COS~)2]~’2

1 I.-1 (6)

[(kJ-$-?l}sinP-2hy+(/g-KIIcos p)2]“G

p=;- arc cos (sin 6 cos ~ )

*

~=:, s=a+ju, c=—J’&-00

(7)

.

*

(8)
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The ~ component of the scattered field at some point ~ on the surface of

the scatterer is then given by

s($) = -sA: (E) -“5 +$%

o

L

From the equation of continuity, we have

-$- Io(g)=- Sp o(g)

(10)

(11)

(12)

Using the foregoing relations, equation ( 10) may be written as

(13)



where

(14)

.

(15)
.

Enforcing the boundary condition that the tangential component of the

total electric field vanish

inc(g) =-47~os E~

at the surface of the scatterer yields

o 0

(16}

IVOW the current at any point on the image, 11 (~’), is equal in magnitude

but opposite in sign to the current at that equivalent point on the scatterer

itself. Hence, one may write 11 (5’) ZIG1(~, f’) in terms of the scatterer

current and coordinates, and the integral equation becomes

L

o

where

and

(1!2)
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111. REDUCTION TO MATRIX EQUATION

G

.

Consider the wire element divided into subsections as shown

in Figure 3. The unknown current is assumed to be–piecewise constant

over each of these subsections, and according to the common thin-

wire assumptions the current in the subsection at each end of the

scatterer is assumed to vanish. A matrix equation of the form

[Zmnl[in]=[Vml (20)

may be obtained by substituting the piecewise constant current rep-

resentation into equation ( 17) and forcing the resulting equation to be

H
satisfied at a set of discrete match points defined as z on Figure 3,

m
As discussed by Barrington, the differential operators may be ap-

proximated by finite differences or the operations may be carried out

analytically. In this particular approach, the 20 operator is replaced

with finite difference operators, and the 21 operation is performed

analytically. These operations yield the following definitions of the

matrix elements in equation (20)

‘5
n+l

1
z =—

mn *2 1[ Go (~m+l, ~’) - (Y2A2+2)G0 (~m, $’)+Go(~m ~,:’)

fn

(21)
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i =an (unknown coefficient of constant current
n

in the nth subsection), n=z, N-1 (22) o

4r
-ygmcos $

v=-—
m 20

yEosin~e > rn=2, N-1 (23)

.
where

A= ~~ (N is the number of subsections
on the scatterer)

(24)

(25)

and

(26)

IV. ALTERNATE FORMULATION USING EXACT
EXPRESSIONS FOR THE ELECTRIC FIELD
PRODUCED BY A. CONSTANT CURRENT ELEMENT

●

The equation relating the tangential components of the incident

and scattered field at the surface of the scatter is

-E ‘nc (:m) = E s (em) + E; ($m)
E

0: e

(28)

.

10



.

r=
[(l

L-?
mn m-g~lsin~-2h)2+(

where E ‘“ (:m) and E; (~m) are the components of the electric I’icld

05 E
produced at the surface of the scatterer by the wire current and {;harge

and the image current and charge respectively. E: (~m) may be de-
C

termined from the vector and scalar potentials as o~tlined previously.

However, it is convenient to determine E; ($m) in a different manner.

$In the numerical solution presented in the revious section, the unknown

current was represented as piecewise constant over a small subsection

of the scatterer. The exact electric field produced by such a constant

current element has been given by Barrington [ 9] . Using Barrington’s

expressions, one may determine E ~ (~m) as

E

(m1-/ lL1

‘z-y ‘~’
u

sin q sins

mn
yr~n

(29)

where

(31)

E~=(n-l)A, n=2, N-1

11

(32)

(33)

(34)



The expression for E: (gm) as determined in section 111is

E

o

E: (~m) =

E
,~A2 an~l ~’ [Go($m+15)-(T2A2+2) Go($mj~I) -,

n=2 En

+Go (Em-l, g’) 1d: ‘

Using these expressions for the scattered fields in equation (28), the

matrix elements of equation (20) may be redefined as

1
z =—

mn A’

(+.A.-L-- J-.J-- +--A----
2 2

)]

sin q sin a (35)
r r
mn mn

-yr~n

i ‘CY
n n

47 -7 $mcos o
v =- — yEosin~e

m Z.

{36)

(37)

●

Note that the terms in equation (35) representing the contribution to the

matrix element from the image are much simpler than the corresponding

terms in equation (21). Both of these expressions for the elements of the

coefficient matrix have been used in sample calculations, and good agree-

ment between them is found. However, the time required to evaluate

.
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equation (35) numerically was much less than the time required to

evaluate equation (21). Hence all of the data presented here has been

calculated using equation (35) as the definition Of the elements of th~:

coefficient matrix.

.

v. SINGULARITY EXPANSION METHOD

Consider the matrix equation given by (20). This may be written

in a slightly different form showing the dependence on the complex fre-

quency, s, explicitly as

[z(s)] [1(s)] = [v(s)] (38)

.

.,

where [z(s)] is an nxn matrix with the matrix elements defined by

equation (35), [I(s) I is an nxl column matrix representing the unknown

current coefficients, and [v(s)] is an nxl column matrix representing

the excitation or source terms defined by equation (23).

Suppose one denotes the natural frequencies of the scattering

system (scatterer with its image) as s These natural frequencies
a“

are defined as those complex frequencies where the homogeneous matrix

equation

[Z(5 )1 [1(s )1 = [01 (39)
c? c2-

has nontrivial solutions for [1]. This implies that

[z] ~ust vanish at- these natural frequencies. As

several conclusions can be drawn about the nature

from a knowledge of response in the time domain.

the determinant of

pointed out by Tesche [5],

of these singularities

First, these natural

resonances must occur in the left-half portion of the s-plane since

currents which grow in time are not physically real. Second, the

13



singulaf’lties must occur in conjugate pairs since the current must be

purely- re~l ~n the time domain.

T~le solution to the or~gi~al matrix equation (38) may be wri~ien

s.vmbollcally as

[1(s)1 = [z(s)] -l[T-(S)I,

and the time domain solution as

(40)

oo+j cc

{i(t)] = ~
2rj

[
[Z(s)] ‘l[V(S)] est ds. (41)

cro-j co

Assume lha~ the matrix [Z(S)] can be represented by

~[1[Z(S)] -l= g-
CY CY

where the sum is over all of the singularities in the s-plane. The

matrix [Rcl] is defined as the residue matrix at s = s and it calculated nu-
CI

merically in the same manner as in reference [5]. It has been shown that ●
[Ra] may be represented as

T
[Ra] = ca [Ma] [Ma] ‘

o 0
(43)

[Ma] is an nxl column matrix defined as the natural mode

(normalized in the same manner as defined by Tesche [5] ) which

the matrix equation

and c the normalization coefficient is defined as
a’

c
c?

{}

(ra)

*

(44)

(45)

w~; l(ra)~l ~ ~(ma)il, and !(ma)jl o areelementsofthe

R@ and M
a matrices respectively.

o
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With these definitions, the time response for the current on the

scatterer may be determined according to the steps outlined in ref-

erence [5] , The final form is given by

St
[Ma] ‘[U(t)] [V(sa)] e ~[i(t)] = ~ ca[~Ial o 0

Q

where [U(t)] is the Heaviside matrix discussed b,y Tesche [ 5 ] and

defined here by

1l,t - gkcos p/c>o

‘kk
(t) =

O,t - :kcos p/c<o I

VI. NUMERICAL RESULTS

A computer. code has been written to determine the natural

resonances, mode vectors, and transient response for arbitrary

orientations of the scatterer with respect to the ground plane. The

techniques used in these calculations are the same as those dis-

cussed by Tesche [5]. The numerical data is essentially divided into

two parts according to the geometry. The first group of curves is

for the special case where the scatterer is parallel to the ground

plane. The second group is for non-parallel orientation of the

scatterer and the ground plane.
●

Before presenting data related to the ground plane problem,

suppose we consider the scatterer in free space and look at the

pattern of the singularities associated with its exterior natural reso-

nances. These data have been presented in several of the references

mentioned before, but they are repeated in Figure 4 for conver.ience.

(46)

(47)
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The even and odd labeling of these singularities is determined by

the spatial distribution of the mode function at the indicated complex

frequency. Since the locations of these singularities are determined

by a numerical search procedure, there is some question concerning

whether all of the sim.gular points in a given region have been located.

An approach to answering this question is to consider the surface

generated by some characteristic function having these same singular

points. One such function for the problem at hand is defined by the

magnitude of the determinant of the impedance matrix defined by an

equation such as equation (35). Figure 5 is a plot of contour lines

representing the relative magnitude of this characteristic function

over some given region. The region considered in Figure 5 is the

same region enclosed in dashed lines in Figure 4. The areas en-

closed by tight circular contours vividly display the locations of the

zeros of this characteristic function. This type of contour plot

“equires that the characteristic function be calculated at a set of.

points which adequately define the function in a given region. Al-

though this information may be quite expensive in terms of computer

time, one can locate all of the singularities in a given region at

least within the accuracy of the grid size. The contours of Figure

5 were produced by a special contour plotting package, BRUT,

furnished by Brown [IO]. The characteristic function was calculated

at 8100 points (a 90 x 90 matrix) to define the contours over the

region shown.

Suppose we consider the case where the scatterer is parallel

to the ground plane and fixed at a relative distance from the plane

of h/L = 0.5. The location of the singularities (zeroes) of the

characteristic function (defined as the magnitude of the determinant

of tl~(~ i~npcdance matrix as given by equation (35)) arc shown in

l“igure 6. These singularities form a distinct pattern in the SL /c

.

.

●

.
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plane. The singularities lying in a neariy vertical layer near the

imaginary axis represent natural resonances associated with the

fundamental length of the scatterer itself, Some of the other singularities

correspond to resonances associated with the two-body system

formed by the scatterer and its image. Figure 7 shows the contours

of the characteristic function for the region enclosed by dashes in

Figure 6. Again the contour plot lends confidence that all of the

singularities in the region have been located. The mode functions

for each of the singularities of Figure 7 are given in Figure 8. For

each of the singularities near either of the two axes, the imaginary

part of the mode function is several orders of magnitude less than

the real part, and hence the imaginary part is not shown at all.

With the scatterer fixed in this parallel orientation, it is in-

teresting to observe the movements of the singularities as the

relative separation between the scatterer and the ground plane is

varied. Figures 9, 10, 11, 12, and 13 present the trajectories of

the singularities associated with the natural resonances of the

scatterer itself as a function of h/L. The behavior of these sin-

gularities is quite unusual. It might be expected that each of these

trajectories would be a weU-behaved spiral circling inward toward

the free space location as h/L increased. However, as illustrated

in the figures, this spiraling effect is rather quickly masked by the

interaction of the spiraling singularity and other singularities which

pass through the same region. Although other trajectories are not

explicitly shown in Figures 10-13, additional calculations indicate

that effects similar to those exhibited in Figure 9 are present in each

of the regions considered by the other curves. The trajectories of

some of the singularities associated with the resonances of the two-

body system are presented in Figure 14. It appears that each of

these singularities moves toward the origin as h/L increases. The

17



singularities which enter the region displayed by Figure 9 can easily

be seen as they move into this same region set off by dashes on

Figure 14,

Let us consider the region around the first resonant fre-

quency of the scatterer (Figure 9) in more detail. As the para-

meter h/L becomes very small, the system formed by the scatterer

and its image appear very much like an ideal two-wire transmission

line where the frequency, tiL/c approaches m, and the radiation factor,

a L/c approaches O, As the parameter h/L increases, the singularity

moves away from the imaginary axis and appears to be forming the

inward spiral expected. However as h/L approaches two, this

spiral deteriorates and the singularity swings out away from the ima-

ginary axis and eventually turns downward and moves toward the

origin. Simultaneously another singularity moves into the region of

Figure 9 from above. A similar effect is seen as h/L approaches

three. Additional calculations indicate that this interaction of the

singularities occurs near all subsequent integer values of h/L.

Another investigator, Wilton 11II, has calculated the trajectories

of the singularities which exist in this region for the thin- wire ‘

scatterer parallel to a ground plane. The results obtained independ-

ently by Wilton are shown in Figure 15. A comparison of the data

given by Figures 9 and 15 indicates a small complex frequency shift

in the trajectories but otherwise excellent agreement as to the general

behavior of the singularities, These additional data by Wilton add

credence to the presented results. As a further attempt to understand

the behavior of the singularities in this region, a series of contour

plots of the previously defined characteristic function for the region of

Figure 9 is shown in Figure 16. Each of the figures is for a different

value of h/L near 2.0. A similar set of contours is shown in Figure 17

for the same region but over a wider range of h/L. All of these contours

.

●

.
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were produced in the same manner as previously discussed. The inter-

.

.

.

actions of the singularities in this region are also dependent on the

relative thickness of the scatterer. Figure 28 shows the trajectory of

the singularity associated with the scatterer resonance as a function of

h/L for four different shape parameters, ~ = 2 ~n(l /a). As the wire

gets thinner, the trajectory of this singularity remains an inwardly con-

verging spiral until larger values of h/L are reached. Another test was

made in this same region of the sL/c plane to ascertain how the relative

zone size in the moment solution affected the trajectories. Figure 19

illustrates the trajectory of the singularities for three different zone

sizes. Due to the original assumption that the incident electric field is

perpendicular to the ground plane, the scatterer cannot be excited in this

parallel orientation, and, consequently, no time domain data has been

calculated for this geometry.

Suppose we now consider cases where the scatterer is not parallel

to the ground plane. In all of the data displaying natural frequencies and

natural modes, the angle ~ = ~ - arccos (sin 6 cos ~) is used to denote

the angular orientation of the scatterer. Figure 20 shows the pole loca-

tions for the case where h/L is fixed at 1.0 and the angle, p, varies from

0° (scatterer parallel to ground) to 90° (scatterer perpendicular to ground).

Although all of the singularities which were found are plotted in Figure 20,

other singularities may exist in the region which were not found. No

attempt has been made to calculate contour information for the singular i-

ties of the non-parallel orientations. The mode functions for each of

these singularities are shown in Figure 21, As before, when the

imaginary part is several orders of magnitude less than the real part,

only the real part is given explicitly. The trajectories of the two

singularities associated with the scatterer resonances nearest the origin

are shown in Figures 22 and 23 as a function of /3for several values of

h/L.

19



The time history of the current induced on the scatterer for several

typical geometries are illustrated in the next set of curves. In all of the

cases to follow, the time histories are calculated using the contributions

from the first five singularities associated with the scatterer resonances

found nearest the origin. Figure 24 exhibits the time ~~isto:y of t’nc cur-

rent at three locations on the scatterer for h/L = O. 75 and ~ = 30°, 60°,

90°. A similar set of curves for h/L = 1.0 are given in Figure 25,

VII , COMPARISON WITH FOURIER INVERSION DATA

A.s mentioned in a previous section, the problem of scattering from

a thin wire above a perfectly conducting ground p~ane has been solved by

Tesche [8 ] using the method of moments to cast a Pocklington type

integral equation into matrix form. The matrix equation was solved at

a set of discrete frequencies, and this discrete frequency spectrum was

transformed into the time domain by a numerical Fourier inversion

scheme. In this section, data from that study is compared with data pro-

duced by the Singularity Expansion Method,

Figures 26 and 27 give plots of the time history of the current at

two points on the scatterer for the case h/L = 1.0, @ = 0°, @ = 90°,

Q= 10.6 (L/a= 200). The solid curves are the results including the contributions

from the first five cylinder resonances in the Singularity Expansion

Method, and the dashed curves are those produced by Tesche [ 8 ] using

time harmonic analysis with Fourier Inversion. Although the agreement

between the curves is quite good, there appears to be a constant time

shift between the two sets of data in Figures 26 and 27. A closer look

at the two solution techniques does not indicate that any inherent time

shift should be present. Consequently, the author has not identified

the cause for this apparent shift.

Another interesting comparison can be made on the first resonant

frequency and damping constant for the scatterer as a function of the

.
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relative height and inclination of the wire with respect to the ground

plane. Figure 28 is a plot of the percent change in the first resonant

frequency relative to the free space resonant frequency as a function of

h/L and (3. The solid wave is reproduced from reference [ 8 ] and the

discrete points designated with block symbols are Singularity Expansion

data. Again the agreement is very good. The points produced by the

Singularity Expansion ~Method basically represent a shift in the location

of the first cylinder resonance relative to the location of the free space

resonance. Hence, the data presented in Figure 28 is essentially taken

from the information displayed in Figures 9 and 22. Figure 29 is a

similar presentation of data for the damping constant of the first cylin-

der resonance. Figure 30 presents data for the damping constant of

the first resonance as a function of ~ normalized by its value at

/3=90”.

It

29, and

might be pointed out that data such as displayed in Figures

30 are produced quickly and directly using the Singularity

28,

Expansion Method; whereas, similar data resulting from a time-

harmonic analysis must be obtained indirectly and often requires quite

extensive calculations for obtaining good accuracy.

VIII. CONCLUSIONS

In carrying out the analysis presented here, several general

observations have been made concerning the Singularity Expansion

Method (SEM) as a solution technique for scattering problems, Most of

these observations can be separated into two distinct classes: old ques-

tions answered by the SEM and new questions arising from the SEM.

Other observations which might be categorized as comments or sugges-

tions for future work are all lumped together in the final paragraph.

21



One interesting question about solution techniques in general is

whether the solution technique being used is an efficient (both analytically

and numerically) means for generating the specific data. Of course, the

answer to this is directly dependent on the type of data required. Often

in scattering problems, one is interested iri the current and charge

distributions induced on the scattering body as a function of both fre-

quency and time. If this data is needed for only one particular set of

parameters, then other techniques such as time harmonic analysis may

be more attractive from an efficiency point of view. However, if data

from several sets of parameters are required (such as a detailed

parameter study), then the SEM is probably a much more efficient

technique. This is particularly true if only the low frequency response

or late time response is required since the SEM becomes more and more

efficient as the number of singularities to be considered is reduced to a

small number (3 or 4). Other types of data such as fundamental

resonances and damping constants of a scattering system are often

required. Although these may be obtained indirectly (and often ineff i-

ciently) by other solution techniques, they are basic necessities in the

SEM and, consequently, are calculated directly (and often very efficiently).

Such quantities of interest such as the shift in the fundamental resonance

or damping constant as a function of one or more parameters are quite

easy to calculate using the SEM. In contrast, if one is interested in the

currents and charges at high frequencies and early times, the SEM

becomes less and less attractive as the number of singularities to be

considered gets large.

The data presented here indicates that the SEM can be used

effectively to predict the response of two body scattering systems

(or alternately one body over a ground plane) to incident electromagnetic

radiation. In addition, the SEM allows one to separate the resonant

frequencies and damping constants into those associated with the

O

.’.
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fundamental dimensions of each of the two scattering l~odies and thc~se

associated with the fundamental dimension between the two scattering

bodies. These separate resonances and damping constants are invaria-

bly masked by techniques such as time harmonic analysis where the real

frequency spectrum contains the desired information but does not yield

specific numbers for these quantities without a great amount of work.

The SEM also indicates that certain two-body scattering systems might

be analyzed with a technique such as the perturbation method since the

fundamental resonant frequencies (complex frequencies) and associated

mode functions appear to be only slightly different from the same

parameters of some known isolated scattering body. Another question

answered in this analysis concerns the basic nature of the resonances

of a two-body scattering system. Indeed it appears that the response of

such systems can be characterized as a sum of simple damped sinusoids

as has been predicted in previous investigations . No singularities of

multiplicity greater than one were encountered nor were there any indi-

cations that contributions from branch cuts were required. For certain

particular parameters, the singularities appeared to lie in distinct

patterns which greatly facilitated the task of locating them precisely,

Finally, as expected, contributions from only a few of the singularities

were required to produce reasonably accurate (as compared with time-

harmonic analysis) results for late times (et/L > 3).

Several new questions were raised in applying the SEM to the

analysis of the two-body scattering problem. A basic question arises

concerning the location and identification of the resonances of scattering

systems with complicated geometry. Although the system considered

in this study does not qualify as complicated, many of the higher order

resonances were most difficult to predict and locating them numerically

was a tedious chore. If the determination of the fundamental resonances

of scattering systems could be mathematically cast into a more
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conventional problem such as eigen value determination or at least

related in technique to problems of this type, then much of the guesswork

of locating the singularities could be removed and the efficicnc,y of the

overall method could be greatly improved. The qUeS~i(Jn of i(lentifying

each singularity with some basic physical interpretation of the scattering

system under study is also raised. It is true that many of the resonances

(complex) which lie near the jw-axis in the s-plane can be identified with

exterior resonances of one or both of the scattering bodies, and in

addition some of the resonances associated with the distance between the

bodies may also be identified. However, in general, there seems to be

no effective convention for labeling a given singularity to avoid the con-

fusion of identity when ‘chat s insularity moves into a region occupied by

another singularity. If such a convention could be established which

would allow the unique Iabeling of an arbitrary singularity, then much

additional insight might be gained concerning the physical interpretation

of the interactions between singularities. In addition to questions con-

cerning the singularities themselves, the nature of the mode functions

associated with each of the singularities is also puzzling. Although it

seems quite apparent from their functional form that certain mode

functions belong in the same general group, it is not so apparent as to

what these groups mean in some physical sense. A systematic grouping

of the mode functions into unique groups or classes could also lead to

greater insight as to the actual physical processes taking place in the

scattering system. Again it would seem that the categorization of the

mode functions by a straightforward scheme would greatly simplify the

problem of interpreting much of the data produced by the SEM,

Along with the subjects already mentioned, there are several

other comments or suggestions concerning areas of interest for

future work within the SEM. The following list of suggestions is by no

.
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means complete~ and many of the items are redundant from the previous

paragraphs . Ilowever, they are repeated below for adflitional emphasis:

1)

2)

3)

4)

5)

6)

7)

8)

9)

Extend the method to other geometries in order to

gain additional insight into its applicability and its

limitations,

Use the method in conjunction with some high-

frequency technique such as the Geometrical Theory

of D-infraction to develop a broad range of analysis,

Compare SEM results to results obtained from

conventional techniques such as Perturbation Theory

or Characteristic Mode Theory and explain how they

are related,

Use the method to extract data such as natural

resonances or time constants from experimental

data or from theoretical data generated at some

previous time,

Develop analytical and numerical techniques for

relating the natural resonances to associated eigen

values or at least to eigen value-type problems,

If possible, also relate the natural mode functions

to corresponding eigen functions,

Establish a general convention for labeling the

natural resonances and grouping the mode functions

into unique classes,

Develop analytical or numerical techniques for

determining which singularities should be included

to achieve a desired accuracy or to extract some

unique data such as contributions from secondary

resonances or interaction resonances only,

Use the data produced by the SEM to synthesize the

required response in some analytical

system such as a loaded scatterer or
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Figure 1. Thin- wire scatterer arbitrarily oriented above
a perfectly conducting ground plane.
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Figure 2. Oricntation of tt~e scatt~rer and its image
in terms of tile angle ~.
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~i’i,gurC!~. Scatterer divided into N zones wltl} a matc}~ point
centered in each zone.
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Figure 5. Contours of the characteristic function for a
thin-wire in free space (Q = 10.6, L/a=200).
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