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In this note a simple prescribed current density is used to analytically
calculate the amount of excitation of various cavity modes of a
spherical vacuum tank. The source consists of radially moving electrons;
both monoenergetic and a more realistic electron energy spectrum are
considered. The resultant electric field magnitude of each cavity mode
is compared to the static electric field component, with the resulting
conclusion that cavity
source. (This note was
September 1972.).

modes are not highly >xcited by such a current- .
originally prepared as Tank Physics Memo #6, .-,.
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INTRODUCTION

the design of the satellite simulator vacuum tank, a ques-

tion of interest is the level to which the various electromagnetic

modes of the tank will be excited by the burst of photoelectrons made

by each X-ray pulse. Since these modes are absent in the case of the

satellite in space, we must make sure that they’do not seriously degrade

the simulation in the tank.

The satellite in space will have several modes of oscillation

of its own. For simple structures, the frequency of the lowest mode

wI1l be of the order of c/2d, where c is the velocity of light and d is
@

the dimension of the structure. These simple modes are damped strongly

by radiation. For example, for the lowest mode of oscillation of (the

outside of] a conducting sphere, the amplitude decreases by a factor of

about 50 pe~ cycle. For complicated structures, there may be modes

which have high inductance and capacitance, and which therefore have

frequencies which are somewhat lower than c/2d. These modes are not so

strongly damped by radiation, since their free-space wavelength is some-

what longer than the dimension of the structure.

Because the ejected photoelectrons will mostly have velocities

which are small compared with c, the low-frequency satellite modes will

tend to be excited most strongly, and they are the modes which are

potentially most dangerous for SGEMP. The properties of these modes

cannot be guessed without more detailed information on the satellite

structure than has been available to us. It will be important to gain
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such information at an early date. We wish to point out that simple

current injection tests could be used to determine properties of these

modes.

When the satellite is placed in the conducting tank, several

changes occur. First, the radiation from the satellite modes will be

reflected by the walls and reimpinge on the satellite. Degradation of

simulation due to this effect can be avoided by reducing the tank wall

reflectivity (Q-spoiling) as outlined in Reference 1. Second

additional low-frequency modes associated with the tank itself come

into play. The frequency of the lowest of these modek is of the order

of c/2D, where D is the tank diameter. The properties of these modes

are not sensitive to the presence or absence of the satellite; as

shown in Reference 2, the f~actional change in frequency is

of the order of the ratio of the satellite volume to the tank volume.

These modes can also be damped by reducing the wall reflectivity.

However, the low-frequency modes are somewinatharder to damp than those

of higher frequency, and are also more strongly excited by slow

electrons. Therefore, we have thought it necessary to estimate the

level of excitation of the lowest frequency tank mode, in order to

assess adequately the damping requirements.

The calculational method used in this memo can be applied to

any mode, but is carried through in detail only for the lowest (electric)

mode, illustrated in Figure 1, in which the electric field is parall=

to the mean direction of electron flow. The satellite is actually

ignored except as the source of photoelectrons.

2. 7wE iiOFWALfVIOCIEExpANsION I
In the simple model to be considered here, the vacuum tank is 1

treated as a spherical cavity of radius R with perfectly conducting walls. 1
Further assume some current density ~(~, t) within the sphere due to the 1
photoelectrons ejected from the satellite. Also, a high vacuum in the

tank gives:
3
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X-RAY SOURCE

PHOTOELECTRON

Figure 1. Sketch of configuration assumed.

0= o

IJ= PO

Maxwell’s equations are w~itten (MKS units] as

FIELD LINES

Z AXIS

(1)

(2)

Combining these equations one obtains

~2;
v2ii - Eopo —= - VX3. (3]

3t2

We now wish to expand the E field in terms of the natural modes of the

spherical cavity. In general, any A can be written as

(4]

where ~ and ~ are the vector spherical harmonic functions described in

Reference 3, and ZO = 120?T~is the impedance of free space. [As used

here the subscript n denotes all the various indices involved in des-

cribing the vector spherical harmonic functions.]
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Note that each

sourceless wave equation

~23
~2;

- &f)lll)—=
n

o
3t2

~is indicates that

V2Z = - u211uEofi
IL

so that Equation
~2X

nLlJ2i+ —
nn at2

term of the summation is a solution of the

.

can be rewritten as

& (v x j)n

(5)

(6)

(7]

where Hn is any one term of the series in Equation 4. To find the

coefficients an(t) and bn(t) one needs to take the scaler product of
+
mn[or ~n] with both sides of Equation 3 and integrate over the volume

of the cavity.

To do this one needs to know the orthogonality relationships

between the various vector spherical harmonic functions; i.e., one

wishes to find the coefficients

2TrlTR

and

where for the case of interest

+

‘*n
r2sin6drd9d+

+=
ne r2sinedrd0d$
Omn

(8)

(9)

here, ~ and ~ are written with spherical

Bessel functions of the first kind jn(r) since they have good behavior

at r = O. Furthermore, the % functions correspond to the electric

modes of the cavity where the wave number k is given by the roots of

[kRj(w)]” = O. Also k = u/c where c is the velocity of light in a

vacuum.
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One can evaluate the integrals in Equations 8 and 9 to show

+
clemn(m)

3n(n+l) (n+ m)!

[
‘~(l+6~R 2n+l (n-m)! 1- ~n2

1
‘(n + 1) j~(un)

o

where an is a root of [ctj(u)]” = O, and

emn(:)(Y, n?(n+ 1) (n+m)!
=#(l+6)R3 ~n+l {n m)! jn+ 2(%)

o

where an is a root of jn[a) = O. In both Equations 10 and 11

6 =Oifm>O

6 =lifm=O.

(lo)

(11]

Thus from Equations 3, 4 and i’,one finds

a2q%) [u#n(t) + — an(t)] = ~~;n .
el)po

[Vx J)dV (12)
at2

where we are considering only the ~ vector coefficients and have used

the fact that ~ and ~ are orthogonal. A similar differential equation

can be written to find the coefficients bn(t).

Now let us consider the right hand side of Equation 12. Let

V x ~ written in spherical coordinates is

6
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a~e
vx L_& &- (sin6J@) - — 184$

(14)

The expression for V x ~ can be simplified considerably if we pick an

appropriate geome~ry with certain symmetries for the current distri-

bution. To first order, it seems reasonable to assume that ~ has only

a radial component and that ~ is @

3= J(r, (3,t);

giving

Vxy.

Putting this

1 3J(r, e, t).-
r ae

expression into

2’ITITR
1@=-—

&lJLll)J/J
(in)

oofJ 4

where, from Reference 1

independent; i.e.,

Equation 13, one obtains

aJ(r~e*’ ‘) rsinOdrdOd@

(15)

(16)

(18)

Note that all terms with m # O will give @ = O. Also, if one writes

down the $ component of the ~ vector, it becomes obvious that the @

integral with % replacing ~ is always zero, since

(19]

Thus the fact that ~has only a radial component and is axially

symmetric (the axis is the same as that of the incident photon beam)

leads to the result that = can be expanded in terms of the ~vector

spherical harmonics above.
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Now consider

radial current density

what simple model can be used to describe the

J(r, 0, t). The current density is caused by

I the photoelectrons ejected from the test object when it is hit by the

incident photon pulse. For the purposes of calculation assume the

satellite is modeled by a small sphere which uniformly ejects photo-

electrons over half of its surface (i.e., the illuminated half) where

the photon beam enters along the negativez axis. This gives

J(r, 0, t) = Jl(r, t)U(O - ;) {20)

where U(9) is the unit step function. Thus

VX3. - ~J1(r, t)6(9 - $) (21)

since the 6 function, 6(6 - ~) is the 8 derivative of the step

function U(6 - ~). Now, Equation 17 can be written as

[J

‘ap (COS61
0.- “ ][Jjn(kr)Jl(r, t)rdr n 8@

Eel-lo aO
- $)sin9d0

o 0 1

[

aPn(cose) R
. Zl?
&optl 30 II J

sine _TT
jn(kr)Jl(r, t)rdr .

‘“20

Upon examination of the radial integral, one finds

lim J(r, t) +ra , u> -2
r+o

(22)

(23)

if this integral is to be well behaved at the origin.

3. MONOENERGETIC ELECTRONS

Initiallyj let us consider a 6 function distribution of

photoelectrons, where all the electrons have the same velocity; then

(24)

1 ,
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where Je is a constant related to the

pression for J1 and letting n = 1 for

Equation 22 can easily be written as

.,

total current. Using this ex-

the first modal coefficient,

(25)

which, going back to Equation 12, just gives the differential equation

w~al(t) +
az 2mJo
—al(t) =-—

j1(kvt)

at2 &olloCil kvt “
(26)

Note that this is just the equation of an oscillator with a time-

dependent driving function on the right-hand side. The general solution

to this differential equation is the sum of the general solution to the

homogeneous equation (i.e., sinult or cosult terms) plus a particular

solution for the driving function.

Perhaps the

by taking the Laplace

simplest method of solving the above equation is

transform of it; giving

a(s) = 6
~Q’

[1

jI(kvt)

U:+s kvt

where

Then, from the convolution theorem,

t

a(t) = $
J

sin[ul(t - T)] jl(kv~) dT .
kv~

o

(27)

(28)

(29)

It turns out that the integral in Equation 29 is not easily

evaluated analytically. However, over the range of interest (i.e.,

O S kv~ s 2.75) the spherical Bessel function ca~ be approximated quite

well by a polynomial in (kv’r);i.e., write

9
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j I (kv~)
kvT

= p(kvT) .

P(kv’r)= A + B(kv~)2 + C(kv’r)Q, T < :

with

A = .33

B= -.033

c= 1.19 x 10-3

0
(30)

(31)

.
The function P(lcn) is within a few percent of j1(kv~)/kvr at the ve>y

worst.

Putting this polynomial in Equation 29, one obtains, for

t<;,

[

,.
2 b

a(t)= ~
() ()

A + B : (w:t2 - 2) + C : (w:t4 - 12uit2 + 24)
W1 I

+:[-A+ 2B(:~ - 24q:J]cosu,t (32)

o

The first term on the right in this equation is the particular solution,

or transient, going with the driving function. The second term is the

ringing induced by the step rise at T = O. For t > :, a similar equation

could be worked out. It would have no transient term, but several

oscillating terms
R

, coming from the step rise at ‘r= O and fall at

-i=y and from the variation of the driver at times in between. We

shall not work out this formula, but shall instead work with just the

cosult term in Equation 32. The reason is that in the next section we

shall go to a continuous distribution of electron velocities which

will remove the discontinuous step down, and most of the excitation

will be due to the step up at ‘r= O. (We shall still assume, as we o
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have here, that the X-ray pulse is a 6 function in time, so that all

electrons start at the

l%us we have

term in the series

.
3=,X ~ a (t)Xn .

nZOn

Same time.)

m expression for the coefficient of the first

(33)

We now wish to find the electric field. From Equation 1 we find, using

the fact that V x ~ = kn:n ,
n

Note that

but that continuity requires

.

(36)

(34)

(35)

which in this case is not equal to zero. This indicates that ~ must

be expanded in terms of the ~ vector spherical harmonic in addition to
+
n and ~. The ~ vector parts of ~do not affect fi,of course,,since

their curl is zero.

Now, if we take the time integral of both sides of Equation

34, one obtains,

(37)

Consider only the oscillatory term in the expres~ion of Equation 32
.

for al(t). The integration just changes the coswlt to a ~sinult.

11
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Thus the n = 1 oscillatory term in the expansion for ~ is just

-~kl[- A+ 2B(~} + 24C(~~]SinL01ti%1~ (38)E*SC = ~oizo
WI

Since this oscillatory field will remain at long times after the X-ray

pulse, one needs to compare it to the late-time field seen by a satellite

in space. This static

left the satellite, Q,

E .~
static 4n&~r~

field is related to the total charge that has

by

where we have assumed the satellite is a

This static field is also the end result

37.

(39)

o_

conducting sphere of radius rl.

o“fthe last term in Equation

-.

We now wish to relate this charge Q to the parameter Jo. By

continuity

J /
2P d~

~ . :dS= - ~ (40)
s v

which when written in terms of our expression 24 for ~ becomes

(41)

Here we have written the current as a 6 function in space times a

rectangular pulse in time. Also it is assumed that the satellite was

o~iginally uncharged so that the charge that has been ejected is the

negative of the charge remaining. Integrating Equation 41 over time,

one discovers that .—

With this expression for Jo one can go back and ~irectly compare Eosc

and E From Equation 38
static”

*
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For n = 1, kRt= 2.75 and

al = (.071) ~R3,’

which when substituted into Equation 43 gives

V2 4
Q(: [- A+ 2f+) 01

- 24C :
E R
Osc

sinu~t ;I
2TreoR2(.071)~R)

(44)

(45)

1
Note that for 30 Kev electrons, ~ = @ thus the higher order

()~ terms become very small. Also [sinultl ~ 1 and the maximum value

that xl can have is 2/3 [this is determined by setting the angular

terms in xl to their maximum value and evaluating at r = O]. Thus,

at worst the ratio of oscillatory field to static field is

&.5:2.26(32(:)

For rl = 4 meters, R = 10 meters and ~ = ~, we find

IBoscl

@ I ‘“182’
static

(46)

(47)

Thus for the simple model used here we find that the maxi-

mum electric field due to the lowest tank mode is small compared with

the essentially static field due to electrons escaping to infinity (in

the case of the satellite in space) or to the tafikwall. The “static”

field is quite well simulated in the tank experiment, provided its

radius is large enough compared with the satellite radius. It therefore

13
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appears that excitation of the tank will only slightly affect the time

domain response of the satellite; however, certain bands of the frequency

response will be greatly changed. o

4. HIGHER ORDERMOIIES

Now let us consider briefly how much the higher order angular

modes are excited. From Equation 22 it can be seen that the angular term

gives ze~o for even values of n due to the particular choice of geometry

used here. Thus the next value of n we need to consider is n = 3. For

n= 3,
a

@
. 67T
&Q1.lQJ

rj3(kr)31(r, t)dr

o

= 6mJo’~ja(kvt)
—~Eopo

for the choice of J1 given in Equation 24.

(48)

With this source term, the differential equation we must

solve becomes

u~as(t) +
~2a3(t) = 6mJ0 kjs(kvt)”

at2
CL3&opl) kvt “

(49)

Now one can expand js in a polynomial as was done for jl in

Equation 31. Note, however, that the first term in an expansion for

js(kvt) has a (kvt)3 factor, while the first term of jl[kvt) was

proportional,t: (kvt)~. Note that this will result in giving an

()
additional ~ factor in the solution for as(t) [as compared to al{t)].

This brings down the magnitude of as(t) by about 1/9 over that of

al(t) [ignoring changes in the other coefficients]. Similarly, the

()

v n-l
an(t) term will contain a factor of ~ , which indicates that all the

higher order modes will be excited much less than the n = 1 mode.

o__
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Upon evaluating all the coefficients, one obtains

as(t)

()

2
= 1.88: = .21 .

al(t) (50)

Thus it can be seen that the higher order terms in the vector

spherical harmonic expansion of ~ and H will be relatively unimportant,

as compared to the lowest order mode.

The discussion above covers the higher angular modes. Let

us now consider the higher radial modes. The natural frequencies of

these modes are roughly proportional to the mode number; the frequency

U2 of the second radial mode is about 2.2u1. It can be seen that the

amplitude excited in a given mode is proportional to l/u~. Therefore ‘

the higher radial modes are also relatively unimportant compared with’

the lowest mode.

50 CONTINUOUSELECTRONSPECTRUM

Up to this point we have considered only monoenergetic

photoelectrons; i.e., all the photoelectrons we assumed to have the

same constant velocity, giving a “d(r- vt) term in the current density.

A more realistic case can be treated by calculating the actual velocity

spectrum of the ejected photoelectrons. The limiting assumption made

here is that the incident photon pulse is very short so that all the

photoelectrons are created at the same time. Since we neglect (as

previously) the effect of the field on the electrons, the velocity

spectrum is time independent.

From Reference

beam can be written as

.

4 the energy spectrum of the incident photon

,
(51)

where

15
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()
2.5

Tl=:
l-il = foil attenuation = * (1 - e-T1) ,

Ill= 10 kev

n2 = tank window attenuation

~-Tz
()

3
= ,TQ=& , U2 = 5 kev

..-.—— —.

. .

(52]

W!J=100kev,u= photon energy in kev .

To normalize this expression, let A be the incident energy flux in

ergs/cm2 and

IQ

Thus +

becomes

Wo

=
/

Sx(u]du .
0

Sx(u) has the

[54)

dimension of ~ . The number density spectrum -
cm2kev

.
@x{u) =

1
+Sx[u) photons (55)

1.6 X l~-gu cm2kev

For calculations here, we will assume A = 10-5 cal/cm2 = 4.18 x 102

ergs/cm2. Also, 10 is calculated numerically

One can also obtain from References

elect~on.yield is given by

S;(W, u) =
3 x 10-2 ~ elect~ons

kev photon
U3

to be 0.553.

2 and 3 that the photo-

(56)

for

O<w<urnax,w= electron energy in kev ,

Thus, the spectrum of emitted photoelectrons can be written as
wo

Qe(w) =9 J Se(w, u)Ox(u)du (57)

where the units of @e(w) are electrons/kev and &is the exposed area

liii,



of the target

the resulting

in cm2. The functions were evaluated numerically and

energy spectrum is shown in Figure 2.

This energy spectrum can be related to the velocity spectrum,

F(v), by the equation

@e(W)dw = F(v)dv . (S8)

In the classical limit

dw = mvdv (59)

giving the relation

F (V) = mv~e(w) . (60)

Strictly speaking, one should use the relativistic formula relating

velocity to kinetic energy. However, the relativistic correction

becomes important only

in Figure 2, there are

to the peak. The peak

which is equivalent to

for the higher energy electrons, and as seen

very few electrons at higher energies compared

of the energy spectrum is at about 6 kev,
v
–= .15. This indicates that classicalP.

formulas hold very well at this energy, and thus the above

for F(v) is fairly accurate.

Using these relations, the velocity distribution

expression

shown in

Figure 3 is obtained. Now let us consider finding an expression for

the radial current density using this velocity distribution. The

number of electrons per unit radial interval dr is given by

F(V)dv F(V)
dr =—>(V=

t

The current then is just

F (V)
J(r, t)=-e~.

r/t) . (61)

1
v* — ●

2mr2
(62)

17
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Figure 2. Number of photoelectrons per kev energy
per cm2 of target area.
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Figure 3. Number of photoelectrons as a function of
velocity per cinz of target area,
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The source term (see Equation 22) in the differential equation for al

then becomes
R

@ ‘~~jl(kr) ~ . V. ~ rdr (63)
2nr2o

With the substitution r = vt, this equation can be written

v=:

h-=--~
SOpo t J

F(v]jl(kvt)dv .
0

(64)

Now, approximate jl(kvt) by the

j I (kvt) = A(kvt) + B(kvt)3

Then

vi/c

polynomial

VI/c

+
*B”3’2/ (:)’’(:)’(:) ‘“)

o

R
where VI is either ~ or Vmax, whichever is smaller. [vm= is the

velocity of the highest energy photoelectron, which in this case cor-

responds to v/c = .549 (i.e., 100 kev).]

Upon evaluating the integrals

vi/c

0’

and

vi/c

12=/’-(:)3!+)+)
o

(66)

(67)

the driving term

time dependence of

one has a time-dependent expression for O which is

in the differential equation for al(t). Since the

O is a function of the upper limit of II and Iz,’the integration must

be camied out for an arbitrary upper limit. Since the integrands of

11 and 12 cannot be expressed in terms of simple analy~ic functions,

29 0



the integrals were numerically evaluated for a number of upper limits.

The results are shown in Figure 4. Using these graphs one can evaluate

@ as a function of t, for various values of the constants. @ as a

function of time for R = 10 meters was calculated and is plotted in

Figure 5. It turns out that this curve can be approximated fairly

well by the difference of two exponential functions; i.e.,

where

D= 5.9 X 10-6 Al = 1.65 X 107 se~-l

E = 4,7 X 10-6 ~2 = 2.3$) X 107 se~-l

Thus the differential equation one must solve for al(t) becomes

2 32
ulal(t) + — 2’m9’

[

De-llt
al(t) =

1

-E~A2t .
at’ Ul&olJo

(69)

For a simple exponential driving force the solution of this differential

equation is fairly simple. It is found that

For the lowest frequency mode, Ml = 8.2.Sx 107 see-l, so that

(70)

Thus, to a good approximation, al(t) can be written as

6

21



,., ...,”..,,,.q

1 ,.. . .

o“,! 0,2 0,3 0,4 0,5
,

vi/c

Figure 4. Integrals 11 and IZ as a function of% .
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E

(

-Azt-—-2 cos(LoIt + $2] + e

)1

(71)
U1

11 AZ
Here $1 and $2 are phase angles of the order of ~ and ~ . Using this

expression to find

electric field, as

the oscillatory part of the first mode of the

was done in Equations 34 to 38, one obtains

Now, if we set the sin{wlt + $) and the angular terms in xl equal to

one we have an upper limit on the magnitude of ~osc(n = 1); namely

~ 4.99 x 10-10 coulombs
Ely m’ “

5fenow need to compare this to the static electric field (Equation 39)

E Q
static = —4ncOr?

where Q is the total amount of charge that has left the satellite. Q

can be calculated from the energy spectrum of the emitted photoelectrons;

i.e.,
W(l d
.

Q = @’j Oe(w)dW

a,. ,

(74)

o
0

24
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Evaluating this integral numerically gives Q = 1.65 x 10-12coulombs

per square cm of exposed area. Thus for rl = 4 meters

E = 8.25 x 10-9 coulombs
static &o

(75]
m2

and the ratio

E
Osc
E

= .060
static

(76)

which is not too different from the ratio obtained for photoelectrons

all having the same velocity, obtained in Section 3. The conclusion

that excitation of the tank modes does not seriously degrade the simula-

tion is therefore reaffirmed.

6. CONCLUSIONS

We have seen that the oscillating electric fields due to the

tank modes are small compared with the essentially static electric

field due to electrons escaping from the satellite. This result de-

pended upon the effective radius of the satellite being small compared

with the tank radius, and the mean velocity of the photoelectrons being

small compared with the velocity of light.

A few comments should be made regarding these results.

we have compared the cavity mode excited fields to the late-time

First,

field

seen by the satellite; the question of what happens at intermediate .

times was not discussed. However, the tank can not affect the early-

time response of the satellite since the satellite will not “see” the

tank until a signal has had time to travel to the wall and back. We

believe the estimate of degradation made above encompasses the

problem.

K

Secondly, one should keep in mind the simplifying assumptions

used in these calculations. Azimuthal symmetry about the axis of the
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incident photon beam was assumed. A real satellite might be oriented

so that this symnetry is not strictly correct. Such an asymmetrical

geometry would make mode excitation coefficients more difficult to cal-

culate, but it is hard to imagine a situation which drastically

changes the general results obtained here. The same holds true if one

considered a more realistic incident photon pulse (i.e., a finite

length photon pulse rather than a delta function of time which creates

all the photoelectrons at the same instant). We have also assumed that

all the ejected photoelectrons have sufficient energy to reach the

outer wall. For an incident photon beam with energy density 10-5

calories/cm2, the satellite will become charged to a potential of a

few kevj indicating that most of the ejected electrons will reach the

outer wall.

We do have a worry, based on ignorance, concerning the

abnormally low-frequency satellite modes. Until we know what these

are, we cannot say with certainty that they will not be seriously

affected by the presence of the tank, or how much Q spoiling will be

needed to decouple them from the tank.
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