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Abstract

This note considers the far-field radiated waveform and field
pattern from a long, thin, cylindrical antenna in the transmission line
approximation when driven by a voltage generator of waveform Vou(t)
where u(t) is the unit step function. The antenna is loaded with an im-
pedance which is taken to have the form

2Zw06(w)

! =
Z h-t

where h is the antenna half-length, ¢ is the absolute value of the dis-
tance measured along the antenna from the center, Zw is an approxi-
mate antenna characteristic. impedance based on that of a long, thin
biconical antenna, and §(w) is a complex function of frequency. Ana-
lytical and numerical solutions for the far field pattern and waveform
are discussed. In particular, the effects of resistive with parallel

inductive loading are discussed.
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Abstract

This note considers the far-field radiated waveform and field
pattern from a long, thin, cylindrical antenna in the transmission line
approximation when driven by a voltage generator of waveform Vou(‘c)
where u(t) is the unit step function. The antenna is loaded with an im-
pedance which is taken to have the form
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! =
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where h is the antenna half-length, ¢ is the absolute value of the dis-
tance measured along the antenna from the center, Zw is an approxi-
mate antenna characteristic impedance based on that of a long, thin
biconical antenna, and é§(w) is a complex function of frequency. Ana-
lytical and numerical solutions for the far field pattern and waveform
are discussed. In particular, the effects of resistive with parallel

inductive loading are discussed.
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I. Introduction

One of the problems of pulse radiating dipole antennas is that of
selecting loading on the antenna in such a way as to optimize the radiated
waveform in terms of some desired waveshape. This problem may be
attacked in a number of ways. One example is the work of D, E. Mere-
wetherl’ 2 in which a synthesis procedure is developed for selecting
lumped resistor pairs to symmetrically load a cylindrical antenna so that
the far zone electromagnetic field pulse or near zone magnetic field
approximates some prescribed waveshape.

Another example is the v.vork of C, E. Baum3 who considers
continuously loaded axially and lengthwise symmetric pulse radiating
dipoles using a transmission line approximation for finding the currents
on the antenna. Baum considers first a uniformly resistively loaded case
and then a special case of non-uniform loading. This special loading
is proportional to (h - |zl)“1 where h is the half length of the antenna
and z is the position on the antenna measured from the center (driving
point). This form of resistive loading has been previously considered
by Wu and King4 and Shen and Wu5 from the standpoint of frequency do-
main broadband and directional properties, The reason for the reappear-
ance of this special form of resistive loading in pulse studies is the
broadbanding property of this type of loading which permits pulse smoothing
of a kind desirable in EMP waveform simulation.

The present study is largely an extension of the work of reference
3. The same functional form of loading is retained, but the proportionality
is no longer fixed at a single value, Variation over real and complex values
is permitted corresponding to physical variation over resistive and reactive
values. Normalized current distributions and radiated electric fields are
given in both frequency and time domain as a function of loading and observer

angle with respect to the antenna.



II. Formulation and Solution of the Current Equation

The antenna geometry is shown in figure 1. As the first step in
our analysis we require the antenna current. To obtain an approximation
to the current we employ a transmission line model for the antenna. It
has been shownS’ 4 that in this zero-order or transmission line approxF
imation the wave equation for the current on a thin dipole antenna may be

written as

Figure 1. Geometry of the Problem

where s is the Laplace variable,
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1

C'= 2 equivalent transmission line capacitance per unit length

0

equivalent transmission line loading per unit length

N
1]

2 ,
Z ~ —2 n (_Zzh_) h >> a characteristic impedance of (2)
4 long, thin biconical antenna

exclusive of loading

a = antenna radius

2h = antenna length
o
Zo = - impedance of free space
o}
¢ = |z

and the tilde indicates that we are in the Laplace or frequency domain.

At this point take

Z' = 2 (3)

where 6 is in general a complex function of frequency, but is independent

of £, Substituting for C' and Z' in equation 1, the wave equation for T

becomes
2~ 27y 6*_‘ B 7 T

9 1 2 0 ~
— -y F ) I=20 (4)
a¢ 2 ( e} h=-¢

If a trial solgtion for the current is writl:gen in the_fc_)rm

N A

I(s,¢)=(h=-¢)e & (s, ) (5)

and equation 5 substituted into equation 4 we find that &(s,{) satisfies

the differential equation



2

(h-t) _5_3_9 -2 _%;L [yo(h-§)+1} 2y (1-5) ®=0 (6)
3¢

Making a change of variable

y = =2y (h - %), (1)

we obtain

@
W

+(6 ~1)® = 0. (8)

|

y 3 + (2~y)

Q©

J

This is the Kummer or confluent hypergeometric equation as given,

for example, by equation 13.1.1 of Abramowitz and Stegun. 6
This differential equation has a solution of the form
®(y) = C;M (1 -8, 2;y) + c,U (1 -6, 2;y) (9)

where M and U are Kummer's confluent hypergeometric functions.
Thus, a general solution for the current is
-7,8

~ (o}
I(s,¢) = (h=t) e c,M [1-6, 2; -2y (b=t )] +C,U [1-5, 2;-2yo(h-t)]

(10)

Requiring the current to vanish at the ends of the antenna, so that T {s, h) =

0, we must set C2 = 0 gince

Ula, 2;z) ~0O (-;'—) as z -0

and



M(a, 2;0) = 1.

Therefore

- “758
I(s,8)=(h=¢)e ClM 1 -6, 2;—270(11-(’) (11)

Writing C1 in terms of the current at the center of the antenna

_ T(s, 0)
17 EM(i-G, 5;-27 ) (12)

so that
N SR M [1-6, 2 =27, (h-¢)]
IS:§)=(1~ /h)e I (S:O) (13)
( ¢ M(1-6, 2; -2'yoh)

To evaluate the driving point current we continue to use the
transmission line approximation. From one of the transmission line
equations we may write

~ 1 aT
V(s, ¢) = sCT 3¢ (14)
Substituting the expression for T (s, ¢) of equation 13 into equation 14
h-¢)+1 -2v (h- - - " - -
. [0 )41] a [-29 8-0)] -2y (n-t) -2 (0o ) . x
' sC'h M(-2_h) (s, O)e
(15)



The voltage at the center of the antenna can then be written

-~ - 1( -
('yoh-%-l) M ( 2')/01’1) ZYOhM( Z'yOh)

~ 1 ~
Vs, 0) = —=7 M(-27_B) I (s, 0) (16)
Here for simplicity we have written M(a, b;z) as M(z) and 8 Ma(az, b;z)

as MYz)

Then the antenna impedance in the transmission line approximation

is
, . Ts0 1 (At M2y 0 -2y h M2y h)
a T{(s, 0) sC'h M(-Zyoh)
(17)
1 M'(-2'yoh)
= — - N o9
=il RS R ey
Defining
M’(-Zyoh)
= 2
s M(-?.‘yoh) (18)
and remembering that Vg = % and C!' = cZI , we have finally
©
1
SRR P (19)
- 0 [Sh 5]
‘ _ sh
where sh = =



Thus equation 13 may be written in terms of v(s, 0) as

N ~7,¢
V(s, 0)(1-¢ /h)e M [1-5, 2;-2vo(h-§’)

= (20)

[(s,¢) -
Zoo[-s: +1 = f5] M[l-a, 2;-2'yoh]

Equation 20 is then the solution for the frequency domain current on the
antenna for an arbitrary driving function V(s) in the transmission line

approximation and with no special treatment for the feedpoint geometry.



III. Current Soluticn for Step Function Input

Equation 20 gives the solution for the freauency domain current for
an arbitrary driving function. At this point we specialize to the case where

the antenna is driven by an idealized capacitive pulse genera%gr of capaci-
. 1 ~ _ Vo
tance C , impedance Zg = 50 and voltage output Vg(s) = = -

Schematically, the situation is shown in Figure 2. Note that the generator

1
Zg” 5Ce

Figure 2

Schematic Representation of Capacitive Generator
Driving Antenna

impedance appears in series with that of the antenna and that therefore
Vg(s) is not identical to V(s, 0). From the circuit of Figure 2, however,

we may write
~ VO -1
I1(s,0) = ——
(s, 0) 3 [Zg + Za] (21)

Substituting for Za from equation 19 into equation 21 we obtain

10



~ 0 1 1
= — | == 4 e— + -
(s, 0) s sC sC Zoo Zoofé (22)
g a
h = C'n.
where Ca C'n Ca
Define a parameter o =z 1 + ol Equation 22 becomes
g
~ Ve co -1
I(s,0) = E—Z— [—S-— + 1 - f(S] (23)
0 h

Substituting equation 23 into equation 13, we obtain

v zst [ -5, 2:=2~ (h- ]
Tier= =2 n N Rl !
; Zoo [sh (1-f6)+ cal h ' M(1i-6, 2;-2701'1)

Figures 3 through 9 show current distribution along the antenna.
Each figure is for a discrete frequency, w=ck, and treats the loading, 4,
as a parameter. Figures 3 and 4 include relative phase, arg[l(z')/1(0)].
It may be observed that for any frequency both the magnitude and phase
of the current are linear functions if § is taken to be unity. This is not
true for other values of loading. The curves in figures 3 through 9 are
obtained from equation 24 with the results normalized to 1(0). It should
be remembered, however, that T(0) is a function of frequency. There-
fore no comparison of absolute values of currents at different frequencies
is to be made from the figures. This information is available only by

first calculating 1(s, 0) for some particular s=jw by using equation 23,

11
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IV, Radiated Field

Using a thin-wire approximation, we assume that I is concentrated

on the z' axis. Following reference 3 the normalized radiated waveform
is then calculated as

h
- T N v z'cos(g)
For=2> = [ Twne®

~h

dz'
o)

(25)
u h
1
£(a) = sin (p) =% &= = fIz’, g 4 21008000 ) 4
T V_ 09t c
o] -h
where t* 1is the retarded time given by
k= - £
thz t- = (26)

The normalized waveform in equation 25 is related to the far or radiated
electric field Ef (only a g component) by
7

. rEf‘9 N rEfG v
5 = nd =
Vv L a g = v e
o o (27)
In addition E'= 2qf &, Elz onf £
g -

16



E. Also define 7, = -CL‘L. Note that & is
c h h

N‘ N
8

where f = , t
g o h

considered using retarded time so that a current wave initiated att = 0

at the center of the antenna will produce a waveform at the observer

beginning at t* = 0, -
Substituting for T(¢) with ¢ = ] z‘] into the first of equations 25,

and using equations 27 we obtain

2 - Sing S 1
§(6) = = [sh<1-f6)+cg M(-27_h)

v 1 \ is-(-!z’{-i-z'cose)
x f 1- J-}Zl M ~2yo(h-]z'1) e € dz'  (28)
~h

The inverusé'*~ transform of the rfﬁairv field fr"equ?eﬁcy domainﬂfmaon
28 yields the time domain result. For certain cases analytic closed form
inversions have been obtained, For other cases numerical inversions
were carried out. Curves of magnitude and phase of £'(g) as a function

of frequency for various values of observer angle 9 and loading é are given
in figures 10 through 15,

In figures 10 through 15 the patterns are for fixed frequencies with
resistive loading as a parameter. All patterns are normalized to the
maximum value, so that directionality as a function of loading is indicated,
but in general, the peak value of EB is not the same for various values

of 6.

17
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V. Analytic Studies of Frequency Domain Radiated Field

Consider the integrand of equation 28, We replace the Kummer

function by its series definition as given by equation 13,1, 2 in Abramowitz

and Stegun.6
M [—270(11- | z'|)] = M [1-5, 2; -Zyo(h-‘ z'| >] = M(a, b; z)
n
o (a) z
= Z (—6-)—n—,- (29)
n=0 nn'

witha=1-6, b=2, z= -2«,0(11-] z'|), and with

(a), = a(a*1)(a+2) -+ (atn-1), (a) = 1 (30),

Using equation 29, the integral part of equation 28 may be written as

h ) Sl 1
l21] (1-6) (27(h[z]) =(-lz'| +z'cosp) |
_ Z E c dz
eea(S,O) ad ‘-/;l [ - ] : n‘. €

(31)

Interchanging the order of integration and summation and changing the range

of integration to [O, h]' gives us

X 1-5) (--2'}'0)rl b 0+ --i—z’ -EEZ-'-cose -S-cz—:-cose>
cea(s,e) = z ) arh f(h-z‘) e e +e dz'
n=0 n 0
o0
o !
= Z X (8s) aén (s,6) (32)
n=0 n

21



where o' represents only the integral part of equation 32 and x represents

the factor in front of the integral. If we change variables in cg'(S, 8) by

letting

v = hez!

o
1}

s (1+cosh)
c

S
q=z (1-cos6)

Then c%‘ (s, 68) becomes

h

%‘(S’ 9) = f Vn+1 (ep(v—h)+eq(v—h)) av

0

(33)

c{l' may then be expressed as the sum of two integrals each of the form

a
n+1

- !
f xnebxdx= (-1) nt

n+1
0 b

Thus if we watch our p's and q's, equation 32 becomes

(35)



0 [ (1-5) (-2y )"
<L (s,6)= z 0
5’ (2)_n'h
n=0 n
-ph (-1)’1+2(11+1):+<e’Dh z i @™
=1e +2 p IV
pn i=0 (n+t1-j)! p
n+l .
h . n+1-j
Lo (0 Py el S (o) ™
e
n+2 q +1-9)! ]
q §=0 (n+1-3)! g
Equation 28 may then be written as
o) = sind S 1

2 FR(I-f %] W2y h) <; (s,6)

with ueé(s, 6) given by equation 36, Substituting for £

5 from equation 18
and using the relation

M'(a, b; z) = -gM(a+1, b+1; z)

we have

g(e) - Sine S%(S:e)

23

(36)

(37)

(38)

(ca Sh) MIT=3, 2, <23 1) - SH(I=6) (25, 53 1) (39)



and substituting for the M's gives us

See(s,e)

sing

g!(e) = 5

V VOO ) [+ o] n
(1 6) ( 2y h) (2-6) (~2y h)
(ca+sh) z ° - sh(1=6) Z (311 °
: rn

(40)

Recalling that y _= sl/c, p= s/c (1+cosh), q = s/c({l-cosh), we see that
aside from factors of the form expl -'S'l:!(l-_%-cé‘s ¢} both numerator and

denominator are made up of infinite series in powers of s, This remains
true for arbitrary continuous passive element loading (with the [ h-{z'{] -1

functional form of course). The exponentials correspond to time retar-

dation in the time domain.

24
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VI. Analysis of Special Cases

Although for a general § corresponding to some loading on the
antenna, equation 40 Withegé(s,e) defined by equation 36 appears quite for-
bidding, there are special cases of interest for which further simplifications
and analyses havebeen accomplished, If we choose éto be a positive integer,
corresponding to certain cases of purely resistive loading, the various
infinite series will all become finite polynomials which may, in principle
at least, be analytically transformed into the time domain. If 6 is a
positive integer, equations 36 and 40 are unchanged except that o as an
upper limit on the range of summations is replaced by -1 on those

summations., Three special cases are given below with § =0, 1, 2,

For the 6 = 0 case, we go back to the integral definition for c\éo(s,F)), namely

h
1 yo(-! z'] +z'cosfh)

L (s,0) = — (-] z'[) (1, 2; -2yo<h-lz'l>} e dz’

-h

(41)
Using the relation
oz
M (1, 2; 2z) = ru sin z (42)

which is equation 13, 6. 14 in Abramowitz and Steguns, specializing to the

0 = % case and with n =.-:'Yo(vh"z'> we obtain

25



Yo !
o yoh
2
1 -Yoh
= —3 1 -e (43)
hyo

In the denominator of equation 39 we may use a recursion relation, namely

1
M (a+1, b+l; z) = = b (1-b+z) M (a, b; z)

+b (b-1) M (a-1, b-1; z) (44)

which is equation 13.4. 7 in Abramowitz and Stegun6 to obtain

1
M (2, 3; -2 = — ;- -
{ yoh) \’Oh (1+2y Oh) M(1, 2; 2~{0h) 1 (45)
. C
so that settinga = 1 + -2 = 1forC >> C,
C g a
a
( b o -Zyoh
ctsh) M (1, 27 - - ‘- = <
( ZYOh) shM (2, 3; 2y0h) 5 |e +1 (486)
Thus, for 6 =0, 8 = g—, and ¢ T 1, we obtain

26



2
]
>= 1 l-e (47)

-
~

which agrees with equation 44 of reference 3 withff = 0, « = 1. Following

Baum we may expand this result as a geometric series giving

. o]
- _ - -zn\{oh
gr(_;l) =_1_E [1—2e Yg+e 2Y8:\ Z (-1)" e
Yo
n=0
2 (2n-1)y h
1 Thenm iy
= — {1+2 Z (-1)% e © (48)
h
n=90
So that
[o0]
§'<g) = Ll(‘Th) + 2 Z -0 u [7 h-(zn-l)] (49)
n=1

where u(t) is the unit step function,

The result in equation 49 is simply an undamped square wave for
Th > 0 and is not a precise result for the radiating cylindrical
antenna since the model ignores radiation damping, but it is the
result of the transmission line model in the no loading limit. One
would expect that the deviation between the result obtained in the
transmission line model and that of a more accurate model would
be greatest for the no loading case. For resistively loaded cases,
except perhaps for very early times, the transmission line approx-

imation results should become more accurate as the loading increases.

27



For this case, using equations 40 and 36 with only the n=0 term

in each summation, we obtain

-sh(l-i-cosé)
=1 sin@ 1 e 1
£'(6) = 2(sh+a) (1+cos8) sh(l-i—cose) *
(50)
1 -sh(l-cose) 27f rEf y.r
+ = +1 = — 8 10 e ©
(1-cos8) sh(l-cosa) t \
h o
This result is identical to equation 77 of reference 3. Therefore, the
ihverse transform time domain result is
-aT -—oz'rh
sin{6) e l1-e
g'(9) = - u(r, )
2 l-cos(8) a(l-cos(e))z h
-a[q-h-(l—cos(e))]
1 l-e
+ > 5 u('rh-[ l-cos(6)])
(1-cos(8))
(51)
-aT, —aTy
e _ I=e u(r,)
1+
cos(6) a(1+c0os(0)) h
;a[fh-(1+cos(9))]
1 1l-e
+ = 3 u('rh-[ 1+cos(8)})
(1+cos(6))
I‘Ef
= 27f 7
o

28



For this case the frequency domain result is

. s
i) - 2nf 2
2 [(sh(sh+2)+a(sh+1)]
{(52)
-sh(l-cose)
. 1 2 e -1 1
= " 1-cos@ 2 5 * ”
: Sy (l-cosh) sh(l-cose) (1-cosh)
-3, (1+cosh)
2 e b -1 1
+ 1= + +
l+cos® 2 2
= (1+cos6) sh(1+cose) (1+cosh)
If we Writé
2
sh(sh+2) + o (sh+1) = 8, +(a+2)sh +a = (sh+a')(sh+ g—,) (53)
o o 2
1o 2
where al= T+ (§> +1
we may rewrite equation 52 in the form
Ti(g) = sinf 1
2 1
(Sh+(2 >(Sh+ -—|> )
(54)
-3, {1-cos®) 2 2 . 2
_ (1+cosd) e h . Sy (1-cos8) -sysin 6+(1+cosh)
s
(1-cosh )3 h sh(l-cose)3
-5, (1+cos8) 2 2 .
_(1-cos®) e h N Sy (1+cosH) -shsm26+(1-cos9)
(1+cose)3 5h Sh(l-i-c:ose)sT

29



Taking the inverse transform, the time domain waveform becomes )

-2 'rh-(l-cose)]) _ _q_j -Q'{Th-(l-cose)D
siné 1+cos8 a'\l-e “ o' \l-e ‘

E'(0) = -
2 (1-cose)3 o (’m’-’" %‘)
—y 1
cu [, ~(1-cos0)]+ 1+cosg +a'2(1-cose)2+a‘sin2 A +(1l+cosh) o “Th
3
h a(l-cos8) a‘(ce'-j—,) (1-(:059)3
o 2 2 o 2 o
=] (1-cos@) + — sin”" @ + (1l+cosh) -=
+ o' o' ag! 'h
o a A 3 €
F. F - (1-COSG)
oy !
+ l-coss . J_a‘2(1+cose)2+af‘ sin26 + (l=-cosh) ? Ty
oz(1+c:ose)3 a! (a" - f,—) (l-!—cose)3
o 2 2 « . 2 o
—] (l+cos@)"+ — sin”6 + (l-cos@) =-—¢ T
+ o o a' 'h ()
o o ' 3 € u Th
(a-;-) el (1+cosg )
--a—['r -(1+cosf)]\ «
1 - —— -yt -
__l-cos# a'(l-e a' " h ) a' (l-e @'l7y (1+°°SG)])
(1+cose)3 a(cz' - 3—,)
a
‘u [, =(1+cos6)] , (55)
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. Note the symmetries with respect to the roots o' and & Jo! of the

guadratic [sh(sh+2)+a(sh+l)]. If we further specialize to g =<, o = 1,

we obtain

“(3) -

(7, -1)/a"" -a'(r, -1)
- a’z l1-e h )_ l-e h u('rh-l) +

~ (58)

o r-é'i'r -7, [a!
a'2-1+(a'2+a'+1)(e h-e B ) u(r, ) L
h 012_1

This waveform has a zero at 'Th =,51 and a minimum of &' -0.1 at
3+5

TS 86. The value of o' for a=1 is o' = —5 — = 2.618. Although no
curves were obtained directly from equations 54, 55 or 56, the numerical
results of the general routine as presented in figures 18 through 21 agree
very well with the analytical results.

In theory, it is possible to continue to higher integer values of 5,

. but finding roots algebraically becomes increasingly clumsy, and attempting
analytical inversions to get the time domain result becomes correspondingly
less attractive. Since these special cases do agree well with the results
calculated by the general routine, they lend confidence to the other results
obtained for which an analytic closed form solution is not available or

convenient,
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VII. Numerical Resulis

Figures 16 and 17 give g’ and £ ' for the loading parameter é ranging
between .2 and 1.0 for a fixed observer angle of -g. We see that as §
is diminished from 1 toward 0, the first zero crossing moves toward 1 and
the undershoot also increases. Physically, what is happening is that for
lightly loaded cases we are approaching the lossless transmission line solu-
tion which is +1 from 0< Ty <1, jumps discontinuously from +1 to ~1 at
=3, and jumps back to +1 at that point. The loss-

T =1, stays at -1 until +

1:ss case is given by equ:tion 49. Figures 13 through 31 give normalized
frequency and time domain radiated E field for various resistive loading
corresponding to values of § between 0.2 and 3 with the chserver angle 8

as a parameter. It may be observed that for very early times the radiated
field goes as (sin g ) —1; however, for late times the dependence is sinf. The
dependence on 6 is discussed in reference 3. We may note that the effects

of the antenna ends on the radiated field are progressively smoothed as one
increases the loading at the cost of damping the radiated field more rapidly
and decreasing the time of first zero crossing. Also the time of arrival of
the end effects is a function of observer angle. Rememberingthat weare in
the far zone of the antenna, -;-'h >>1 where r is distance from the antenna
center to the observation point and 2h is the antenna length. It may be calcu-
lated that at 8 = -E, end effects are simultaneocus at v = 1, at 6= T end effects

2 h 3

appear at Ty = .5 and 1.5; and at @ =-g end effects occur at LN 134 and

1.866. For example, see figures 19, 21, 23, 25, and 27. For 6 = 2, 3 the
discontinuities in the slope of §' have been removed at the cost of damping
the waveform more rapidly.

Other cases of interest arise when ¢ is a complex number. If we
consider the equivalent transmission line to have an inductive load per

unit length
2Z

L' = d T
h-|z!

[ 1 - _{_Z_i] —l* (57)

h%zzyofg h
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in parallel with a resistance per unit length

2Z

- w N
R = bz P (58)

such that the total impedance per unit length is given by equation 3,

2Zoo
! = —
Z h-1z1 0

then 6 is related to p and x by

=S——-—Fj——~
+
slﬁc p

5 (59)
In order to separate ¢ into its real and imaginary parts, we set the

variable
S =3
p ety

so that § becomes
jwt x P
5= h

ot ¥ P

p(l +3 p/wthx)
= 5 (60)
1+ (pﬁdth‘k)

Notice that in the high frequency limit,

&J’f»nwé =P,

and the impedance Z' appears purely resistive, In the low frequency limit
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so that the antenna appears to be unloaded. The behavior of the real

and imaginary components of 6 0 as a function of X/pwt

figure 32.

1.

0.

0

limé = lim
w—0 w—0

x=0,

h

is shown in

Figure 32.
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Figures 33 through 40 show some results of addiﬁg inductance in

parallel with resistance., All these curves assume the observer is in
T

-2' .
value of p =1, Figures 39 and 40.are for p = .5, The loading parameter

the far field and at an angle g = Figures 33 through 38 are for a

5(sh) is now given by

S, pXx
5(s) = —2 (60)

- +
h s h-?c P

where p is the normalized resistance parameter and * is the corresponding
parallel inductance parameter,

It may be observed that the inclusion of parallel inductance
significantly modifies the radiated wave in a number of respects. First,
for p = 1, the first zero crossing time may be moved to values greater

than 7, = 1, Secondly, the undershoot and second crossover time are

h
affected. Also the discontinuity in slope at T T 1 is somewhat reduced
and T T 1 is in general no longer the minimum point on the curve.

It may be remarked that even for relatively large parallel inductance,
the value of &' for late times is affected by the inductance., For example,
ifx=86,p =1, £'"at T = 4 is larger by almost a factor of 2 than for
the p = 1 case with X =0,

The frequency domain results show filtering behavior with both
the magnitude and the location of the peak of g' increased as x is decreased.
This highly resonant frequency domain behavior is reflected by the highly

oscillatory behavior for the same cases in the time domain, Compare,

for example, figures 33a and 34. As the inductive loading becomes
large (large ), the behavior approaches that of the purely resistively
loaded case, as may be seen from both frequency and time domain data.
Attempts to analytically determine some kind of optimum choice
of loading were unsuccessful, Instead, a few values of * were selected

for which the second zero crossing (for ¢ = 1) had not yet occurred at
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Th = 4, Time domain data were extended {or these cases to T 12
with the results shown in Figure 36. IFrom figure 36 it may he concluded
that the second zero crossing may be pushed to values exceeding T T 8.
To further clarify the zero crossing question, figure 37 shows first and
second zero crossing times as a function of * with ¢ = 1 assumed through-
out, The p = 1 value is chosen since for pure resistive loading of p = 1,
the second zero crossing is at infinity. Although not proven analytically,
the numerical results suggest that p = 1 is the minimum value of gsuch
that the second zero crossing is at infinity., For p= 0,8 thereis a

second zero crossing at 7, = 4.5, for example, Thus, p =1, * = ¢ provides

a useful reference case against which to compare the p =1, x4+ cases,
The numerical results suggest that for any finite * there is a finite
second zero crossing time, (at least if p =1 is assumed) but that one
may delay this time to any arbitrarily large value at the expense of field
strength by selecting a large enough *. Figure 38 shows the ratic of the
radiated electric field for various inductively loaded cases to the electric
field radiated by an antenna purely resistively loaded with p = 1 for all
cases. The times shown are between the first and second zero crossing
times for each case. The ratios may be viewed as a measure of the
improvement in field strength due to the resistive-inductive loading as
compared to the purely resistively loaded case for the times shown,

The conclusion is that if a second zero crossing at some finite
time is acceptable, the addition of parallel inductance will increase the
late time fields by an amount dependent on the second zero crossing time.
Figures 39 and 40 are similar to figures 33 and 34, but with p = .5
instead of 1. The behavior is quite similar in the two cases,

The accuracy of the numerical results depends upon two things:
(1) The calculation of the confluent hypergeometric function appearing in
equation 28, and (2) the number of frequency points used in the transfor-
mation from the frequency to the time domain. The confluent hyper-

geometric function is calculated by a power series in the argument
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), and for large argument by an asymptotic expansion in

—270 (h—fz'
—270 (h—]z‘}). The number of terms in either series together with the
number of frequency points required are chosen such that the time domain

function §£' agrees to within at least 1% with the analytical results at Ty " 0

for the case of purely resistive loading.
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VIII. Application

In order to illustrate the impact of the above calculations on
real antenna systems, we consider the application of these results

to a specific antenna. We choose the following specifications:

Antenna half-length - h = 50 meters

Effective antenna cage radius - a = 2, 5 meters

Peak source voltage (assuming capacitive generator) - Vo=5 X 106 volts

From equation 2, above we calculate the characteristic impe-

dance of this antenna as

Z
Z =..59 tnd0 = 442 Q

[2e]

so that fg = ZOO/ZO =1.17

The relation between the far electric field and the normalized waveform

is, from equation 27,

Vo
= 1
Be =9mr €
& g
For this antenna,
1
E, =6.78 x 10° -
fe r

An observer a distance 500 meters from the antenna experiences an

electric fieid

E, =1.36x 103 g' volts/meter
0
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The retarded time for this observer (time measured from pulse

onset) is related to the normalized time, T b by

ht
g h
t = —

C

= 5050 Th nanoseconds

Choosing the irmpedance loading such that p=1, X = 6, we obtain an
inductive loading
L' 1

L=—§=442m uH/meter

in parallel with a resistive loading

- I @
—é— = 442 m /meter.

We can approximate this continuous loading by discrete loading
elements, To obtain a bound on the required valucs of these discrete
inductor and resistor elements, we assume the antenna to be loaded at
5 meter intervals., The largest values of both inductance and resistance
will be required for the elements nearest the end of the antenna, which
we take to be 45 meters from the antenna center. The required resistance

at this location is taken to be

47,8
R'_ f ' 1
R ==—%Z 47z
2 0042°5 50-2z
7.5
Zew In (-——-—2' 5)
R = 486%0
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nt

and the required inductance is taken as

7.5
=1O-62 501-2
®42. 5

1
L=£2- dz

L = 0.486 4 H

The time domain electric field produced by this loading at 6= 7/2,

r = 500 meters is shown in figure 41, togethef with that produced by
only the resistive loading. Notice that the cross-over time with the
inductive load included is approximately 500ns later than that with only

resistive loading,
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