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ABSTRACT
—

An analysis of the Moebius loop which provides the relationship

between magnetic field and.output voltage is presented. This

analysis accounts for all of the loop electrical phenomena involved

over the broad range of frequencies encountered in measurement of

fast pulses; specifically, from dc to frequencies corresponding to a

loop electrical diameter of from about 6.4 degrees to 12.8 degrees.

In the usual application, the loop is small, so that this corresponds

to high (typically much greater than 100 MHz) frequencies. It is found

that the relationship given is valid up to the stated 6.4 degrees

limit for any looP coax-and connecting balanced line impedance combi-

nation, but that the validity of extensions above this limit depend

on the relationship between these impedances. Loop response as a

ftinctionof frequency is deduced, from which useful approxi~tions are
.

der$ved, one of which is that below a certain frequency, which is

defined here, 100P output voltage is proportional to the derivative of

the field. Finally, a detailed numerical example is given.”
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INTRODUCTION

The Moebi.usloop magnetic field sensor is a circular loop consisting of two

solid-shield coaxial “arms” which are split at the cop to form a gap which

is very small compared to loop dimensions, as shown in Figure 1. The center

conductor of each coaxial arm is connected to the shield of the opposite arm,

as shown at Points A and B. The loop is otherwise closed, driving a balanced,

shielded line as indicated. The loop is usually used in tl-iepresence of

ionizing radiat50n, generally where small physical size is also desirable

required.

A similar loop, but with the center conductors connected to each other at

gap, called a split-shield loop, has been discussed extensively by Libbyl
.

or

the

and

others. By comparison with this loop, Baum4 showed that the subject Moebius

connection provides (1) twice the ioop output voltage, and (2) when used in an

ionizing radiation environment, greatly reduced common-mo”designal due to such

radiation; also, the differential mode signal due to ionizing radiation can be

Figure 1. Moebius Loop o
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made essentially equal. Baum then demonstrated Chat-this is at the expense of

increasing the loop time-constant by a factor of four. As will be shown later,

this does not compromise-operation over a very important frequency range. The

Moebius loop is thus a very effective magnetic field sensing device which has

good noise rejection prope~ties in the presence of ionizing radiation.

The purpose of–this paper is to present the derivation of the relationship between

the magnetic or B field component of the incident field, and the resultant loop

Output voltage V. This analysis will be valid for frequencies such that the

electrical..length, b, of one of the “arms” of Figure 1 is between 10 and

20 degrees at the highest frequency of interest (the precise value depends upon

details which will be discussed) and will extend, on the low end, to dc. Thus

the response of the loop over the range of frequencies corresponding to fast

pulse excitation, the usual application, will be quantified. This relationship,

accounting for All of the loop electrical phenomena, agrees with both the pre-

viously noted increase in time constant by a factor of four and the doubled

sensitivity. More often than not during cursory analyses, the correct doubled

sensitivity is predicted but the increased time constant is not accounted for.

The importance of accounting for increased time constant increases with the

relative high frequency content of the transient measured.

In addition to enhancing understanding of the operation of the loop, thus

assuring correct application, this analysis is also desirable since, in order

to perform an accurate calibration of such a loop, one must obtain simultaneous

time-correlated precise measurements of a continuous wave (Cl{)radiating system

and loop output voltage and/or current, then relate the two using Maxwell’s

equations, repeating the process at a great number of frequencies. Since

analysis is therefore required anyway, it would be preferable to use calibra-

tion data at a much smaller number of frequency points, or a pulse input, to

refine andlor verify an analytical loop model.

The B versus V relationship will first be derived for the case where the

electrical length, 0, of each “arm” is less than 10 degrees, but where the

frequency is high enough so the depth of penetration of the field into the

coaxial shield is much less than the shield thickness. The B versus V
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relationsl:ipis derived by relating “source” voltage, VAB, which the changing

magnetic field dzvelops across the gap, and the current I shown in Figure 1, *
e

to “load” voltage and current. The “load” is the impedance which the

balanced line presents to the source voltage, VB, by the connection of the

conductors at points A and B. Next, the conditions under which this relationship

may be extended to frequencies for which the electrical length of one arm is

between 6 = ?0 degrees and El= 20 degrees will be presented. Finally, the

response of &he loop as a function of

case, i.e., for frequencies where the

(nonferrous) loop shield is analyzed,

deduced. The result

problem, providing a

RELATIONSHIP BET~EN
FOR 6 < 10 DEGREES

The emf developed in

of this analysis

frequency, including ehe low frequency

magnetic field completely penetrates the

from which useful approximations are

is then applied to a particular practical

numerical example.

MAGNETIC FIELD AND OUTPUT VOLTAGE (B VERSUS V)

the loop by the field is given by the Faraday law of

electromagnetic induction:

(1)

Loop Loop
Boundary Area

where the line integral is taken from A to B. For the case where the electrical

length of one arm is 10 degrees, the electrical diameter of the loop is only

4 = Z/-m(10) = 6.4 degrees; evidently for this case the spatial variation of the

rate of change of flux, i.e., the variation at any instant t, of:

(where t, is arbitrary) is minimal over the loop so that Equation (1) becomes

“’d?= -A% (2)
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where A is the area of

assumed here that B is

the loop_perpendicular to the B field. It will be

perpendicular to a plane through the loop, so that

A = loop area,

For 6 <10 degrees, Ie is substantially constant in amplitude and phase, so the

free space inductance of the loop shield is:

(3)

where R and r are as shown in Figure 1 (r is the radius from the center

conductor to the outside of the loop coax shield). For these conditions, the

radiation resistance is approximately:

2
R= 31,0004-

~4
ohms

The ratio of the magnitude

resistance is therefore:

of the inductive reactance to the radiation

for R/r >5, this becomes, inserting values for P and c:
o

> 2Tr(3 x 108) 4Tr(lo-’) 1.7 ~ 3
inductive reactance

() ()

3

radiation resistance = 0.0132 +
31,000 ‘rr2

R

Even for 0 as high as 20 degrees, R is only 6.4 degrees, so k/R ~ 56 and the

inductive reactance dominates by more than 2,000 to 1. Therefore, by Lenz’s

law the emf of Equation (2) is reduced by an opposing emf &’ of magnitude

t?’=L > (4)



‘liIevOltage “(M across tl,e gap is therefore:

dI.
v .- A %L-#
A3 at

●

●
(5)

Because the gap is so short, the pocencial along the center conductors across

tne gap is essentially constant, so VW at the top of the gap “maybe represented

as in Figure 2A. The pularicy shomt results from the neg~tive

Equaziom (5).

The inside of each arm comprises a transmissionline oi length

so that the voltage ‘betweencellterconductor and the inside of

essentially constant from the gap to the loop Gutpuc, as shown

sign in

8 c 10 degrees,

the shield is

in Figure 2A.

We may consider this phenomenon independently of phenomena on the outside of

tl~eshield, because currents on the inside of the shield are essentially

localized to the inside surface of the shield, for the same reason that shield

external currents are essentially all on the outside at frequencies under

consideration here. The net result is the voltage 2 V~ across the load line

of impedance Z. This line is assumed to be terminated in its characteristic

impedance and may therefore be represented as the lumped impedance Z in
Q

Figure 2A.

Since the loop output voltage 2 Vm is composed of exactly equal and opposite

potential variations above and below the common reference Point C, it follows

that the circuit of Figure 2B is exactly equivalent to that of Figure 2A.

Consider the current path BCDA of Figure 3. The,impedance presented to this

current is Z/2. Now consider the current path BECA. The impedance presented

to this current is also 2/2. These currents are consequently equal, therefore,

Ie = 21i (6)

Thus, one may draw the equivalent circuit of Figure 4A from which the simpler

circuit of Figure 4B directly follows. From Figure 4B:

()g g
‘M “ - %A ‘-21i43-Ii2 (7)

o
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Figure 3. Relationship Between f e andIi
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Figure 4. Source Voltage - Load Impedance Equivalent Circuit
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e The relationship between B and V follows from Equations (5), (6) and (7). From

., “theseequations, obtain:

dB
dI I

~ + 2L+
‘~t=*i2

(8)

Assuming 1< = O at t = O, integration of Equation (8) yields:
&

t

(/lZ
‘=15

Ii dt + 2LIi

6 )

In terms of the loop output voltage

4-
L

B(t) =~A
J

()
V(t) dt + ~ v(t)

o

(9)

v~ IiZ, Equation (9) becomes:

(lo)

Equation (10) is the basic relationship sought.

B VERSUS V RELATIONSHIP FOR 8 > 10 DEGREES

The validity of the analysis in the section above is based upon the validity

of Equations (2); (4) and (7). The validity of each of these equations depends

upon small 0. It is easily shown that Equation (2) is valid with good

approximation for electrical “arm” lengths of f)= 15 degrees to 6 = 20 degrees.

The analysis however, is somewhat involved, so it is included as the Appendix

to this paper. Consider now the other assumptions relating to 8. Libbyl has

shown that, for e much greater than 10 degrees, the external shield impedance

apparently remains essentially an inductive reactance with inductance very

nearly exactly that of Equation (3). One need not be concerned about the

slightly nonuniform distribution of Ie; since Equation (2) is valid and the

source impedance is unaltered, Ie is unchanged at Points A and B, and “L”

may be viewed as a lumped inductance between. The only remaining troublesome

factor is the validity of Equation (7). For 6 > 10 degrees, Figure 4A must be

replaced by the more involved representation of Figure 5A, where the lines

of characteristic impedance Z. are terminated in the impedances Z/2. The
u

validity of Equation (7) therefore depends

load impedance. Since Zi is the impedance

upon the validi&y of the assumed

looking either way from the source,

9



‘o ‘o

B

I

n
u

I
z — Zi z

7 7
i L

I n n n n Iu w

A

(A) EQUIVALENT CIRCUIT SHOWING TRANSMISSION - LINE SEGMENTS

z.
r

(S} FINAL, SIMPLIFIED EQUIVALENT

Figure 5, Equivalent Representation

REPRESENTATION

one obtsins the

constang:

equivalent circuit of Figure 5B. Neglecting the

Zi ~

[

()1 -+; zo/; tan 0
.e. —
24

I+j
01
;/z. tan %

z=—
4

\ ‘o J

Evidently, from Equation (11) we have the condition that if Z =
o

zi/2 = Z/4, i.e., if the balanced “lineimpedance is about double

impedance, the B versus V relationship of Equation (10) is valid

approximation to between (from the analysis in the Appendix) 8 =

attenuation

(11)

z/2,

the loop coax

with good

15 degrees and

0 = 20 degrees. If Z. is much different than Z/2, and 0 > 10 degrees, one

must evaluate the effect of the “mismatch” using Equation (11).



s

●

FREQUENCY DOMAIN PROPERTIES: USEFUL APPROXIMATIONS

The loop may be viewed, over the frequency range of interest here, as a linear

system with input B(t) and output V(t). Designating the transfer function of

the loop by H(j:m),the frequency-domain relationship is:

V(ju) = B(ju) H(jw), or H(jw) = * (12)

Where V(ju) and B(ju) are the Fourier transforms of V(t) and B(t), respectively.

From the u space equivalent

H(ju) =
1

1 2L
j(2uA) ‘z

of Equation (10), H(jm) is readily found to be:

/

Simplifying and expressing in polar form:

[/()11
where $ = arctan z

‘m

for f >> &L, H(ju) = ~ ,

(13)

(14)

i.e., output voltage is proportional to the B field.

.
For f << &

8nL’ 4
= 90 degrees, so from this and the magnitude expression,

H(ju) = j $$ [1fz/(87rL)
= j 2Au

or the output voltage is proportional to the derivative of the field.

(15)

The above relationships are quantified in the plot of Figure 6, showing loop

transfer function amplitude (solid line) and phase versus frequency. Frequency

is expressed in terms of a ratio to the quantity Z/(8iTL),as indicated. From

11
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a

the above discussion,evidently O ~lH(ju)\ ~ ZA/2L, so the magnitude is

in terms of fractionsof ZA/2L. To provide comparison with the i&al

differentiator&fined by Equation (15), the magnitude of this equation

also shown, in dashed lines.

expressed

is

NOW for relativelylow frequency,the phase $ = Tr/2. Using the fact that for

small angles tan x = x, strsight-fonrard trigonometric manipulation leads to

the approximate relationships

+= [
1 1 ‘rr f

arctan — .—. = 7 (16)

From elementay

corresponds to

determined from the elemntav result that 2rfT = f/(—&)’ ‘o ~= 4-$

linear system theory, kkear variation of phase with frequency

a constsnt time shift. The magnitude of this &lay, T, may be
.
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o The approximately linear phase relationship of equation (16) is shown by the

dashed-line phwe curve of Figure 6 , where it is evident that the approximation

is very good to about 0.5 (~) to 0.6 (&-). Therefore, from both amplitude

and phase consideration it follows that the operation of the loop may be very

adequately characterized as a differentiator with constant time delay 4 j for

frequencies below about 0.6 (~).

The entire analysis up to this point has resumed that frequency is high enough

so that field penetration is such that current flow is essentially all on the

surface (outside and inside) of the loop shield. Let us now proceed to exardne

the validity of this amalysis at frequencies low enough so that the magnetic

field penetrates the nonferrous loop shield. At such frequencies, referring

to Figure 2a, one mrely has a loop consisting of two turns. This is readily

seen by tracing a dc current path looking toward the loop from the load. Thus ,

beginning at the (+) side of Z in Figure 2a, this path goes to point B, around

the loop to Point A, and back to the (-) sid~ of Z. At these frequencies the

inductive reactance is negligible so that

forV=Oatt=,O,

t

J_
‘“2A [

Vdt

(17)

(18)

J

o

Equation (18) is exactly the same as Equation (10) if the contribution of the

term (2L/AZ)V is negligible , which it is for low frequencies.

Etidently the amplitude-phase curves of Figure 6, extended indefinitely on the

low end, are valid for two cases: (1) frequency high enough so that field

penetration is negligible and (2) frequency low enough so that there is complete

magnetic field penetration. To get en idea of the frequency range of uncertainty

between these two analyses, and therefore assess the significance of this

uncertainty, one must know the shield thickness and material. This will be

examined in the practical example presented in the next section. “fiSO, although

13
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Using this value, with Z = 78 ohms and A the loop area, Equation (10) becomes:

[

t

B(t) = 4.4 (102) V(t) dt + 1.34 (10-6) V(t) - Teslas (19)
./
o

For one arm of length n (0.75)

at the highest...frequency,this

0.0254 = 0.0595 - meter to be less than 10 degrees

frequency must correspond to the wavelength

~ = 36 (().()595)= 2.15 - ~ters, which

validity of Equation (14) of

f = 3 (108)
2.15

= 140 N!liz(10 degrees

gives an upper frequency limit of

criterion, propagation velocity = c)

As noted in the previous section, one may, under propitious conditions, extend

this to the frequency corresponding to am electrical arm length of from 15 to

20 degrees. Considering the

is valid. For this slightly

the use of the more accurate

mismatch, let us see if the extension to 15 degrees

higher frequency, we are entering the range where

transmission line representation of Figure 5a

becomes necessary. From Equation (11), the departure from the nominal value

of z/4 is, for the present impedances and e = 15 degrees:

~

[

1 + tan2 15° + ; (3 - %) ‘a ’50
4 1 -1-[(;+)tan 15

021 1=: [1.03+; (0.124)]

which is a negligibly small amplitude snd phase error for signal components

well above 140 MHz. Thus Equation (10) holds with good approximation to at

least 1.5 (140) = 210 MHz.

Let the output signal be passed through a 78-ohm to 50-ohm impedance matching

transformer for input to a 50-ohm coax line connected to an oscilloscope. The

oscilloscope voltage for this case is thus ~~ times the loop output voltage.

If the loop output voltage V(t) in Equation (14) is replaced by the oscilloscope

15



voltage, tileright-hand side of this equation must be multiplied by fi~

yielding:

/

t

B(t) = 505 (102) V(t) dc + 1.68 (10-6) V(t) - Teslas (20)

o

Now consider the frequency behavior of this loop. For estimation purposes,

the initial analysis of this paper will be considered approximately valid for

a shield thickness of one skin-depth. For 0.012 inch thick copper, this

implies a frequency of greater than about 47 kHz. Since Z/(8TrL)= 53.7 (106),

the frequency 47 klizcorresponds to 47/53.7 (10”3) (Z/8mL) on the curve of

Figure 6, which is completely off the curve to the left. Evidently ehe loop

response is relatively quite I.owhere. Obviously for the considerably lower

frequency case of complete magnetic field penetration, the response must be

lower still. There is nothing to indicate any discontinuity in the response,

and considering the very small proportion of the probable spectrum of the

signal being measured involved, one is inclined to conclude that little if

sny error is made in assuming that Equation (10) is valid at frequencieslow
o

enough so that the skin depth is greater than the shield thickness.

From the discussionof the previous section, the following

be made (all at the oscilloscopeinput):

A. B(t- 3 x 10-9)= 5.5 (102)
I

V(t) dt - Teslas delay)

“o

approximationsmay

(nanosecond

for f c 0.6 (53.7) 106, or f < 32.1 MHz

B. For V(t) =

B(t) = K (’

K-sin UC,

.68) 10-6 sin (ut + $) provided f > 104.7 MHz



CONCLUSIONS

The relationship between Moebius loop output voltage and magnetic field was

derived. This relationship was shown to be valid between dc and frequencies

for which a loop arm is between 10 and 20 electrical degrees in length. The

condition under which the upper frequency can be extended above 10 degrees was

shown to be the degree to which the impedance of one of the loop arms.matches

an impedance corresponding to half the balanced connecting line impedance.

For frequencies corresponding to less than 10 degrees, the basic relationship

derived is valid for any loop coax and balanced line impedance, i.e., the

amount of “mismatch” is unimportant for this case.

Some approximations were deduced, probably the most significant of which (for

pulse work) was the definition of’the frequenq below which the loop acts very

nearly as an ideal differentiator.



APPENDIX

b

c

Consider a plane sinusoidal electromagnetic wave traveling in the direction

of the x-axis, in the coordinate system of Figure Al, with ~ (t,x) perpendicular

to the x-y plane. In the ensuing analysis, the time is held constant at t = tl
.

so as to concentrate on spatial behavior. Now since ~~(tl, x)/~t “ n is,

by definition, invariant with y (and z), it follows that, for the loop, *

as illustrated in Figure A-1.

ii”1

v

x

I ‘L,.=, J“-dx

FigureA.1. Equation for the Loop Boundary, illustrating aDifferential Area Element

*The analysis of this appendix is limited to
loop electrical diamate> of about 10°, with
discussionon radiation resistance,of less
these conditions,scatteringeffects can be

18
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than one fifth the diameter. For
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Now the assumption which leads to Equation (2) is that 3B(t1, x)/at is

essentially constant over the loop area. Evidently the greatest variation

in this quantity over the loop, for the present (sinusoidal) case, is for x

near zero where t
1
is cilosenso that ~B(t

1’
())/;Jt = O. This is because, for

this condition, 2B(t1, x)/2t is of the form Ksin ux/v, where v is the

propagation velocity. For this case, for values near zero,

()ai(tl, x) . Ku
—— ● nz—

at
x

v

Equation (A2) is valid within +10 percent for ux/v up to +45.25 degrees. First

one asks if the assumption that

1 d(tl, x) .
2 aB(tl, xl)

● n M xnR
:t at

A-3

Loop
Area 4

is valid over this range. That is, may the rate of change of flux density at

loop center be taken as constant over the loop area over this range because.of

averaging?

Using the approximation of Equation (A.2) this assumption gives:

am,, xl)

()A=TR2~
at v ‘1

where x
1
is the value of x at the loop center. From Equations (A-1) and (A-2)

A-4

Area ,

19
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Using the substitution $ = X-xl, Equation (A-4) becomes:

2
mR A-5

which demonstrates the validity of Equation (A.3) for angles wx/v <*45.25 degrees.

For larger angles, the fact that ~B(tl, x)/at varies sinusoidallywith x must

be accounted for, Because the loop effectively weights field contributions near

the center of the loop so much more than those near the edges, we assume that a

variation in aB(t
1’

x)/3t (due to varying x) of +10 percent from &he value at

loop center is acceptable. For loop center at ux/v = *45.25 degrees this gives

45.25 degrees +5.55 degrees. This is the “worst case” variation (beyond

the quasi-linear region) since such variation decreases for increasing angle.

Thus , the loop diameter is about 11.1 degrees so that a loop “arm” is

*
~(ll.l)x 17.5 degrees

Considering the nature of the approximations made it may be concluded that a

maximum loop arm length of from 1!5to 20 degrees may be used without undue

concern over the validity of Equation (2).

20
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