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I. Introduction

This note is a continuation of SSN 163 [1] in which the termination plane

was perpendicular to the axis of the two-dimensional parallel-plate trans -

rnis sion line. In the present note the termination admittance is a sloped

distributed RL sheet and the R, L parameters should be chosen such that

the reflections of an incident TEM monochromatic wave or a TEM step-

pulse are a minimum. The value of the resistance R has been found to

be equal to Z. sin 3 [2] where Z. is the free space characteristic im-

pedance (377Q. ) and g the inclination angle. The inductance L will be

determined by a parametric study as it was done in ref. 1.

A sloped termination allows multiple reflections off the admittance sheet

(for S < 60°) (Figs. 4, 5 and 6 ) and consequently the total field reflected

back into the region between the parallel plates could be decreased by

making the inclination angle ~ smaller than 60° (see section V for a dis -

cussion). The smallest inclination angle we considered in this note was

30°. This angle is sufficiently small to allc)w for the effect of multiple

reflections, but not too small to require excessive computer time. Our

method of calculating reflections requires tl~e knowledge of a sufficient

number of field aperture expansion coefficients and this number increases

rapidly with decreasing ? due to resonances (see section 111).

To facilitate the mathematical formulation :Lnd numerical calculations,

infinitely conducting flanges coplanar to the admittance sheet were con-

sidered (Fig. 1). In actuality, the termination for the transmission line

in the ATLAS design does not include flanges, and one should be careful

in interpreting the numerical results in order to separate the effect. of

the flanges. In section V we explore this matter and also the effect of

sloping the termination. We find that in the presence of flanges the ini-

tial reflection (before multiple reflections cccur ) increases with decreasing

s and is fairly insensitive to the choice of L (for F > 45°) which are

unwanted featur es. We speculate that in the absence of flanges the initial

reflection is sensitive to the choice of L and it can be reduced by selecting
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an appropriate value for L and also by sloping the termination plane. It

is also found that for the same values of parameters L and ~ the presence

of flanges versus absence inhibits initial reflections. In the same sec-

tion V we determine the optinlum L, in the presence of flanges, for each

angle ~ considered in this note (75°, 60°, 45°, 300), and we speculate

about the corresponding values for L in the absence of flanges and also

about the magnitude of the reflection coefficients for the TEM mode.

In section II we formulate and solve the problem by expressing the re-

flection coefficients of the TEM and TM modes (in the region between

the parallel plates where they can be defined) in terms of suitable aper-

ture expansion coefficients. The fields within the triangular region

(Fig. 3) are also investigated and the “reflection” coefficients of the in-—
homogeneous TEM and TM modes in this region are given in terms of

integrals of the aperture fields. In section 111 the method for obtaining

the numerical results (and the importance of the resonances in the cal-

culation of the reflection coefficients) is discussed, and in section IV a

detailed description of the plots of the reflected fields in both the fre-

quency and time domain with the inductance L as a parameter are pre -

s ented.
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11. Formulation and Solution ●

We start by recalling two integral relationships derived in SSN 163 [Ref. 1 ].

2

1

-J
iw eoG1lE~ dsl = H Hy

2

The geometry is depicted in Fig. 1 , Es is the aperture electric field,

‘Iy’
El

TIy
are the total magnetic fields in regions I and II, Ho is the in-

cident TEM magnetic field, and G1, G1l are Green’s functions defined

as follows

(-32
+2

i
G1=5(x-x’)6 (z-z’)

ax2 ay2

3X
= O on the plates

~1=6(x-x’)6 (z-z’)

8 ‘II .
an

on the termination plane .

The form of G1 we subsequently use refers to a Greenls function sat-

isf ying Eqs. 3 and 4 throughout the infinite domain within two parallel

plates. Its application, however, is restricted within region I (Fig. 1 ).

This is valid, because Green’s second identity, the application of which

led to Eq. 1, does not impose any restrictions on the form of the func-

tions outside the domain of integration.

(1)

(2)

(3) ● =

(4)

(!5)

(6)
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Referring to Fig. 2 , Eqs. 1 and 2 can be rewritten as follows

hi/2

H1(x1! Zl) - Ho =
f {[

‘ G

1
32;, I(xl’zl;x~’zi)lziDO ‘I(xi$zi = 0,

-hi/2

)-

hl/2

-h, /2

where H1=H
Iy’ H1l = H

IIy ’ E=E =-E hl = h/sin ~,
‘1 s’

primed variables are integration variables, and

‘1 =xsin~-zcos~

‘1
=xcos~+zsin~

x =x
1 sin ? + 21 cos $

Z=-x
1 Cos$+z ~ sin ?

>:
x =x

In SSN 163 where ~ was equal to TT/2 , we calculated the reflected

and TM fields for the case of an incident TEM wave characterized

wave number ‘k and a TEM step pulse. In the present note the incidento
wave is again a TEM wave or a TEM step pulse, and we still want to cal-

culate the reflected TEM and TM fields. These TEM and TM fields can
.!.

only be defined in the region z“” < (1 (~igo 3 )0 The form of the fields

within the triangular region will be examined later.

(7)

dx ; (8)

(9)

(lo)

(11)

(12)

(13)

(14)

TEM

by a
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ik. z

For Z* C O and assuming an incident TEM electric field E. = e ‘_’ we

have

* *
iko z

*
-ikoz

.CO
2nllx ‘Iynz

Ex=e + I’oe +x rncOs-~e
n=l

+6 *
ikoz

*
-ikoz -i ynz

H ~ = (l/Zo)e - (To/Zo)e -~ (rn/2n) cos * e
n= 1

*
-iynz

Ez = ~ i(2nn/Ynh) rn sin (2nfix/h) e
n= 1

(15)

(16)

(17)

where r. and rn’s are coefficients to be determined, Zn = Ynh o,

and yn is defined by the relationship

with Yn ‘
[

k: - (2nn/h)2] * for k. > 2nn/h,

[ 125Yn = i (2nn/h)2 - k for ko< 2nn/h
o

and

~

to ensure evanescent reflected waves. (For a > 0$ az is the positive

square root. ) Fquation 7 is valid throughout region I, which includes

the triangular region. For z%<< 0, Eq. 7 should reduce to Eq. 16. TO

prove this we must evaluate ub/bz~) G1j Iz, = o. G1 satisfying Eqs. 3 and1
4 can be shown to have the form

L

ikolz-ztl BY
G1(x, z; x’, z’) = (1/2ihko) e +x (1 /iynh) cos (2nnx/h)

n= 1

iynlz -z’ I
cos (2nnx1 /h) e (18)

For points to the left of the z:: = O plane, i. e. in the region with z < - (~) h cot ~,

we have Iz-z’I =zI - z since z’, for points on the termination plane,
●I
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* 1’

ranges from (-~)h cot 3 to (~)h cot ~. Thus Eq. 18 can be rewritten

a) as

-ikoz t ik z’
G1(x, z; x’, z’) = (1/2ihko) e o

m -iynz + iynz’
+~ (l/iynh) cos (2n~~x/h) cos (2nnx’ /h) e (19)

n= 1

and

1

-ik Z

[aG1/az;]z,
ik z’

= (1/2ihko) e
1=0

0 (iko) (bz’/b z;) e 0

m -iynz +iynz’
+x - (l/iynh) cos (2nnx/h) (2nn/h) sin (2nnx’/h) (ax’/bz;) e

n.1

co -iynz + iynz’
+x (l/iynh) cos (2nnx/h) cos (2nnx’/$) e

/
(iyn) (az’/az~) Z; :: 0

n= 1
/

@
or

[bGI/az~]zi = o
.{

-ikoz - ik xoiCOS~
= sin ~ (1/2h) e

w -iynz -iyx niCOS$
+x (l/h) cos (2nnx/h) cos (2n~x\/hl) e

n= 1 I

m -iynz - iy xniCOS~
+x (-2nn/ynh2) cos ~ cos (2nnx/h) sin (2n~x\/hl) e (20)

n=l

If we insert Eq. 19, evaluated at zi ❑ O, and Eq. 20 into Eq. 7, we obtain,

r h./2 1
ikoz

‘“[

~.

f

-ikoxi cos ~
HI(x, z) -H. = e (1/2h) [sin ~ HI - (l/ Zo)E] e dxi

-hi/2
J

[

hi/2
m -iynz

J

-iy xn\COS~
+x cos (2nl?x/h) e (l/h) [sin E HI - (l/ Zn)E] e

d)
n= 1

-hi/2
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h./2

-hi/2

1

sin (2n~xi /hl) dxi (21]

If we use Eq. 14, Eq. 21 can be rewrittenaas

*
iko z -ikoz>i cu

H1(x*, z*) = (l/Zo) e - (r/Zo) e - ~ (~ /Z ) cos (2nnx*/h)e “ynz* (22)
n=l n n

where

(i/2)koh cot 3
r=-e

hi/2
-ikox~ cos ~

(1/2h) [ (sin S ZOH1 - E) e dx; (21a)

1 -K1/2

1
hi/2

(i/2)ynh cot $
T=-e

J

“iynXi COS C
(1 /h) (sin $ ZnH1- E) e

n
cos (2nnx~ /nI ) dxj

-hi/2
b

hi/2
-iynXi COS ~

+ (- 2nn/h2w co) cos E
f

HI e sin (2n~xi /h ~) dx~1

1

n=l ,2$3,... (22a)

-hi/2

Equations 21a and 22a provide explicit expressions for the reflection co-

efficients in terms of the aperture fields HI, E. These fields will be cal-

culated shortly, following a brief discussion of the fields within the trian-

gular region (see Fig, 3).

To evaluate the magnetic field at a point P within the triangular region

we will employ Eq. 7. To calculate G1

Eq. 18 in the two regions of interest, z

8

and bG1/bzi at z’ = O we use
1

>Z1 and z< z’. For z< z!,



, r

bG1/bzi at zi = O is given by Eq. 20. For z > z’ it is straightforward

to obtain the result

{

ikoz + ikoxi cos $

[b G1/bzi]zi = o = - sin $ (1/2h)e

a iynz + iy x~iCOS~
+ ~ (l/h) cos (2nfix/h) cos (2n~xi/hl) e

n= 1

w iynz + iYnxi Cos ?
+~(-2nn/ynh2) cot ~ cos (2nnx/h) sin (2n~xi /hl ) e

I
(23)

n=l

We can now evaluate the magnetic field” at P with the aid of Eq. 7:

(-z/cos g)

/( aG1

‘I
=Ho+ H — ,.

I bzi )
iwe OGIE dxi

(24)

(-z/cos ~)

The range of integration for the first integral corresponds to z’ > z whereas

the second integral corresponds to z’ < z. If we use the appropriate ex-

pressions for the Green’s function and its derivative, Eq. 24 yields,

h~
ikoz

HI(P) = (l/Z,o) e +Hl+H2

where

s,: *
-ikoz

HI = - [T(z)/zo] e - ~ [~ (Z)/Zn] cos (2nnx*/h) e-lynz
n=l n

.,,
ikoz-” ~

::

H2 = [~7(z)/zo] e
i ynz

+r&l [r~(z)/Zn] cos (2nTTx*/h) e

(26)

(27)
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and

r (-z/cos g) -1

p

(i/2)koh cot? ‘
T’(z) =-e

-ik x’ cos ~
(1/2h) (sin % ZOH1 - E) e 0 1

J

dXl (28)

-$/2

(i/2)ynh cot~

[

(-z/cos g)

Tn(z) =-e (1 /h)
I

-iynx~ cos 3
(sin ~ ZnH1 - E) e COS (2n~X~/hl) dxi

-hi/2

[

hi/2
(-i/2)koh cot ~

I

iy x’ Cos ~
~T(z) =-e (1/2h) (sin 3 ZOH1 - E) e n ~ 1dx~

(-z/cos g)

(29)

(30) o

h
hi/2

(-i/2)ynh cot ~ iynX\ COS ~
~~(z)=-e (1 /h) (sin 3 ZnH1 - E) e COS (2nUx! /hl) dx’

1

L (-z/cOS s)

(-z/cos ~) J

(31)

Thus at any point within the triangular region w e have TEM and TM modes

traveHing in both directions with “reflection” coefficients that are func-

tions of position. We can call these modes inhomogeneous TEM and TM

modes. Notice that at z = - ($) h cot s, i. e. Z* = O

10
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r(z=. ~h cot ~)=r, rn(z = - +hcotg)=r
n

and

r~(z = - ~hcot 3)=0, :r~(z = - ~hcot~)=O

where r, rn are given by Eqs. 21a and 22b respectively.

Equations 33 ensure that there is nothing peculiar about “reflected” TEM

and TM modes traveling in the positive z direction within the triangular

region.

Next we proceed to derive two coupled integral equations, for the aper-

ture fields H~ and E, the solution of which will allow us to evaluate the

reflection

First, we

point (xl,

co~fficients given by Eqs. 21a and 22a.

use integral relationships “1 and 8 and allow the observation

Z1 ) to approach the termination plane. Because of the pres -

ence of the derivative of G1 in Eq. 7, the integral is equal to ~H1(xl, Zl)

plus the same integral evaluated in the principal value sense. Equation

8, however, remains unchanged in form.

hi/2

J(

a G1
H1(x1, zl =O)=2HO(X1, Z1=O)+2 ~ H — - iul COEG1I azi

)
dx i

-hi/2

hi/2

Next we invoke the boundary condition across the admittance sheet

(Zl = o),

(32)

(33)

(34)

(35)

11



or Z(H1 - H1l) = E

.

(36)

Using Ecj. 35 we can substitute H1l in Eq. 36 to obtain

hi/2

E= ZH1- iweoZ
J

EG1l dxi

-hi/2
1

Equations 34 arid 37 are two coupled integral equatims the solution of

which will determine HI and E.

For ~ = TT/2, there is a simple relationship between the aperture fields,

i. e. Eqs, 15 and 16 evaluated at z%<= 0. Thus

E = 1 + 17 +5 rn cos (2nnx/h)
n=l

1

~ =n/2

HI = (l/zo) (1 - T) -~ (rn/Zn) cos(2nfix/h)
n= 1

Combining Eq. 37 with Eqs. 38 and 39 allows us to calculate the expan-

sion coefficients for the aperture electric field as it was done in SSN 163

[Ref. 1]. For ~ = TT/2, these expansion coefficients coincide with the

reflection coefficients.

For ~ < TT/2, however, no simple relationship exists between the expan-

sion coefficients of the aperture fields. The relationship we will use is

integral equation 34. We write the aperture fields in terms of sine and

cosine expansions.

E(x1, ~) ‘m~Ocm cos (2mnx1 /hl) t ~ CA sin (2mux1/hl)
m= O

zoH1(x1~ 0, ‘mi_o‘m cos (2mnxl/hl) + ~ D sin (2mnx1/hl )
m= O

(37)

(38)

(39)

(40)

(41)

12



where C~=D’=OO
o

Before we use Eqs. 40 and 41 in Eq. .34 we evaluate ?)G1/azi (at zi = O,

‘1
= O) first. For this purpose, we rewrite Eq. 18 as

iko I(x’
1

-Xl)COS ~ +( Z1-Zi)Sin~\
G1(XIS Zl; X~$ 1Z’ ) = (1/2ikoh)e

If we use the relationship

[~\a-bxl]x_o=-fib, aio(5<~,2)

we obtain from Eq. 42

‘i -‘1 iko lx’~ -Xll Cos g
A G(xl, zl; I

sin C
a Zi

X\j Z\)
=21=0 ‘- =-e

‘1 1

When xi /hl = xl /hl A e , where e is an arbitrarily small quantity, the

third term in Eq. 44 can be shown to have an integrable singularity,

whereas the first two terms, combined, exhibit a delta-function singu-

larity. To see this we recall that

(42)

(43)

(44)

(45)

and we rewrite Eq. 44 as

13



iko~xi - xl) Cos 5
e

I

- ~ (2n~ cos ~ /iy h2) cos’(2n~xl/hl) sin (2n~x\ /hl)n
n= 1

iYnlxi -Xll Cos 5
e (46)

As we mentioned earlier, the integral in Eq. 34 should be evaluated as

a principal value integral about xi = x 1“
Thus, the delta-function con-

tributions are zero. However, because of the factor (x; - xl )/ Ixi - XII

in front of Eq. 46, we must divide the integration range into (-hi/2, xl )

and (xl, hi/2), and consequently the delta-function contributions cancel

out even if we treat the integral in the ordinary sense. The representa-

tion of 3G/~ zi given by Eq. 46 is also very convenient for accurate

numerical calculations.

We are now in a position to use Eqs. 40 and 41 in Eqs. 34 and 37 in order

to derive an infinite system of equations for the expansion coefficients

c m’ CL’ ‘m and ‘h” ‘o ‘hat ‘ffect ‘q” 37 can be ‘eWritten as’

[

2mnx1 2m~x1
= (Z/Zo)m~o Dm COS + DA sin —

‘I ‘1 1
h,/2

14



,
.

(1)
where G1l(x1, O; xi} O) = (-i/2)H ‘l)(kolxi-xll)and H (u) is the Hankel

function of the first kind, and E;. 34 as

[

2mllx1 2mTrxl iko(~h cot $ -xl cos $)
(l/Zo) ~ Dmcos hl 1+D~ sm -— = (2/Zo)e

m=O ‘1

21111Xi

[

iyn(xl - x;) Cos ‘? iko(xl -

1

x;) Cos E
Cos — e -e

‘1

}
‘~,& & Cos + ‘in - ‘i’n(x’ - ‘i) Cosg‘xi

n 1 1

2J UXi Zhx;
Cos + Dj sin 1/5* ‘Os2“;X1

‘1 ‘1 n. 1 1
J.

Zllfix{ ~ ‘iYn(x{ -xl) Cos ~ iko(xi - xl) Cos E
Cos

1
e -e

‘1
1

2nnxl 2nnXi iyn(Xi - X1) Cos g
+~-= -—

n.1 h2 ‘yn Cos ‘1 ‘in ‘~ e }

dx~

‘1
w

Jz[
2k nx’

1
22 RXi

1{
iko(xl - ~x’ ) Cos ‘:

-2iW e C,t Cos + C~ sin — (1/2ikoh) e
o

.8=0 ‘1 ‘1
-hi/2

15



Znnxl 2nllx~ iyn(xl -x~)cos %
-t

?
m (l/iYnh) cos ~ Cos — e

I
dx~

n= ‘1

w 2nllxl 2nTlx~ iyn(Xi - xl) Cos s
+ ~ (1 /iynh) cos Cos — e

\
dx;

n=l ‘1 ‘1

Using the orthogonality properties of the trigonometric functions, Eq. 47

yie~ds

2C - 2( Z/Zo) D i- e
m~o Kjmc,!l = 0

0

●

(49)

e

where Cm = 1 for m= O, e =2 form#O, and

K
Zko: jj o [ o 1

H(l) (k h/2)lu - U[l cos (mnu) cos (Lnu’) du du’
Im = 4Z0 sm ~

(51)

11

R ,tm = 4z:%,J~ H:)[ 1(koh/2)lu - u’ \ sin(rnnu) sin (I TTu’) du du’ (52)

A simple transformation can reduce the double integrals into single ones.

The details can be found in Appendix 111 of SSN 163 [Ref. 1].

If we call Zkoh/4Zo sin S = u we have the following results



[

2

K
a

f
dyH~)(k by/2 sin ~)(-1)

[
I+m+l sinlny+sinm~y

Am=; o l+m
o

(53)

2

K =-a
i

dy H~)(k by/2 sin $)mm o [ 1
~j sin Lny + (y-2) cos ,tny m/O (54)

o

2

K
!

=-2a dy(2-y)H
00 ~) (kohy/2 sin ~)

R
1

J+ m sin l~y + sin mny
hi=: dyH:)(kohy/2 ‘in 3) ‘-:1) [ ,t+m

sin .4V~
A -m 1

0

2

0

J?*m

2

R = a dy H!) (ky/2 sin %) & sin 11’Ty - (y-2) cos lnymm J [ 1
0

R
$0

= Ro$= O for any 1

(55)

miO (57)

where

(56)

Applying the orthogonality properties of the trigonometric functions on

Eq. 48 we obtain

(58)

(59)

((50)

a

Z{[‘llm= ‘n=l 12(Yn) - 1Iz(ko) - I;(yn) + I~(ko) - (2n~/ikoh) pn cot $ (19 +1~)
I

17
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s q[Z.Orn ‘ -n=l
l&) - 16(ko) 1-I&(Yn) +~:(ko) - (2n~/ikoh)pncot E (Ill +I\l)

I

[ U& Pnp,@n)+I;(Yn]]s34m= (1/2 sin 3) 11 +11 +n=

s [~ !j n’2pn[16(yn)+1&(yn~]~~m= (1/2 sin?) I +1’ +

a

q[‘6 jm = ‘n= 1
18(Yn)- 18(ko) - $(Yn) +I&(ko) - (zn~jikoh) Pn cot 5(112 +1\2)

I

s
[

~jm=(l/2 sin~) 17+1~ +n~12pn
[ 1]18(Yn) + I~(Yn)

(i/2)koh cot 5 ‘1(-i /2)kohucot~

I =e
-[

e cos m~u du
cm

(i/2)koh cot ? +1 (-i/2 )kohu cot 3
I =e

J
e sin mnu du

Sm
-1

where pn = k./ yn and

Il=12(a=ko, n=O)
(61)

+1 t-l

12(a) = du e(i/2)ah(u-ul) COt ~

Jf
cos (lTTu’) cos (nllu) cos (nnu’) cos (rn~u) dur (62)

●
-1 -1
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i i

+1 1

ff
I;(a) = du e

-1 u

I;= I~(a=k, n=O)o

-i/2)ah(u - u’) cot ~
cos (.t TTu’) cos (nflu) cos (nTTu’) cos (mnu)du’

13=14 (a=k n=O)
0’

+1 u

Jl14(a ) = du e
(-i/2 )ah(u -u’) cot ~

cos (l TTu’) cos (nVu) cos (nnu’) sin(m~u)du’

-1 -1

Ij=I~(a=k ,n=O)o
+1 1

-{ !
I~(a) = du e

(-i/2 )ah(u -u’) cot S
cos (~llu’) cos (nl’Tu) cos (n~u’) cos (mnu)du’

u

15=16 (a=ko, n=O)

al ~6(a) =+~u ‘e(i/2)ah(u -u’) COt ~

[{

sin (,t TTu’) cos (nHu) cos (nTlu’) cos (mnu) du’

--

I&= I&(a=k n=O)
0’

l-l 1

lj
I&(cY) = du e(

-i/2) ah(u -u’) cot $ sin(l~u’) cos (nTTu) cos (nHu’) cos (mRu) du’

-1 u

17=18 (a=ko, n=O)

+1 u

Jl
18(u) = du e

(i/2)ah(u - u’) cot ~ sin(lnu’) cos (nnu) cos (n~u’) sin(m~u) du’

-1 -1

I;= I&(a=k n=O)
0’

+1 1

JJ
I~(u) = du e

(-i/2 )ah(u-u’) cot ~
sin (J?TTU’) cos (nfiu) cos (nfiu’) sin (m~u) du’

.1 u

~ = ‘~u ~(i/2)ah(u -u’) cot ~
9 -U

cos (4 TTu’) cos (nnu) sin (nnu’) cos (mVu) du’

a)
-1 -1
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(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)



~, = ~u ~(-i/2)ah(u - u’) COt ~
9 Jj

cos (I TTu’) cos (n~u) sin (nTTu’) cos (mTTu) dul

-1 u

-1-1 u

110 JJ

due

-1 -1

+1 1

i/2)oh(u -u’) cot ~
cos (Anu’) cos (nllu) sin (nTTu’) sin (m’TTu)du’

N
I\O= due

(-i/2 )ah(u - u’) cot S cos (4 TTu’) cos (n~u) sin(nnu’) sin (mnu) du’

-1 u

+1 u

[[

= ~u e(i/Z)ah(u - u’)cot ?
111

sin(l~u’) cos (nVu) sin (nTlu’) cos (mHu) du’
--

-1 u

+1 u

JJ

= du ~(i/2)ah(u - u’) cot ?sin(j
112

-1 -1

lllu’) cos (nnu) sin(nTTu’) cos (mTlu)du’

ITU’) cos (n~u) sin (nITU:) sin(ml’lujdu’

+1 1

JV
I\2 = du e

(-i/2 )ah(u-u’)cot5
sin (lnul) cos (nnu) sin(nflu’) sin(mTfu) du’

-1 u

It is easy to show that the following relationships are true,

12(0) = I;(a)

14(a) + I~(a ) = O

16(a) + l~(a) = O

18(a) = Ii(a)

19+$=0

Ilo = l;O
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(76)

(77)

(78)

(79)

(80)

(81)
o

(82)



111‘Ii~

112 ‘1i2=0

Using the above relationships and also Eqs. 49, 50, 59 and 60 we arrive

at the following infinite system of algebraic equations for the expansion

coefficients.

2C - 2( Z/Zo) Dm + e &K ~mcj=o

where K R
lm’ .tm

are given by Eqs. 53 through 58 and

s I‘2 ~ {[I&) - 16(ko)12~m =
- (2n~/ikoh) pn cot ~ 111

n=l

s
[ 1Sjm = (l/sin $) II +~ 2Pn12(Yn)

n. 1

s
5im ‘ ‘2 q{

W [14(Yn) - 14(ko)] - (2n~/ikoh) p n cot ~ 110
n. }

[ 1
S8jm = (l/sin $) 17 +~ 2pn18(yn)

n. 1

(83)

(84)

(85)

(86)

(137)

(138)

(89)

(’)0)

The integrals involved in the above expressions have already been de-

fined (Eqs. 61 through 82) and can be calculated explicitly,
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Z is the termination impedance and is given by

.Z=R-iw L= Zosi.n%-iw L (90)

To conform with Ref. we rewrite Eq. 91 as

Z= Zosin5[l -i(koh) ~(~)] (92)

where

P(?) = CLZoh sm ~ (93)

Parameter P(q) is thus a normalized inductance and a parametric study

on $, for a given ~ , will determine the optimum L.

Once we solve the system of Eqs. 83 through 86, we are in a position to

calculate the reflection coefficients of the electric field for the TEM and

TM modes given by Eqs. 21a and 22a. For convenience we rewrite Eqs.

Zla and 22a in terms of the expansion coefficients ~’s and D’s.

ire/2 ~
r= - (1/4 sin ~) e x [( -Cm+ sin% Dm)JIO 1+(-C~+sinS D~)J20

m=O (94)

Tn=-(1/2sin?)e irn/2 ~ -C
x [[ 1

+ (sin $ /pn) Dm Jln
mm.(1

+
[ 1-CL -t (sin %/Pn ) D& J2n - (2nn cos 5/ikoh) (DmJ3n+D~J4n)

1
(95)

where

‘ln
= -2(A + B)(-l)m + n r sin(rn/2)

n

J 2n =4i~A(m+n)~+B (m-n)ll] (-l)m+nsin(rn/2)

‘3 n
=4i[A(m +n)~-B(m-n)~] (-l)m+nsin(rn/2)
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(96)

(97)

(98)
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I

J - 2(A . B) (-l)m + n ~n si:n (m/2)
4n - - -

[

‘2 -1
A= 4(m+n)2112-rn 1
[ 21

-1
B = 4(m - n)znz - rn

r =(koh/pn) cot 3
n

Pn = ko/v
‘n

One can easily

reduces to

which

2C -2

show that as 3 + ~/2 the system of Eqs~ 83 through 86

co

(z/em) Dm c =46mo
‘~ ‘3,tm J

4=0

shows that CL = DA = O for any

s 300 =
2

‘3,tm ‘pm

s3jo =0

and Eq. 106 gives

DO+C =2o

m. Also S31m reduces to

(loo)

(101)

(102)

(103)
\

(1.06)

(1 07)
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If we combine Eqs. 104 and 108 we arrive at a system of equations for

the electric field expansion coefficients Co, Cmls that is identical to

Eqs. 36 of SSN 163. R is now easy to show that Eqs. 94 and 95 reduce

to T = Co - 1, Tn = Cn as they should.

●
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III. Numerical Results and Plots

The procedure to solve the system of equations (83) through (86) is es-

sentially similar to the one employed in SSN 163 [Ref. 1] and has been

explained there in sufficient detail. The present treatment only differs

in that it involves more unknown coefficients and also the input terms

I I are functions at the wavenumber k
cm’ sm

i. e.0s

.._ —.——.- —.——-——..

I- (-1 )m [sin (ro/2)] [4ro/(r~ - 14m2f12 )
cm -

.—

1 = i(-1)
.[ 1‘+1[sin (ro/2)1 8mn/(r~ - 4m2rr2)sm

where r = koh cot ~ .
0

If we rewrite sin (ro/2) as (-l)m sin [(1/2)(r - 2mrr)], it is easy to see

that Icm and iI (m > O) exhibit a :maxim~ at r = 2m~ (I = 2,
sm co

I =lform>O, iIsm=l for m> O). Since our ultimate goal is thecm
calculation of ~ and m’s given by (94) and (95), we understand that for

given ? and koh we should know enough aperture expansion coefficients

to ensure the series convergence in (94) and (95). The number of required

aperture coefficients depends on koh (also on ~ ) since this determines

the integer m that maximizes the input terms. Thus for a given koh

we should have to progress well beyond the mth order expansion coef-

ficients in order to obtain adequate convergence for the series in (94)

and (95). From koh cot ~ = 2mn we see that the critical integer m in-

creases with increasing koh and decreasing ~ . In this note, as it was

done in SSN 163, we calculate the reflected TEM and first four TM

modes in both the frequency and time domain. The origin of time is the

same for all E and corresponds to the instant at which the wavefront of

the incident TEM step pulse passes through the Z’K = O plane. This is

the same as in SSN 163. Such a choice of the origin of time corresponds

(109)

(110)

to an incident TEM wave with a phase factor
.!.

exp [ikoz”’], which was
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actually the case in the previous section. The numerical procedure to

Fourier-invert reflection coefficients ~ and rnfs into the time domain

is identical to the one employed in SSN 163, and it will not be repeated

here.
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IV. Description of the Plots

We have plotted the reflection coefficient of the x-component of the elec-

tric field for the TEM and first four TM modes (in the region z’: < O) in

both the frequency and time domains with the inclination angle ~ and the

normalized inductance @ (s) as parameters. The plots in the frequency

domain correspond to a monochromatic TEM incident wave with an elec -
‘ik(,z *

tric field of unit amplitude Ex = e 9 whereas the time plots correspond.

to an incident TEM step pulse of unit amplitude Ex = u(t - Z’l:/c). The

t = O instant marks the passage of the pulse wavefront through the Z* = O

plane (Fig. 2).

Figures 8 through 27 are plots

efficient for the TEM and TM

angles ? = 70°, 60°, 45°, 30°

of the absolute values of the reflection co-

modes versus koh for four inclination

with B (5 ) as a parameter. For high fre -

quencies the values of the reflection coefficients for various ~ often dif -

fered by a small_ arno.unt only and have been drawn as having identical

values. Figures 28 through 31 are time plots of the x-component of the

reflected electric field for the TEM mode versus et/h for ? = 75°, 60°,

45°, 30° with P (~) as a parameter. The reflected TENL wave is not at-

tenuated with distance and the plots are the same over any cross section
.,.-!-

(Z = <0, Fig. 2), provided the appropriate shift in time is taken into

account.

Figures 32 through 47 are time plots of the x-component of the reflected

electric field for the first four TM modes versus et/h with ? (? ) as para -
>y.

meter. The time history is given over two cross sections, z /h = O and
zi</h = -1, to show the attenuation of the reflected TM modes with distance.

Most of the attenuation occurs over a distance h and for 1Z* I > h the re-

maining pulse ---- mainly containing the high frequency portion of the fre-

quency spectrum -- suffers little change. (See Ref. 1, 1. 15 for amore

detailed discus sion. )

Finally, in Figs. 48 and 49 the values of the optimum @ and L respectively

are plotted versus the inclination angle, and the curves are tentatively ex-

trapolated to include smaller values for ~.
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v. Discussion of Results

The reflection of TEM and TM modes into region I (Fig. 1 ) takes place

in various stages. As the incident TEM step pulse arrives at the z*=(I

plane it is diffracted by the top edge 1 (Fig. 2). AS a result, electro -

magnetic fields are generated, in both regions I and 11, as well as

currents on the admittance sheet. Sub sequently the TEM pulse wave-

front

larly

point

(Fig.

starts sweeping through the termination plane where it is specu-

reflected - until the disturbance from the top edge arrives at the

under consideration. This time-delay is equal to (5/c) tan (3/2)

7) and decreases with decreasing ~, implying that the steady

state is more quickly approached by sloping the admittance sheet. This,

of course, ignores the effect of the bottom edge, but this effect gets

diminished as F decreases. (For g+O this effect is never felt. ) As the

TEM pulse arrives at the bottom edge 2 it. is once more diffracted and

at a time (h/c) tan (5/2) later the disturbance from the top edge also

suffers cliff raction.

Returning to the reflection of the incident TEM pulse at the termination

plane we see that, depending on the magnitude of the inclination angle ~,

we have one or more reflections off the admittance sheet (where some

transmission into region II occurs) and also off the bottom plate (where

no transmission occurs ). (Figs. 4, 5, and 6). Multiple reflections

(within the triangular region, Fig. 3 ) are always possible for ?>600.

For 45° < g < 60° we can have up to two reflections off the termination

plane (Fig. 4b), for 30°< S <45° up to three (Fig. 4d) and for 22.5°<

~ <30° up to four (Fig. 4f). In general, exactly n reflections (for all

rays ) can be shown to correspond to an inclination angle F = 90/n, ( The

number off the bottom plate is equal to n- 1. ) When n is even all rays

follow parallel paths and reverse direction by bouncing off the bottom

plate at right angles (Fig. 4c, 5a), whereas for n odd all rays follow

parallel paths and reverse direction by bouncing off the admittance

sheet (Fig. 4c, 5b). For a given ?(<60° ) the number of reflections n

satisfies the inequality k- l~n$k where k is the integer nearest but

larger than 90/q.
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The calculation of the fields reflected into region I and to the left of the
>?

z = O plane (Fig. 2) requires the knowledge of the x-component of the

total electric field Ex -- generated by the various mechanisms described
>ti

above -- at any point on the z = O plane. If we expand EX(XX:, Z* = o, t)

into a series ~ m(t) cos (2n~x’:</h), the reflection coefficients m(t) can
n=O

easily be determined. The calculati.~n of Ez and H is then completed
Y

with the aid of Eq. (16) and (1 7) by appropriate convolution integrals.

(In this note we have calculated the reflection coefficients in the frequency

domain first and obtained the time-history by Fourier inversion. ) As ~

decreases the contributions to the aperture field Ex(x’:, Zz< = O,t) from

specular reflections and the lower edge occur at progressively later

times. Thus by sloping the admittance sheet the early time history of

the reflected fields mainly depends on the diffracting properties of the

top edge and the currents induced on the admittance sheet due to the edge

diffraction, From this we under stand that the presence of the flanges

may have an appreciable effect on the early time response and possibly

the choice of the optimum inductance L. We will postpone examining this

effect until we have discussed the plots pertinent to the problem considered

in this note i. e. a termination with co-planar flanges.

First we direct our attention to the time history of the reflected TEM

electric field Eox for various inclination angles (Figs. 28 through 3 1).

From these plots it appears that as ~ decreases the initial reflection

increases and the optimum value for ~ (? ) (that minimizes the overall

reflection) decreases. Thus we can make the following choices:

Table I

~ = 90° 75° 60° 45° 30°

p= 1.1O 1.10 1.05 .95 .80

L/~oh= 1.10 1.o6 .91 .67 .40

These numbers are in general agreement with the results in Ref. 2 where

Baurn studied the same problem but with a different approach. Baum con-
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sidered inclination angles as small as .9° , whereas our smallest angle

is 30°. In Figs. 48 and 49 we have plotted ? and L respectively versus o
~ and tentatively extrapolated the curves to include smaller values for

? . Thus for ~ = 18° our extrapolated value for P is .55 arid Baum’s

average value is approximately the same except for late times. The dis-

crepancy for late times may be due to the fact that Baurn’s treatment

does not account for multiple reflections.

So far we have examined the time history of the reflected TEM electric

field and selected the optimum values for the inductance L by minimizing

the TEM reflections. Lf we examine the time historics of the reflected

TM electric fields we find that, for a given 3, smaller values for ~ cor-

respond to smaller reflections. It is also true that the reflected TM modes

decay with distance (Figs. 32 through 47). Only the part of the reflected

pulse containing the high frequencies propagates without attenuation, but

its amplitude becomes insignificant over a distance h. This decay is due

to the fact that for a given mode n frequencies below w (W = 2nfic/h)

correspond to evanescent waves. (See Ref. 1, p. 15 for ~mo~~ complete

discus sion. ) Thus for pulse reflection the choice of L should be based o
on minimization of TEM reflection. If the incident TEM wave is mono-

chromatic (fJJ= w o) the optimum value for L may be obtained with the

aid of Figs, 8 through 27. Notice that if w o is well below cutoff for all

TM modes (Wo << 2nc/h) the choice of L should be made on the basis of

TEM reflection only, since the reflected TM modes decay rapidly with

distance.

Next we examine the effect of the conducting flanges on the time response

of the reflected fields in order to evaluate the merits of sloping the ad-

mittance sheet for the transmission line (no flanges) in the ATLAS

design. The problem of terminating a two-parallel plate transmission

line by a suitable RL admittance sheet without coplanar flanges has

been examined in Ref. 3 for the special case % = 90°. The approach

in Ref. 3 is identical to the one employed in Ref. 2 and is based on the

comparison of the current induced on a perfect termination, i. e. no re-

flection, to the current induced on an RL admittance sheet (still assuming

no reflections) in order to choose the optimum L (R = Z. sin $ by the ●)
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usual low-frequency argument explained in Ref. 2). The disadvantage

of this method is that knowing an optimum value for L provides no in-

formation as to how good the RL termination really is. In this note our

analysis provides this information by allowing the calculation of the re-

flected fields but the inclusion of coplanar flanges may have an appreciable

effect on the values of the reflected fields and the choice of @ . As we

mentioned earlier our values for ~ are in satisfactory agreement with

the ones obtained by Baum (Ref. 2) despite the fact that his approach was

different from ours. This observation makes us believe that the value

for the optimum @ found in Ref. 3 for ~ = 90° is the correct one for the

case of no flanges. This value is approximately equal to .75. Our value

for ~ = 90° is 1.10 and consequently the true values for ~ as a function

of ~ may be smaller than the ones shown in Table I. To evaluate the

effect of the flanges further, we exarn.ine the fields diffracted by the top

edge 1. As ~ decreases the diffracted fields increase, especially in

the region about the termination line 12 (Fig. 1 ). Thus the increase of

the initial reflection of the TEM fields as ~ decreases (Figs. 28 through

31) depends on the changing diffracting properties of the top edge. This

implies that the initial small reflection for angles close to 90° may be

erroneous in the absence of flanges. From the plots we observe that for

~ constant the rate of increase of the maximum initial reflection decreases

as s decreases, i. e. the S = 30° may be a good approximation for the

actual edge without flanges. It is also interesting to notice that as $ de-

creases the first maximum becomes more sensitive to changes of ~ .

This implies that by sloping the admittance sheet one can reduce the in-

itial reflection considerably by choosing a suitable ~ . For later times

though the subsequent reflection increases with P and the optimum value

for $ should minimize the overall reflection. From the above discussion

we understand that the value ~ = . 75 found in Ref. 3 seems compatible

with the decreasing optimum values for S (for the case of coplanar flanges)

as S decreases and especially for the case s = 30° which simulates the

diffracting properties of the actual edge (for early times). Of course the

sloping of the admittance

be easily separated. We

sheet has an effect, but its contribution cannot

can also speculate that the initial high reflection
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expected in the actual situation (no flanges) can be diminished by sloping

the admittance sheet and choosing a suitable B .

h conclusion we believe that to minimize the reflections in the absence

of flanges it is advisable to slope the admittance sheet. The actual values

for $, i, e. in the absence of flanges, are smaller than the ones shown in

Table L For 90°, ~ should be approximately equal to .75 rather than 1.1.

E we write P (without flanges) = X? (with flanges), then k is a function

of ? and increases with decreasing g. For S = 90°, X = .75/1. 10 - .68,

whereas for 5 = 30°, k should be closer to unity, even though we do not

know its exact value. The expected magnitude for the x-component of the

TEM electric field for $ = 30° should not exceed 5.570 Eo, where E iso
the incident electric field step pulse (Fig. 31, P = .8).
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Figure 1: Geometry of the two-dimensional parallel-plate transmission
line terminated by a sloped R, L admittance sheet with coplanar
flanges.
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Figure 2: Coordinate systems appropriate in the derivation of integral
relationships (7) and (8).
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Figure 3: The shaded area is the triangular region where
inhomogeneous TEM and TM modes exist.



Figure 4a: For ~ s 60° there
is only one reflection off the ad-
mittance sheet.

1

I
I

2 –- i
1

Figure 4d: For 30°< ~ < 45°
there can be up to three reflec-
tions off the admittance sheet
(ray 21.

l—
I

1 —-

2 —+ I
I
t ~

3 —------T- ‘“ I
I

Figure 4b: For 45°< ~ < 60° Figure 4c: For ~ = 45° all rays
there can be up to two reflec - are reflected twice off the ad-
tions off the admittance sheet mittance shmt.
(ray 3).

Figure 4e: ~For C = 30° all rays Figure 4f: For 22.5°< ~ c 30°
are reflected three times off the there can be up to four reflec-
admittancc sheet. tions off the admittance sheet

(ray 2).
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Figure 5: The number of reflections off the admittance sheet is exactly n (integer) when the
inclination angle is 900/n. For n even all rays follow parallel paths and reverse
direction by bouncing off the bottom plate at right angles (Fig. 5a, n = 4). For n
odd all rays follow parallel paths and reverse direction by bouncing off the admit-
tance sheet at right angles (Fig. 5b, n = 5).



Figure 6: Reflected rays from (1} are directed towards the bottom plate,
reflected rays from (2) towards the uppa plat~~ where- rays
(C) are reflected off (3) and then once more off the entire ad-
mittance sheet and are directed towards the upper plate.



Figure 7: The disturbance from the top edge arrives at P later

.

.

i 1
61

h
, (1)

than the wavefront of the incident TEM step-pulse.
The time-delay is [(21- (1)]/c = (6/c) tan (~ /2).
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