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ABSTRACT
●

This note is specifically concerned with the electromagnetic properties
of the evacuated steel tank used to support the satellite environment
in SGEMP simulations. Since the tank is a good conductor it does not
allow the radio frequency energy to escape easily. Thus oscillations
or ringing modes are set up at discrete frequencies which are executed
either by the satellite’s EM radia~ion or by photoelectric cur~ents in
tank volume. Methods are examined for keeping the tank model oscillations
small--sothey will not seriously degrade the quality of the simulation.
(This note was originally prepared as Tank Physics Memo #7, October 1972).
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1. INTRODUCTION

—

—

This tank memo is one of a series devoted to the problem of

building a simulator which can be used to test a satellite for its

vulnerability to the system generated electromagneticpulse (EMP),

i.e., EMP generated by the interaction of photons (primarilyx-rays)

with the system itself. The best simulation would obviously be the

exposure of active systems in orbit to actual nuclear bursts, Since

this is not completely practical, we are faced with the problem of

reproducing the actual environment as best we can here on terra firma.

This note is specifically concerned with the electromagnetic

properties of the evacuated steel tank which is used to support the

satellite environment. Being a good conductor, the tank does not allow

radio frequency electromagnetic energy to escape easily and hence sets

up oscillations or ringing modes at discrete frequencies which are

excited either by the satellite’s EM radiation or by photoelectric

currents in the tank volume. One would like to keep the amplitude of

these tank model oscillations small, so that they will not seriously

degrade the quality of simulation. It might not be necessary to take

any deliberate steps to reduce the ringing, if it occurs after

satellite signal has significantly decreased or if the ringing

unfolded from the measurements.

the

can be

If mode damping (Q-spoiling) is required, there are a number

of possible methods available, scme of which are discussed in this

memo. The method chosen depends on several factors, including
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(1) the rate of damping required, (2) cost (dollars), (3) cost (work-

ing volume sacrificed), and (4) the complexity of the mode excitation.

We will investigate two basic methods which seem practical. The first

is the use of a thin highly conducting membrane set some distance away

from the tank wall, The second is the use of a conducting dielectric

layer of some thickness attached to the tank wall. The investigation

is primarily limited to layers with constant conductivity,but some

variations of conductivity with depth were considered. In practice,

both the thin membrane and conducting layer would be modeled by wire

grids.

The investigationwas based upon planer reflectivity rather

than spherical cavity calculations, since one can reasonably relate

the cavity Q with the wall reflectivity for a useful class of pyoblems.

This approach significantly reduces the complexity of the calculations.

The accuracy of these approximations should be adequate for our purposes.

The authors recommend that those reade~s who are not familiar

with the subject of cavity oscillations read Stratton’s discussion

(Stratton, 194.1). The notation used in this memo is Stratton’s.

2. THE EFFECT OF IMPERFECTLY CONDUCTING WALLS
ON CAVITY RESONANCE MODES

If a cavity with perfectly conducting walls is excited,

energy is put into the natural ringing modes. Since no energy can

escape, these oscillations at discrete frequencies will continue

forever. If the walls have a finite, but large, conductivity, a small

amount of energy will be absorbed as joule losses in the wall and the

oscillations will slowly decay. The decay is expressed as an

imaginary frequency component so that one now speaks of a complex

frequency. In addition, the real part of the frequency will shift

slightly. It is important to know for what range of wall conductivity,

or reflection coefficient, these frequency shifts can be neglected so

that the reflection calculations will be valid without correcting the
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undamped frequency.

The equations to be sc)lvedare derived by

1941). There are two types of modes: the electric

Stratton (Stratton,

modes and the

magnetic modes. The magnetic modes are characterized by a radial

magnetic field and no radial electyic field. The opposite is true for

the electric mode. A net azimuthal current component is required to

excite the magnetic mode and, since this seems likely to be less

significant than the radial currents in the satellite test configura-

tions, we restrict ourselves to the electric modes.

Consider a sphere of radius a, permittivity SI, permeability

VI, and conductivity ol imbedded in a homogeneous medium characterized

by E2, Pz, and Oz (rationalizedMKSQ units used throughout). The

vector wave equation reduces to the following scaler equations for

r < a (spherical coordinates, electric mode):

jn(klr)
E; = - n(n + l)Y~n —

iut
klr e

ay~ ~
-——

% = 30 klr
[klrjn(klr)]’eiot

Hi=O
r

For r > a,

h:) (kzr) iut
E;=- n(n + l)Y~n

kLr e

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

(2-6)

(2-7)
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W;n ~
.——‘: = 3% k2r

[kzrh~)(kzr)]’eiut (2-8)

1
aye
mn

‘; =
—~ [kzrh~)(kzr)]’eiwt

- ~ ~$ k2r (2-9)

H;=o (2-10)

(2-11)

(2-12]

where jn(p) and h:)(p) are spherical Bessel functions of the first and

third kind, respectively and

[klrjn(klr)]’= $ [Pjn(p)]‘P=klr (2-13)

etc. The quantities kl and kz are the propagation factors in media 1

and 2. The tesseral harmonics are

Yi
mn

= (B~mncosm$+ B~mnsinm$)p:(..s6) (2-14)

with i replaced by e in theexternal media and P; the associated

Legendre polynomials. At the surface of the sphere, the continuity of

the tangential fields leads to the relation

(2-1s)

If the external medium is an infinite conductor, the tangential electric

field would be zero at r = a (kz = ~] and the resonance modes would be

determined instead by

[klajn(kla)]-= O . (2-16)
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If the roots pns = kla of Equation

resonance frequencies can be found

2-15 are known, the complex

immediately from

For the special case in which the internal medium is vacuum,

Cpns
UJ=—
ns a“

Define kla = p, M = kl/kz, so that Equation 2-15 becomes

[~jn(~)l’ = ~2 ~ [M~h~)O@)]’
—— —

jn(p) PI ~2
.

h(1)(Mp)
n

If the wall is a good conductor, k2 and M will be large and an

(2-17)

(2-18)

(2-19)

(2-20)

asymptote,:

expansion of h~)(Mp) can be used. It will be seen that the expansion

is rapidly converging so that Mp does not have to be extremely large

for the expansion to be accurate and will be valid for relatively low

values of Uz. We will then assume that the roots do not vary greatly

from the roots of Equation 2-16, i.e., from the roots of the infinitely

conducting wall problem, and perform a perturbation type calculation.

The function of the third kind can be written as

(-l)n+l eiphtl)(p) = p
n

[ 1‘n+l/2‘p) + ‘\+~/2 (P)
(2-21)

where

n (n2 - l)(n + 2) * n(n2 - l)(n2 - 4)(n2 - 9)(n + 4)
‘n+l/2(p) = 1 - ...

22 , 2:P2 24 . 4!p4

(2-22)
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It can be seen that these expansions have a finite number of terms for

a given n. Choosing the first term in each series,

h(l~(p)=
n -eip[’+in(nd

For p >> ; n(n + 1)

(-i)n+l ~iph[lj(p)= p
n

and

[ph~)(p)]” = iph~)(p] .

Equation 2-20 becomes

Let pns represent the roots of Equation 2-16, i.e.,

[Pn.Jn(pns)]” = o

(2-24)

(2-25)

(2-26)

(2-27)

(2-28)

and assume

P Pns + APnS=

where Apns << Pns. Then, using Taylor expansions about Pns,

+ Ap

[Pnsjn(pnJ1’-Ap = i&pns M ‘s ●

[jn(pns) + j~@ns)APnJ. (2-29]

The spherical Bessel functions satisfy

equation

the radial part of the wave
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~2 d2f + ~r df
p z

+ [k2r2 - n(n + l)]f = O

r[rf(r)]’” + [k2r2 - n(n + l.)]f= O

so that

jn(Pn~)
[Pn~jn(pn~)l”= ~ [P~~ - n(n+ 1)1

ns

and

~pn~{[p:~ -n(n+l)]-i~~ [Pnsj~(Pn~) + jn(Pn~)l}

=. ()i.*+jn(pn5).
Ignoring the second term in brackets because of l/M,

()
jn(Pn5)

bpns=-i~~ —,

P2ns
- n(n + 1)

In many cases, p~s >> n(n + 1) since the smallest Pns

greater than n, and Equation

()
jb)

Apns=-i&nns .
PnsM

Remembering that M = k2/kl ,

2-34 further reduces to

2
jn(pn51

Apns=-i~fi —,
PI ksa 2

Pns - n(n + 1)

But, for good conductors,

k2=(l+i)&

where 8 is the skin depth of the material,

8
r

2—.
= pzozu

(2-30)

(2-31)

(2-32)

(2-33)

(2-34)

for each n is

(2-35)

(2-36)

(2-37)

(2-38)
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Since w is assumed to

square root of M, one

Cpns
Lo=ol =— ●

ns a

Equation 2-36 becomes

Apns = - (1 + i)

change little and since 6 varies only as the

can use

(2-39)

or, for p~s >> n(n + 1)

Apns = - (1 + i) ‘2~~jn(pn~) .

The change in frequency is given by

(2-40)

(2-41)

Mns = ~ (Apns) ❑ - Ans(l + i) . (2-42)

Because the change is complex, there is both a real frequency shift

and a damping term.

Table 2-1 lists the Pns for several n and s. In order to

estimate the importance of the frequency shift, we will calculate

Apns/pns forn=s= 1 and several CTZ,assuming a cavity radius of

10 meters. This is a worse case since 6 will be smaller for all other

uns and jn(pn~) does not exceed unity. Using pll = 2.74, jl(pll] = 0,388

andU1=p2=~O=4~ x10 ‘7 henry/m, we have:

0.)= 8.22 X 107 rad/sec
ns

f = 13.1 MHz
ns

0.139
d—
‘G

% ~~ Auns

—’T’P
- (1 + i)(9.65 ~ 10-3)6 .

ns ns
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Table 2-1. Roots (pns = ka) of mode equation for
a cavity with a perfectly conducting wall.

n 1 2 3 4 5

1 2.744 6.117 9,312 12.486 15.644

2 3.870 7.443 10.713 13.921 17.103

3 4.974 8.722 12.064 15.314 18.524

4 6,062 9.968 13.380 16.674 19.916

Table 2-2 shows 6 and Ans/uns for several values of o ranging from 108

mho/m to 1 mho/m. The worst variation for this range is about a tenth

of 1 percent. The calculations also show that the wave attenuation is

very small. These results are not valid if the wall is not a simple

homogeneous medium and the absorption is not that which is due to

simple joule losses. It would then be desirable to calculate the com-

plex frequency shift in terms of energy absorption at the wall rather

than directly through 02, This calculation will not be performed in

this memo, but

With

netic field in

we will generalize the results obtained thus far.

absorbing walls, the time dependence of the electromag-

the cavity is

T(t) = e
i(~s - Ans)t~Anst

(2-43)

when the absorption is not too great. The frequency shift is the same

as the damping constant to a first.approximation. Define a quantity Q

such that the field amplitude decays as exp
(-~ ‘) ‘here u = ‘ns - ‘ns”

Q is discussed in the next section. Then

(.4) - Ans
A=ns
ns 2Q

(2-44)

or

(!J

A ‘—.
ns 2Q ‘: 1

(2-45)
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Table 2-2. Skin depths and frequency shifts associated
with various conductivit~walls for a 10-
meter spherjcal cavity (first electrical
mode, E~l).

(s2 id An~/O.lns

108 1.39E-5 1*34E-7
I

107 4.40E-5 4.25E-7

106 I 1.39E-4 1.34E-6

105 4.40E-4 4,25E-6

104 1.39E-3 1.34E-5

103 4.40E-3 4.25E-5

102 1.39E-2 1.34E-4

10 4,40E-2 4.25E-4

1 1.39E-I 1.34E-3

The frequency shift can be related to a measurement of field decay in

this marineras long as the Q is such that An~ << Uris,i.e.,for a

relatively high Q. However, for our purposes, the error should be

tolerable for the entire range of Q encountered in our calculations.

3, THE RELATIONSHIP BETkJEENCAVITY Q AND WALL
REFLECTIVITY

A commonly used measure for the energy containing ability of

a cavity is the quality factor Q, defined by

“ (energy in cavity)
‘= (e;ergy dissipated/second)“

(3-1)

This definition is equivalent to saying that the energy contained in

the cavity decays as

()
4?-exp-~t (3-2)
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where u is the frequency of oscillation. Q is properly calculated for

a particular tank configuration and oscillation mode by integrating

the energy density over the volume and the normal component of the

Poynting vector over the surface, It would be simpler to make estima-

tions of the effect of various damping methods if one could relate

the reflection properties of a wall material with the Q of a specific

cavity/mode configuration. Then one could calculate the reflection

properties using plane wave apprc}ximationsrather than making a

calculation for the cavity configuration. This should be possible

under the condition that the radial distance to the effective cavity

wall is much greater than thickness of the region in which the inter-

action is taking place. For example, if one is considering simply an

imperfectly conducting metal wall, the condition would be that the

radius to the wall be much greater than the skin depth of the frequency

of interest. This statement is made under the assumption that the

damping device does not significantly distort the characteristics of

the resonance mode.

Let the average EM energy density in a cavity be&. The

energy flowing

F=cz

where c is the

through a square

speed of light.

coefficient, R, is defined as

to the incident energy flow.

Q=
LlzTv

3(1 - R)A

or

Q
LIJz?g=—
C-R

meter in 1 second is

(3-3)

The energy flow (power) reflection

the ratio of the reflected energy flow

Thenj according to Equation 3-1,

(3-4)

(3-5)

where the geometric factor g = V/A is the ratio of the cavity volume

to the effective surface area through which energy is flowing, i.e.,
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g is the

Finally,

Q=

mean distance traveled by the energy between reflections.

by Equation 3-3 and k~ = u/c,

*.

By Equation 5-4 and

or

R=l- 2k06

(3-6)

5-13, for a highly conducting surface (ko3 << 1)

(3-7)

where 6 is the materials skin depth,

r(i=~”
pocm [3-8)

Then, for highly conducting surfaces,

Q=%”

We now need to

surface ratio g, without

In this we may be guided

for specific cases. For

(3-9]

learn how to guess the effective volume-to-

actually solving the mode problem in detail.

by Q’s that have been worked out previously

example, Stratton (1941) gives the formula for

a spherical cavity in the lowest electric mode,

Q=O.725;.

Comparing this expression with Equation 3-9, we see

g = 1.45 a (sphere) .

Before interpreting this result, let us examine the

(3-10]

that we must have

(3-11)

simple problem of

the mode between two parallel conducting planes a distance D apart,

in which the wave vector is purely perpendicular to the planes. Since

in this case the energy flow is strictly along the normal direction,

it is clear that
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g = D [planes) . (3-12)

Returning now to the sphere, a first inclination might be to replace D

by the diameter 2a. However, in the lowest electric mode, the energy

does not flow strictly in the radial direction. The distance the

energy flows between reflections is more like the mean height of the

sphere rather than the mean diameter 2a. The mean height h of a sphere

is

This suggests that

(3 13)

(3-14)

which indeed is fairly close to Equation 3-11. Note that the correct

result indicates a mean distance between reflections a little larger

than 4a/3, but a good deal less than 2a.
—

—

As long as we are working with spheres, we might as well use

Equation 3-11 rather than 3-14.

An interesting thing

tion coefficient goes to zero;

Qnin
= kog

happens to the value of Q as the reflec-

the value of Q has a minimum of

(3-15)

instead of zero, as one might expect. The finite value follows from the

definition of Q and the finite velocity of light which forces the energy

to leave a given volume over a finite period of time. For such low

values of reflectivity, our approximation (Equation 3-6) for Q is no

longer valid. Fortunately, it is the reflectivity, rather than Q, which

is of primary interest in discussing the degradation of simulation

quality due to the presence of the tank.
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4. THE THIN MEMBRANE METI-IOD

In this section, we calculate the reflection coefficient for

a system consisting of a thin conducting membrane in front of a perfectly

conducting parallel wall. Figure 4-1 shows the problem geometry. The

wall and membrane are in the x-y plane with a plane wave with propaga-

tion constant ko impinging from the +Z direction.

We begin by calculating the amplitude reflection coefficient

for the membrane itself. The membrane is required to be of such a con-

ductivity that the thickness of the material is much less than its skin

depth while maintaining a finite conductance. Define the dimensionless

parameter

as a measure of the conductance, where a is the membrane conductivity,

d is its thickness,and ZO is the impedance of free space (120 m ohms),

The skin depth is given by

(4-2]

where N is the permeability of the medium and u is the signal frequency.

The condition

thus leads to

kd << 2/@

and

o = !3/ZOd. [4-5)

For an arbit~ary 6 and P = PO = 4Trx 10-7 henry/m, Maxwellfs equations

are
.

vx~.-$ [4-6)
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x

I

HI

A
,..,.

1///

kY///,

Y +1+ (j

Figure 4-1. Coordinate system for membrane calculation.
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where p; = ~ and & = ~. Assuming that the time dependence of the
.

fields is e~ut,

aEx
—..i~B
az Y

(4-8)

(4-9)

Assuming Ex to be constant across the membrane, the integration of

Equation 4-9 yields

- (B2 - Bl] = vadEx (4-lo)

since we shall choose a ~> cu.

The incident, reflected, and transmitted electric fields are

related through

Ei+E=Et
r

(4-11)

and hence, the transmission and reflection coefficients are related by

l+r=t (4-12)

where we have defined Er s rEi and Et ❑ tEi. By Equation 4-10, assuming

u =IJo,

Bi + Br - Bt =poadEt . (4-13)

In free space, E = Bc and considering that the reflected B must change

sign,

1 -r- t=@t (4-14)

where

Bsvocad = ZOad . [4-15)

Combining Equations 4-12 and 4-14, we find
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or

(4-17)

Note that r, the amplitude reflection coefficient of the membrane alone,

is independent of frequency and dependsonly upon ud through 8.

We now calculate the reflection coefficient of the system

composed of the membrane with reflection coefficient r placed a distance

D in front of a perfectly conducting wall. A plane wave with propaga-

tion constant ko = u/c is incident upon the system. Let rs be the

amplitude reflection coefficient of the system. Then, with x = kOD,

2ix 4ix
r = r + t2[-1 ● e + (-l)2re

s z 6ix +
s

+ (-l)re ...]
~— —~ —.
one two three

reflection reflections reflections

or

r =r- (l+r~ezix[l - re2ix
z 4ix+re

s 6ix +
-re

s
...1

which reduces to

r
(1 + r)2e2ix

=r-
S ~ + re2ix

or

r- (1 + 2r)e2ix
r=
s l+r2ix “

For undamped waves, x is real.

The energy flow reflection coefficient is given by

~ = lr ]2 s r2 + (1 + zr)2 - 2r(l + 2r)cos(2x)
s

.
1 + r2 + 2rcos(2x)

(4-18)

(4-19)

(4-20)

(4-21)

(4-22)

R is plotted in Figure 4-2 as a function of koD/~ for discrete values

of r (labeledby absolute value). The curves are symmetric about
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Figure 4-2. Energy flow reflection coefficient vs
koD/n for various membrane reflectivities.
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koD = T/2. Figure 4-3 shows R as a function of kOD and R for the

smaller values of koD.

We now illustrate the use of these curves. For the lowest

tank mode kOR = 2.74. If we choose the spacing D = 0.2R, leaving 80

percent of the tank radius free, we have kOD = 0.549 then kOD/m = 0.175,.
Figure 4-2 shows that the power reflectivity will be R = 0.31 if we

choose the membrane reflectivity -r = 0.5. This should be adequate

for this mode since it is not excited very strongly anyway.

Now consider the higher tank modes and the high-frequency

satellite modes. The reflectivity will be low for these modes unless

one or more of them happens to have a ko such that kOD s nn, where n

is an integer. To guard against this possibility one could, given

prior knowledge ofthe modes, choose D so as to avoid it; this would

not appear to be a satisfactory method. Alternatively, one could

avoid having the membrane lie at constant radius, independent of angle,

or one could use two membranes at non-rational distances from the wall.

We shall analyze these possibilities further, but believe they would

work satisfactorily. A continuous absorbing medium is studied in the

following section.

Note that to get -r = 0.5 we need B = 2. Thus according to

Equation 4-15 we need

ad = 6/lJc= 6/(3770) = 0.0053 mhos , (4-23)

Then to satisfy the small skin depth condition 4-4, we need

(4-24)

for the highest

this becomes

d<< ().lm

ko considered. If the highest ko 10 m-l (A = 0.6 m),

. (4-25)
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Figure 4-3. Energy flow reflection coefficient vs koD for
various membrane reflectivities,
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We could

a=

choose d = 10-3 meters, and then

6~= 5.3 mho/m .
Lou

In practice one would not use a

vacuum and x-ray problems, but would mock

having the same impedance per square.

find

(4-26)

sheet membrane, because of

it up by a grid of wires

5. THE CONDUCTING DIELECTRIC LAYER METHOD

In this section, we calculate the energy flow reflection

coefficient for a conducting dielectric slab in contact with a perfectly

conducting wall. The majority of the investigation was for the case

where the material properties were uniform throughout the slab thickness.

Some time was spent to see if much could be gained by varying the con-

ductivity as a function of depth and a computer code was written which

provides the reflection coefficient for an arbitrary one-dimensional

variation of o and e.

Intuitively, one might doubt that a dielectric layer over the

cavity wall could be useful in spoiling the Q of that cavity because one

would expect thicknesses on the order of a wavelength to be required,

and that is on the order of the cavity diameter for the primary resonant

mode. This would be true if wave interference was to be the mechanism

for mode attenuation. However, it will be show-nthat by using a con-

ducting dielectric layer, the cavity Q can be reduced from on the order

of a thousand to near unity without losing more than a few percent of

the cavity radius. It is likely that greater attenuations can be ob-

tained by giving the layer*s conductivity a radial dependence. The

feasibility of this basic approach rests with the determination of how

much cavity radius can be sacrificed for a desired amount of Q reduction

and with the availability of suitable materials.
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Stratton has calculated the reflection coefficient of a plane

sheet at normal incidence [Stratton,1941), Let the medium containing

the incident wave be medium 1 (see Figure 5-1), let the sheet be medium

2, and let the transmitting medium be medium 3, All are homogeneous

and characterizedby propagation factors kl, kz, k3, respectively. The

energy flow reflection coefficient is given by

where

R. =
reflection coefficient for a wave in medium j incident

Jk upon medium k

6.
Jk

= phase change involved in reflecting from medium k

= Rek.
‘j J

Bj = Imk.
J

d = thickness of medium 2

‘j = permeability of medium j

For the case of medium 3 being perfectly conducting, R23 = 1 and

623 = O. Now, for medium 1 a perfect dielectric and medium 2 a con-

ducting dielectric, we have f31= O and (Stratton,1941]

(5-3)

Assume VI = uz = PO = 4Trx 10-7 henry/m, and assume medium 1 is free

space, so that al = k. = u/c (where c is the speed of light], Then
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Figure 5-1. Reflection and transmission of plane waves by
a plane sheet at normal incidence.
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Rlz =
(az - ko)2 + 6;

(a2 + kO)2 + ~:

and

tandlz = -2ko@z .

k; -a; -B;

The reflection coefficient becomes

c~ _ R12 + 2 R12e
-262d -4f32d

cos(2azd - 612) + e

1 + 2~e
-2B2d -4132d“

cos(2azd + 612) + Rlze

In medium 2, the wave number is

the dielectric constant, i.e.,

kz =

Let Cr be

&= Ersg

so that

‘2 ‘W “F- ‘(a “

where the positive values have been chosen.

(5-4)

(5-5)

(5-6)

(5-7)

(5-8)

(5-9)

[5-10)

(5-11]

(5-12)

()
.

For a good conductor, i.e., ~ >> 1, these equations reduce

to
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a-w=’” (5-13)

—

—

and for a poor conductor, i.e., (6/su) << 1, they reduce to

a ‘ -’”F +w’]“=’0
~koo

()
B—— =~zo

27 ‘Eou 2q

where Z. is the impedance of free space (120Trohms).

(5-14)

(5-15)

The study of the energy reflection coefficient (R) of a con-

stant slab was made in two parts. In the first part, the reflecting

frequency was considered constant and R was calculated as a function

of slab parameters related to thickness and conductivity. In the

second part of the study, the slab parameters were initially fixed for

the fundamental electric mode and R was studied as a function of

frequency.

The studies were performed by numerically calculating

Equations 5-4, 5-5, 5-6, 5-8, and 5-9. In the first part, the inde-

pendent parameters chosen were: kod, Sr, and (o/su). From these,

all factors required by the equations can be calculated. Theyhave

the advantage of not requiring any information about the cavity size.

As will be seen, reflectivity minima occur for large values of (0/su),

i.e., for good conductors. A more useful parameter than (cJ/eu)would

have been d/6, where 8 is the skin depth. d/6 can be calculated

directly from kod, &r, and (o/su):

(5-16)

(5-17)
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The three independentvariables

Figure 5-2 shows R as

0.2, and for &r = 1, 2, and 3.

would then be: kOd, d/6, arid~r.

a function of (c/su) for kod = 0.1 and

For thicknesses which are a small

fraction of the cavity radius, a, the variation in kod can be interpreted

simply as a variation in d. Then, ~y Figure 5-2, if one allows a larger

thickness for the dielectric layer, one can achieve a lower reflectivity

with a lower conducting material. The minima at constant kod have magni-

tudes which are nearly independent of =T, for Cr on the order of unity

so that there is no advantage to usinga material with &r other than

unity. The points at which d/d = 1 are indicated by XIS on Figure 5-2.

The minima occur between d/d = 1.1 and d/6 = 1.2 and are not much dif-

ferent than the value ofR at d/6 = 1. The minima occur at approximately

the same value d/6 independentlyof &r. If d/d is considered constant,

then by Equation 5-17, the value of (a/Ew) at Rmin will be inversely

proportional to &r and inversely proportional to the square of kod.

This is indicated by the curves.

In order to make a judgement as to the maximum allowable value

of kod, one must

implied, i.e.,

..=d
a koa

or

__ kodd
a Pns

relate this quantity to the fraction of tank radius

(5-18)

(5-19)

where Pns are the roots of the mode equation (see Section 2). For the

fundamental electric mode,

Plo = 2.744 (5-20)

by Table 2-1, so that for this mode

d kOd
–’m’a

(5-21)
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Figure 5-2. Reflection coefficient vs (o/Eu) for various Er and kod.



Figure 5-3 shows the relationship between d/a and kod for this mode.

The first part of this study was performed for values of kod

less than 0.3, corresponding to slab thicknesses of about 10 percent

of the tank radius. Later, it was decided that a 20 percent thickness

could be tolerated, with correspondtig decreases in R, so that values

up tO kOd

repeating

lated.

100 ands~

= 0.6were used. The first part of the study did not need

because the lessons learned from it could simplybe extrapo-

The variation ofRwith kod is shown in Figure 5-4 for (a/cu) =

,=1,2,3. Initially, R decreases with increasing kod due to

absorptio; in the medium and probably some phase effects. A minhmrm

occurs at a value of kod corresponding to d/d = n/2. Larger values of

kOd produce increasing values of Rwhich asymptotically approach R1z

after a slight peak. The fact that the minimum in the R - (a/Eu)plane

occurs for a different value of d/6 than the minimum in the R - (kOd]

plane r,eansthat there canbeno absolute minima in theR - (kOd) -(6/cu)

surface. This is because two values ofd/d cannot be producedby the

same kod - (a/cu)pair. The surface generated resembles a ravine running

down the side of a nmmtain. At any altitude one can find a local minimum,

i.e., the bottom of the ravine. However, one can always find a lower

surface level by simply nmving down the rmntain [increasingkod). This

is nicely

values of

illustrated in Figure 5-5, which shows R vs (o/Eu]for various

kod andsY= 1.
L

Figure S-6 shows Rvs kod for various values of (8/su] and

= 1. The curves represent slices through the mountain. The values
‘r
[a/sti)= 65 and 240 correspond to the local minima at kod = 0.2 and

0.1, respectively. Figure 5-7 shows the minimum R as a ftmction of kod.

The values ofR for 0.2 < kod < 0.6 were taken from the second part of
min —

this study. The dashed line is a ‘fguesstrapolation”based on the smooth

behavior of the curve.

o
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The first part of this study shows that the lowest reflection

coefficient, for a given kod, is obtained when the material conductivity

is such that d/6 is slightly greater than unity (assuming&r = 1). As-

sume that one has established the slab parameters to give a certain R

for the fundamental mode. The next question is how does R vary for the

higher frequencies. It would be undesirable to have R increase. The

answer to this question was the objective of the second part of the

study. Table 5-1, based on Table 2-1, shows the tank electric mode fre-

quencies as multiples of the fundamental electric mode frequencies for a

few n and s. The frequencies radiated by the satellite itself are dif-

ferent and possibly much higher.

Table 5-1. Tank electric mode frequencies as multiples
of the fundamental electric mode frequency.

2 3 4 5

1 1 2.229 3.394 4.550 5.701

21 1.410 2.712 3.904 5,073 6.233

3 1.813 3.179 4.397 5.581 6.751

4 2.209 3.633 4.876 6.077 7.258

To begin the calculation, one knows that the desirable ratios

d/6 are in the range 1 5 d/d < 2. Desirable values of kod are in the

range 0.4 < kod < 0.6 (a slab thickness which is 20 percent of the tank

radius corresponds to kod = 0.549). From the definition of skin depth

(Equation5.16) one can calculate the product of the conductivity and

thickness as

2
ad =

Zo(kod)
(d/(S)2

or the dimensionless parameter

6 = ZO(ad) = ~ (d/(S)’

(5-22)

(5-23)
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where Zo is the impedance of free space (120Trohms). For a given

value of kd, the ratio (a/&u) can be calculated from

(o/&u) = f3/kd (5-24)

where k = u/c. One then has the parameters used in the first part of

the study for the calculation of F!,except that kod is replaced by kd.

The parameter kod now will be useclstrictly to refer to the fundamental

frequency. Since only frequencies higher than the fundamental mode fre-

quency are interesting, the parameter kd was actually replaced by the

ratio of frequency to fundamental frequency, i.e.,

(5-25)

where LOOis the fundamental frequency.

Figure 5-8 shows R as a function ofu/uo for d/8 = 1 and three

values of kod (0.6, 0.5, and 0.4), Figure 5-9 shows the same for d/6 =

1.2. The range of uJ/uo is from one to one hundred. Except for some

inflections and oscillations at higher frequencies, R decreases for

increasing u/uo. For a given kod, higher values of d/6 give smoother

high frequency behavior and for a given d/6, lower values of kod give

smoother high-frequency behavior.

If a non-oscillatory frequency dependence is desired, the

parameters kod and d/6 will need t:obe chosen such as to give a non-

minimum low-frequencyR. In fact, based on the desire to have good

high-frequency behavior, the wall thickness should not be much greater

than that implied by kod = 0.6, which is about the maximum radius that

one could sacrifice anyway. Figure 5-10 shows how R varies with

frequency for kod = 0.6 and several values of d/8. The optimum value

of d/6 would appear to be in the vicinity of 1.3, i.e., optimum for

smooth high-frequency behavior.
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Finally, slabs whose conductivitiesvaried with distance

were experimented with. Not enough work was performed to draw any

real conclusions, but that which was done is interesting. A simple

computer code was written which calculates the reflection coefficient

for a planer slab with an arbitrary one-dimensionalvariation in a

and c. The code was based upon a differential equation for the

reflection coefficient derived by Tou (Tou, 1964) for horizontally

stratified media. The original intent of the equations was for the

calculation of ionospheric reflection coefficients. All that was

needed for our purposes was a change in grid size and boundary conditions.

Since Touts paper is probably not generally distributed, the equations

will be quickly derived.

Starting with the wave equation,

d2u + k~n2u = O
dx2

define the incident and reflected waves by

u =U++u

where

u = Ae+ ‘ikox(incident wave)

u = Be‘ikox(reflected wave)

(5-22)

(5-23)

(S-24)

(5-25)

A,B = constants

k. = free space wave number

n = complex index of refraction.
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DifferentiatingEquation 5-23 with respect to x, obtain

u’ = - ikou+ + ikou .

Subtracting

ikou = ikou+ + ikou

from this yields

ikou = - 2ikou+

or

u’

u+

Adding,

u

u“ - ikou=-
2iko “

instead of subtracting, yields

u’ + j-kou=
2ik0 “

Define the amplitude reflection coefficient as

u
u’ + ikou

r=~=-
+ u’ - ikou

or

r=-
u-/u + iko

.
u“/u - iko

Then,

u’ (r - 1)_.ikO(r+l)o
u

DifferentiatingEquation 5-38,

● )

u ~2

()

u
[

r’—- =iko—- [r-1) ‘
u T r+l (r: 1)21

(5-26)

(5-27)

(5-28)

(5-29]

(5-30)

[5-31)

(5-32)

or
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,,
u ~2

() [

u
= iko

(r + l)r’ - (r . l)r’—-
U T

1(r + l)Z “
(5-33)

L

By the wave equation

/,
u—= - k~n2 .
u

Using this and Equation 5-32

1 .=
Fr [

-* (r- 1)2 - n’(r 1-?-1)2 (5-34)

which is the differential equation for the reflection coefficient. For

our calculations, the integration was performed for y = kox instead of

x and, since the integration was performed from far distances to close

distances, the sign of r was reversed before integrating, leaving the

actual equation integrated as

dr=i
dy [ 1~(r+1)2-n2(l -r)’ , (5-35)

The equation is integrated from the perfectly conducting wall

where the boundary condition on r is r = 1 (imaginarypart is zero) and,
drby Equation 5-35, —= 2i.
dy

The complex arithmetic capability of the

CDC 7600 allowed the equation to be difference directly without rear-

ranging in terms of real and imaginary parts. The energy flow reflection

coefficient R was calculated from the amplitude of r. The program was

tested by performing constant slab calculations, including an air slab.

The errors were entirely negligible.

Before discussing the experiments, we define or review the

definition of the following quantities:

1. x: range parameter; x = O is the front surface

of the slab

2. d: distance to wall
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3. y: kox

4. e: kod

It is important to remember that the calculations were performed for

set values of e, not d, and that the curves depicting R vs frequency

therefore imply a variation of true slab thickness with frequency.

The method used is based upon the i’deathat we are looking at a single

resonant mode and that the change in frequency is due to varying the

cavity size. The constant value of e then means that the ratio of slab

thickness to chamber radius is held constant. The useful parameter

(a/Ew) does not have ameaning with a variable conductivity slab and

was simply replaced by u. The experiments were not well conceived arid

were performed simply to see if any miraculous gains in damping would

jump out at us. If not, the job could probably be done better some

other way than a complex tank lining.

In the first experiment, linearly varying cdnductivitieswere

used. One case was that in which the conductivity rose from (1at y = O

to a maximum at the wall. The second case was the inverse, i.e., the

conductivity was zero at the wall and maximum at y = O. The functions

were normalized so that their integrals were equal to aoe, where GO

is the conductivity derived from the constant slab problem of equal e.

Then, the two linear functions were

al =* (rising) (5-36)

02 =% (e - y) (falling) . (5-37]

Figure 5-11 shows the results for e = kod = 0.2. 00 was chosen so that

the minimum R for the constant slab problem would occur near 30 MHz.

In this case, uo = 0.108 mho/m. The results are inconclusivebecause

all three functions find minima at different frequencies. However,

the decreasing function appears to offer a slight improvement while the

increasing function appears to make matters worse. One can conclude,

however, that the loss mechanism is not purely absorptive, i.e.,
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depending only upon the integral of the conductivity.

Figure 5-12 is the same

maximum conductivity is set equal

the same as in the first problem,

It is interesting to note that in

problem with the exception that the

to 00. The resulting RIS are about

but occur at different frequencies.

both problems, the R for the

decreasing function was

at 30 MHz.

The fact that

equal to the minimum R for the constant slab

the decreasing functions appear to improve

matters, coupled with the success of the membrane method, lead

to the final experiment. It was clear that the most effective conduct-

ing slabs were those for which the conductivity was concentrated away

from the wall. The final calculations were for a constant slab of

thickness Ay = koAx with the front face at y = O and with

aAy = ooe. The constants cro =0.108 and e = 0.20 are the same as in the

first two experiments. The ratios ~= ~used are 1,
Ay

2, 4, and 20.

Figure 5-13 shows the calculated R’s with each curve labeled by its

ratio e/Ay. The minima decrease with increasing e/Ay, but occur at

higher frequencies. The values seen are not much improved, however.

It is interesting to compare with the membrane calculations, since the

results should converge for large e/Ay. First calculate the parameter

6 = ZQGAX = g (oAy) . (5-38)

NOW OAy = 0.108(,2) = 2.16 x 10-2 mho/m. Then, with u = 2Tr(30MHZ) .

1.89 x 108 rad/see,

B = 12.9 .

The equivalent membrane amplitude reflection coefficient is (Equation 4-1.7)

r=- @.
2+6

so that r = 0.865. By Figure 4-3, the R corresponding to this r and

kOD = 0.20 is somewhere aroundO.76 toO.78. This is the same as the

95



(.0
m

.9

.8

lx

.7

.6
5 10 15 20 25 30 35 40 45 50 55

FREQUENCY (MHz)

Figure 5-11. Reflection coefficient vs frequency (linear conductivity).

.9

.8

.7

.6
5 10 15 20 25 30 35 40 45 50 55

FREQUENCY (MHz)

Figure 5-12. Reflection coefficient vs frequency (linear conductivity).

,, ;<!,



.9

.8

.7

.6
20 25 30 35 40 45 50 55 60 65 70 75 80

FREQUENCY (MHz)

Figure 5-13. Reflection coefficient vs frequency (thin slab) for
various ratios of separation distance to thickness.



value of R to which the curves in Figure 5-13 are coverging at 30 MHz.

6. CONCLUSIONS

In this memo, the use of a conducting dielectric layer was

investigated for its effectiveness in damping the modal oscillations

of the satellite simulator tank. The two basic forms of the layer are

(1) a thick conducting dielectric in contact with the wall and (2] a

thin membrane some fixed distance from the wall. These are two limit-

ing cases of the general problem and a large investigation of the

reflection properties of slabs whose conductivity and permittivity

vary with thickness could be made. It is doubtful that significant

reductions in energy reflectivity would be attained by using more

complex slab models. We note in passing that the tank would not use

an actual slab or membrane, but rather an impedance loaded grid which

would be modeled after the slab or membrane parameters.

by the

Qofa

Q

The efficiency of the slabs in absorbing energy is measured

energy flow reflection coefficient, R. This is related to the

spherical cavity by

= kO(l.45a) = 3.97
1-R 1 -R

(6-1)

(see Section 3) fo~ the fundamental electric mode, where Q is defined

by

Q~~. (energy in cavity)
(energydissipated/see) “

Thus, the fraction of contained energy

f
_ 2Tr

Q
= 1.58 (1 - R)

(6-2)

dissipated per cycle is

[6-3)

for the fundamental electric mode. These definitions break down for

very low values of R. Also, for such low values, the spherical geometry

of the real problem must be considered along with the real part of the

frequency change.
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The investigations presented in this memo indicate that energy

reflection coefficients on the order of 0.3 or 0.4 are attainable with

both the thin membrane and the thick conducting layer, at a sacrifice

of 20 percent of the tank radius. Choosing the R = 0.4 as typical, we

see that the tank would have a Q of about 6.5 and that about 95 percent

of the energy would be dissipated’in one cycle. Even allowing for an

error of 10 percent in this figure, one could still expect an energy loss

of 85 percent in the first cycle of oscillation for the fundamental

electric mode. By Equation 2-45, the real part of the frequency shift

would be a reduction by 7 percent of the undamped frequency.

The behavior of the slab and membrane at higher frequencies

is of fundamental importance. The membrane has periodic resonances

whose spacing depend upon the separation distance between the membrane

and the wall. These resonances can be controlled to some extent, but

not independently of R. Thus, for certain situations, the reflection

properties might be adjusted so that they are acceptable for the

frequencies of interest. The thick slab, on the other hand, can be

made to have an excellent high-frequency behavior, but, of course, leads

to a more complicated grid mock-up. We believe that a grid structure

at two or three radii between 0.8a and a could be designed to give

adequate damping, without leading to excessive construction problems.

Some further calculations are needed, augmented perhaps by some experi-

ments in a mock-up screen room.
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