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Abstract

This note considers some of the characteristics of the
early-time far fields from infinite planar arrays of intercon-
nected biccnical scurces and relates the results to the late-
time (or low-frequency? results for the far fields from such
arrays. First a general result for arrays of cells, each cell
consisting of two conducting cones with common apex, is devel-
oped. This leads to formulas for an effective early-time rise
and early-time polarization for the far fields. The general
results are then applied to the special case in which each unit
cell consists of a symmetrical planar bicone. For this case
the formulas for early-time rise, polarization angle, and im-
pedance are developed and plotted as functions of the bicone
angle and angles to the distant observer.
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1. Introduction

It is sometimes convenient or even necessary to configure
pulsers for use with EMP simulators as arrays. The pulser ar-
ray is configured to synthesize some desired field distribution
appropriate to a particular type of wave to be launched. There
are various types of waves which one can launch depending on
the type of antenna structures (including earth presence, etc.)
connected to or in proximity of the pulser array. Previous
notes have discussed such pulser array and antenna dominations
for some cases such as spherical waves from radiating anten-
nas3’4 and inhomogeneous TEM plane or s herical waves on cylin-
drical or conical transmission lines. ,,Y,,,,

Pulser arrays for EMP simulators are not the same as used
in radar applications, for example. One distinctive feature of
pulser arrays for EMP simulators is that the desired pulse typ-
ically has important low frequencies with wavelengths large
compared to the individual pulser (or module) size. This has
the practical effect of making it important to connect the in-
dividual modules to adjacent modules in a manner which passes
current through the array (with no shorting paths) at low fre-
quencies. This typically implies conductors connecting at
least the series modules in an array. Conductors connecting
the parallel modules together are optional, depending on other
considerations. Such pulser arrays then cannot be considered
as planar arrays of point electric dipoles~ for example. At
low frequencies such pulser arrays can be approximated as
sources which specify the tangential electric field in an aver-
age sense so as to approximately match the desired electric
field distribution.

The conductors connecting adjacent modules are an impor-
tant part of the array for understanding its performance at
higher frequencies as well. They need to be considered as part
of boundary value problems in calculating the high-frequency or
early-time performance of such a pulser array. One might di-
vide the times (and frequencies) of interest according to the
characteristic dimensions of the array and of the individual
modules. One characteristic time is associated with the total
size,of the array. A second characteristic time is associated
with the module size which determines (with any spaces between)
the periodicity of the array. Effects associated with the to-
tal array size are not considered in this note.

Considering a planar array, if we assume that the module
spacing is small compared to the total array size then we can
consider some of the effects associated with the module size by
letting the array be infinitely large. In this note we con-
sider infinitely large planar arrays triggered in a sequence so
as to launch a plane wave (at least for frequencies with wave-
lengths large compared to the module size). There are many
module or unit cell designs for such arrays that one might

,-.,
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consider, each having one or more boundary value problems ap-
propriate to it that one can consider. Hopefully many such
calculations will appear in future notes.

This note considers one aspect of the performance of vari-
ous module designs in infinite planar arrays. If the individ-
ual module is constructed such that at early times the fields
produced by the module are a spherical TEM wave, such as on bi-
conical structures, then the individual module performance at
early times can be combined with the array triggering sequence
(assumed planar) to give the early retarded time far fields for
the array. In this note the individual modules have spherical
TEM waves at early times which behave as step function waves.
However, one can generalize the results to other forms of early
time performance using convolution techniques.

After considering the general far field results for modules
with early time spherical TEM waves, we consider the specific
case of planar bicones for the module design near the module
center where the wave is first launched. For the case of
planar bicones the numerical values of the resulting early re-
tarded time far field rise of the wave are graphically dis-
played. Thus one can see the effects of the angle of the
planar bicones and the direction of launch for the far field
plane wave on the early retarded time far field performance.
The early time impedance each module sees is also tabulated.



,

11. Periodic Planar Arrays of Sources which Each Launch a
Spherical TEM Wa\~eat Local Early Time

Let us first consider a general characteristic of planar
arrays of spherical TEM elements. As illustrated in figure 1
for the case of a rectangular array consider an infinite array
of source points which are assumed to lie in a plane, taken as
2=0. Each source point lies in an area A, the area of the
unit cell in the periodic structure. For the rectangular array
with spacing 2a in the x direction and 2b in the y “directionA
is just 4ab. For a more general periodic planar array A is the
average area per source point. For our present purposes each
source point is assumed to launch a wave identical to that
launched at every other source point except for a translation
in the z = (1 plane and in general a shift in time. The present
calculations can be easily generalized to other cases involving
more than one type of source point, each type with different
TEM characteristics such as launching differently polarized
fields with different amplitudes at early times. Such general-
ization can be accomplished by adding the results at early
times for more than one array of sources where the source ele-
ments for each array are interspersed among those for the other
arrays in a periodic manner such that at local early times the
various array elements do not interact with each other (at
least in a “clear time” sense related to the far field results) .

There are various types of periodicity in a plane that one
might consider, such as those based on various polygons and/or
,combinations of polygons. What is required for the present de-
velopment to apply is that the array of sources be periodic in
position such that translations of the array in two dimensions
(in at least two independent directions) precisely reproduce
the original array (at least near the sources) . Associated
with such a shift perpendicular to the z axis there is also re-
quired a constant time shift for the turn-on time of the
sources; this is basically the requirement for the plane-wave
turn-on sequence for the array. The source points need not be
all in the same plane but can be in different planes all paral-
lel to the z axis; provided that the turn-on time of the
sources in the various source planes is arranged to have sig-
nals arrive in the far field at the same time (retarded), and
that the conductors (dielectrics, etc.) associated with the
source points in one “plane do not interfere with the wave prop-
agating from other planes of source points to the far field at
early retarded times. This is basically a requirement for
line-of-sight clearance between each source and the far field
direction in which the wave i& being launched. This line-of-
sight clearance can be blocked, for example, by the positioning
of conical-transmission-line conductors attached to sources in
the one or more source planes. If such conductors do not them-
selves lie in the source plane, then for certain launch angles
(referred to the far field plane wave) the conductors may

.

t

.

6



interfere with the
suits of this note
ference.

early-time wave
do not consider

to the far field. The re-
cases which have such inter-

Consider now a spherical TEM wave launched fr~m o e source
point. For convenience take this source point as r = t and
utilize the spherical coordinates as illustrated in figure 2.
Consider a step function wave (at early times) of the form

v
i(:,t) = +sf(e,$)u(t - :) (2.1)

leaving the source at ~ = 8 at a time t = O. This is a spher-
ical TEM wave which is valid for times at each position of
space before discontinuities in the conical conductors and/or
similar waves from other launch points can alter the form of
~he yave at a particular r. The electric field launched from
c= b has only 6 and $ components given by the gradient V~ on
the unit sphere
Note that for a
tential is

operating on the potential function f(e,$j.
conical transmission line the corresponding po-

V($,t) = Vof(e,$)u(t - :) (2.2)

The voltage impressed on the conical transmission line for the
typical case of two separate conductors is Vou(t) between the
conductors provided f(O,+) is normalized such that its line in-
tegral between the two conductors (on the unit sphere) is just
one.

On the unit sphere the surface gradient is

(2.3)

The early time electric field from the source point at ~ = 6
can then be written as

v
W,t) = -+(e, ($)u(t - :) (2.4).,,

,,,
where
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(2.5)

Consider some desired direction of propagation ~~ for the
wave leaving the source plane toward large positive z. (A wave
also propagates toward negative z but this does not,concern the
present calculations.) Define retarded time as .

Define a turn-on time for the source points on the z = O plane
as

(2.7)

corresponding to retarded time equal to zero on the source
plane. Equation 2.7 defines what it means to trigger the
sources in a plane-wave sequence.

“have
The voltages at the individual’sources are specified to
step-function waveforms of the form

+

( ‘1 “;
v=vout- S

c )
(2.8)

where ~~ is the position of ~ny source point being considered.
Note that for source points rs not necessarily in a plane one
can still define a.turn-on tim$ for each source point for a
wave propagating in direction el as

+

‘1 ● ;s
t! : (2.9)

c

There are various ways that one might set up a periodic
array of such identical spherical TEM sources. As an example
~ectangular array in the z = O plane could have source points
rn,m specified by

a
. .



+ +
r =
s r =:x +:y

n,m xn ym

x = 2ann (2.10)

Y = 2bmm

with n and m taking all positive, negative, and zero integer
values . For this case the sources would be turned on, for step
function excitation, as

( ‘lxxn ‘lyym
V.v =Vou t - ~ - ~

n{m )
(2.11)

The electric field distribution function ~(0,$) is made to be
the same for all the sources, indicated by index pair n,m, as
for the 0,0 source. For this purpose one can consider the
angles O,+ as being redefined for each source about a center at
that source point. Note that only translation of the source
field distribution is assumed here, with no rotation in goin~
fro$ on$ source to another. Viewed another way if we shift r
to r + rn,m the source field distributions must still be the
same with only a constant shift for all the turn-on times.

If more than one type of source each with perhaps its own
~mplitude and distribution function f(e,$) (and corresponding
F(e,$)) is used then the corresponding far field early time re-
sults can be added for the various source types. For the time
window for which the early time results apply to be common to
all the source types used in the one array the turn-on time
formula (equation 2,8) can be applied to all the source types.
However, some small time shifts between the source types can
also be used, if desired, giving a more complex result.

9



111. Early-Time Performance at Large Distances

Consider an observer at large dista~ce r in a direction :1
from the origin. This direction vector el is characterized by
two angles 6 = 01 and @ = $1 with respect to a spherical coor-
dinate system centered on the origin. The cartesian components
are

+ “~
‘l=exl

= sin(el) Cos($l)
x

<

While the observer is at a distance of r COS(81) from the z = O
plane the closest position on this plane (x,Y) = (r COS($JI),
r sin(+l)) , or the closest source to this position does not
send t~e f’rst signal to the observer unless the closest source

tis at r = .

The first signal to arrive at the observer arrives from
~ = 6 because of the plane-wave sequence for triggering the
sources. Given an observer far from the z = O plane, the first
sign~l t

i
arrive at the observer can be used to iJefine the ori-

gin r = for our calculations. However, given el for th$
triggering sequence and a distant observer position then r = 6
will not fall precisely on a source position in which case the
fir~t s“gnal will arrive

i
from one of the source points nearest

tor=.

The+observer at large r receives a signal at or near a di-
rection el at early retarded time since the only source posi-
tions which can send a+sig~al to the observer for early re-
tarded times are near r = O. Consider retarded times for which
t* is less than an appropriate clear time tcf (appropriate to
the far field) for which the form of the wave from equation 2.4
is a valid representation of the signal reaching the far
from a single source. Including the turn-on time of the
ferent sources each source radiates a field of the form

V.
+

( ‘1 “3 1:-zsl
is(;,t) = - 3J6JQU t - ~ s -

1?-:s/ c )

where the subscript s+refers to the quantity appropriate
individual source at rs.

field
dif-

((3.2)

to the

..
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A signal from ~s arrives at ~ = ~lr at retarded time

-J-[r2- (~1 ● 1s)2] + 0(r-2)
‘2rs

(3.3)

For a given t* this equation gives the boundary for sources
seen by the observer. Define
p and q on the source surface
that

orthogonal c~rte ian coordinates
centered on r = 3 but rotated so

‘1=0q

.
‘1 = sin(61)

P

P2+q2=r;

Then the boundary equation becomes

-42+q2 -2~t* =
~r p - sin2(01)p2] + O(r )

-2
= &[c0s2(e1)P2 + q21 + O(r )

This is an ellipse with

(3.5)

+
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semimajor axis length = ~o~~o ~[2zct*]1/2 + O(E-l]
1

1/2
semiminor axis length = [2rct*l

-1+ O(r )

area = n [semimajor][semiminor]

= COS761)
2rct* + 0(1)

IrIorder to keep this area bounded let us require that

(3.6)

(3.7)

with 01 bounded away from 7r/2.

The distance from a position on the source plane to the
observer at large r is

r -:’: -1=
1 s+ O(r)

(3.8)

12-2~1-1= *+ 0(r-2)

The angles from a source at ~s to the observer are 0s,+s in
equation 3.2. We can write

05 = 61 + Ae

(3.9)

q = $1 + A@

where now

A8 = O(r-1,

.

,.

A@ = O(r-l)

(3.10)

12



Provided that
(which is the
boundaries of

fi(Os,$s) has continuous derivatives near 61,$1
case unless f31,$lare at or intersect one of the
the wave launcher) then one can write

=F(el,$l) +O(r-l) (3.11)

The number of sources in the area seen by the observer
(equations 3.6) is just that area divided by’A (= 4ab for the
previously discussed case of rectangular cells) to within a
number proportional to the perimeter of the source area seen,
or proportional to the square root of that area, or fi. This
error estimate is rather large for the case of an elliptical
area including sources based on rectangular cells. Then sum-
minq up the electric field contributions from the sources
“se~n’’-bythe observer at retarded time t* we have

+ v
E =

{
A“~O~~@)2rct*+ o(r

-—
1

1/2) l$+o(r-2 ~(~f)
‘1/ ( 1 1

,($)+0
1

From this the far field form is obtained as

r-l)/u

2Tvo
if=- A COS(61)F(el,@l)ct*u(t*) for t* < t

Cf

t*) (3.12)

(3.13)

This is the fundamental result for periodic planar arrays
with plane-wave turn-on sequence and early time spherical TEM
waves for the sources. For step excitation the far field has a
ramp rise. Convolution techniques readily generalize this re-
sult to other forms of early time waveforms for the sources.
Note that the validity of this result is limited in general to
retarded times t* less than the clear time tcf as pertinent to
a far field observer. This clear time gives the first retarded
time that a’wave other than the early time spherical TEM wave
can reach the observer. Such other waves are associated with
changes in the conical geometries leading away from the source
points. Thus the clear time limitation is a function of the
specific design of the conductors etc. connecting the sources
and launching the wave. Note also that the far field is inde-
pendent of r (for fixed t*) because of the infinite planar .
source geometry.

13



Iv. Comparison to Late-Time Performance at Large Distances

In order to better understand the quantitative effect of
the early time result of the previous section let us compare it
to the late time performance of the periodic array. Let the
~rray be designed such that it has a well defined orientation
es for increase of scalar potential (voltage) on the source
plane. This is defined by finding a direction that there is no
net change in potential ii going from one
the corresponding position in an adjacent
>n potential in a static sense (late time
es is then taken as perpendicular to this
in the direction of increasing potential.
time electric field near the source plane

position in a cell to
cell with no change
for step ’excitation).
direction and oriented
Note that the late
is required to be a

conservative field. Late time gener~lly requir~s that time
after nearby source turn on be large compared to transit times
across the unit cells forming the array.

At low frequencies or late times the launched plane wave
has the saye electric field tangential to the source plane (or
normal to ez) as the average tangential electric field on the
source plane itself. This can be easily derived by considering
wavelengths to be large compared to the cell dimensions. Within
the region (small compared to a wavelength) where the electric
field is conservative the line integral of the electric field
across a cell dimension is independent of which plane of con-
stant z we place this path on, just to satisfy the periodic
boundary condition for such a periodic array. The higher order
modes within one cell are evanes~ent and do not contribute to
the average field. The average E tangential to the source
plane at late times for step excitation (equation 2.8) is

(4.1)

where h is the distance in the 2,sdirection between sources (or
combinations of sources) with net late time voltage Vo.

Define an~ther uni$ ve$tor+~t parallel to the z = O plane
and normal to es. Let et, es, ez form a right handed system so
that we have

+ + +-
e Xe=e
s t z

+
es “~=o z

+

‘t
“:=0

z

(4.2)

14



For our later calculations for rectangular arrays we will take

+
e =
s z

x

+ + (4.3)

‘t = ‘Y

as a convenient choice.

The far field plane wave at late retarded time has the
form

This can be considered as an ideal form for the far field wave.
It does not apply for early retarded times and how soon the
late retarded time form applies is a measure of the early time
or high frequency quality of the array. G’7’8

Relating the late retarded time far field to the array pa-
rameters we have for the tangential components (with respect to
the z = O plane)

+ v
e

s
●io=:#tan=-# SEs

(4.5)
+

‘t “3.=0

Let

i. = Eo:o

with E. taken to have the

+ + +

‘1 = ‘lxex + yy +

Z+e
= ‘1s s :+lt -t

same sign as Es. Now we have

%z:z

+
‘lzez

(4.6)

(4.7)=

Then we can obtain the equations

15



+

‘1 ‘3. =

[
E. = E:

z

+

ys + ‘lzez
●io=o

+
5s “z

E. =
‘1 SE-— Es=-+

%2
s

z “z
‘1 z

1/2
+ E:

1

[

=EJ
s

+

(4.8)

E. = Es
s

Letting ~x+be taken as+~s with no loss of generality, and
similarly with et taken as ey, we have

+

‘1 “

+

‘1 “

+

‘1 “

giving

E. =

This also

+
e
z
= COS(61)

+ +
es = el “z x

= sin(61) Cos($l)

+ +

‘t = ‘1 “ii
Y

= sin(f31)sin($l)

1/2
Es[l.+ tan2 (61) cos2(@1)l

1/2

‘EG?qP
- sj.n2(61)sin2(@1)J

gives the angles for JO as

(4.9)

(4.10)

77 T7

-1/2
= COS(61) [1 - sin2 (61) sin2 (@l)]

16



+
e = e. :“Zt=o “:=0
‘t

Y

(4.11)

[[1]
2
-1/2

+ +

‘1
“; “;

+ ‘1 s
e = e. _-G l+-“:=”+
0 z
z “:

‘1 z
“;

‘1 z

-1/2
= -sin (O1) Cos($l) [1 - sin2 (01) sin2(@1)l

The far field may now be normalized to its late time value
(for step excitation) as

if if
-1/2

—= —
E. Es

cos(Ol) [1 - sin2(el) sin2(@l)l

-l/&*u(t*)
=2&el,41Hl - sin2 (@l) sin2(@1)l A

fox t* < t
Cf

(4.12)

The normalized component in the ~. direction (the direction of-.
the late time electric field) 1S

-b’2~ct*u(t*)
Efo 20 “Zf
—= —

E.
= 21T:0● ~(el~+l) [1-sin2 (01) sin2(@l)l

E.
A

for t* < t (4.13)
Cf

.

Setting this ramp function equal to.1 (while perhaps extrapo-
lating the result for t* >,tcf) defines

an effect~ve time con-

stant for the early-time rise of the far-field wave as

1/2

~~ch[=o ● #(el,~l)]-l[l - sin2(e1) sin2(@l)]
(4.14)

‘1 =

17



Then with A and h specified (say A = 4ab and h = 2a for rec-
tangular cells) tl can be calculated in a form scaled to a con-
venient dimension of the cell geometry chosen.

This l~st result brings up an interesting point. The
early-time Ef is not necessarily parallel to the late time fro,
in which case the far-field polarization must rotate as a func-
tion of retarded time. One measure of the matching of the
early-time and late-time far-field directions is g.$venby the
fraction of the early-time field perpendicular to e. (as com-
pared to the parallel part). Thus define a ratio ‘

,

(4.15)

where ~~ is a unit v$cto$ orthogonal to both ~. and :1 in a
right handed system eo, e~~ e~ such that

+ +
er=ex~
o 10

+
e .-gr=~

o 0

(4.16)
+
e “3=0
o 1

+
e’
o

“:=01

Note that p can be considered as the tangent of the polariza-
tion angle for early time with respect to the late-time elec-
tric field direction.

Now ~. and ~~+can be+writt:n in+terms of the unit vectors
for the far field el (or er~) , :01, e$l directions with respect
to the array coordinates and tr~ggering sequence. First we
have

(4.17)

. ,.

Using the identity dyadic

18



z ++ ++x~:~
Ss + ‘tet + ‘Zez

and relations to complement equations 3.1

+

eel = %1 “z = Cos(el) Cos(ol)
x

x

+

’91 = ’01 ●2= -sin (Ol)
z

z

A
‘x

./.

then we have

+
+ +-

e = e d=eo ●T “ q ‘
%1 0 ‘1 1

-1/2
= COS2(01) Cos($l) [1 - sin2(f31) sin2($1)l

-1/2
+ sin2(Ol)’cos($l) [1 - sin2(el) sin2(@l)l

-1/2
= Cos($l) [1 - sin2 (61) sin2(@1)l



I

I

-1/2
= -cos (61) sin (@l)[1 - sin2 (01) sin2 (@1)]

which gives

(4.20)

-1/2
: = [1-sin2 (61)sin2 (@1)] {cos(@61o ‘1-COS(61) sin($l)e$l

(4.21)

Then from equations 4.16 we also have

+ +
e’=ex~
o 10

Combining the
and 4.15 we have

J. J-

(4.22)

results for ~. and ~& with equations 4.14

“[l- sin2(e1) sin2($l)l
(4.23)

Thus, for a given cell design for which we have A, h, and
~(61,~~) we can calculate both tl and p as functions of 61 and =
$1 ●

.
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v. Spherical TEM Waves Related to Planar TEM Waves

As mentioned in section I the individual module is assumed
to be of a type which has an early time performance character-
ized by a spherical TEM mode such as exist on biconical (or
multiconical, all with the same apex) perfectly conducting
structures . Such cones are not necessarily circular, but can
be planar or have a variety of other shapes which are indepen-
dent of r in a spherical coordinate system centered on the com-
mon apex. The TEM mode (or modes) is (are) characterized by
one or more scalar potential functions f(e,$) and the gradient
of this function on the unit sphere fi(O,@) as in equation 2.5.
For our present purposes we assume a general biconical configu-
ration which has one and only one such TEM mode.

For a given biconical (or higher order) configuration the
spherical TEM mode can be related to an equivalent planar TEM
mode on a cylindrical transmission line by a well known trans-
formation for the potential function. l”’l This is basically a
coordinate transformation known as a stereographic projection.
It is illustrated in figure 3 and has the transformation equa-
tions

x’ = 220 COs(@) tan[~)

(5.1)

Y’ = -2Z0 sin(Q) tan(~)

where the spherical r, 0, @ coordinates can be assumed to be
based on some arbitrary x“, y“, z“ cartesian coordinates and
where Z. is ar.arbitra~y scaling constant and x’ and y’ are the
new coordinates (on a plane of constant z’) in the transformed
equivalent c’artesian coordinate system.

The potential function for the spherical TEM mode can then
be related to that for the planar TEM mode by a simple coordi-
nate transformation. In the x’, y’ plane one can define a com-
plex potential function

w =u+iv (5.2)
.

which is a function of the complex coordinate x’ + iy’ or some
constant times this. Then f(e,$) can be equated to Re[w] times
an appropriate constant which simplifies the results.

First let us explicitly exhibit the coordinate transforma-
tions. Equations 5.1 (as illustrated in figure 3) give the
stereographic transformation between the reference cartesian
system x’, y’, z’ (for which only the cross section coordinates
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x’ and y‘ are important) and’the angular coordinates G, @ of a
general spherical coordinate system r, 0, @ for which r = O is
chosen at the apex of the cones. However O = O and @ = O can
be chosen arbitrarily for convenience in the particular pcoblem.
This modifies the cross section in a transformed plane of con-
stant z’, thereby giving various possible equivalent cylindri-
cal transmission lines.

Let us choose two spherical co~rdi ate systems for the bi-
conical wave launcher with apex at r = t as shown in figure 4.
The r, 6, $ system is appropriate for describing the coordi-
nates of an observer with 6 = O perpendicular to the source
plane z = O. The r, 6, Q system is useful in the transforma-
tion for the equivalent transmission line for a cell for early
time. In this note a particular relation between the two
spherical. coordinate systems is chosen to be appropriate for a
planar bicone. This choice is not necessarily appropriate for
other unit cell geometries.

As illustrated in figure 4 let us choose

x = r sin(0) cos($) = r sin(~) cos(@)

Y = r sin(6) sin(+) = r cos(~)

z = r COS(6) = -r sin(~)

The r, 0, @ system is chosen to have

(5.3)

sin(~)

the standard relation to
the cartesian-x, y, z system which we use to describe the array.
The r, 0, Q system is chosen so as to conveniently map the
planar bicone unit cell onto the equivalent x’, y’ coordinates
while maintaining the conductors in one plane for convenience.
The planar bicone unit cell is considered later in this note.

Define normalized coordinates for the equivalent cylindri-
cal transmission line as

(5.4)

Define a complex normalized coordinate as

.

c’ ~ X’ + iY’ = “ + lY’220
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which can be written in terms of G, Q as

giving for 0, @ real

(5.6)

(5.7)

arg (z’) = -Q

Equations 5.3 can be used to relate 0, @ and f3,$ as

Cos (o) = 5in (9) sin($)
(5.8)

tan(~) = -cot(~) see($)

Then using positive square roots for 6, $ real we have

-1/2 -1/2
Cos(0)= *[1 + tan2(@)] s -+[1+ CotZ(0)sec2($)]

-1/2
= sin(f3)cos(+)[COS2(6)+ sin2(0)Cosz($)]

-1/2
= sin(0)COS($)[1- sin2(6)sin’($)]

(5.9)

-1’2[1- -1/2= sin(8)cos($)[1+ sin(6)sin($)] sin(e)sin($)]

-1/2 -1/2
sin(~)= &tan(@)[1+ tan2(@)] = TCOt(e)sec($)[l+ c0t2(6)sec2(@)j ~

-1/2
= -cos(6)[cosz((l)+ sin2(e)COS2(4)]

-1/2
= -coS(e)[1 - Stiz(e)sin’($)]

= -cos(f3)[1+ sin(9)sin(~)l-1’2[1 -1/2- sin(e)sin($)]
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In terms of,e, $ the norms-lizedcoordinates become

Sin(fCl)cos($)
“ = I + siII(6) sin($)

Y’ = Cos(e)
(5.10)I + sin(6) sin($)

c“ = XT + iyl = ‘sin(p)cos (+) + i cos (6)
1 + sin(8) sin($)

In section I a normalized potential function f(~,~) is in-
troduced to describe the.potential for the spherical TEM mode.
By mapping 6, @ to x’, y’ we ha”vea solution for f(e,~) pro-
vided we have the solution for the complex potential function
w = u + iv in the complex plane x’ + iy’ . For convenience one
can define a complex variable

I + -jyl
Cxx=

o

wherexo is some convenient constant.
have

Rel:ting this to ~’ we

(5.12)

We can later choose X. to be some convenient constant related
to the geometry of the equivalent cylindrical transmission line.
In relating f(e,$] to w we simply then set f equal to some con-
venient constant times u.

Having the potent,ial”,function for the spherical TEM wave
one “would also like to obtain-the field distribution. For this
we need

(5.13)

which was introduced in section 11. As a step in obtaining
this we need
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which in turn can be derived from

(5.14)

V’w = V’(u + iv) = ~. + ii. (5.15)

where the gradient is taken with respect to the normalized X’ ,
Y’ coordinates for our present considerations.

The vector functions ~. and to describe normalized elec-
tric and magnetic fields respectively for the equivalent cylin-
drical transmission line and can be written as

3.”= :X,90
x’

+ $Y190
Y’

to E :X,ho + :Y,ho
x’ Y’

(5.16)

As discussed in a previous note we can define complex TEM mode
functions for cylindrical transmission lines as8

90(C’) = 90 ,(C’) - igo ,(C’)
x Y

(5.17)

ho(~’) =h o ,(c’) - iho ,(c’)
x Y

These have the relations

9 = h
0, Oyl ‘ 90 = -h. ,
x Y’ x

(5.18)

9’.(<’) = iho(~l) = ‘w(c’) = a ‘wd(CC)
d; ‘

The quantity dw(~)/d~ can be found from the equivalent cylin- =
drical ternamission line solution thereby giving V’w and thus
V’u and V’f.

Now relate V’f(~’) to #(e,@) through the chain rule as
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Thus we can transform a gradient in cartesian X’r Y’ space to
one in spherical 9, @ space via

3h,($) = Vsf(er$l)=To v’f(x’,Y’) (5.20)

:
where T is a transformation matrix given by

ax’ ~y I

-m -m-

(5.21)

\

1 aY‘
sin1(6)%$ sin(6) ~,

where the order of the components for V~f and V’f must be taken
as 6, @ and X’, Y’ respectively.

From equations 5.10 the matrix elements for ~ can be read-
ily found. The result is

+-

[

cOs(e) COS(+) -sin(6)
~ = [l+ sin(6) sin(@) J-2

- sin($)

-sin ($)- sin($) -coS(e) Cos(+) )

(5.22)

Note that

ax’ ay t

m--=- sin1(6) ~

~yl 1 ax’
x= sin(e) ~$

(5.23)

If one has f as a function of L (the coordinates for the equiv-
alent cylindrical transmission line] and the factor a to relate
< to ~’ (the normalized coordinates used in the transformation)
then equations 5.20 and 5.22 give the field distribution for
the spherical TEM mode.
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time
From equations 4.23 we have the far field effective early-
rise as

2mch
A ‘1

= [1 - sin2 (91) sin2(@l)l

=[1- sin%l) sin2($l) ]

: (5.24)
“ {[co s(@l):e ‘]. ~

1 -=O’s(61) ‘=n(@l)e@,
4.

“ v’f(x’,Y’)]-l

= [1-sin (61) sin(+l)] [l+sin (61 sin(~l)l
2

Iaf ‘1
~

The fraction of the early time field perpendicular to the late
time field direction is the ratio

[Cos(01) sin($l)=~, + Cos(+l):oll “ 3(01,01)

0= J. L

L

[cos(el) sin($l)~e + Cos($l)go ] .~ . v’f(x’,Y’)
1 1=

[cos(ol)=~l - Cos(el) sin($l)~$ll ● i “ v’f(x’,Y’)

-sin(61) COS(f#Il)&$ - af
cos(61)w

1 1=
af

Cos(el) ax,—- sin(el) cos (@l)&
1 1

(5.25)
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Note that X;, Yi is used
terizes the direction of
ray. Our two early time

.,

to correspond to 61, $1 which charac-
propagation of the wave from the ar-
array parameters, tq and p, are now

characterized in terms of ~1, $1 and f(~i). -
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VI. Planar Bicones

Consider a planar bicone for each unit cell on the p+ane
Z=o. In particular consider the unit cell centered on r = 3
as illustrated in figure 5. The half angle of the symmetrical
planar bicone is ~. The planar bicones are oriented symmetri-
cally with respect+to the x and y axes with the la$e ti~e aver-
age source field, Etan from equation 4.1, so that es = ex as in
equations 4.3. The unit cell has coordinates for the four
corners

(x,Y,z) = (ia,*b,O)

One can define a special value of ~ as

40 = arctan(~)

(6.1)

(6.2)

Figure 5A shows the case for O < ~ < @o; note that there are
assumed to be conductors connecting between cells in the y di-
rection so as to make the late time average source field have
no y component. Figure 5B shows the case for ~. < ~ < 7r/2.

For this case of a rectangular cell we have

h =2a, A=4ab,

(6.3)
+ + + +
e = es x’ ‘t = ‘Y

In considering the early-time rise characteristics it will be
convenient to normalize tl with respect to a, b, or some com-
bination thereof.

Using the normalized transformation from equations 5.4

x’=== 2Z. cos(@) tan[~)

y! = &= -sin(@)’ tan(~)
o

(6.4)<

toqether with the coordinate definitions in equations 5.3 and
4 gives the transformation of the plan~r bicone near

in figure 5 to an equivalent cylindrical transmission
The conductors go to two line segments in the x’, y’
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plane on the y’ = O line. The two resulting lines (or the
cross section of the two uniform perfectly conducting strips)
lie in the range X3 : ~x’~ : X5 or X; ~ \X’1 ~ X: where 2 and 3
indicate inside and outside edges respectively for the equiva-
lent strips. This is illustrated in figure 6.

In the normalized X’, Yt coordinates we have the edge
equations

(6.5)

giving

‘5X; ‘-1 (6.6)

The co~:ormal transformation for the complex potential
function is

~=x’:iy’ = aq’ = a[X’ + iY’] = sn(wlm)
o (6.7)

w= u+iv

As illustrated in figures 7 and 8 the real part of the poten-
tial fmction has values u = fK(m) on the two strips with V
changing from -K(ml) to +K(ml) in going around one strip. The
parameter in the elliptic functions is

.

(6.8)
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We also have

sin(~ - ~)

‘l+ COS(; - +)

Cos (l))
= 1 + sin(~) (6.9)

for calculating m. The edges are at ~ = *1 and G = tin-l/2.

From the edge equations we have in the normalized coordi-
nates

‘;ax’ = a — =
2 2Z0 1

‘;ax’ = a — = -1/2
3 220 m

Cotiining this with equation 6.6 gives

a=In-l~4=l:o:J:\+) =l:.:;;:+) =Cot( :-;)

Thus we have Xi < 1 and X+ > 1 with specific equations

X~=A=l~o~~Jj$) =tan(~-f)
a

X:=a=l Cos(lj) 1)
- sin(~) = Cot(: - ~

(6.10)

(6.11)

(6.12)

.
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VII. Early Time Impedance for Planar Bicones and Comparison
to Late-Time Impedance

The impedance for a single planar bicone driven at the
apex isz

=Zf‘bog

where 20 is the impedance
the array is located) and
permittivity respectively

(7.1)

of free space (or the medium in which
V. and so are the permeability and
of free space. The geometrical im-

pedance factor can also be written as

K (ml)

~=e
‘T K(m)

K(m)
‘nK(.ml)

q~=e

where q is called the nome and q~ the complementary

(7.2)

nome. I2

For small m which implies ~ + 7r\2 we have
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(7.3)

as an approximation for fg for 4 near Tr/2. For small ml (m
near 1) which implies ~ + O we have

f
9 =* ‘n($)=* ‘n(:)+ ‘(ml)

(7.4)

For $ near zero we have

= l-tan’ (~-~) = l-tan’(~) - 4 tan3[#) see’ (~)(~) + O(Y2)‘1

= 44 + 0(!2)

which gives

f
g=* ‘“[V + :(4’)1+‘(v)

(7.5)

Figure 9 and table 1 show the functional dependence of fg
on ~ and the accuracies of the asymptotic forms for ~ near O
and 1. For the case of small ~ (with ~ > O) note that equation ‘
7.6 gives a better approximation for fg than does equation 7.4.
For 2 /n =

$
.1, for example, (1/T)fin(4/$)is accurate to 1 part

in 10 . On the other hand for ~ near 7J/2the approximation in
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m
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.49927

.46837

.43931

.41196

.38623

.36202

.33923

.31779

.29762

.27864

.26078

.24398

.22818

.21331

.19.933

.18618

.17382

.16220

.L5128

.14102

.13138

.12233

.11383

.10585

.09836

.09134

.08476

.07859

.07281

.06740

.06234

.05760

.05317

.04903

.04517

.04156

.03820

.03507

.03215

.02944
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+ In(f)

2.4;733
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2.4;633
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2.14664
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1.98403
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1.79694
1.76340
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1.25110
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1.06400
1.03046
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.58919
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.55170
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.53116
.52459
.51816

for Symmetrical
Planar Bicones and S~etrical Coplanar ~trips

forO:~:~/4
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o
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.11646 <

.10986

.10015
0

lb. Geometrical Impedance Factor for Syntmetrical
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terms of m is more accurate than the one in terms of +; for
~ = IT/4the formula in terms of m is still accurate to about 2
parts in 103. Figure 9 shows the range of validity of four ap-
proximating functions for fg for relevant regions of ~.

Having the early-time impedance of a single planar bicone
it is interesting to compare the result to the late-time imped-
ance each source (at the apex to each planar bicone) drives.
The late-time impedance involves all the mutual interactions of
the planar bicones and is influenced by the turn-on-time se-
quence for the source points (equation 2.7).4 ‘

Section IV has considered the late-time fields at large
distances from the array. These are the same (except for de-
lay) for components parallel to the x,y plane as the average
tangential fields on the source plane (averaged over a unit
cell) . On the source plane the late-time average electric
field has no y component. The impedance driven by each source
(including bo-ti fo-&ard
ray) is then given by

and back waves on both sides of the ar-

z e5”G z
=—_ ——2°:+.::= 20:

‘t o

z
=— —

2° :

Note that

e “eXo
+ +1
‘Y “eo

7 ‘1 -1/2
cos(61) [l-sin-(61) sin& (@l)]

-1/2
[cos2(@l) sin2($1) +cos 2($1)1 [1-sin2 (61)sin2(@1)l

(7.7]

this result applies to more than just planar bicone
arrays provided 2a is taken as the periodicity in the x direc-
tion and 2b as the periodicity in the y direction with one

.

source per unit cell.

Consider a few special cases. First let $1 = O so that
the radiated wave is propagating parallel to the X,Z plane and
the electric field is also parallel to this plane. Then we
have
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(7.8)

In this case Z~ decreases from the case of normal propagation,
(61,41) = (0,0), as 61 is increased from zero.

Next let $1 = IT/2so that the radiated wave is propagating
parallel to the y,z plane and the magnetic field is also paral-
lel to this plane. Then we have

zoa 1——
‘E = 2 b cO~(el)

(7.9)

In this case Z~ increases from the case of normal propagation
as 01 is increased from zero.

For various choices of 01 and $1 one might choose ~ and
aib to make the early-time and late-time impedances match or
have some other specified relationship to each other. G1ven
61, +1, 4, and a/b equations 7.1 and 7.7 can be used to relate
the early-time and late-time impedances. One might wish, for
example, to make the early-time and late-time impedances equal
and use this criterion to constrain the relation between b/a
and + as a function of el and $1.

As an interesting example suppose el = O (propagation per-
pendicular to array) and let ~ = n/4. For a/b = 1 the ratio of
early-time and late-time impedances is 1 if fg = 1/2 for a sin-
gle planar bicone. For ~ = 7r/4it is the case that fg = .5 as
can be seen in the following derivation. This choice of fg was
used for the complex potential function plot in figures 7 and 8
for the equivalent two symmetrical coplanar strips.

For ~ = Tr/4we have the parameter and complementary param-
eter for the.elliptic integrals as ,

q
[

1-
2

m=
cos(7r/4)tan4[~ - z = tan4[~) = I + COs(7T/4) 1

[1.n-lz=[a,-1]4=[3 - 2a]2 = 17 - 12/2-
(7.10) =

0+1

‘1 = 1 ‘m= 1 -[w- 1]4=12~-16=4[3fi -41
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Then consider the special formula for the complete elliptic in-
tegral of the first kind as12

K(mr) ‘2~l+mi
(

1’2]-lK [(1 - mil’2)/(1 + m;l’2)]2
)

(7.11)

mi +m~=l

First choose

which gives

Next choose

‘i
=[n-l]4=Rl

m’ = 1 - m? =m11

which gives

(7.12)

(7.13)

(7.14)

(7.15)

.
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The early-time geometrical impedance factor for ~ = ‘IT/4is then

f K(m) = 1

9 = K(ml) ~
(7.16)

exactly.
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VIII. Early Time Fields at Large Distances from an Array of
Planar Bicones

The conformal transformation for the complex potential
function (from equations 6.7 and 6.11) is

~ = cxg’= CIIX’+ iY’] = sn(wlm)

w =u+iv (8.1)

a Cos ($)=
1-

= m-1/4
sin(~)

For use in the formulas to follow we have the Jacobian elliptic
functions of complex argumentlz

sn(ulm)dn(vlml) + icn(ulm)dn (~lm)sn(vlml)~n(vlml)
sn(wlm) = -2

cn2(vlm1) + msn (ulm)sn2(v\ml)

cn(ulm)cn(vlml) - isn(ulm)dn(u\m)sn(vlml) dn(vlml)
cn(wjm) =

cn2(vlml) + msn2(u~m)sn2(v]m1)
(8.2)

dn(ulm)cn(vlml)dn(vlml) - isn(ulm)cn(ulm)sn(v~ml)
dn(wlm) =

cn2(v/ml) + msn2(u\m)sn2(vlml)

where

(8.3)

NOW we require that f(9,@) change by 1.0 in going from one
conductor to another in the planar bicone. Let us require that
f be *1/2 on the two conductors. Thus we set

f—= 2K?m)
(8.4) =

Then taking the gradient in the X’, Y’ coordinate system we
have
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V’f= 1
2K(m) “u

This gives

(8.5)

(8.6)
af=_ [1Im ~ay’ 2KYm)

for which we need

dw [1d~ ‘1—=
d~ s = {cn(wlm)dn(wlm) }-1

Using the relations among the elliptic functions as

1/2
cn(wlm) = [1 - sn2(wlm)]

1/2
dn(wlm) = [1 - msnz(wlm)]

(8.7)

(8.8)

the derivative of the
pressed in terms of c

dw “
—= {[1 - C2][1d~

complex potential function can be ex-
as

-1/2
- m~2]} (8.9)

where one should be careful in evaluating the square root so as
to have

(8.10)=

For this purpose one can refer to figure 7 and define branch
cuts along the Re[~] line from c = +1 to c = +m and from ~ = -1
to ~ = -CO*
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For a given 01,$1 we can calculate the corresponding X~,Y~
and thus the corresponding L: from equations 5.10. As in equa-
tions 8.1 one calculates 3 since a and m are known from $.
Equation 8.9 gives dw/d< without having to first calculate w.
This gives ~f/~X’ and 3f\3Y’ in equations 8.6. The far-field
effective early-time rise tl can then be calculated from equa-
tion 5.24 and the fraction p of the early-time field perpendic–
ular to the late-time field direction can be calculated from
equation 5.25. Note that the quantities 6, @, X’, Y’, L’, C
can all be given subscript 1 to make them correspond to the di-
rection to the observer at large distances from the array. For

convenience one can write

c
-1/4c,

= a~’ = m

~ sin($) cos($) + i cos(6)=
1 + sin($) sin($)

(8.11)

which brings into this section all the necessary terms to sub-
stitute into equations 5.24 and 5.25 for the field related
quantities.

Consider some special cases for which the expressions for
the fields simplify somewhat. First let 61 = O (for which 41
can take on any value). The normalized potential function is

f(o,$l) = o (8.12)

The normalized coordinates for the equivalent cylindrical sys-
tem are

X’=o, .Y’=1 (8.13)

~ = a~’ = ia

The normalized potential is found (since a is real) from

-1/4
sn(wlm) = ia = im

(8.14)
-1/4

sc (vim) =a=m ? u = o

The derivative of the normalized potential at C = ia is real
and positive and is given by
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dw -1/2

a
={[l+ci2][l+cI-2]}

~=ia

cl=
1+(X2

Thus for our special case of el = O we have

af
ax’ 2Ktm) ‘1

+
-1

~-21

2nch
Ct

1
A ‘l=nb — = 2K(m)[l + a-2]

= 2K(m)[l +m 1/21

p=()
●

For small m with ~ + IT/2we have

2nch 1/21-
A ‘1

=7r[l+O(m)][l+m

= 7T[1+ mi/2 + O(m)]

(8.15)

(8.16)

(8.17)
.

For small ml with ~ + O we have
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[1=Trh-i $ + O(vh-l(v)) (8.18]

The numerical results for the case of 81 = O are given in
figure 10 and table 2. Note that for the special case of
V = m\4 so that fg = 0.5 the characteristic time ctl/b for the
rise of far field is 1.18 which is roughly 1; this result is
not surprising. s Note, however, for small $ that ctl/b becomes
somewhat larger, indicating a less efficient early time per-
formance. For ~ near 7T/2on the other hand the early-time im-
pedance of a planar bicone (figure 9) is rather small; a pulse
generator with some inductive limitation on the signal it can
deliver to the bicone will then produce a comparatively slow
rising pulse on the bicone. (The present graphs assume zero
source impedance.) For a practical pulser then some intermedi-
ate value of ~ (between O and $/2) will be optimum for a par-
ticular application. This is furt:lercomplicated by the fact
that in a practical application times of several nanoseconds
can be of importance while times of zero nanoseconds have no
practical importance, except insofar as they characterize early
times of interest. Furthermore an intermediate value of $ is
also needed to match early and late time impedances and thereby
minimize oscillation of the array unit cells.

NOW let $1 = O with O : 61 < T/2. Then we have

+ i Cos(el}]
-iel

iae

-i2@1 -i2e1 -1/2
dw=
d~l

[l+a2e ][li-a-2e 1

i*lA-1/2
=e o
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$$
T
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
.34
.35
.36
37
:38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50

ctl/b

3.5;700
3.08624
2.82885
2.64666
2.50573
2.39997
2.29428
2.21087
2.13761
2.07239
2.01368
1.96036
1.91.155
1.66668
1.82513
1.78650
1.75045
1.71669
1.68497
1.65510
1.62688
1.60019
1.57487
1.55083
1.52795
3..50615
1.48535
1.46548
1.44648
1.42829
1.41086
1.39414
1.37809
1.36267
1.34785
1.33360
1.31988
1.30667
1.29395
1.28169
1.26986
1.25846
1.24745
1.23683
1.22658
1.21668
1.20712
1.19788
1.18896
1.18034

!Ln($)

5.5;988
4.84673
4.44127
4.15359
3.93044
3.74812
3.59397
3.46044
3.34266
3.23730
3.14199
3.05498
2.97493
2.90082
2.83183
2.76729
2.70667
2.64951
2.59544
2.54415
2.49536
.2.44884
2.40439
2.36183
2.32101
2.28179
2.24404
2.20768
2.17259
2.13868
2.10589
2.07415
2.04337
2.01352
1.98453
1.95636
1.92896
1.90230
1.87632
1.85100
1.82631
1.80221
1.77868
1.75569
1.73322
1.71124
1.68973
1.66868

‘ 1.64806
1.62786

—— .-

+$
.50
.51
.52
.53
.54
.55
.56
.57
.58
.59
.60
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
.71
.72
.73
.74
.75
.76
.77
.78
79
:80
.81
.82
.83
,84
.85
.86
.87
.88
.89
.90
.91
.92
.93
.94
.95
.96
.97
.98
.99

1.00

ctl/’b

“1.18034
1.17201
1.16397
1.15619
1.14868
1.14142
1.13441
1.12763
1.12109
1.11477
1.10867
1.10279
1.09711
1.09163
1.08635
1.08125
1.07635
1.07163
1.06708
1.06272
1.05852
1.05449
1:05062
1.04691
1.04337
1.03997
1.03673
1.03364
1.03070
1.02790
1.02525
1.02273
1.02036
1.01812
1.01602
1.01406
1.01223
1.01053
1.00896
1.00752
1.00620
1.00502
1.00396
1.00303
1.00223
1.00154
1.00099
1.00056
1.00025
1.00006
1.00000

1++(;-+)2
1.15421
1.14811
1.14212
1.13626
1.13053
1.12491
1.11942
1.11406
1.10881
1.10369
1.09870
1.09382
1.08907
1.08445
1;07994
1.07556
1.07131
1.06717
1.06317
1.05928
1.95552
1.05188
1.04836
1.04497
1.04170
1.03855
1.03553
1.03263
1.02986
1.02720
1.02467
1.02227
1.01999
1.o~783
1.01579
1.01388
1.01209
1.01042
1.00888
1.00746
1.00617
1.00500
1.00395
1.00302
1.00222
1.00154
1.00099
1.00056 ~
1.00025
1.00006
1.00000

Table 2. et,/b and Asymptotic Forms for 8, = O
d. -L
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(8.19)

Im(AO) = O

where we note that A. is the product of two terms, each of
which is the complex conjugate of the other. The terms in the
expression for the early-time field fraction are

af af— - cos(61)~-sin(el) ~X,
1 1

1 -1/2 -1/2 I
= 2KYm)

-sin(61) cos(61)Ao +Cos(el) sin(el)Ao j

= 2K!m)

Thus we have

p/2
o

(8.20)

.

1/2= #K(m)Ao

Po=

(8.21)



Similarly for $1 = t~ with O < 61 < n/2 we have—

iO
c1 = a~’

1
= a[-sin (61) + i Cos(el)] = ia e 1

[

i20 i2@l -1/2
dw=
dzl [l+a2e

/
1][1+~-2e ] , (8.22)

= -i@lA-l/2e
o

with A. the same as before. The terms in the expression for
the early-time field fraction are

= 2K7m) I
-1/2 + sin2(61)Ao ~

cos2(el)Ao -1/2/

-1/2
= 2K7m) ‘o

Thus we have

2nch Ct
\

tl=~+= /cos(el)* af /-1+ sin(el)~jA
1

(8.23)

.

(8.24)

Po=
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The cases of 01 = O and $1 = -E~then have the same results as

one would expect from symmetry.

Figure 11 shows the variation of ct~/b as a function of y

,for various values of @I with $1 = O, ~~. Note for small ~ and

for 61 near 7r/2that ctl/b becomes small, but for more moderate
values of 61 and ~ then ctl/b is near 1.

For $1 = m/2 we have

Cos(el)

()
n ,61

c1
= a~; = ia l+sin(61)

= ia tan~-— 2

01

() -1/2 ,.cotLTA

‘ Al= [:c:(:-;+atan(:-2)] [aco.(E%+MN)]

(8.25)

Thus we have

2nch
Ctl

[1af ‘1
A

— = Cos(el) [1 +
‘l=nb

sin(61)l ~
1

./

H)[fil-’= cos(61) sin(61) cot 4

1/2
= $K(m) COS(61) sin(el)~l

Po=

Sim~larly for $1 = -n/2 with O < 91 < 7r/2we have—

(8.26)
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Cos (01)

L = ci~’= ia
1 1- sin ((31) = ‘a 4$- 2)

(8.’7)

[1dw=lmd~l o

with Al the same as before. Thus we have

2 nch Ct
1 [1

-1-sin(el)l ~
A ‘l=TY= cOs(el) [I

1

= ~K(m) Cos(el) sin(f31)A~’2

Po =

The cases of $1 = iTr/2then have the same results as one would
expect from symmetry. Figure 12 summarizes the results for
this special $1 case. Again note for ~~ near IT/2that ctl/b is
decreased.

For the special case of f31= ?T/2we have
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NOW for various ranges of $1 we then have

(8.30)

Referring to figures 7 and 8 this special result for 91 = ~/Z
applies along the line Im[g] = O. On the conductors the
tric field is in the Im[C] direction; off the conductors
electric field is in the Re[~] direction. Then tl and p

elec-
the
become

(8.31)

Note that for 01 = T/2 the clear time tcf for the validity of .

the spherical TEM formulas goes to zero so the above expres-
sions are limiting cases. Also note that replacing 01 by -01

or n - 01 or n + $1 leaves AZ unchanged. Figure 13 plots ctl/b
as a function of ~ for various values of ~1 for this special
case of 61.

From figures 4, 5, and 6 one can note that each unit cell
of our special planar bicones has 3 symmetry planes: the xz
plane ($3 = O, in), the yz plane ($I = t’rr\2),and the xy plane
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(61 = ‘7r/2). The presence of a symmetry plane introduces cer-
tain symmetries into the electzoqagn tic field distribution. g
Note that the voltage source at r = t connecting to the planar
bicones makes the scalar potential the same for ly and fz, but
opposite (given the convention on f(6,$)) for ~x. The fields
are then symmetric with respect to the xy and xz planes, but
antisymmetric with respect to the yz plane (using the defini-
tions from ref. 9).

The unit vector :1 (propagation direction) is symmetric
with res~ect to all 3 symmetry planes, noting that it is the
same as er-considering one cell. The late time electric field
direction e. is parallel to the xz plane and therefore sym-
metric with respect &o the xz plane; it is also symmetric with
respect to the xy plane and antisymmetric with respect to the
yz plane.

The symmetry properties of the fields can be carried over
directly to the symmetries of tl and p with respect to 81 and
01 ●

Fox tl(el,$l) we have

which is the same as the symmetries of go ● ~. ~The ~ymme$ries
of P(el,$l) are then the same as those of ~~ ● F = [el x eo] “$
giving

= -P(e@T - 01) .

since ~~ = :1 x ~. is antisymmetric with respect to the xy and
xz planes b~~ symmetric with respect to the yz plane. The sym-
metries of e. are the same as those of the magnetic field $nd
are thus the opposite of those for the electric field and eo.
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Figures 14 through 23 plot ct~/b and P as functions of $
with 61 and ~1 as parameters. The ranges of 61 and $1 in these
plots are restricted to O + n/2. Other values can be obtained
through use of the symmetry relations in equations 8.32 and
8.33. Note for $ near Tr/2that P is small for all 61 and $1 as
long as (3Iis not too near to m/2. Small values of 61 also
keep p small for even small values of ~.
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IX. Summary

This note has treated a special example of a periodic
planar array, specifically an array of planar bicones in rec-
tangular unit cells. Using special techniques the early and
late time characteristics of the far f-ieldshave been found and
presented. in numerical form in tables and graphs for the case
of zero impedance sources triggered in plane wave sequence with
step function voltages. These techniques can be readily ap-
plied to other unit cell geometries and other bicone shapes.
Unfortunately these techniques do not give the intermediate
time results in general.

The present results depend on the plane wave trigger se-
quence as well as biconical fields near sources. However, each
of these restrictions can be considered separately and applied
independently to different types of source array problems. For
example, one might consider a plane wave sequence of unit cells
with non TEM early-time fields. Alternatively one might con-
sider other than planar (say spherical) trigger sequences of
unit cells with early-time conical TEM waves.

.
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In addition to these early-time and late-time solutions it
would be desirable to solve some appropriate array problems for
all times and frequencies. At least a few of these solutions
would help to optimize array design for intermediate times and
frequencies.
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