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ABSTRACT

In this note a simple prescribed current density is used to analytically
calculate the amount of excitation of various cavity modes of a .
spherical vacuum tank. The source consists of radially moving electrons;
both monoenergetic and a more realistic electron energy spectrum are
‘considered. The resultant electric field magnitude of each cavity mode
is compared to the static electric field component, with the resulting
conclusion that cavity modes are not highly excited by such a current

source, (This note was originally prepared as Tank Physics Memo #6, L e
September 1972.) : _ L .
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1. INTRODUCTION
In the design of the satellite simulator vacuum tank, a ques-
“tion of interest is the level to which the various electromagnetic
modes of the tank will be excited by the burst of photoelectrons made
by each X-ray pulse. Since these modes are absent in the case of the
satellite in space, we must make sure that they do not seriously degrade

the simulation in the tank.

The satellite in space will have several modes of oscillation
of its own. For simple structures, the frequency of the lowest mode
will be of the order of c¢/2d, where ¢ is the velocity of light and 4 is .
the dimension of the structure. These simple modes are damped strongly
by radiation. For example, for the lowest mode of oscillation of (the
outside of) a conducting sphere, the amplitude decreases by a factor of
about 50 per cycle. For complicated structures, there may be modes
which have high inductance and capacitance, and which therefore have
frequencies which are somewhat lower than c/2d. These modes are not so
strongly damped by radiation, since their free—spacé wavelength is some-

what longer than the dimension of the structure,

Because the ejected photoelectrons will mostly have velocities
which are small compared with c, the low-frequency satellite modes will
tend to be excited most strongly, and they are the modes which are
potentially most dangerous for SGEMP. The properties of these modes
cannot be guessed without more detailed information on the satellite

structure than has been available to us. It will be important to gain
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such information at an early date. We wish to point out that simple
current injection tests could be used to determine properties of these

modes,

When the satellite is placed in the conducting tank, several
changes occur. First, the radiation from the satellite modes will be
reflected by the walls and reimpinge on the satellite. Degradation of
simulation due to this effect can be avoided by reducing the tank wall
reflectivity (Qéspoiling) as outlined in Reference 1. Second
additional low-frequency modes associated with the tank itself come
into play. The frequency of the lowest of these modes is of the order
of ¢/2D, where D is the tank diameter. The properties of these modes
are not sensitive to the presence or absence of the satellite; as
shown in Reference 2, the fractional change in frequency is
of the order of the ratio of the satellite volume to the tank volume.
These modes can also be damped by reducing the wall reflectivity.
However, the low-frequency modes are somewhat harder to damp than those
of higher frequency, and are also more strongly excited by slow
- electrons. Therefore, we have thought it necessary to estimate the
level of excitation of the lowest frequency tank mode, in order to

assess adequately the damping requirements.

The calculational method used in this memo can be applied to
any mode, but is carried through in detail only for the lowest (electric)
mode, illustrated in Figure 1, in which the electric field is parallel
to the mean direction of electron flow. The satellite is actually

ignored except as the source of photoelectrons.

2. THE NORMAL MODE EXPANSION

In the simple model to be considered here, the vacuum tank is
treated as a spherical cavity of radius R with perfectly conducting walls.
Further assume some current density 3(?, t) within the sphere due to the
photoelectrons ejected from the satellite. Also, a high vacuum in the

tank gives:
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Figu;e 1. Sketch of configuraﬁion assumed.

o=290

I

€ €9
U= Uo

Maxwell's equations are written (MKS units) as
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Combining these equations one obtains

2+
Vzﬁ—eouoa—ﬂ=-vxj. (3
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We now wish to expand the I field in terms of the natural modes of the

spherical cavity. In general, any H can be written as
> i > S T
H = —Z-O—_i la ()m (r) + b (t)n (7)] (4)

B ->
where m and n are the vector spherical harmonic functions described in
Reference 3, and Zg = 12070 is the impedance of free space. [As used
here the subscript n denotes all the various indices involved in des-

cribing the vector spherical harmonic functions.]




Note that each term of the summation is a solution of the

sourceless wave equation
2.>
VAL - eopo 2B =0 . (5)
n a2

Tﬂis indicates that

2‘)‘ = - 2 ->
v Hn w UUsoHn (6)
so that Equation 3 can be rewritten as
52H
2x n 1 > ‘
H = v X 7
“n"n * 5¢2 EoMo ( J)n (7)

where ﬁ is any one term of the series in Equation 4. To find the
coeff1c1ents ay (t) and b (t) one needs to take the scaler product of
m [or n ] w1th both 51des of Equation 3 and integrate over the volume
of the cavity.

To do this one needs to know the orthogonality relationships
between the various vector spherical harmonic functions; i.e., one

wishes to find the coefficients

2rm R
o (m) = fff m, - r2sin6drdeds (8)
olin 0o o 0 Smn
and
2t TR
> i -> -> 2 .
o n) = — n - n sinfBdrd6d 9

where for the case of interest here, m and n are written with spherical
Bessel functions of the flrst kind J (r) since they have good behavior
at r = 0. Furthermore, the m functlons correspond to the electric
modes of the cavity where the wave number k is given by the roots of
[kRj (kR)]” = 0. Also k = w/c where ¢ is the velocity of light in a

vacuum.
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One can evaluate the integrals in Equations 8 and 9 to show

that
> Ti 3nn+1) (n+m! "nn +1)].2
0Leml[nﬂ = Zo (1 + &R 2n + 1 (n - m)! [1 - L2 ] Jn(an)
0 On
o ‘ (10)
where o is a root of [aj(e)]” = 0, and
> _ M sn(n + 1) (m+m)! . (on)
agmn(n) " Zo 1+ &R 2n + 1 (m-m! ‘n+ 2 (11)
where 0 is a root of jn(u) = 0. In both Equations 10 and 11
§=03ifm >0
§=1ifm=20 .
Thus from Equations 3, 4 and 7, one finds
> 2 32 _ 1 ->
o @) [wPa (6) + 2=a ()] = €o'llofmn .V x DAV (12)
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-
where we are considering only the m vector coefficients and have used
- -
the fact that m and n are orthogonal. A similar differential equation

can be written to find the coefficients bn(t)g

Now let us consider the right hand side of Equation 12. Let

1 fﬁn- v x Pav

o
1

f €oHo/
27T R
1, - -> - .
= Sollo D_[jrmn - (V % J)r?sinfdrdodd (13)
D0

> .
V X J written in spherical coordinates is




aJ
> 1 5 .. RN
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The expression for V X J can be simplified considerably if we pick an
appropriate geometry with certain symmetries for the current distri-
>
bution. To first order, it seems reasonable to assume that J has only

>
a radial component and that J is ¢ independent; i.e.,

= J(r, 6, t)T (15)
giving
*>_13J(x, 6, t) % '
VxJ=- - ——_'EE——_——'¢ - {16)

Putting this expression into Equation 13, one obtains

2rw™ R
/ff( ) BJ(T e £) rsin6drdsde (17)

soho

where, from Reference 1

8Pm(cose)

> s n
(mn)q) = - j k) ——5—

Note that all terms with m # 0 will give ¢ = 0. Also, if one writes

cos
sin

md . (18)

>
down the ¢ component of the n vector, it becomes obvious that the &

. . -> . > . .
integral with n replacing m is always zero, since

.
@y = * ey 5 1, ()] 7L (cose) Soims (19)

Thus the fact that J has only a radial component and is axially
symmetric (the axis is the same as that of the incident photon beam)
leads to the result that H can be expanded in terms of the m vector

spherical harmonics above.




Now consider what simple model can be used to describe the
radial current density J(r, 8, t). The current density is caused by
the photoelectrons ejected from the test object when it is hit by the
incident photon pulse. For the purposes of calculation assume the
satellite is modeled by a small sphere which uniformly ejects photo-
electrons over half of its surface (i.e., the illuminated half) where

the photon beam enters along the negative.z axis. This gives

I(r, 8, t) = Ji(r, LIV - D (20)
where U(8) is the unit step function. Thus
VxJF=- %-Jl(r, £)8(0 - D (21)

since the 8 function, 8(8 - 7) is the ® derivative of the step

function U(® -~ ga. Now, Equation 17 can be written as

R TaP_(cosd)
= 20 j n Ty -
¢ = Sollo Lljntk'ﬁ:‘);"l (r, t)rdr] Lf 35 §(6 - —2-)51nede
o PBPn(cose) R
= Eollo I 90 sinb e==E;/5n(kr)J1Cr’ t)rdr . (22)

Upon examination of the radial integral, one finds

1im J(r, t) ~ % , 02 -2 (23)
>0

if this integral is to be well behaved at the origin.

3. MONOENERGETIC ELECTRONS
Initially, let us consider a § function distribution of
photoelectrons, where all the electrons have the same velocity; then

JQ(S(I‘ -

Jilr, t) V) for (}StS%—

(24)
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where Je is a constant related to the total current. Using this ex-~
pression for J; and letting n = 1 for the first modal coefficient,

Equation 22 can easily be written as

21k Jo 31 (kvt)
EoHo kvt ?

0<t=s (25)

<

which, going back to Equation 12, just gives the differential equation

2 52 _ 2nJg  ja(kvt)
wiay (t) + " a(t) = - TP T

at

. (26)

Note that this is just the equation of an oscillator with a time-
dependent driving function on the right-hand side. The general solution
to this differential equation is the sum of the general solution to the
homogeneous equation (i.e., sinwit or coswit terms) plus a particular

solution for the driving function.

Perhaps the simplest method of solving the above equation is

by taking the Laplace transform of it; giving

Wy + S
where
L 2mJok
B EoMlotiy (28)

Then, from the convolution theorem,
t

a(t) = - f sinfor (¢ - )] 20U gr (29)

It turns out that the integral in Equation 29 is not easily
evaluated analytically. However, over the range of interest (i.e.,
£
0 = kvt = 2.75) the spherical Bessel function can be approximated quite

well by a polynomial in (kvt); i.e., write




i1 (vr) |
T = PloT) | (30)
where Lo
Pkve) = A + Blvr)2 + ClkvD)* , T < %— (31)
_ R
=0, 1>z
with
A= .33
B = -.033
C=1.19 x 10-%

The function P(kvT) is within a few percent of j; (kvt)/kvT at the vé}y

worst.

Putting this polynomial in Equation 29, one obtains, for
v | |

2 by
a(t) > £ {a « B(E) it? - 2) + c(¥) (wit" - 12uit? + 24)
W3

4

. -%[- A+ 213(-‘(;—)2 - 24c(%>

coswit (32)
w

The first term on the right in this equation is the particular solution,
or transient, going with the driving function. The second term is the
ringing induced by the step rise at T = 0. For t >”%3 a similar equation
could be worked out. It would have no transient term, but several
oscillating terms, coming from the step rise at T = 0 and fall at

T = %-and from the variation of the driver at times in between. We

shall not work out this formula, but shall instead work with just the
coswit term in Equation 32. The reason is that in the next section we
shall go to a continuous distribution of electron velocities which

will remove the discontinuous step down, and most of the excitation

will be due to the step up at T = 0. (We shall still assume, as we .
10
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have here, that the X-ray pulse is a ¢ function in time, so that all

electrons start at the same time.)

Thus we have an expression for the coefficient of the first

term in the series

¥

i >
H = i z;-an(t)mn . | (33)

We now wish to find the electric field. From Equation 1 we find, using
the fact that V xm_ = k 0
n n

E]

n
3E _ 1 5
e Mo
1o i > 7
i
--e-—o-rzlz-knan(t)nn-a . ) (34)
Note that
V.m=V-n=0 - (35)
but that continuity requires
T op
V‘J"'B_E' ' (36)

->
which in this case is not equal to zero. This indicates that J must
be expanded in terms of the % vector spherical harmonic in addition to

-> -> -> - -> .-
n and m. The 2 vector parts of J do not affect H, of course, since

their curl is zero.

Now, if we take the time integral of both sides of Equation

34, one obtains,

T _l__i_ - Jf _ _l_jﬂ+
E = Tr 7o i knnn an(t)dt o Jdt . (37)

‘

Consider only the oscillatory term in the expression of Equation 32

for a1 (t). The integration just changes the coswit to a.a%-sinwlt.
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5>
Thus the n = 1 oscillatory term in the expansion for E is just

> o 1 B v Al >

Eosc lyy e k1[- A+ ZB(-c-j + 24C(E) ]s:mw;tn1 (38)
w1

Since this oscillatory field will remain at long times after the X-ray

pulse, one needs to compare it to the late-time field seen By a satellite

in space. This static field is related to the total charge that has
left the satellite, Q, by

E (39)

- = 2
static 41T€0r1

where we have assumed the satellite is a conducting sphere of radius r;.
This static field is also the end result of the last term in Equation
37.

We now wish to relate this charge Q to the parameter Jyp. By

continuity

f_j-;ds=-fg—9dv . (40)
3 t

v
which when written in terms of our expression 24 for T becomes

2198 (x - vt) [U(O) - U(%>J= - %g- (41)

Here we have written the current as a 6 function in space times a
rectangular pulse in time. Also it is assumed that the satellite was
originally uncharged so that the charge that has been ejected is the
negative of the charge remaining. Integrating Equation 41 over time,

one discovers that

Jo = 3% - (42)

With this expression for Jy, one can go back and directly compare Eos
and E

Cc

static’ From Equation 38

12




2

. 2 . L
-y ~ 1 2'TTJ0 -]iL :‘_’. _ i _'V_ .
Eose © 5ozn Tolaor s [- A+ ZB<c) 24c(c) ]smwlt e

. 2 . i 2 2 4
_ 3 cQv ' ky v v | N
= =7 o wf [- A+ 2B(c> 24C(c):]51nw1tTh . (43)

Forn =1, kR, = 2,75 and

a1 = (.071) -2-%1- R® | (44)
which when substituted into Equation 43 gives

LA () - )]

osc 2meoR?(.071) (KRY

sinw;t 31” (45)

1I
g":

Note that for 30 Kev electrons, %-2
<%) terms become very small. Also [sinwlt[ = 1 and the maximum value

thus the higher order
e
that ni can have is 2/3 [this is determined by setting the angular
-5

terms in ni1 to their maximum value and evaluating at r = 0]. Thus,
at worst the ratio of oscillatory field to static field is

IEoscl ri\2 /v

Estatic

For r; = 4 meters, R = 10 meters and §-= %3 we find
lEoscl -
pre < .182 , (47)
|Estatic|

Thus for the simple model used here we find that the maxi-
mum electric field due to the lowest tank mode is small compared with
the essentially static field due to electrons escaping to infinity (in
the case of the satellite in space) or to the tank wall. The "static"
- field is quite well simulated in the tank experiment, provided its

radius is large enough compared with the satellite radius. It therefore

13




appears that excitation of the .tank will only slightly affect the time
domain response of the satellite; however, certain bands of the frequency

response will be greatly changed.

4, HIGHER ORDER MODES

Now let us consider briefly how much the higher order angular
modes are excited. From Equation 22 it can be seen that the angular term
gives zero for even values of n due to the particular choice of geometry

used here. Thus the next value of n we need to consider is n = 3. For

a

ot .
auuo[rsstkrasltr, t)dr
) .

©
i}

3
_ 6mT o 'kj s (kvt)
TSV kvt

(48)

for the choice of J: given in Equation 24,

With this source term, the differential equation we must
solve becomes

9%a5(t) _ 6mJ, kjal(kvt)

wéa (t) +
343 32 T asgglg kvt

(49}

. Now one can expand jsz in a polynomial as was done for j; in
Equation 31. Note, however, that the first term in an expansion for
ja(kvt) has a (kvt)?® factor, while the first term of ji(kvt) was
proportionalwtg (kvt)l. Note that this will resultrin giving an
additional (%) factor in the solution for az(t) [as comparedrto a1 {t)}.
This brings down the magnitude of az(t) by about 1/9 over that of
a1 (t) [ignoring changes in the other coefficients]. Similarly, the
an(t) term will contain a factor of (%)n-1’ which indicates that all the

higher order modes will be excited much less than the n = 1 mode.

4
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Upon evaluating all the coefficients, one obtains

2

as (t) . LANES
ai(t) = 1.88(;) = .21 . (50)

Thus it can be seen that the higher order terms in the vector
> -
spherical harmonic expansion of E and H will be relatively unimportant,

as compared to the lowest order mode.

The discussion above covers the higher angular modes. Let
us now consider the higher radial modes. The natural frequencies of
these modes are roughly proportional to the mode number; the frequency
wg of the second radial mode is about 2.2w;. It can be seen that the
amplitude excited in a given mode is proportional to l/wi. Therefore
the higher radial modes are also relatively unimportant compared with

the lowest mode.

5. CONTINUOUS ELECTRON SPECTRUM

Up to this point we have considered only monoenergetic
photoelectrons; i.e., all the photoelectrons we assumed to have the
same constant velocity, giving a §(r - vt) term in the current density.
A more realistic case can be treated by calculating the actual velocity
spectrum of the ejected photoelectrons. The limiting assumption made
here is that the incident photon pulse is very short so that all the
photoelectrons are created at the same time. Since we neglect (as
previously) the effect of the field on the electrons, the velocity

spectrum is time independent.

From Reference 4 the energy spectrum of the inecident photon

beam can be written as

Wo u

5, () ~ = {(ﬂ-)“ - (_1,1_)0-7}nm2 | ‘ (51)

where
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uﬁ 2.5
1 -Ta Ty = (T>
m = foll attenuation = T—-(l - e Y, (52)
i u; = 10 kev
Nz = tank window attenuation
3
=eT2,T2=(%>,u2=Skev (53)
wp = 100 kev , u = photon energy in kev .

To normalize this expression, let A be the incident energy flux in
ergs/cm® and

wo _
1o =jr s, (wdu . - (54)
9
Thus %%-Sx(u) has the dimension of —2555— . The number density spectrum
becomes cm“kev
@X(u) - 1 %&_Sx(u) photons (55)
1.6 x 107°%u ~° cm®kev

For calculations here, we will assume A = 1075 cal/cm2 = 4,18 x 102

ergs/cmz. Also, Ig is calculated numerically to be 0.553.

One can also obtain from References 2 and 3 that the photo-

electron yield is given by

‘ 3 x 10-2 electrons

Se(w’ u) = o ¥ TKev photon (56)
for

0<w<uy s W = electron energy'in kev .

max
Thus, the spectrum of emitted photoelectrons can be written as
Wo ’
@e[w) =.9’f Se(w, P)Qx(u)du . (57)

W

where the units of @e(w) are electrons/kev and & is the exposed area

5. o




of the target in cm?. The functions were evaluated numerically and

the resulting energy spectrum is shown in Figure 2.

This energy spectrum can be related to the velocity spectrum,

F(v), by the equation

o (W)dw = F(v)dv . ‘ (58)

In the classical 1limit

dw = mvdv (59)
giving the relation

F(v) = mv@e(w) . : (60)

Strictly speaking, one should use the relativistic formula relating
velocity to kinetic energy. However, the relativistic correction
becomes important only for the higher energy electrons, and as seen
in Figure 2, there are very few electrons at higher energies compared
to the peak. The peak of the energy spectrum is at about 6 kev,

- which is equivalent to §-= .15. This indicates that classical
formulas hold very well at this energy, and thus the above expression

for F(v) is fairly accurate.

Using these relations, the velocity distribution shown in
Figure 3 is obtained. Now let us consider finding an expression for
the radial current density using this velocity distribution. The

number of electrons per unit radial interval dr is given by

F(v)dv _ F(v)
dr t

> (v = r/t) . (61)

The current then is just

Jee, 1) = - e Ly L ‘ (62)
2mr?
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The source term {see Equation 22) in the differential equation for a;

then becomes
R

27 . eF (v) 1
® = kp) SE3WVJ . 2 3
EOUO,[JI( T =% — rdr (63)

0

With the substitution r = vt, this equation can be written
R .
VET
==L FE)ji(kvt)dv . | (64)
€oMo T ,

Now, approximate ji(kvt) by the polynomial

j1(kvt) = ACkvt) + B(kvt)®

Then
vi/c ' vi/c .
. _® NAYTRARTLANNNIL SNV P Y S A AT AAVTAY
¢ = ST AwJﬁ (c)p(c>é(c) * Eolo Bwt jﬁ (C> F(C)d(c) (65)
0
where vy is either %-or v , whichever is smaller. [v is the
max max

velocity of the highest energy photoelectron, which in this case cor-
responds to v/c = .549 (i.e., 100 kev).]

Upon evaluating the integrals

vi/c
hf R &

e (2 FERE) ‘ (67

one has a time-dependent expression for & which is the driving term

in the differential equation for a;(t). Since the time dependence of
® is a function of the upper limit of I; and I;,” the integration must
be carried out for an arbitrary upper limit. Since the integrands of

I and I» cannot be expressed in terms of simple analytic functions,
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the integrals were numerically evaluated for a number of upper limits.
The results are shown in Figure 4. Using these graphs one can evaluate
® as a function of t, for various values of the constants. & as a
function of time for R = 10 meters was calculated and is plotted in
Figure 5. It turns out that this curve can be approximated fairly

well by the difference of two exponential functions; i.e.,

AR D™ Mt . pehet ' (68)
where

D=5.9x10"% X =1.65 x 107 sec™!

E=4,7x10"% Xy = 2.39 x 107 sec™?

Thus the differential equation one must solve for ai(t) becomes

2 2
wrar(t) + 20— ay(t) = 20 |pghit | po-het| (69)
3t2 Q1€oUg

For a simple exponential driving force the solution of this differential

equation is fairly simple. It is found that

2P D A . “Ait
= —_ W - w
ai (t) S1Eoe Af - mi <w1 sinwit - coswit + e
- —;Ji—jg<22-sinw1t ~.coswt + e_kzﬂi. (70)
Wi
)\2 + Wi

For the lowest frequency mode, wi = 8.25 X 107 sec™!, so that

A .20 and 2= .29
w1 1

>

Thus, to a good approximation, ai(t) can be written as

21
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a;(t) = _2F ..D_(- cos{wt + ¢y) + e_}\lt>

G1EgHp wf
- J%‘ - cos(wit + ¢2) + g het (71)
w1
Here ¢ and ¢» are phase angles of the order of %—i— and %)% . Using this

expression to find the oscillatory part of the first mode of the

electric field, as was done in Equations 34 to 38, one obtains

E n=1) = i &z -%-(— sin(wit + ¢1)>

- —%—(- sin(wit + ¢z)> 31 (72)

w1

>
Now, if we set the sin{wit + ¢) and the angular terms in ni equal to

>
one we have an upper limit on the magnitude of Eosc(n = 1); namely

> _ 1% 2rc 2 [D - E
haosc{n =1 = €0Zo O1 _3—[ % }

A

-10
- 4,99 X 10 coulombs . . (73)
€p m?

We now need to compare this to the static electric field (Equation 39)

=—Q

E .
2
static ATe T2

where Q is the total amount of charge that has left the satellite. Q
can be calculated from the energy spectrum of the emitted photoelectrons;

i.e.,
oy ,
Q =e,9’/ @e(w)dw (74)
0
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Evaluating this integral numerically gives Q = 1.65 X 10~% coulombs

per square cm of exposed area. Thus for ri = 4 meters

_ 8.25 x 10-% coulombs

static k) 2 (75)
m
and the ratio
Eose '
= = 060 : (76>
static

which is not too different from the ratio obtained for photoéiéctrons
all having the same velocity, obtained in Section 3. The conclusion
that excitation of the tank modes does not seriously degrade the simula-

tion 1is therefore reaffirmed.

6. CONCLUSIONS

We have seen that the oscillating electric fields due to the
tank modes are small compared with the essentially static electric
field due to electrons escaping from the satellite. This result de-
pended upon the effective radius of the satellite being small compared
with the tank radius, and the mean velocity of the photoelectrons being

small compared with the velocity of light.

A few comments should be made regarding these results. First,
we have compared the cavity mode excited fields to the late-time field
seen by the satellite; the question of what happens at intermediate
times was not discussed. However, the tank can not affect the early-
time response of the satellite since the satellite will not '"'see' the
tank until a signal has had time to travel to the wall and back. We
believe the estimate of degradation made above encompasses the
problem.

‘
Secondly, one should keep in mind the simplifying assumptions

used in these calculations. Azimuthal symmetry about the axis of the
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incident photon beam was assumed. A real satellite might be oriented
so that this symmetry is not strictly correct. Such an asymmetrical
geometry would make mode excitation coefficients more difficult to cal-
culate, but it is hard to imagine a situation which drastically

changes the general results obtained here. The same holds true if one
considered a more realistic incident photon pulse {i.e., a finite
length photon pulse rather than a delta function of time which creates
all the photoelectrons at the same instant). We have also assumed that
all the ejected photoelectrons have sufficient energy to reach the
outer wall. For an incident photoh beam with energy density 103
calories/cm?, the satellite will become charged to a potential of a

few kev, indicating that most of the ejected electrons will reach the

outer wall.

We do have a worry, based on ignorance, concerning the
abnormally low-frequency satellite modes. Until we know what these
are, we cannot say with certainty that they will not be seriously
affected by the presence of the tank, or how much Q spoiling will be

needed to decouple them from the tank.
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