
.

—

Sensor and Simulation Notes

Note 185

September 1973

Transmission Line Model of Radiating Dipole
with Special Form of Impedance Loading

David L. Wright
James F. Prewitt

The Dikewood Corporation
Albuquerque, New Mexico 87106 \

Abstract

This note considers the far-field radiated waveform and field

pattern from a long, thin, cylindrical antenna in the transmission line

approximation when driven by a voltage generator of waveform Vou(t)

where u(t) is the unit step function. The antenna is loaded with an imp-

edance which is taken to have the form

z’ =
2ZC06(U)

h-Y

where h is the antenna half-length, ~ is the absolute value of the dis -

tance measured along the antenna from the center, ZCUis an approxi-

mate antenna characteristic. impedance based on that of a long, thin

biconical antema, and 6(LJ) is a complex function of frequency. Ana-

lytical and numerical solutions for the far field pattern and waveform

are discussed. In particular, the effects of resistive with parallel

inductive loading are discussed.
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the far-field radiated waveform and field

cylindrical antenna in the transmission line

approximation when driven by a voltage generator of waveform Vou(t)

where u(t) is the unit step function. The antenna is loaded with an im-

pedance which is taken to have the form

z! =
2ZCY36(L9)

h-Y

where h is the antenna half-length, K is the absolute value of the dis-

tance measured along the antenna from the center, Zcu is an approxi-

mate antenna characteristic impedance based on that of a long, thin

biconical antenna, and 6(w) is a complex function of frequency. Ana-

lytical and numerical solutions for the far field pattern and waveform

are discussed. In particular, the effects of resistive with parallel

inductive loading are discussed.
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I. Introduction

One of the problems of pulse radiating

selecting loading on the antenna in such a way

dipole antennas is that of

as to optimize the radiated

waveform in terms of some desired waveshape. This problem may be

attacked in a number of ways. One example is the work of D. E. Mere-
1, 2

Wether in which a synthesis procedure is developed for selecting

lumped resistor pairs to symmetrically load a cylindrical antenna so that

the far zone electromagnetic field pulse or near zone magnetic field

approximates some prescribed waveshape.

Another example is the work of C. E. Baurn3 who considers

continuously loaded axially and lengthwise symmetric pulse radiating

dipoles using a transmission line approximation for finding the currents

on the antenna. Baum considers first a uniformly resistively loaded case

and then a special case of non-uniform loading. This special loading
-1

is proportional to (h - IzI) where h is the half length of the antenna

and z is the position on the antenna measured from the center (driving

point). This form of resistive loading has been previously considered

by Wu and King4 and Shen and WU5 from the standpoint of frequency do-

main broadband and directional properties. The reason for the reappear-

ance of this special form of resistive loading in pulse studies is the

broadbanding property of this type of loading which permits pulse smoothing

of a kind desirable in EMP waveform simulation.

The present study is largely an extension of the work of reference

3. The same functional form of loading is retained, but the proportionality

is no longer fixed at a single value. Variation over real and complex values

is permitted corresponding to physical variation over resistive and reactive

values. Normalized current distributions and radiated electric fields are

given in both frequency and time domain as a function of loading and observer

angle with respect to the antenna.
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11. Formulation and Solution of the Current Equation

The antenna geometry is shown in figure 1. As the first step in

our analysis we require the antenna current. TO obtain an approximation

to the current we employ a transmission line model for the antenna. It

has been shown
3, 4

that in this zero-order or transmission line approx-

imation the wave equation for the current on a thin dipole antenna may be

written as

a 27’—.
2

(
702 +sciz~

)
r=o

ar

I

r~m “z’
2a

I I
Zr=o

\

z!=h

Figure 1. Geometry of the Problem

(1)

where s is the Laplace variable,

7.=:
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c’ =

z! =

1
equivalent transmission line capacitance per

Cz
m

equivalent transmission line loading per unit length

unit length

Z.
z= — In

()

2h
h>>a characteristic impedance of (2)

m ?r 7
long, thin biconical antenna
exclusive of loading

a= antenna radius

2h = antenna length

r

#o
Zo= ~ impedance of free space

o

and the tilde indicates that

At this point take

2Z 6

we are in the Laplace or frequency domain.

z’=—
h-;

(3)

where 6 is in general a complex function of frequency, but is independent— — —-

Ofr. Substituting for C‘ and Z‘ in equation 1, the wave equation for ?

becomes
—— —.

$(,:+ ~’),=o

If a trial solution for the current is written in the form
—. .. - —. .

-;.!
T(s, t) =(h-~)e @(s, K)

——

(4)

(5)

and equation 5 substituted into equation 4 we find that Q(s, E ) satisfies

the differential equation
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Making a change of variable

y = -2yo(h - ~ ),

we obtain

2

Y ~ + (2-y) =+(6-
ay

l)@=o.

8 y“

This is the Kummer or confluent hypergeometric equation as ‘given,

for example, by equation 13. 1.1 of Abramowitz and Stegun. 6

This differential equation has a solution of the form

@(y) =CIM (l-6, 2;y)+C2U(l

where M and U are Kummer’s confluent

- 6, 2;y)

hypergeornetric functions.

(6)

●

✎

(7)

(8)

(9)

Thus, a general solution for the current is

.—— __ _

-7’.3
~(s,~ ) = (h-~) e

![ 1[ II
CIM 1-6, 2; -2yo(h-~ ) + C2U 1-6, 2;-2~o(h-r ) .

(lo)
— . ..—,

Requiring the current to vanish at the ends of the antenna, so that ? (s, h) =

O, we must set C2 = O since

()U(a, 2;2) --0 $ as z +0

and
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M(a,2; O) = 1.

Therefore

-Yot
~(s, t)=(h-f)e

[ 1
CIM 1- 6, 2;-2~o(h-0

Writing Cl in terms of the current at the center of the antenna

-T(S, o)

c1 = hM(l-6, 2;-2TOM

so that

-Tot
[

M 1-6, 2;
1

-2 To(h-t )

T(s, t) = (1-f /h) e r(s, o)
M(l-6, 2; -2~oh)

—

To evaluate the driving point current we continue to use the

transmission line approximation. From one of the transmission line

equations we may write

(11)

(12)

(13)

(14)

Substituting the expression for ~ (s, c ) of equation 13 into equation 14

[ 1[ 1 [ 1~o(h-? )+1 M -2*/o(h-f ) -2~o(h-Y ) M’ -2~o(h-? ) --(. ?
T(s, t) = T(s, O)e

sC’h M(-2yoh)

(15)
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The voltage at the center of the antenna can then be written .
.-\

(~oh+l) M (-2~oh)-2yohM’( -2~oh)
7(s,0)= -&

M(-2~oh)
r(s, 0) (16)

?)M(a, b;z}
Here for simplicity we have written M(a, b;z) as JM(z) and ~ ~

as M’(z)

Then the antenna impedance in the transmission line approximation

is

0(s, o) 1
(~oh+l) M(-2yoh) +yoh M’(-270h)

Za =
y(s, 0) ‘ m M(-2~oh)

(17)

[

M’(-27 h)
= & (~oh+l) - 270h M ~-2T0h)

o 1

Defining

M’(-2-yoh)
f6=2

M(-2~oh)

and remembering that -yO = ~ and Ct = --& , we have finally
CQ

(18)

(19)

sh
where s

hs~-
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Thus equation 13 may be written in terms of ~ (s, O) as

-?ot’
Y(s, 0)(1-~ /h) e

[ 1M 1-6, 2;-2@I-~)
Y(s, r ) =

[ 1[
z ~+l. f6

w Sh 1M 1-6, 2;-2~oh
(20)

Equation 20 is then the solution for the frequency domain current on the
-

antenna for an arbitrary driving function V(s) in the transmission line

approximation and with no special treatment for the feedpoint geometry.



HT. Current Solution for Step Function Input .
.

Equation 20 gives the solution for the freauency domain current for
o

an arbitrary driving function. At this point we specialize to the case where

the antenna is driven by an idealized capacitive pulse generator of capaci-
1 V.

tance C impedance Z = —
# g

and voltage output Y’(s) = ~ .
Scg ‘

Schematically, the situation is shown in Figure 2, Note that the generator

.

.,

z =-J--g Scg

z
a

I

Figure 2

Schematic Representation of Capacitive Generator

Driving Antenna

impedance appears in series with that of the antenna and that therefore

~g(s) is not identical to V(S, O). From the circuit of Figure 2, however,

we may write’

v

[1

-1
r’(s, o) = + Zg+z

a

Substituting for Za from equation 19’ into equation 21 we obtain

(21)
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[ 1
-1

T’(s, o)= ; * + +- +Z - Zm f6

~
co

a

where C = C’h,
a c

Define a parameter a ~ 1 + & . liquation 22 becomes

g

T(S, o) = W:+l-’J1

(22)

(23)

Substituting equation 23 into equation 13, we obtain

v

[1 [ 1
+ M 1-6, 2;-2~/o(h-? )

r(y)= +
[sh (l~f6)+ CCZ] 1- i e NI(I-6, 2;-2yoh) (24)

co

Figures 3 through 9 show current distribution along the antenna.

Each figure is for a discrete frequency, u ❑ck, and treats the loading, 6,

as a parameter. Figures 3 and 4 include relative phase, arg[I(z’ ) /1(0)] .

It may be observed that for any frequency both the magnitude and phase

of the current are linear functions if 6 is taken to be unity. This is not

true for other values of loading. The curves in figures 3 through 9 are

obtained from equation 24 with the results normalized to T(O). It should

be remembered, however, that T(O) is a function of frequency. There-

fore no comparison of absolute values of currents at different frequencies

is to be made from the figures. This information is available only by

first calculating X 6, O) for some particular s=@ by using equation 23.
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IV. Radiated Field

Using a thin-wire approximation, we assume that I is concentrated

on the z’ axis. Following reference 3 the normalized radiated waveform

is then calculated as

P
h

<(e)’fi +
1

~oz’cos(e)
~(z’) e dz I

o -h

(25)

where t* is the retarded time given by

(26)

The normalized waveform in equation 25 is related to the far or radiated

electric field Ef (only a o component) by
e

In addition

(2’7)
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z
where fg~~, ths ~.

et-r
Also define Th s ~. Note that ? is

z*
considered u~ing retarded time so that a current wave initiated at t = O

at the center of the antenna will produce a waveform at the observer
.—

beginning at t* = O.

Substituting for ~(! ) with K = ] z‘ I into the first of equations 25,

and using equations 27 we obtain

x1[’-w [“2~o(h-’z’”l ‘:(-’z’’+coso)dz’28)
-h

..— —— —. - -— .:
The inverse transform of the far field frequency domain result in equation

28 yields the time domain result. For certain cases analytic closed form

inversions have been obtained. For other cases numerical inversions

were carried out. Curves of magnitude and phase of 7($ ) as a function

of

in

frequency for various values of observer angle o and loading 6 are given

figures 10 through 15.

In figures 10 through 15 the patterns are for fixed frequencies with

resistive loading as a parameter, All patterns are normalized to the

maximum value, so that directionality as a function of loading is indicated,

but in general, the peak value of E is not the same for various values
8

of 6.

17



—..
1.0

.

.
–=%

E(6)
E

max

0.5

0
0 15 30 45 60 75 90

e

Figure 10. NormaEzed Radiation Pattsrn at kh = 27r with
6 =.2,.4,.6,.8,1.0 e

E(0)
E

max

1.0

0.5

f-l

—
I

r I I I I I J
“o 15 30 45 60 73 gfJ

e
o
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V. Analytic Studies of Frequency Domain Radiated Field

Consider the integrandof equation 28. We re~lace the Kummer

function by its series definition as given by equation 13. 1.2 in Abramowitz
6

and Stegun.

[ 1[M -2~o(h- I 2’1) 1=M 1-6,2; -270( h-l z’1 ) = M(a, b;z)

co

‘x
(a)nzn

~
(b)nn !

n=O

with a = 1 - 6, b = 2, z = -270( h-l z’!), and with

(a)n ~ a (a+l)(a+2) 000 (a+n-1), (a). z 1

(29)

(30)

Using equation 29, the integral part of eauation 28 may be written as

4,(s,6) = ~ [1-~] ‘$ “-~~(-~~o(h-’“!)ne:(-~‘“‘Z’cose)d
n=O n

(31)

Interchanging the order of integration and summation and changing the range

of integration to [0, h] gives us

co

I (l-d)n (-270)n
4.6(s,0) =

(2)n n! h
n=O

cc

=
I x (s) ‘=& (S’o)

n=O n

h

(

Sz I

I

-Szl
Szt

- —cOse —Cose
(h-z f)n+le c e c +e c ) dz ‘

o

(32)
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where ~~ represents only the integral part of equation “32 and x represents

the factor in iron-t of the integral. If we change variables in ~’ (s, 6) by

letting

v = ~-zl

P= : ( l+COSO)

q = ; (l-coSe)

Then ~n~ (s, 6) becomes

h

1Zn’(s, (3) = J’+l
o

#n’ may then be expressed as the

a

J xnebxdx =
(-l)n+ln! +

b
n+ 1

0

LL

(ep(v-h)+eq(v-h)) ~V

(33)

( 34)

sum of two integrals each of the form

n
ab

e
2

n ! an-j
T ‘-1)3 (~-j)!bj

j=O

Thus if we watch our p’s and q’s, equation 32 becomes

(35)

22
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n =0

(1-6) n(-2yo)n

(2)n n! h

— . —.—=

H
n+ 1

x d’h (-l)n::p:+2 ~ (-J ‘n+l)!‘n+l-J
P (n+l-j)! pj )

(36)
P j =0

.. . _- — _

(

n+ 1

+ e-qh (-l)n:::+l)! +s ~ (.-l)j (n+l)~hn+l-J

~
q (n+l-j)! qj

j=O )11
.—. -—. -. —+. ,,_ -- -. -.—

. . _ ——..—.

Equation 28 may then be written as

with 46(s, 13)given by equation 36. Substituting for fa from equation 18
and using the relation

M’(a, b; Z) = ~M (a+l, b+l; z)

we have

-— ._.

F(e) = * S+*9)

(ca+sh) M(l-d, 2; -2 yoh) - sh(l-6) M(2-6, 3; -2yoh) (39)

23
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and substituting

—....— .. ..— — .- —.— .- ——. ___ ... _

for the M’s gives us

S4JS,0)
sinfl~(e) . =-j=

(
03

I
(1-@n(-2yoh)n m (2-6) n(-2yoh)n ]

(ca+sh) ~
(2)n n !

- sh(l-ti) I (3)n n!
n=O n=O 1

(40)

Recalling that yo= s/c, p= s/c (l+cos~), q = s/c(l-cos6), we see that

aside from factors of the form ex P ~ ‘Sh( 1*C6-S o)] both ‘merator and

denominator are made up of infinite series in powers of s. This remains

true for arbitrary continuous passive element loading (with the ~ h-~z’11 -1

functional form of course). The exponential correspond to time retar -

dation in the time domain.—. —... — -
0 .=
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VI. Analysis of Special Cases

Although for a general 6 corresponding to some

antenna, equation 40 with ~a(s, 6) defined by equation 36

loading on the

appears quite for-

bidding, there are special cases of interest for which further simplifications

and analyses have been accomplished. If we choose 6 to be a positive integer,

corresponding to certain cases of purely resistive loading, the various

infinite series will all become finite polynomials which may, in principle

at least, be analytically transformed into the time domain. If6 isa

positive integer, equations 36 and 40 are unchanged except that ~ as an

upper limit on the range of summations is replaced by 6-1 on those

summations, Three special cases are given below with 6 = O, 1, 2.

1. 6=0,6=;

For the 6 = O case, we go back to the integral definition for 4.(s,6), namely

h

.&’o(s, (3) = *
/ I 1]

yo(-l Z’1 +Z’coso)
(h-1z’1 ) M l,2; -2yo(h-lz’ ) e (iZ’

-h

(41)

Using the relation

M(1,2;2z) = :2 sin z (42)

which is equation 13.6. 14 in Abramowitz and Stegun6, specializing to the
—

e= $ case and with q =’-”:yo(h-z~) we obtain

25
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4.(s,6) = - +
[

-yoh
&?

-1) e e-q d~

Y~ h -yoh

[1

2
1

-yoh
=

2
l-e

hy
o

(43)

In the denominator of equation 39 we may use a recursion relation, namely

M (a+l, b+l; z) = & lb (1-b+z) M (a, b;z)

+b (b-l) M (a-1, b-1: z) I (44)

which is equation 13. 4.7 in Abramowitz and Stegun6 to obtain

M (2, 3; -2yoh) = &h l(l+2y oh) M(1, 2; -2vOh) -1 I
o

c
so that settings = 1 + & * 1 for C >> C

a ~ a’

[1-2yoh
(c+sh) M (1, 2: -2yoh) -sh M (2, 3; -2yoh) = ~ e +1

—.

Thus, for 6 = O, 0 = ~ , and CY = 1, we obtain

(45)

(46)

. . .

26
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[1
2

.()

-yOh

~’:=~h 1:2jh
o

[1
e 0 +1

(47)

which agrees with equation 44 of reference 3 with (3 = O, CY= 1. Following

13aum we may expand this result as a geometric series giving

C71

~($)=+[1-2e-y$+e-2y~l~ ‘-’)”;2”’0’
ll=o

1
al

1 z -(2n-l)yoh
=— 1+2 (-l)n e

‘h I
n=O

So that

Cu

()
$’ ; = u(7h )+2

x [
(-l)n u Th- (2n-1)1

n=l

where u(t) is the unit step function.

The result in equation 49 is simply an undamped square wave for

Th > 0 and is not a precise result for the radiating cylindrical

antenna since the model ignores radiation damping, but it is the

result of the transmission line model in the no loading limit. One

would expect that the deviation between the result obtained in the

transmission line model and that of a more accurate model would

be greatest for the no loading case. For resistively loaded cases,

(48)

(49)

except perhaps for very early times, the transmission line approx-

imation results should become more accurate as the loading increases.
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2.6=1

For this case, using equations 40 and 36 with only the n=O term

in each summation, we obtain

/[

~-sh(l+cOs$)

Y(e) = =
1

2(sh+Q) (m) Sh(l+cose)

[ IIe-sh(l-cOse)

‘h
+1 =

Sh( l-cOse)

+11
(50)

2i7f r% yor
g fg

tvoe
h

This result is identical to equation ’77 of reference 3. Therefore, the

inverse transform time domain result is

‘CYT
h

*T
l-e

h

l:cos(e) -
a( i-c0~(e))2

dTh)

-#[7 L-(1 -cos(e))]

-1-~ l-e “ ‘(rh-[ I-coS($)] )
CY

(hcos(e)?

-1-

‘C1T
h

-cl r
l-e

h
e
l+cOs(e) -

a(l+c0s(e))2

-a[T=-(l+cOs(e))]

+ 1 l-e “
‘(rh-[ l+cos(e)] )

CY
(l+cos(@)2

1

.
.

(51)

rEf9

= 2Tf —
g V.

28
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3.6=2

For this case the frequency domain result is

.- .

r’(e) = + ‘h
[(sh(sh+z)+dsh+l)]

If we write

[[

-Sh(l-coso)

(1- 2

)

e -1 + 1
x

l-cosf?
‘h

2(1-COS9)2
1

Sh(l-coso)

( )[“s (1+ COS6)
2

eh
-1 + 1-—

+ 1 1+COS6 1+Shz(l+cose)z Sh(l+cose)

.— .—

sh(sh+2) -t’a (Sh+l) = Shz +(a+z)sh +a = (sh+Qt)(sh+ ;, )

K
CY2

where CY’= ;+1+
2

+1

we may rewrite equation 52 in the form

?“(e)= %p-
(Sh+d);sh +:)

(52)

.
+-

1

(i-cosf3)

1

(1+COS6) 1
(53)

(54i

I -Sh(l-cose)
(l+cosf3) e

x-

(1-cos9)3 ‘h

‘h
2(1-cos8)2-shsin26 +(l+cos O)

+

sh(l-c0se)3

-sh(l+~Ose)

(1-cOse) e ‘h
2(l+cos@)2-shsin20 +(l-cos$)

“— +
(l+COS@3 ‘h sh(l+cos6)’
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Taking the inverse transform, the time domain waveform becomes

—. .—. ,.

L \ /

●U I~h-(l-cOse)]+

[

l+cOse ~ CY’2(1-@))2+CI’Sin2 6+(l+COSf)) e-a’Th

fl(l-cosg )3 ~1 ~1-5

~
(1-cose)3~1

(1-COS$)2+ ~ sin26 + (l+cos~) ‘~ Th
+ e

a’2(l+cos@)2+a’ sin26 + (l-cos O)
‘CYIT

+ l-cosg , h
I e

a(l+cose )3
()

~, (I+cose )3~lal-s

(-)C22
(l+cose)2+ ~ sin2$ +(l-cos O) ‘~ Th

+ “

(:)(@) ’’+cose” e
1U(rh)

[(

)(

‘~ [Th-(l+COS@] -C&

)
-a’[Th-(l+cos@)l

l-cOse a’ l-e al l-e

(l+cose)3
()

fld-~ 1
(55)

30



.

.

Note the symmetries with respect to

quadratic [sk(s~+2) +a(sL+l)], If we further
La 11

we obtain

..—— .
r

~f’( )2
-( Th-l) /d’

l-e

the roots a’ and a/a’ of the

specialize to O = : a = 1,

(:a(Th-l)), 2’
U(rh -1) +

(56)
\

I

-~fr -’T /CYf

d2- (1 + (Q’2-i-Qf +1) e
hh

-e )1 1u(7h) +

This waveform has a zero at 7h ~ .51 and a minimum of $’ ~ -O.1 at
3+6

‘h
~ .86, The value ofaf forcy=l iscrl =r = 2.618. Although no

curves were obtained directly from equations 54, 55 or 56, the numerical

results of the general routine as presented in figures 18 through 21 agree

very well with the analytical results.

In theory, it is possible to continue to higher integer values of 6,

e
but finding roots algebraically becomes increasingly clumsy, and attempting

analytical inversions to get the time domain result becomes correspondingly

less attractive. Since these special cases do agree well with the results

calculated by the general routine, they lend confidence to the other results

obtained for which an analytic closed form solution is not available or

convenient.



VII. Numerical Results
.

.
Figures 16, and 17 give E ‘ and $ ‘ for the loading parameter 6 ranging

between .2 and 1.0 for a fixed observer angle of $. We see that as 6

is diminished from 1 toward O, the first zero crossing moves toward 1 and

the undershoot also increases. Physically, what is happening is that for

lightly loaded cases we are approaching the lossless transmission line solu-

tion which is -I-1 from 0< ~h <1, jumps discontinuously from +1 to -1 at

‘h
= 1, stays at -1 until ~h”= 3, and jumps back to +1 at that point. The loss-

less case is given by equation 49. Figures 13 through 31 give normalized

frequency and time domain radiated E field for various resistive loading

corresponding to values of 6 between O. 2 and 3 with the observer angle (1

as a parameter. It may be observed that for very early times the radiated
.

field goes as (sin e ) - 1; however, for late times the dependence is sin$. The

dependence on e is discussed in reference 3. We may note that the effects

of the antema ends on the radiat~d field are progressively smoothed as one

increases the loading at the cost of damping the radiated field more rapidly

and decreasing the time of first zero crossing. Also the time of arrival of

the end effects is a function of

the far zone of the antenna, $h

center to the observation point

lated that at 6’ = ~, end effects

appear at T
h

=.5andl.5; and

observer angle. Remembering that we are in

>>1 where r is distance from the antenna

and 2h is the antenna length. It may be calcu-

are simultaneous at T
h

= 1, at 6 = ~ end effects

~te=+ end effects occur at r = . 134 and
h

1.866. For example, see figures 19, 21, 23, 25, and 27. For 6 = 2, 3 the

discontinuities in the slope of E‘ have been removed at the cost of damping

the waveform more rapidly.

Other cases of interest arise when 6 is a complex number, If we

consider the equivalent transmission line to have an inductive load per

unit length
2zm

[!L’==~h%=2pofg[l - :’ ] ‘1% (57)

./
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in parallel with a resistance per unit length

2Z
R’=—

h-l Z:! p ‘

such that the total impedance per unit length is given by equation 3,

2Z

“=ti~’

then 6 is related to p and k by

Shkp

&
‘Sh%+ p

In order to separate 6 into its real and imaginary parts, we set the

variable

‘h=@th

so that 6 becomes

P(I + j P/wtL%)

1 + (pk. )th?d’

Notice that in the high frequency limit,

(58)

(59)

(60)

and the impedance Z‘ appears purely resistive. In the low frequency limit
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so that the antenna appears to be unloaded. The behavior of the real

and imaginary components of 6 /P as a function of ~/P Wt is shown in
h

figure 32.
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Figure 32. Behavior of ~ Re(~) and #Ire(6) as a Function of A/ R&
C
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Figures 33 through 40 show

parallel with resistance. All these

the far field and at an angle @ = ~ .

some results of adding inductance in

curves assume the observer is in

Figures 33 through 38 are for a

value of p = 1. Figures 39 and 40-are for p = .5. The loading parameter

6(Sh) is now given by

Shpk
d(sh) =

sh* + p
(60)

where p is the normalized resistance parameter and k is the corresponding

parallel inductance parameter.

It may be observed that the inclusion of parallel inductance

significantly modifies the radiated wave in a number of respects. First,

for P = 1, the first zero crossing time may be moved to values greater

than Th = 1. Secondly, the undershoot and second crossover time are

affected. Also the discontinuity in slope at ~
h

❑ 1 is somewhat reduced

and ~
h

= 1 is in general no longer the minimum point on the curve.

It may be remarked that even for relatively large parallel inductance,

the value of :! for late times is affected by the inductance, For example,

ifk=6, p= I,g’at~h = 4 is larger by almost a factor of 2 than for

the P = 1 case with %= co.

The frequency domain results show filtering behavior with both

the magnitude and the location of the peak of g‘ increased as X is decreased.

This highly resonant frequency domain behavior is reflected by the highly

oscillatory behavior for the same cases in the time domain. Compare,

for example, figures 33a and 34. As the inductive loading becomes

large (large ~, the behavior approaches that of the purely resistively

loaded case, as may be seen from both frequency and time domain data.

Attempts to analytically determine some kind of optimum choice

of loading were unsuccessful. Instead, a few values of it were selected
..

for which the second zero crossing (for P = 1) had not yet occurred at

51



.+

F
-1

10

“1

arg(~)

10-2

-3[ , !’, ,,,,*Iii-) I I t 1 I 1Ill I ! $ t I I 1!1 t 4 1 I fill
.LU

10-2 10-1 10° @ 101.—
Figure 33a. ~ for Various X w~h p = 1

3

t

102

2 - .18

lF K=, 60
.30
.24

0

-1 -“’

-2 -

-3 -

-4 I i t ! Illtl I I I t f 1111 1 1 I t tl tll I 1 I 111’

10-2 10-1 10° 101 102

Wth

Figure 33b. Phase of ~ for Various Xwith P= 1

o

52



1.0

0.5

E’ o

-0.5

-1.0

I I I I I I I

o 1 2 3 4

‘h

Figure 34. ~1 for Various K with p = I



101

10°

10-1

10
-2

10
-3

arg( ~ )

3

2

1

0

-1

-2

-3

%=0.
1.
1.

2.

t
-1

, 1 I I t I Itl 1 I 1 t 1 Iltl 1 t I t I Ittl I 1 I 1 $11s

10-2. 10-1 10° 101
GJth

Figure 35a. 1~1 for%= . 6, 1.2, 1.8, 2.4and9=l

102

I f f i 1 I 1flt t t I I I 11$1 I I 1 ! t 11!1 I I t } t I It

10=2 10-1 10° 101 102
W

h

Figure 35b, Phase of ~ forfi = 0.6, 1.2, 1.8, 2,4 with F = 1

*

,



1.0

0.5

k!’
o

-0.5

-1.0

— .. ?.- ,.,

1 I 1 I I I I I I I I

%=0.6

—

I I I 1 I I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12

‘h

Figure 36. E’ for Various R with c = 1



10

9

8

7

6

4

3

2

1

0

.

.

,..

I 1 I I I I I

~.m

/
asymptote

I

\

1st zero crossing

I

I

I
I
I

zero crossing

L I I 1 I I 1
(,69) 1 2 3 4 5 6 7

‘h

Figure 37. Variation of First and Second Zero Crossing Times with X witl] P = 1

.!
I



.

P

c.

2

.

.

x=2. o

2 3 4 5 6 7 8

‘h

Figure 38. Relative Field Strength with X as a Parameter



k= .06 , 1

F
-1

10“I
10-2

, 12

.24

.30

6

-3
10 f 1 &, I II 3 I I I I ! t tll I t I 1 ! I tl ! ! I f * ! !1

10-2 10-1 10° ~th 101 102

Figure 39a. IF\ for various x with p = .5

3

2

1

arg(~ )
o

-1

-2

-3

—.

X=6, O .60 .30
.

.06

.12
, 18
.24 1

1 I I I I lllt I ! t t 1111! 1 J I I II Irl t I ! I tl!l

10-2 10-1 10° 101 102
dh

Figure 39b. Phase of ~ for Various ~ with p = .5

58

●

✌✎



1.0

0.5

E’

o

-0.5

.06
, 12

.24

.30

.60
6.0

/

.18 /

/

/A

-1.0
0

l’igurc 40. or Various A wit Lp = . 5

’11

3 4



*

= 4. ~ime dorna~n dda were exknded ior ~hese cases to Th : 12
Th

with the results shown in Figure 36. 1{’rorn figwrc 36 it may b~: crmcludi:rl

that the second zero crossing may be pushed to values exceeding Th = 6.

To further clarify the zero crossing question, figure 37 shows first and

second zero crossing times as a function of ~ with P = 1 assumed through-

out. The p = 1 value is ck.asen since for pure ?esistive loading of p = 1,

the second zero crossing is at infinity. AIthough not proven analytically,

the numerical results suggest that p = 1 is the minimum value of p such

that the second zero crossing is at infinity. For p = O. 8 there is a

second zero crossing at 7 H 4. 5, for example.
h

Thus, p = 1, k = x provides

a useful reference case against which to compare the P = 1, % # zx cases.

The numerical re suits suggest that for any finite 2 there is a finite

second zero crossing time, (at least if P = 1 is assumed] but that one

may delay this time to any arbitrarily large value at the expense of field

strength by selecting a large enough k. Figure 38 shows the ratio of the

radiated electric field for various inductively loaded cases to the electric

field radiated by an antenna purely resistively loaded with p = 1 for all

cases. The times shown are between the first and second zero crossing

times for each case. The ratios may be viewed as a measure of the

improvement in field strength due to the resistive-inductive loading as

compared to the purely resistively loaded case for the times shown.

The conclusion is that if a second zero crossing at

time is acceptable, the addition of parallel inductance will

Iate time fields by an amount dependent on the second zero

some finite

increase the

crossing time.

Figures 39 and 40 are similar to figures 33 and 34, but with P = .5

instead of 1. The behavior is quite similar in the two cases.

The accuracy of the numerical results depends upon two things:

(1) The calculation of the confluent hypergeometric function appearing in

equation 28, and (2) the number of frequency points used in the transfor-

mation from the frequency to the time domain. The confluent hyper -

geometric function is calculated by a power series in the argument

A

-.

.

,

0
60



-2yo (h- z’ ), and for large argument by an asymptotic expansion in

-270 {h-~zf ). The number of terms in either series together with the

nun-her of frequency points required are chosen such that the time domain

function ~’ agrees to within at least 1% with the analytical results at ~h= O

for the case of purely resistive loading.
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VIII.

In order to iHustrate the

Application “

impact of the above calculations on

real antenna systems, we consider the application of these results

to a specific antenna. We choose the following specifications:

Antenna half-length - h = 50 meters

Effective antenna cage radius - a = 2.5 meters

Peak source voltage (assuming capacitive generator) - V. =5 x 106 volts

From equation 2, above we calculate the characteristic impe-

dance of this antenna as

so that f =Zwlzo =1.17
g

The relation between the far electric field and the normalized waveform

is, from equation 27,

For this antenna,

Ef ~
=6.78 x105~

An observer a distance 500 meters from the antenna experiences an

electric field

*
4

-.

a’

Efo
= 1.36 x 103 :! volts/meter
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F

@ The retarded time for this observer (time measured from pulse

onset) is related to the normalized time, 7 h, by

h7h>:
t=~

_ 5000
3 ‘h nanoseconds

Choosing the impedance loading such that P = 1, K ‘ 6, wc oiJ@in an

inductive loading

L= +’=442~
11-lz’i

gH/meter

in parallel with a resistive loading

R=%
= 442& o ‘meter”

We can approximate this

elements. To obtain a bound on

inductor and resistor elements,

continuous loading by discrete loading

the required values of these discrete

we assume the antenna to be loaded at

5 meter intervals. The largest values of both inductance and resistance

will be required for the elements nearest the end of the antenna, which

we take to be 45 meters from the antenna center. The required resistance

at this location is taken to be

R =486Q
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1.36x103
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and the required inductance is taken as

i

7.
L =:=10-6Z

z

L =0.486

The time domain electric field

5

A ‘z

produced by this loading at O= n/2,

r = 500 meters is shown in figure 41, together with that produced by

only the resistive loading. Notice that the cross-over time with the

inductive load included is approximately 500ns later than that with only

resistive loading.
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