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1. Introduction

This note is a continuation of SSN 163 [1] in which the termination plane
was perpendicular to the axis of the two~dimensional parallel-plate trans-
mission line., In the present note the termination admittance is a sloped
distributed RL sheet and the R, L parameters should be chosen such that
the reflections of an incident TEM monochromatic wave or a TEM step-
pulse are a minimum. The value of the resistance R has been found to
be equal to ZO sin £ [2] where ZO is the free space characteristic im-
pedance (377€:) and € the inclination angle. The inductance L will be

determined by a parametric study as it was done in ref. 1.

A sloped termination allows multiple reflections off the admittance sheet
(for € < 600) (Figs. 4, 5 and 6) and consequently the total field reflected
back into the region between the parallel plates could be decreased by
making the inclination angle & smaller than 60° (see section V for a dis-
cussion}). The smallest inclination angle we considered in this note was
30°, This angle is sufficiently small to allow for the effect of multiple
reflections, but not too small to require excessive computer time. Our
method of calculating reflections requires tae knowledge of a sufficient
number of field aperture expansion coefficients and this number increases

rapidly with decreasing € due to resonances (see section III),

To facilitate the mathematical formulation and numerical calculations,
infinitely conducting flanges coplanaf to the admittance sheet were con-
sidered (Fig. 1l). In actuality, the termination for the transmission line

in the ATLAS design does not include flanges, and one should be careful

in interpreting the numerical results in order to separate the effect of

the flanges, In section V we explore this matter and also the effect of
sloping the termination. We find that in the presence of flanges the ini-
tial reflection (before multiple reflections occur) increases with decreasing
€ and is fairly insensitive to the choice of L (for z > 45°) which are
unwanted features. We speculate that in the absence of flanges the initial

reflection is sensitive to the choice of L. and it can be reduced by selecting
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an appropriate value for L and also by sloping the termination plane. It
is also found that for the éafﬁe7§éiuésWorrfﬂp'arramete'rs L and gthe presence
of flanges versus absence inhibits initial reflections. In the same sec-
tion V we determine the optimium L, in the presence of flanges, for each
aﬁgle £ considered in this note (750, 600, 450, 300), and we speculate
about the corresponding values for L in the absence of flanges and also
about the magnitude of the reflection coefficients for the TEM mode.

In section II we formulate and solve the problem by expressing the re-
flection coefficients of the TEM and TM modes (in the region between
the parallel plates where they can be defined) in terms of suitable aper-
ture expansion coefficients. The fields within the triangular region
(Fig. 3) are also investigated and the ''reflection'' coefficients of the in-

homogeneous TEM and TM modes in this region are given in terms of

integrals of the aperture fields. In section III the method for obtaining
the numerical results (and the importance of the resonances in the cal-
culation of the reflection coefficients) is discussed, and in section IV a
detailed description of the plots of the reflected fields in both the fre-

quency and time domain with the inductance L as a parameter are pre-

sented.



11, Formulation and Solution
We start by recalling two integral relationships derived in SSN 163 [Ref. 1

1

= )
Sh HIY + 1w€OGIES dsl = HIY - I—IO (1)
2

1
-f iw E:OGHES dsl = HIIy (2)
2

The geometry is depicted in Fig. 1, ES is the aperture electric field,

H_, H are the total magnetic fields in regions I and II, H_is the in-
Iy Ily o}

cident TEM magnetic field, and G, G, are Green's functions defined

I" 711
as follows

52 82
—_—s + G, =8(x~-x")8 (z -2") (3)
2 2 I
ax 3y
BGI
= 0 on the plates {4)
2 2
<52‘+ a2>GH=6(X-><')6(z-z') (5)
dx dy
BGH
=5~ T on the termination plane. (6)

The form of GI we subsequently use refers to a Green's function sat-
isfying Eqs. 3 and 4 throughout the infinite domain within two parallel
plates. Its application, however, is restricted within region I (Fig. 1).
This is valid, because Green's second identity, the application of which
led to Eq. 1, does not impose any restrictions onthe form of the func-

tions outside the domain of integration.




Referring to Fig. 2, Eqs. 1 and 2 can be rewritten as follows

hl/Z
- - 9 el ot '
Hylxpazy) - Hy = f {[Bzi GI(XI’Zl’xl’Zl)lz'l =o] Hilxpozp = 0)
-hl/Z ‘
3 . 1 t - t | H
- lw GO,GI(XI’ Zl! Xl’ Zl - ?);E (Xilisizli— O)}dxl (7)
hl/z
oo cool o1 !
HH(xl, zl) = f 1(,UGOE (xl, z! = 0) GII (xl, 23 X),2) = O)tlxl (8)
-h./2
1
where H, = HIy’ HII = HIIy’ E = Exl =-E, h1 = h/sin g,

primed variables are integration variables, and

xlzxsing-zcosg (9)
2 =xcos §+zsin§ (10)
x ': X, sin € i— z, cos g | (11)
z = -x; COs € + z; sin € (12)
% =% (13)
z =2+ () h cot § (14)

In SSN 163 where & was equal to /2, we calculated the reflected TEM
and TM fields for the case of an incident TEM wave characterized by a
wave number 'ko and a TEM step pulse. In the present note the incident
wave is again a TEM wave or a TEM step pulse, and we still want to cal-
culate the reflected TEM and TM fields. These TEM and TM fields can
only be defined in the region ,Z*,<, 0 (Fig. 3). The form of the fields

within the triangular region will be examined later.



*
1o ik z
For z < 0 and assuming an incident TEM electric field EO e °  we
have
K 2 T iy JF
ik =z -ik =z -
E =e +Te ° +E T cos ZnTTxe n (15)
b4 n h
n=1
" P %k i iy Z*
1 Z -1 z 0 2 -
o o nmx n 1
Hy = (1/Zo)e - (ro/zo)e -rgl(rn/zn) cos S e (16)
© —1‘\/nz
= i i 17
E, _nz_:l i(2nm/y_h) T sin (2nmx/h)e (17)

where T and T 's are coefficients to be determined, Z =Y fwe ,
o n n n o

and Y is defined by the relationship

2 2 2
'Yn = kO - (Zn'n‘/h)
L
. 2 212
with v_ = |k - (2n7/h) for kx > 2n1/h, and
n o o
. 2 ,2]%
v =il@2am/h)" -k for k < 2nm/h
n o o

[

to ensure evanescent reflected waves. (For a > 0, a® is the positive
square root.) Fquation 7 is valid throughout region I, which includes
the triangular region. For z* < 0, Eq. 7 should reduce to Eq. 16. To
prove this we must evaluate [(B/BZ'l) C}I]|Z,1 _0° GI satisfying Eqs. 3 and

4 can be shown to have the form

ik |z-z'| o
Gylx, 23 x', ') = (L/2ihk ) e © +r§l (1/iy_h) cos (2nmx/h)
iv lz-z'|
cos (2nTTx'/h) e o (18)

For points to the left of the z =0 plane, i,e. in the region with z< - (3) h cot g,

we have |z - 2z'| = z' - z since z', for points on the termination plane, .'
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ranges from (-%)h cot § to (%)h cot £. Thus Eq. 18 can be rewritten

0 -

-ik z + ik z'
Gilx, 25 %', 2') = (l/Zihko) e ©
© -iy_z +iy_z'
+3 (1/iy_h) cos (2n7x/h) cos (2n7x'/h) e n (19)
n=1
and
-:'Lkoz ik z'
[3G;/32]] ,, - o = J(1/2ihk ) e (ik_) (dz'/3z]) e ©

1

_iYnZ+iYnzl
+Z (1/iy_h) cos (2nTx/h) (2n7/h) sin (2amx'/h) (3x'/3z)) e

-iynz + i\'nz'

+Y. (1/iv_h) cos (2nTx/h) cos (Znﬂx'/h) e (iv_) (dz'/3z! )} z! =0
=1 n : n 1 1

® -

-ikoz - ikoxi cos §
[BGI/BZ’l]Zl =0 = sip E<(1/2h) e
-iy_ z - iy x! cos &
+z (1/h) cos (2nTTx/h) cos (ZnTTx /h ) n nl }
n=1

o 5 : : iy z - i*{nx’1 cos §
+Zl(-2nﬂ/ynh ) cos € cos (2nTx/h) sin (Zn'l'Tx’l /hl) e (20)
n=

If we insert Eq. 19, evaluated at z'1 = 0, and Eq. 20 into Eq. 7, we obtain,

h,/2
ik g -ik x’l cos &
H.(x,z)-H =e ©° |(1/2n) f [sin §H,-(/Z )E]e ©° dx}
-1 /2
hy/2

iy -1\(nx'l cos &

=) z
+). cos (2nmx/h) e * |(1/h) f[sm%H l/Z YE] e

] n=l ~hy/2



h,/2

2
1 v
cos (Znn‘xl/hl) dxl (2nTr /Y nh ) cos § f I—IIe

-hl/z

—iYnx'l cos §

sin (Znﬂ'x'1 /hl) dx-‘.L (21)

If we use Eq. 14, Eq. 21 can be rewritten as

. s ik 2" -k z = . -y z
HI(x yZ ) = (l/ZO) e - (I‘/Zo)e - 1.g::l(]?n/zn) cos (2nTx /h)e (22)
where
b /2
(i/Z)koh cot § -ikox'l cos §
T=-e (1/2h) f (sin § Z H - E) e ax!| (21a)
-hl/z
o
(i/Z)Ynh cot E -iynx'l cos §
= -e (1/h) f (sin § ZH-E)e cos (2nTx]) /nl) dx‘l
-h,/2
hl/z
> -iYnx’l cos &
+ (- 2am/h weo) cos § / I—II e sin (ZnTTx‘I/hl) dx'l n=1,2,3,... (22a)
f-hl/Z

Equations 2la and 22a provide explicit expressions for the reflection co-
I’ E. These fields will be cal-

culated shortly, following a brief discussion of the fields within the trian-

efficients in terms of the aperture fields H
gular region (see Fig. 3).

To evaluate the magnetic field at a point P within the triangular region

we will employ Eq. 7. To calculate GI and BGI/az‘l at z'l = 0 we use

Eq. 18 in the two regions of interest, z > z' and z < z'. For z < z',
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BGI/B z'l at z'1 = 0 is given by Eq. 20. For z > z' it is straightforward

to obtain the result

ik z + ik x'1 cos §
[3G/32}1 , _ o = - sin§{(l/2h)e °
=

i\;nz + i'\(nx'1 cos §

+Z (1/h) cos (2nTx/h) cos (2n1‘\'x'l /hl) e
n=1

® 5 iYnz + i\(nx'1 cos §
+3.(-2nm/y_h") cot & cos (2nmx/h) sin (2nmx! /h,) e (23)
n=1 n 1 1
We can now evaluate the magnetic field at P with the aid of Eq. 7:
(-z/cos &)
BGI )
- - i '
HI = Ho + HI az'l iwe OC-IE dxl
-hl/Z
hl/2
, BGI
o . '
+/ (HI = :.weoGIE> dx! (24)
(-z/cos E)

The range of inte_grat'iron'?fo'r the first integrél éoriresponds to z' > z whereas
the second integral corresponds to z' < z. If we use the appropriate ex~

pressions for the Green's function and its derivative, Eq. 24 yields,

b

ik z

H(P) = (1/2‘0) e ° + H, + HZ (25)
where
'-'-irkoz* £ ” | " -iYnZ*
H; = - [I‘(z)/Zo] e - flV_:zl[l‘n(z)/zn] cos (2nmTx /h) e (26)
ikoz* = " i.\{nz>:<
H, = [TT(2)/2 ] e +z;:1 [TL(Z)/Zn] cos (2nmx /h) e (27)



and

(-z/cos §)
(i/2)k h cot & ~ik x! cos €
T(z)=-e ° (I/Zh)‘/ (sin § ZOHI -E}e ° dx'l {(28)
-hy/2
(1/2)y.h cot & (-z/cos &) .
T (z)=-e n (1/h) . o hyvxg cos § : \
n (sin § Z HI E)e cos (.‘Zn‘ms:l/hl)dxl
-h,/2
) , (-z/cos &) iYnX,l cos E
+ (-2nT/h"we ) cot §/ H_e sia 2nTx!'/h)dx'|, n=1 (29)
o I 1" 1
—hl/Z
h1/2
(-i/2)k h cot & iy Xll cos §
Ti(z)=-¢e ° (1/2h)/ (sin E ZoHI -E)e © dxi (30)
(-z/cos &)
hI/Z
(-i/2)v h cot & iy x‘1 cos §
ri(z)=-e n (l/h)f (sin § Z H - E)e © cos (2ntix} /) dx}
(=z/cos &)
hl/Z
5 iYnX'l cos §
+ (~-2nm/h meo) cot §f I—II e sin (Znﬂ‘xi/hl) dxi , nz1l (31)
(-z/cos E)

Thus at any point within the triangular region we have TEM and TM modes
travelling in both directions with '"'reflection'' coefficients that are func-
tions of position. We can call these modes inhomogeneous TEM and TM

X
modes. Notice thatat z =~ (3) h cot §, i.e. z =0
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T(z=- 3h cot ) =T, T (z=-3h cot §) = T (32)
and
THz =« 1h cot €)= 0, ri(z=- 3h cot £) =0 (33)

where T, Tn are given by Eqs. 21a and 22b respectively.

Equations 33 ensure that there is nothing peculiar about 'reflected” TEM
and TM modes travelling in the positive z direction within the triangular

region,

Next we proceed to derive two coupled integral equations, for the aper-
ture fields HI and E, the solution of which will allow us to evaluate the

reflection coefficients given by Eqs. 2la and 22a.

First, we use integral relationships 7 and 8 and allow the observation
point (xl, zl) to approach the termination plane. Because of the pres-
ence of the derivative of GI in Eq. 7, the integral is equal to %—HI(xl, Zl)
plus the same integral evaluated in the principal value sense. Equation

8, however, remains unchanged in form.

hl/Z
| 3G,
- - - A —_ _ 1
Hy(x), 2, = 0) = 2H _(x,,2, = 0) + zf Hp 57 - 06 ECy | dx) (34)
-hl/Z
hy/2.
— — : ] 1
H (%), 2, = 0) _f iwe EG dx} (35)
i /2

Next we invoke the boundary condition across the admittance sheet
(zl = 0),



e

or Z(H - H) = E (36) .

Using Eq. 35 we can substitute HII in Eq. 36 to obtain
h,/2
_ _ !
E = ZH, weozf EG,, dx! (37)
-hl/Z

Equations 34 and 37 are two coupled integral equations the solution of

which will determine HI and E.

For = 1/2, there is a simple relationship between the aperture fields,
i.e. Eqs. 15 and 16 evaluated at z = 0, Thus

E=1+T +23 T _cos(2nmx/h) (38)
n=1
€ =1/2 .
H, = (1/Z_)(1-T) -r?;l(rn/zn) cos (2nmx/h) (39)

Combining Eq. 37 with Egs. 38 and 39 allows us to calculate the expan-
sion coefficients for the aperture electric field as it was done in SSN 163
[Ref. 1]. For & =1m/2, these expansion coefficients coincide with the

reflection coefficients.

For & < m/2, however, no simple relationship exists between the expan-

sion coefficients of the aperture fields. The relationship we will use is

integral equation 34. We write the aperture fields in terms of sine and

cosine expansions.

E{x E C cos Zm'rrxl /hl) +m2_0 C;n sin (Zmﬂ'xl/hl) (40)
Z, Z D_, cos (2mTx, /h )+Z D' sin (2mTx; /h ) (41)

12



.' where C'o = D'O = 0,

Before we use Eqgs. 40 and 41 in Eq. 34 we evaluate BC}I/EBZ'l (at z’l =0,

zy = 0) first. For this purpose, we rewrite Eq. 18 as

ik l(x'—x)cos§+(z -z')sin%]
o L . o1 71 171
Gylxps2)3 %) 2)) = (1/2ik Ble =

Znm .
1 7s17n €+ zlicros €)ﬂcoﬁs - (x1 sin € + z] cOs £)

ad 277
+nZ=1 1/1\( h) cos—-h— (x

: :( ]( 'l -Xl) cos €+ (zl -z'lr) sirn £ |

e (42)
If we use the relra"ci'onship
a-bx:l = - b, a0 < 11/2 43
[ax 3 l s Tal (5 ) (43)
we obtain from Eq. 42
! : 1 _
‘b 9 G( z 3 xt,z") _.sns e elko lxl Xll cos ®
T 3 H 3 - - [
32} 1’71 71 7l 2y =2} =0 2bh fxj -x ]
[ T L.
i sin € Xy =%, cos ZnTrxl cou 2nTTxl el\(nlxl xll cos &
- 1
1 b lxpexl By By
2 aaT cos g ZnTT:);l . Zm'\'x'1 i\(n [x'l -xll cos §
-3 — 5 cos —¢ sin — e (44)
A=1 h“ *'n 1 1

When x'l/hl =%y /hl * ¢, where ¢ is an arbitrarily small quantity, the
third term in Eq. 44 can be shown to have an integrable singularity,
whereas the first two terms, combined, exhibit a delta-function singu-

larity. To see this we recall that

L -x)) = % +Z (1/h) cos (Znﬂxl/hl) cos (2nTx) /hl) (45)

and we rewrite Eq. 44 as ‘

13



o

3G
[El:l'] L 4 = (x‘l ..Xl)/ ixfl _xl|{ Z (I/hl) cos (Znﬂ'xl/hl)
15 ,z, = n=1

iynlx‘l —xll cos E eikclx‘l -xll cos §]

cos (Znﬂ'x'l/hl) [e - + (%) 6 (Xl _xll)

Z (2nT cos %/iynhz) cos’(ZnTrxl /hl) sin (Znﬂ'x'1 /hl)

) 1 -
1ko\xl xl) cos § o
e -
n=1

iv_|x! -x,|cos §
o n'"l 1 (46)

As we mentioned earlier, the integral in Eq. 34 should be evaluated as

a principal value integral about xi =Xy, Thus, the delta-function con-

tributions are zero. However, because of the factor (xi - xl)/l:»s:'l ~xl|

in front of Eq. 46, we must divide the integration range into (-hI/Z, xl)

and (xl,hl/Z), and consequently the delta-~function contributions cancel

out even if we treat the integral in the ordinary sense. The representa- .'
tion of 3G/?d z’1 given by Eq. 46 is also very convenient for accurate

numerical calculations.

We are now in a position to use Eqgs. 40 and 41 in Eqs. 34 and 37 in order
to derive an infinite system of equations for the expansion coefficients

C_, C', D _and D' . To that effect Eq. 37 can be rewritten as,
m’ “m’ “m m

2mTr 3 2mT

1
C_ cos ——1+ i
o[m by 1 ]

1
+ Cm sin o

ﬁ\’le

) o [ Zmﬂxl I . ZmTrxl:I
= (Z Zo)nz;o Dm cos T + Dm sin —E-—l-—
h1/2
UJ(-:OZ (1) o Zzﬁx'l ' - Zﬂ,ﬂxi
-~ — f Ho (koix‘l -XII)EO [Cf, cos —Hl—~ + CJZ, sin T:] dx{L (47)

'hl/z .’
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. 1 1 .
where Gp(x,0; x],0) = (-1/2)Hf) >(ko]x'l -xll ) and u' )(u) is the Hankel

function of the first kind, and Eq. 34 as

® 2mmx, 2mx; iko(%h cot & -x, cos §)
(1/z)Y |D_ cos ——— +D! sm - ]:(z/zo)e
m=0 1 - )
*1
- 24 ‘l‘Tx'1 24 ﬂ'x'l © 2nTTx
+(2/Z )f Z D cos + D! sin E — cos
o 420 £ hl g hl = hl hl
-h,/2
1
2n‘rrx'l iy (xl -x'l) cos € ik (x1 -x'l) cos &
cos — e -e
1
® 1 1 .
20T cos E .?.n‘i'rx1 . 2nTrx iv (xl xl) cos & ‘
—Z 2 iy cos n sin — e Xm
n=]1 h n 1 1
hl/2
o 24 1'rx'1 2£1‘Tx'1 = ZnTTx1
-(2/2 )/ Z D, cos + D} sin ] Z = cos
°J 4o g By g By a1 P !
1
Znﬁxi r iyn(x'l -xl) cos § iko(x'l -xl) cos §
cos —¢ e -e
1
2nTx Z2nmrx! iy (x! -x.) cos &
+z 2n21'Tcos§ os — lsin—h le nl 1 dx!
n=1 h* ¥n 1 1
*1
o 24 Trx'l 24 ﬂx'l iko(xl -x'l) cos §
i —_ 1 : .
-leeof E Cﬂ, cos — +CJ& sin — (1/21koh)e
£=0 1 1
-hl/Z
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o 2nmx Zn‘rrx'l '1\/1_1(:{l - x'l) cos €
+Zl (l/i\{nh) cos — cos — e dx
ns= 1 1
hl/Z
o Zﬂﬂx‘l Z,QTTx'l '11:{0(x'1 -xi) cos §
. _— .
-leeofz C, cos + Cl sin — (1/2ik _b) e

By o 1

2nmx 2nTx! iy (%! -x.) cos §
] 1 n’l 1 dx'l (48)

+Z(1/1Ynh) cos — cos — e
n=1 1 1

Using the orthogonality properties of the trigonometric functions, Eq. 47

yvields
o
2C_ -2(2/Z2 ) D_ + mgoKﬁm =0 (49)
[+2]
L ! (-
cr (z/zo) Dm+£z=:OR£mC£ 0 (50)

where ¢ =1 for m=0, € =2 for m £ 0, and
m m

11
Zkoh (1)
sz = Zz—o—gi—n—g _.[_[Ho [{koh/Z)lu- u"] cos {mTru) cos (Lmu') du du' (51)

11

Zk h (1)
2 [f H [(k h/Z)[u-u'[] sin (mTu) sin (£77u') du du' (52)
21 (o] o

R 4m 4z sin & ,

n

A simple transformation can reduce the double integrals into single ones.

The details can be found in Appendix III of SSN 163 [Ref. 1].

If we call Zkoh/4zo sin € = o0 we have the following results
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_a . 3t m+ 1fsin 4Ty + sin mTy
_‘I'Tf khy/2s1n€)(1) [ T
o
. sin ,eﬁ;fe- sin mﬂ’y] 44 m
-m
2
1 . 1,
Kmm= -OLfdy I—I(o )(kohy/z sin §)[;‘_—z sin 4Ty + (y - 2) cos Eﬂy] m # 0
o
2
ZG/dy (2-vy) H( )(kohy/Z sin §)
)
2
(1) . It m | sin 4Ty + sin mTy
R, = fdyH (k hy/2 sin §) (-1) [ .
o
sin 4Ty - sin mTy
B 4L -m ] L ¥m
:afdyH (ky/2 sin g)[— sin 4Ty - (y - 2) cos .G,Try] m#0

Rzo:Ro;f 0 for any {

Applying the orthogonality properties of the trigonometric functions on

Eq. 48 we obtain

1 ~
(Z/Gm) Dm+EO(SILmDE+SZ£mDﬂ+b3£m C,6+ 44m 4 cm

[ve)
1 1 1 —
m+2(s5z D+ SeymD) *S7,mPp* Sgpm Cp) = 21

D
£=0 sm
where

17
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(55)

(57)

(58)

(59)

(50)



Sy m = -213E6(yn)-16(k ) -1 (\( )+I'( )]—(Znﬂ‘/lk h) P, cot € (Il + I'll)g

-
S34m ™ (1/2 sin %) I +13 +212p [I (v,) +I'2(Yn)]_

Sypm = (1/2 sin §) -15+Ig +n§12pn [16(Yn)+lé(‘{n)]

SS,@m = -;3[]:4(‘\(11)-14(1{0)-1'4 )+I' (k )] -(Znﬂ/ikoh)pn cot (Ilo-[-I'lO)‘
St 4rm = -n;*[rs(yn) S0k ) - Thlv,) +I‘8(ko)] - (207 /ik_h) p_ cot §(I; +132)%
S =(1/2 sin §)|1I +I‘+§2 [I (v )+ )]W
74m 3°73 4 Pn 4n‘4Yn_

-

oy = (172 sing) [I7+I'7 +nz:,lzpn [Ig(yn) -l—Ié(Yn)]_

(i/2)k h cot § FY(-i/2)k hucotg
o o
[e cos mTu du
(i/Z)koh cot § +1 (- i/Z)kOhu cot §
e

sin mTu du

where p_ = kO/Yn and

+1 +1

IZ(OL) =fdu-/<;(i/2)ah(u-ul) cot § cos (4Tu') cos (nTTu) cos (nTu') cos (mTu) du'  (62)

-1 -1
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| 1 — _
Iy —IZ(O( =k, n= 0)

+1 1
fdu e (-i/2)ch(u-u') cot & cos (£ mu') cos (nTTu) cos (nTTu') cos (mTu) du’

u
I4(G) = du[e(-i/Z)o(h(u-u') cot § cos (£ Tu') cos (nTTu) cos (nTu') sin (mTu) du'

1o Tt - -
13-I4(oc_ko, n=0)

+1 1
ILL(OL = fdu e (-i/2)ch(u-u') cot § cos (£ Tu') cos (nTu) cos (nTu') cos (mTu)du’
- u
15=I6(CL =ko, n=0)
+1

u
.’ Ié(OL) = dl;/‘e(i/.?.)ah(u-u‘) cot § sin (4 Tu') cos (nTu) cos (nTTu') cos (mmu) du'

I! =I'6 (o =ko, n=0)
+1 1
I’6(C() =‘/‘du‘/‘e(-1/2)61’1(11-u ) cot § sin (£ mu') cos (nTTu) cos (nTu') cos (mTu) du'’
-1 u
17218 (o =ko, n=20)
+1 u
) :fdufe(i/z)ah(u -u') cot § sin (£ Tu') cos (nmu) cos (nTu') sin (m™u) du'
-1 -1

1Tt - -
I7—18(a—ko, n=0)

/;if (-i/2)ch(u-u')cot § sin (£ Tu') cos (nTu) cos (nTu') sin (Mmmu) du'

9 fd f (i/2)oh(u-u') cot & cos (4Tu') cos (nTu) sin (nTTu') cos (mmu) du'

" -1 -1
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+1 1
2)ah
I% *fdu e (-i/2)ah(u - u) cot gcos (4ma') cos (nTTu) sin (nTTu') cos {mmu) du'

-1 u

+1 u
I10 /:iti/‘e (i/2)oh(u-u") cot gcos (£mu') cos (nTTu) sin (nTTu') sin (mTu) du’
-1 -1

+1 1
1'10 ﬁu (-i/2)ah(u - u')cot & cos {£ Tu') cos (nTTu) sin (nTu') sin (mTu) du'
-1

(D

o

u

Ill ‘[ [(1/2 Joh(u - u')cot§ sin (£ u') cos (nTu) sin (nTu') cos (mTu) @

+1 1
3 1
I‘II =fdti/e;(_l/2)ah<u_u Jeot & sin (£ Tu') cos (nTTu) sin (nfu') cos (mmMu)du’
-1 u
+1 u
3 - L}
112 :fdti/;(l/z)oh(u u)COtgsin(ﬂ, mu') cos (n Ty} sin (nTu') sin (m™Mu) du'
-1 -1
+1 1
1'12 = du./; (-i/2)oh(u-u )COtgsin(z fTu') cos (nTTu) sin (nTu') sin (MTu) du’
-1 u

It is easy to show that the following relationships are true,

(o) = Ié(a)

I4{cx) + 1'4:(0() =0

Ié(a) + Ié(u) =0

Iy(a) = Ih{a)

v -
I9+IC)—O

— 4
Lio=To
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- 1
=1

1
I12+Ilz 0

Using the above relationships and also Egs. 49, 50, 59 and 60 we arrive
at the following infinite system of algebraic equations for the expansion

coefficients.

e} o0
" D! +stmpz+_258 G =2

R m 2Te given by Eqgs. 53 through 58 and

wn
it

24m g{ 7 Ié(ko)] - (Znﬁ/ikoh) p, cot g Ill}

0n
1

3 4m (l/sm%[ +Z 2p I ]

_zng{[14<yn) - 1,(k )] - (2nm/ik_h) p_ cot & 110}

3}
1l

8 4rm (1/31n§[+2 2pI ]

The integrals involved in the above expressions have already been de-
.' fined (Eqgs. 61 through 82) and can be calculated explicitly.
21
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Z is the termination impedance and is given by
Z =R- iwL:Zo sin € - iwL (90)
To conform with Ref. we rewrite Eq. 91 as

Z =2, sin§[1-i(kh)B(5)] (92)

where

cl.

B(E) = .—Z;m (93)

Parameter B(E) is thus a normalized inductance and a parametric study

on B, for a given &, will determine the optimum L.

Once we solve the system of Eqs. 83 through 86, we are in a position to
calculate the reflection coefficients of the electric field for the TEM and
TM modes given by Egs. 2la and 22a. For convenience we rewrite Egs. .

2la and 22a in terms of the expansion coefficients C's and D's.

11‘ /2 e

= -(1/4sing) e Z [(-Cm+sin€ Dm)JlO-I-(-C' +51n§D' ) J 20] (94)

=0

oiry /2 .
-(1/2sing) mzzog[ + (sin §/pn) Dm] .]'In

+ [-c;m + (sin E /pn)D;n] T, - (2n% cos 8/ik h)(D_J, +D1'_nJén)% (95)
where

T, = -2(8 + B) (-1 to r_sin(x_/2) (96)

T, =4i[Am+n)T+B (m-n)n] -7 Psin(r_/2) (97)

T, =4i[A{m +n)T-B(m-n)n] -1 gin (r_/2) (98)

3n n .I
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‘. m +n
-n

-1
[4 - rz]
n
I‘n :(koh/pn) cot §

pn = kO/IYIIfl

One can easily show that as & + 1/2 the system of Egs.

reduces to

(<]
2C,_ -2 (2/Z) m;ﬂ:oK
[+2]
‘D cl - (z/z) D +2_ R, C, =0
[~
@/ey) EZ:: 32,rnc£ 4:6mo

S3£m Py 6,€m

S3,eo=0

and Eq. 106 gives
D +C =2
o o

D =0

‘. m+pmcm
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83 through 86

reduces to

(101)
(102)

(103)

(104)

(105)

(106)

(107)

(108)



If we combine Eqs. 104 and 108 we arrive at a system of equations for
the electric field expansion coefficients Co’ Cm’s that is identical to
Eqgs. 36 of SSN 163, It is now easy to show that Eqs. 94 and 95 reduce
to T = Co- 1, I‘n = Cn as they should.
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III. Numerical Results and Plots

The procedure to solve the system of equations (83) through (86) is es-
sentially similar to the one employed in SSN 163 [Ref. 1] and has been
explained there in sufficient detail. The present treatment only differs
in that it involves more unknown coefficients and also the input terms

I, 1 are functions at the wavenumber k , i.e.
cm’ “sm o

Iem = (-1)™ [sin (rO/Z)] [4ro/(ri - 4mPn? )] (109)
fop = ™ ot (x/21] [/ - amn ] (110
where r = koh cot €,

If we rewrite sin (ro/Z) as (-‘l )™ sin [(1/2) (r, - 2mrTr)], it is easy to see
that Icm and iIsm (m > 0) exhibit a maximum at r = 2m™ (Ico = 2,

Icrn =1 for m > 0, iIsm =1 for m > 0), Since our ultimate goal is the
calculation of T and I‘n's given by (94) and (95), we understand that for
given &€ and koh we should know enough aperture expansion coefficients
to ensure the series convergence in (94)and (95). The number of required
aperture coefficients depends on koh (also on E) since this determines
the integer m that maximizes the input terms. Thus for a given koh
we should have to progress well beyond the mth order expansion coef-
ficients in order to obtain adequate convergence for the series in (94)
and (95). From koh cot § = 2mT we see that the critical integer m in-
creases with increasing koh and decreasing €. In this note, as it was
done in SSN 163, we calculate the reflected TEM and first four TM
modes in both the frequency and time domain. The origin of time is the
same for all § and corresponds to the instant at which the wavefront of
the\incident TEM step pulse passes through the z* = 0 plane, This is
the same as in SSN 163, Such a choice of the origin of time corresponds

to an incident TEM wave with a phase factor exp [ikoz\&], which was

25



actually the case in the previous section. The numerical procedure to
Fourier~-invert reflection coefficients T and I‘n's into the time domain
is identical to the one employed in SSN 163, and it will not be repeated

here.
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IV. Description of the Plots

We have plotted the reflection coefficient of the x-component of the elec-
tric field for the TEM and first four TM modes (in the region z* < 0) in
both the frequency and time domains with the inclination angle &€ and the
normalized inductance B (§) as parameters. The plots in the frequency

domain correspond to a monochromatic TEM incident wave with an elec-
1k<,z

tric field of un1t amplltude E = e , whereas the time plots correspond

to an incident TEM step pulse of unit amplitude E = u(t - z*/c) The

= 0 instant marks the passage of the pulse wavefront through the z = 0

plane (Fig. 2).

Figures 8 through 27 are plots of the absolute values of the reflection co-
efficients for the TEM and TM modes versus koh for four inclination

5°, 30° with B(E) as a parameter. For high fre-

angles € = 700, 600, 4
quencies the values of the reflection coefficients for various B often dif-
fered by a small amount only and have been drawn as having identical
values., Figures 28 through 31 are time plots of the x-component of the
reflected electric field for the TEM mode versus ct/h for § = 750, 60°,
450, 30° with B (E) as a parameter. The reflected TEM wave is not at-
tenuated with distance and the plots are the same over any cross section
(z>:< = <0, Fig. 2), provided the appropriate shift in time is taken into

account.

Figures 32 through 47 are time plots of the x-component of the reflected
electric field for the first four TM modes versus ct/h with B (€) as para-
meter, The time history is given over two cross sections, z*/h = 0 and
z*/h = -1, to show the attenuation of the reflected TM modes with distance.
Most of the attenuation occurs over a distance h and for lzdrl > h the re-
maining pulse -- mainly containing the high frequency portion of the fre-
quency spectrum -- suffers little change. (See Ref. 1, 1. 15 for a more

detailed discussion. )

Finally, in Figs. 48 and 49 the values of the optimum B and L respectively
are plotted versus the inclination angle, and the curves are tentatively ex-

trapolated to include smaller values for &,
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V. Discussion of Results .

The reflection of TEM and TM modes into region I (Fig. 1) takes place
in various stages. As the incident TEM step pulse arrives at the z*=0
plane it is diffracted by the top edge 1 (Fig. 2}. As a result, electro-
magnetic fields are generated, in both regions I and II, as well as
currents on the admittance sheet. Subsequently the TEM pulse wave-
front starts sweeping through the termination plane where it is specu-
larly reflected - until the disturbance from the top edge arrives at the
point under consideration. This time-delay is equal to (6/c) tan (£/2)
(Fig. 7) and decreases with decreasing €, implying that the steady

state is more quickly approached by sloping the admittance sheet. This,
of course, ignores the effect of the bottom edge, but this effect gets
diminished as & decreases. (For €40 this effect is never felt. ) As the
TEM pulse arrives at the bottom edge 2 it is once more diffracted and
at a time (h/c) tan (8/2) later the disturbance from the top edge also
suffers diffraction. .

Returning to the reflection of the incident TEM pulse at the termination
plane we see that, depending on the magnitude of the inclination angle E,
we have one or more reflections off the admittance sheet (where some
transmission into region Il occurs) and also off the bottom plate (where
no transmission occurs). (Figs. 4, 5, and 6). Multiple reflections
(within the triangular region, Fig. 3) are always possible for £560°,
For 45° < £ < ¢0° we can have up to two reflections off the termination
plane (Fig. 4b), for 30° < € < 45° up to three (Fig. 4d) and for 22.5° <
E< 30O up to four (Fig. 4f). In general, exactly n reflections (for all
rays) can be shown to correspond to an inclination angle £ = 90/n. (The
number off the bottom plate is equal to n-1.,) When n is even all rays
follow parallel paths and reverse direction by bouncing off the bottom
plate at right angles (Fig. 4c, 5a), whereas for n odd all rays follow
parallel paths and reverse direction by bouncing off the admittance
sheet (Fig. 4c, 5b). For a given ,E(<60°) the number of reflections n
satisfies the inequality k-1sn<k where k is the integer nearest but
larger than 90/Z&. .'
28
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The calculation of the fields reflected into region I and to the left of the

sk

z = 0 plane (Fig. 2) requires the knowledge of the x-~component of the
total electric field E -~ generated by the various mechanlsrns descrlbed
above -- at any pomt onthe z =0 plane. If we expand E (x ,z =0,t)
into a series nE I‘ (t) cos (Znﬂ‘x /h) the reflection coefficients I"n(t) can
easily be determlned ‘The calculation of E and H 1is then completed
with the aid of Eq. (16) and (17) by approprlate convolution integrals.

(In this note we have calculated the reflection coefficients in the frequency
domain first and obtained the time-history by Fourier inversion,) As §
decreases the contributions to the aperture field Ex(x*, z* = 0,t) from
specular reflections and the lower edge occur at progressively later
times. Thus by sloping the admittance sheet the early time history of

the reflected fields mainly depends on the diffracting properties of the

top edge and the currents induced on the admittance sheet due to the edge
diffraction, From this we understand that the presence of the flanges
may have an appreciable effect on the early time response and possibly
the choice of the optimum inductance L. We will postpone examining this
effect until we have discussed the plots pertinent to the problem considered

in this note i, e. a termination with co-planar flanges.

First we direct our attention to the time history of the reflected TEM

electric field Eox for various inclination angles (Figs. 28 through 31).
From these plots it appears that as €& decreases the initial reflection
increases and the optlmum value for B ) (that minimizes the overall

reflection) decreases. Thus we can make the following choices:

Table I

g = 9070 75° 60 45 30
8= 1.10 1.10 1.05 .95 .80

L/u h= 1,10 1.06 .91 .67 .40

¢/ (¢] [¢]

These numbers are in general agreement with the results in Ref. 2 where

Baum studied the same problem but with a different approach. Baum con-
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sidered inclination angles as small as . 9°, whereas our smallest angle

is 30°, In Figs. 48 and 49 we have plotted B and L respectively versus .
€ and tentatively extrapolated the curves to include smaller values for

E. Thus for € = 18° our extrapolated value for B is .55 and Baum's

average value is approximately the same except for late times., The dis-
crepancy for late times may be due to the fact that Baum's treatment

does not account for multiple reflections.

So far we have examined the time history of the reflected TEM electric
field and selected the optimum values for the inductance L by minimizing
the TEM reflections. If we examine the time histories of the reflected

TM electric fields we find that, for a given &, smaller values for B cor-
respond to smaller reflections. It is also true that the reflected TM modes
decay with distance (Figs. 32 through 47). Only the part of the reflected
pulse containing the high frequencies propagates without attenuation, but
its amplitude becomes insignificant over a distance h. This decay is due
to the fact that for a given mode n frequencies below Won (won = 2nTc/h)
correspond to evanescent waves. (See Ref., 1, p. 15 for a more complete
discussion,) Thus for pulse reflection the choice of L should be based .
on minimization of TEM reflection. If the incident TEM wave is mono-
chromatic (W = wo) the optimum value for L may be obtained with the

aid of Figs. 8 through 27. Notice that if w is well below cutoff for all
TM modes (UJO << 2mc/h) the choice of L. should be made on the basis of
TEM reflection only, since the reflected TM modes decay rapidly with

distance.

Next we examine the effect of the conducting flanges on the time response
of the reflected fields in order to evaluate the merits of sloping the ad-
mittance sheet for the transmission line (no flanges) in the ATLAS
design., The problem of terminating a two-parallel plate transmission
line by a suitable RL admittance sheet without coplanar flanges has
been examined in Ref. 3 for the special case § = 90°. The approach
in lRef. 3 is identical to the one employed in Ref. 2 and is based on the
comparigson of the current induced on a perfect termination, i, e. no re-
flection, to the current induced on an RL admittance sheet (still assuming

no reflections) in order to choose the optimum L (R = Zo sin € by the .)
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usual low-frequency argument explained in Ref. 2). The disadvantage

of this method is that knowing an optimum value for L provides no in-
formation as to how good the RL terrnination really is. In this note our
analysis provides this information by allowing the calculation of the re-
flected fields bufr ‘;he;nclusmx; of cioglanarﬁflangeis 1;nay have an appreciable
effect on the values of the reflected fields and the choice of B. As we
mentioned earlier our values for B are in satisfactory agreement with
the ones obtained by Baum (Ref. 2) despite the fact that his approach was
different from ours. This observation makes us believe that the value
for the optimum B found in Ref. 3 for & = 90° is the correct one for the
case of no flanges. This value is approximately equal to . 75. Our value
for & =90%is 1.10 and consequently the true values for B as a function
of € may be smaller than the ones shown in Table I. To evaluate the
effect of the flanges further, we examine the fields diffracted by the top
edge 1. As € decreases the diffracted fields increase, especially in

the region about the termination line 12 (Fig. 1). Thus the increase of
the initial reflection of the TEM fields as £ decreases (Figs. 28 through
31) depends on the changing diffracting properties of the top edge. This
implies that the initial small reflection for angles close to 900 may be
erroneous in the absence of flanges. From rthe plots we observe that for
B constant the rate of increase of the maximum initial reflection decreases
as € decreases, i.e. the § = 30° may be a good approximation for the
actual edge without flanges. It is also interesting to notice that as & de-
creases the first maximum becomes more sensitive to changes of B.
This implies that by sloping the admittance sheet one can reduce the in-
itial reflection considerabiy by choosing a suitable 8. For later times
though the subsequent reflection increases with B and the optimum value
for B should minimize the overall reflection. From the above discussion
we understand that the value B = , 75 found in Ref. 3 seems compatiblie
with the decreasing optimum values for 8 (for the case of coplanar flanges)
as § decreases and especially for the case &= 30° which simulates the
diffracting properties of the éctual edge (for early times). Of course the
sloping of the admittance sheet has an effect', but its contribution cannot

be easily separaterd. ~ We can also sp;cula.te that the initial high reflection
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expected in the actual situation (no flanges)} can be diminished by sloping

the admittance sheet and choosing a suitable B.

In conclusion we believe that to minimize the reflections in the absence

of flanges it is advisable to slope the admittance sheet. The actual values
for B, i.e. in the absence of flanges, are smaller than the ones shown in
Table I. For 900, B should be approximately equal to .75 rather than I.1.
If we write B (without flanges) = AB (with flanges), then A is a function

of & and increases with decreasing §. For § = 90°%, A =.75/1.10 ~ .68,
whereas for & = 30°% % should be closer to unity, even though we do not
know its exact value. The expected magnitude for the x-component of the
TEM electric field for & = 30° should not exceed 5. 5% Eo, where Eo is

the incident electric field step pulse (Fig. 31, B = .8).
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Figure 1: Geometry of the two~dimensional parallel-plate transmission

line terminated by a sloped R, L admittance sheet with coplanar
flanges.
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Figure 4a: For E < 60° there
is only one reflection off the ad-
mittance shect.
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Figure 4d: For 30° < g < 45°
there can be up to three reflec-
tions off the admittance sheet
(ray 2).
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Figure 4b: For 45° < £< 60°
there can be up to two reflec=-
tionsg off the admittance sheet
(ray 3).

Figure 4e: Y¥or § = 30° all rays
are reflected three times off the
admittance sheet, '

»
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Figure 4¢: For € = 45° an rays
are reflected twice off the ad~
mittance sheaet,

Figure 4f: For 22,5% < & < 30°
there can be up to four reflec~
tions off the admittance sheet
(ray 2).
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The number of reflections off the admittance sheet is exactly n (integer) when the
inclination angle is 90°/n. For n even all rays follow parallel paths and reverse
direction by bouncing off the bottom plate at right angles (Fig. 5a, n = 4). For n
odd all rays follow parallel paths and reverse direction by bouncing off the admit-
tance sheet at right angles (Fig. 5b, n = 5),
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Figure 6:

Reflected rays from (1) are directed towards the bottom plate,
reflected rays from (2) towards the upper plate, whereas rays
(C) are reflected off (3) and then once more off the entire ad~
mittance sheet and are directed towards the upper plate,
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Figure 7: The disturbance from the top edge arrives at P later
than the wavefront of the incident TEM step-pulse.
The time-~delay is [(2)=~(1)]/c = (6/c) tan (§/2).
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