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Abstract

The higher~order TE and TM modes on a simulator consisting of
two, parallel, narrow plates are studied. Expressions for the com-
plex transverse propagation constants are found showing that the
TM modes afe less damped as they propagate along the line than are
the TE modes. The transverse variation of both the longitudinal
and the transverse field components of the lowesat TM modes are
mapped. A general integral equation 1s also derived which is suiﬁ-'
able for the numerical evaluation of the leaky modes on a parallel-
plate simulator having an arbitrary separation-to-width ratio of the

parallel plates,
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Illustrations
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Two, finite-width, parallel plates,
Transverse propagation constant of TM modes.

The variation along the y-axis of the absolute value of the
normalized electric field for the TEM mode (n = 0) and the
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located at y/h = %1,
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The electric field lines (solid lines) and the magnetic
field lines (broken lines) of the TEM mode.

The electric field lines (solid lines) and the magnetic
field lines (broken lines) of the real part of the first
antisymmztric TM mode.

The electric field lines (solid lines) and the magnetic
field lines (broken lines) of the imaginary part of the
first antisymmetric TM mode.

The electric field lines (solid lines) and the magnetic
field Ilines (broken lines) of the real part of the second
antisymmetric TM mode.,
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I, Introduction

Many EMP simulators, such as the ATLAS I and II, the ARES and the
ALECS, make use of a parallel-plate transmission line as a gulding structure
for the electromagnetic field (see Fig. 1), One reason for using parallel-plate
simulators is that they support a TEM mode., In many of these simulators the
field distribution of the TEM mode is nearly uniform over a significant portion
of their cross section. For this reason and the reason that the TEM mode
propagates with the speed of light, the TEM mode provides a good approximation
to the free-space nuclear EMP. The TEM mode propagates at all frequencies but
for frequencies such that the free-space wavelength is of the same order as
the cross-sectional dimensions of the simulator the TEM mode alone may not be
the dominant part of the simulator field. 1In most cases it is desirable to
launch fast rising pulses on the paréllel-plate simulators whose risetimes are
gignificantly smaller than the transit time across the simulator. In doing
so the simulator field will consist not only of the TEM mode but also of higher
order modes and a continuous spectrum.

The properties of the TEM mode on two parallel plates have been investigated

using conformal mapping technlques[l“6] + The effect of replacing the parallel

plates by a number of parallel wires has also been investigated[l’7] The
translent ‘currents on a simulator” consisting of two parallel wires where each
wire is fed by a slice-generator with a step-function voltage has been studied
in [8]. It is found ih,[S] that when the two wires are fed in a push-pull
manner, the transient induced current can be expressed in terms of an infinite
sum plus an infinite integral. One term in the sum represents the contribution
from the TEM mode, whereas the other terms can be interpreted as the contribution
from higher order modes, the properties of which will be discussed below. The
combined contribution from all modes represent the contribution from the discrete
part of the spectrum, whereas the integral represents the contribution from the
continuous part of the spectrum,

The discrete spectrum of an open waveguide has properties which are

different from those of the discrete spectrum of a closed waveguide, In regions

~of finite extent bounded by impenetrable walls, i.e., closed regions, the modes

(which are the source-free solutions of the Maxwell equations) generally possess

orthogonality and completeness properties such that an arbitrary field distribution
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‘ can be represented by their superposition. These modes are square integrable
over the cross section of the waveguide (because they have finite energy),
satisfy the source-free Maxwell equations and the appropriate boundary conditions
on the walls of the waveguide. In regions of infinite extent, i.e., open regioms,
there may exist a corresponding discrete spectrum. However, to get a complete
representation of the field these modes must in general be supplemented by a
continuous spectrum. All modes of the discrete spectrum sétisfy the source~free
field equations and the boundary conditions on the surface of the waveguide. In
contradistinction to the modes on a closed wavegulide many modes of the discrete
spectrum of an open waveguilde are not-square integrable on the cross section of
the waveguide. 1In fact, the field components of these modes or more aptly the
leaky modes grow exponentially in the transverse direction far away from the
waveguide. Mathematically, this fact can be stated as follows: the propagation

. constants of the leaky modes belong to the Riemann sheet in which the radiation
condition is violated. Although these modes in general do not form a complete
set of‘orthogonai functions, they can nevertheless be employed to obtain

. convergent representations of the field in certain regions in space, for example,
the region between the two parallel plates in a parallel~plate simulator.

Some comments are now in order concerﬁing a method that may be used when
determining the excitation coefficient of each leaky mode. The “ordinary"
technique of matching fields at a cross section of a waveguide, which is so
useful when determining the excitation coefficient of each mode in a closed
waveguide, does notrneceésarily apply to open waveguides, since the leaky modes
are neither square integrable nor do they form a complete set of functions.
Instead of matching fields at a cross section of a waveguide the excltation
coefficients of the leaky modes can be obtained by requiring that the total
field satisfiesitherboundary conditions on the waveguide walls (c.f. [8]).

Finally, we mentibﬁ:thathtﬁéfléaky modes are the nontrivial solutions of

- the Maxwell equations in -two dimensional regions which are exterior to a region
of finite extent. Therefore, the leaky modes in two dimensions are the counter-

(9]

This note is a continuation of a previous note

.parts to the natural modes in three dimensions.

(8l

field around two parallel wires excited at a delta gap. Whereas the attention

which treats the transient

. was focused on t;he time history of the induced currents on the wires in [8]
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this note places more emphasis on the field distribution of certain leaky modes
on two narrow parallel plates. These modes are found by formulating two
different scalar integral equations of the first kind for the longitudinal
components of the electric and magnetic fields, respectively. When the
separation between the plates is large compared to their width these integral
equations can be solved analytically by first transforming them into a Fredholm
integral equation of the second kind which in turn can be solved using perturba~
tion techniques. The results of the field calculations are presented in graphical
forms for the transverse components of the electric and magnetic fields of the
two lowest TM modes. Graphical results are given of the magnitude of the electric
field of the three lowest TM modes and of the transverse propagation constant.

A general method of reducing scalar scattering from open surfaces to the
solution of Fredholm integral equations of the second kind is given in the
Appendix. - Both the Dirichlet problem and the Neumann problem are discussed.
These integral equations are then used to derive suitable integral equations of
the second kind for the TE fields and the TM fields on two parallel plates of
finite width. Certain properties of the integral equations are derived. It is
also shown how they can be used to numerically detefmine the transverse, complex .
propagation constant and field distribution of the leaky modes on two parallel
plates of arbitrary separation-to-width ratio. Due to the complexity of these -~

nunerical calculations they are left to a future note,



II. Integral Equations for the Field

Consider a waveguide that consists of two parallel plates of finite width,
the width of each plate being 2w and the distance separating the two plates
being 2h, (see Fig. 2). The waveguide is excited by an incident electro~
magnetic field §}nc(£,t), g}ncﬁg,t). To find the scattered field €£(x,t),
X(x,t) Laplace transform methods will be used, '

[=<]

f €(x,t)exp(~zz)exp(~st)dzdt (1)

-0

Eﬁx,y,C,S) = j

and similarly for the magnetic field. The éoordinate system is so chosen that
the z-axis is directed along the axis of the waveguide and that the x and vy
axes span the plane which is perpendicular to the axis of the waveguide (see

Fig. 2). The transverse field components in the Laplace transform'domain are

related to the longitudinal components in that domain via

it

-2 -2, N
E (%,5,8,8) = =zp "V.E (x,y,Z,8) - su_p "2xV.H (x,y,Z,8)

- (2)

-2 “2a
Etix’y’c’s> ~Lp thz(X:YsCss) + Seop ZthEZ(X,y,C,S)

where p ='1/szc:_'2 - cz, ¢ is the vacuum speed of light and the index' t
denotes the trahsverée field components., Thus, once the longitudinal components
oﬁ,both the electric and magnetic fields are determined in the Laplace trans-
form domain, the scattered field &(r,t) 4is given by (2) and the inverse

Laplace transform integral

1 1
g(g,t) =57 Jc [’Zr—i' jc _E_(x,y,c,S)exp(u)dc]exp(st)dg | (3)
s 4

where Cs and CC are paths of integration parallel to the imaginary axes in
the complex s and ¢ planes. The scattered magnetic field K(r,t) is
determined using a similar procedure.

From the Maxwell equations it follows that both Ez and Hz satisfy

the two-dimensional Helmholtz equation,
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Figure 2, Two, finite-width, parallel plates.
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2 2 2 2
- = - = {
Vth ) Ez o, thz ) HZ 0 (4)

and the boundary conditions on the plates imply that

Ez + Ez o= O{ ~om S+ ‘and 7S_
M ppine )
-E—— Ine & _ 2 . 0 on S and S
By M x suo X + -

where S+ (8_) denotes the cross-section of the upper (lower) plate, i.e.,
in mathematical terms = {x,y:|x]| <w, y = th}. One observes fhat E, (Hz)
is given by the solutlon of a Dirichlet (Neumann) boundary-value problem.

Next, integral equations will be formulated the solutions of which enable
one to determine E and H . Therefore, first note that EZ and (8/8y)Hz
are continuous everywhere (1nclud1ng on S ) However, (B/By)E and H can

be discontinuous across S+ and so the following quantities are introduced

1

BEZ BEZ
£,(x) = lim | —== (x,%h + €,g,s) - === (x,th - e,c,s)]

g>0 oy ay
(6)

lim [H (x,ih + €, ;,s) - H (x,ih - g, C s)]
>0

i

(suo)“lgi(X)

The paths of integration in (3) has to be chosen so that the scattered field

satisfies the radiation condition at infinity. This implies that Ez and Hz
1

satisfy the radiation condition as (x2 + y?')/2 tends to infinity. Keeping

this in mind the Green's theorem gives

W W
E,(x,y,8,8) = J G(x,y,x",hsp)f (x")dx" + f G(x,y,x',-h;p)f (x")dx'
- ' -y -
(7)
: RR LAY l v
, - 96 _ 1 L -
suoHZ(x,y,a,s) = f_w 3y X,¥,x' h,p)g+(x )dx f_w oy (%,y,x',-hip)g_(x")dx'
where N ) :
G(x,y,x",y";p) = ( /?X - X ) +(y - y") )

11



and KO(F,) is the modified Bessel function of the first kind. Taking the .
y-derivative of the latter of the equations in (6) and using the fact that the

Green's function satisfies the differential equation

viG - sz = 0, x#x' and y#y' (8)

one gets>the following expression

8H_ 52 2\l (¥
Suo 3 = (X,Y,Q,S) = - __E-— p f G(XSY’X,)h;p)g (x’)dx'
¥ ax -W *

. .
+ j G(x,y,x',—h;p)g_(x')dxi}. (9)

By requiring that the total longitudinal electric field vanishes on the

plates one obtains the following set of integral equations for £ _(x) *~

W W -
[ G(x,h,}c',h;p)f+(x')dx' + f Glx,h,x',-h;p £ (x")dx' = a+(x), Ix’ <w
- ™ | o
(10)
W W
f Gx,=h,x',hp) £, (x ') dx' +j GG,-h,x'rhyp)f_(x")dx' = a_(x), x| <w
-w -W ' -
where
ai(x) = “Einc(xsihsgss)'

Similarly, the boundary conditions (5) for (a/ay)Hz on the plates result in
the following differential-integral equations for g (x)

d2 N[ v ' W
('~§'~ P ) j G@gh;ﬁiﬁp)g+(x')dx' +J Gﬁghpdrh;p)g_(x')dx' = B+(x),
v dx - -
[x| < w
(11)

d2 2 W W
(“5‘- P ) f Gl,-hx',hip)g, (x')dx" + j GGu-hx'-h; plg_(x')dx'f = B_(x),

X

d ~w -y
xl<v @

12



where

inc

2 inc 3E

B, (x) = (x,£8,8,8) = £ 3= (x,¥0,3,9).

This set of differential integral equations can be integrated to yield the

following set of integral equations —

W
J Glohx',hyp)g, (x')dx" + Jw Gl,hx'shyplg_(x")dx'

- -w

: ' : v sinh(plx—x")
= A, cosh(px) +fB+ sinh(px) + J 5 3+(x')dxv
- P

(12)

W W
J G&,-h,x',h;p)g+(x')dx‘ + J G&h,x's-h3plg_(x')dx'
n-w -.w '

‘ , . » .
= A_ cosh(px) +'B_ sinh(px) + J sinh(gix X l) 8_(x')dx'
-W

where A, and B, are constants of integration to be determined from the edge
conditions which require that

g, (x) “’(wz - xz)2 as X - *w.

The integral equations (10) and (12) constitute the mathematical formulation
of the scattering problem. In the next section the two sets of integral equations

(10) and (12) will be solved for narrow plates, i.e.,, when w << h,

13



III. Solution of the Integral Equations in the Case of Narrow Plates

When the width of the plates 1s small compared to the distance separating .
the two plates an approximate solution of the sets of integral equations (10)
‘and (12) can be found using analytical techniques. In the first part of this
section a solution of (10) will be obtained from which all the properties of
the TM field (E waves) can be determined. Then, (12) will be solved for the
TE field (H waves). 7

A. The Transverse Magnetic Field

The set of two coupled integral equations (10) can be transformed into
two uncoupled integral equations in the following way: first introduce the
two functions ui(x) = f+(x) t £ (x), so that Zfi(x) = u+(x) tu (x) and
then substitute them into (10). By adding and subtracting the two equations
in (10) one arrives at the following two uncoupled integral equatiéns
W

G(x,h,x",-hsp)u, (x")dx" = u (x) (13)

W
J G(x,h,x',hip)u, (x")dx" % J
- ~W

-W

where p+(x) = a+(x) t a_(x). The solution u, corresponds to the case where

the longitudinal current on one plate has the :ame magnitude and direction as
that on the other plate, whereas the solution u_ corresponds to the case
where the longitudinal current on one plate has the same magnitude but opposite
direction as that on the other plate. The terms ''push~push" and "push-pull"
were used in [8] for these two cases.

Now, consider the case where w << h. In this case there exists a
complex p such that |pw| << 1 but |ph| 1s not necessarily small. With
this restriction on p one can approximate the kernels in (13) by the following

expressions

GG, hx",h3p) & (21 M-y = In(plx-x'|/2) + p2Gx-x")2/4[1 = y ~ Ln(p|x=x'|/2)}}
Ca

6k, h,x"-hip) & (20 'K, (260) = (x-x") p/ (20K, (2ph)]

14



where vy dis Euler's constant, Y &~ 0.5772..... Using these approximate
expressions for the kernels in (13) one arrives at the following approximate

integral equations for wu,,

v ,
JW ln(p[x—x'])ut(x')dx' - J [(In 2 - v £ Ko(2ph)]ui(x')dx'
-

-w
W
+ J L+(x,x')u+(x')dx' = -2m_ (%) (15)
—w.- - -
where
Lt(x,x') (x—x ) [ln(p|x-x’|) -1ln 2+ vy ¢ (2/ph)K (2ph)]/4

}

The integral equation (15) where the kernel has a logarithmic singularity at

' can be transformed into the following Fredholm integral equation of

L 10]

X =X

the second kind with the aid of the Cauchy integral

u, (x) + u, (x")dx'

ln(2/pw)~ero(2ph) Jw
—w—

7 1ln 2 Vv -

dx'dx"

w Jw Jw Lt(X',X")Ui(X")
2 2 2 Y

In 2 Vw' - wz—x'2

. , w /2 2 W

4 W -X d

¥ f x'=-x [dX' f Li(x',x")ui(x")dx“ dx
2 2 x W -w

2w fw w, (x") iy o iw uli(X'> W

- = — dx' (16)
i1 lnz Vw -x'! n#wz-xz

-X
vhere f denotes the principal-value integral.

The integral equation (16) can be solved iteratively by making the
following observation: when ipwl << 1 the norm of the kernel L (x,x') is
small, so that the contribution from the last two terms on the left-hand side

of (16) is small compared to the contribution from the first two terms., Thus,

15



to the first approximation dne has u, = ug where ug satisfies the integral

equation

ln(Z[pw)-YtKo(th) v
J u+(x')dx'

[o]
ui(x) +
-w

7 1n 2 /v -

W u'(x')fwz-x'z

G0 | :
- 2w f '-———2-"-’—-——f 2 dx'.  (17)

7 1n 2 vw / - ﬁfwz—xz K

A closed-form solution of this integral equation is found to be

o o 1 u+(x )
(x) = dx!'
u, al In{4/pw) - Y*K (2ph)] r—~—-[w r‘*“f
x!
WUy (x )f —x

. f x'. (18)

0 @2-x2 -W

To find a better approximation for wu,_ one writes

where “ui“ << Hui“. Substituting the expression (19) into (16) and taking
into account the facts that the norm of L, (x,x') is small and that ui

satisfies (17) the following expression for ui is obtained,

1 Lty O n
1 a w 1 w oW Li(x » X )ut(x ) o
Uyt = Z dx'dx
+ v [1n(4/pw) -y _(2ph)] 55:;5 I [T 2
W w2 X;Z d W o )
- L - t it " 1 1
2/2 2 f_w x'-x |dx' j*w Lt(x o X )ui(x ydax'" dx", (20)
T VW -X

The analytical properties in the complex p-plane of the solutions (18)
and (20) will now be investigated. When the {ncident fieid 18 a holomorphic
function of p it follows immediately from (20) that u, has two typcs of

singularities: a branch-point at p = 0 and poles at those values of p for "

16

u, = uf + u (19)



which the homogeneous integral equation (16) has a nontrivial solution. Each
one of these poles corresponds to a mode and in the next section certain
properties of these modes will be investigated. It should also be pointed

out that although these analytical properties in the p-plane of the scattered
field has only been proven for narrow plates, they-are shared by the scattered

field on a parallel plate waveguide of arbitrary width-to-separation ratio.

B, The Transverse Electric Field

The transverse electric field is determined from the solution of the
set of integral equations (12), Similarly torthe TM case one introduces the
functions v _(x) = g+(x) t g (x), so that 2g (x) = v+(x) * v_(x)v and

v,(x) satisfies the integral equation

i+

w W ‘
f G(x,h,x',hyp)v, (x')dx' f G(x,h,x',~h;p)v, (x')dx’
- - - ~

it

+

C, cosh(px) + D, sinh(px) + vt(x) (21)

where o
v, () =j (297 sinh(p|x-x'|)[B,(x") £ B_(x")]dx’

-w

and the constants C,_ and D_ are determined from the edge conditions at
X = *w., By comparing (16) and (21) it follows from (13), (18), (19), (20)
that one has the following approximate solution of (21),

v =0 + Vi (22)
where
vz(x)= ﬁ[ln(é/pw;?;tK — ] [w C, cosh(px')+-D¥sinh(px') + vi(x') e
| 0 A:z:;f -w w2—x'2
- W [pCt sinh(px')+pD+ cosh(p;')+vl(x')]¢é§:;77
) j_w - x'-x - dx' (23)

17



L_,_(x‘ ,x")vg(x")
vi(x) = L 1 fw fw = = dx'dx" , :
= L 1n(4/pw)~vK (2p0)] [2_T 4=w-w 7.2 .

W o-X
W v wz—x'2 a (¥ o
i [ g [ e o )
i —x" T v ; ‘

To determine the unknown constants C+' and D, one invokes the edge conditions

at x = tw which require that v _(x) ~ (wz - ::2)!5 as x + iw. These

conditions result in the following equatiéns

w C, cosh(px')+ D sinh(px')+v'(x')
1 f +- + % dx!
ln(4/pw)—YiKo(2ph) — 73
WX

v ;+x;

= £

= _j_wLpCi sinh(px') + pD, cosh(px') + v;(x')] paer dx
v ‘ a-x'

= J l:pCt sinh(px') + pD, cosh(px") + v:'t(x‘)] e dx' (25) .
-W

from which one gets )
-1 Jw v (x")+F (p,w,h)x" v (x") '
C, = = —~ ~= dx
* ﬂ[Io(pw)+pw11(pw)Fi(p,w,h)] - 53
wo-x
(26)
-1 av, (x")
D, = — dx'
+ npan(pa) J~w 7,2
where -

Ft(p,w,h) = ln(é/pﬁ) -y % Ko(th)

and In(s) is the modified Bessel function of the first kind.

18



‘ Again, it is noted that v+(x) has a branch point at the origin of the
p~plane besides poles for certain valueg of p. In the next section it will

be shown that there are no poles, however, for |pw| << 1,

19



IV. Modes on Narrow Plates

In the previous section it was pointed out that the scattered field has
two types of singularities in the complex p-plane, namely, a branch point at
p = 0 and poles. When evaluating the inverse Laplace transform integral (3)
the branch point shows up in the form of an integral around the corresponding
branch cut and the poles give rise to modes propagating along the waveguide[sl.
The z~dependence of these modes is given by exp[—z(szc"2 - pi)*} where P,
has the value such that the homogeneous equations (10) or (12) have a non-
trivial solution. The quantity p, may be called Eﬁe transvefée propéééﬁibﬂ
constant of the mode and is equal to the imaginary unit times the transverse
wavenumber. To each mode one associates a field distribution.’ Later in this
section the transverse electric and magnetic fields of certain importaat TM

modes will be investigatied. First, the transverse propagation constants for

both TM and TE modes will be obtained.

A. Transverse Propagation Constants of TM Modes

The transverse propagation constants of the TM modes are given by the
poles in u+(x), i.e., by those values of p for which the homogenedus integral
equation (13) has a nontrivial solution. Using the perturbation method employed

in Sec.III an approximate value of p is given by the nontrivial solution of

o In(2/pw)-vEK_(2ph) (w
u+(x) + J
- ~W

m 1n2 w2~x2

which, after integration, ylelds

W
[In(4/pw) - v * K (2ph)] J u) (x)dx = 0. (28)

From (27) one notes that &i(x) is an even function of the form

ﬁi(x) = A/(w2 - x2 _%. Tﬁu;, from (27) and (28) it is clear that A 70

oaly when

In(4/pw) - v * K_(2ph) = 0. (29)

The determinental equation (29) for TM modes on two parallel, narrow plates

20

ﬁi(x')dx' =0 (?7)Jﬁw, ,W,,V



can be compared with that:§or two parallel wires with radii a and separated

)

by'a distance 2h. In the wire case the determinental equation is
In(2/pa) - y ¢ Ko(th) =0 (30)

and the factor of 2 difference in the logarithmic term between the two
expressions can be accounted for by noting that the effective radius of the
strip is w/2, i.e., a strip of width 2w has the same capacitance per unit
length as a cylinder with radius w/2.

The transcendental equation (29) has to be solved numerically, and its
solutions are denoted by p:n. The corresponding nontrivial sdlution of ﬁg

is then

600 = —L— | (31)

WVWZ-XZ

and Gg(x) is normalized so that

I L '
j 82(xydx = 1, (32)
—w_

- +
Note that this function is independent of p;n.‘
To get a more accurate value of the poles of u_(x) in (16) one

substitutes the expansions

* + * + t
Py = Pon ¥ Pip lpln! << |ponI
| ’ (33)
A0, Al Al ~of '
w62 al, el e )
into the homogeneous equation (16) and obtains the followiﬁg equation
: 7 £ oubp® p¥ K (2 1)
1 1 W W1 WPy T<Wnp_ P |%
i, (x) - f 0 (x")dx' = —2—onlnl on __, (34)

/2 27~ /
YW =X v pinw In2 w‘z--x2
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where

- w L, (x',x")
A (x) = ¥ J Jw z dx'dx"
102 dt—x? TV V?&z-x'z)(wz-x“z)

/ -x W L+(x',x")
F —e fw ; J. = dx"|dx'.
3 r““ dx

v f2_u2

By integrating (34) and using the fact that u, (x) is an even function not
identically equal to zero the following expression for pl is derived,

2 ) WP {xP+2-1.50" 1n 2 (n2-8) v/t (r2-8) InCup /222 (hpZ ) K, (2hp )]/4}
Py = e - .
In ﬂ[lith;nKl(thin)] ' (35
5

Equation (29) was solved numerically for the twelve lowest roots. These
L
values were then used to numerically evaluate pI from (35). The results
of these calculations are shown in Fig. 3 and Table 1 where the normalized

+ + +
quantity p;w = (p;n + pzn)w is presented. : ‘

B. Transverse Propagation Constants of TE Modes

The transverse propagation constant for the TE modes are given by those
values of p for which the homogeneous integral equation (21) has a nontrivial
solution. Since the main concern of this note is the case where [pwl << 1 one
can, in the first approximation, neglect the secoﬁd term on the left-hand side
of (23) and also makes the approximations cosh(px) & 1, sinh(px) &~ px.

Thus, one has the following approximate homogeneous integral equation

vi(x) + vt(x')dx‘

ln(Z/pw)-YiK0(2ph) Jw
-w

7 In 2vw -

cht 2wpDEx
= + . - (36)

in2 v/wz-xz :/wz-x2
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Transverse propagation constant of -TM modes.
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+ + - -
w/2h n Re{anh} Im{anh} Re{anh} Im{2gnh}
0.01 1 ~1.902 2,552 -2.084 5.836

2 -2.185 9.051 -2.252 12.246
3 -2.303 15.430 -2.342 18.611
4 -2.374 21.785 -~2.400 24.962
5 -2.423 28.128 -2.443 31.305
6 ~2.461 34.464 -2.478 37.646
7 -2.493 40.797 ~2.506 43.959
8 -2.519 47.126 -2.532 50.323
9 -2.543 53.454 ~2,555 56.662
10 -2.566 59.780 ~2.577 63.002
11 ~2.587 66,105 ~2.598 69.342
12 -2.608 72.429 ~2.619 75.684
0.001 1 -2.280 2.349 -2.505 5.633
2 ~2.640 8.834 ~2.734 12,011
3 -2.805 15.178 -2.862 18.339
4 -2.910 21.496 -2,951 24.652
5 -2.986 27.805 ~3.017 30.958
6 -3.045 34.109 -3.070 37.260
7 -3.093 40.410 ~3.114 43.559
8 -3.133 46.708 ~3.151 49,857
9 -3.167 53.005 -3.183 56.153
10 -3.197 59.301 -3.211 62.448
11 -3.224 65.596 -3.236 68.743
12 -3.248 71.890 -3.259 75.037

Table 1. The transverse propagation constant of the TM modes.
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‘ The first term on the right-hand side of (36) is an even function of x,
whereas the second term is an odd function of x. From (36) one also observes

that v, (x) can be represented as
+ —
vt(x) = vi_(x) + vi_(x,) 37

vhere vt(x) (v:(x)) is an even (odd) function of x and that

1n(2/pw)-y£K (2ph)

W 2wC
vt(x) + f vi(x')dx' - —_t
' m 1n 2 w2-w v in2 w?'-x2
_ 2wpD_x :
v, (x) = = (38)
) wz--x2

The edge conditions require that vi(x) ~ (w2 - xz)l/2 as x = *w, and the
' only solutions of (38) satisfying t:r-xe edge conditions are the trivial solutions

vf(x) =0, C, =0, D_=0. One therefore draws the conculusion that two
n;rrow plates_do not s;ppbrt a TE mode with a transverse propagation constant

p such that |pw| << 1,

That two narrow plates can support a:TM mode but not a TE mode for
|pwl << 1 can be understood from the fact that the TM mode only gives rise
to an axially directed current on the plates, whereas the TE mode gives rise

to both an axially directed and a transversely directed current on the plates.,

C. The Field Distribution of the TM Modes

- S0 far, all efforts have been concentrated on the calculation of tha
transverse propagation constants, These calculations show how far each mode
propagates from the point of excitation until it has been attenuated to an
ingignificant amplitude. In trying to understand the properties of—the higher-
order modes it is also important to have information on the transverse field
associated with each mode.

‘ In the following an investigation will be given of the transverse electric
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and magnetic fields of the TEM mode and the three lowest order antisymmetric .

TM modes (those modes whose current distribution is of equal magnitude-but

opposite direction on the.two plates). The TEM mode has been investigated

extensively elsewhere[l’4] and so the field of this mode is included only

for the sake of completeness. : - e
The normalized electric field distribution go(x,y) of the TEM mode '

18 given by

: A - ~ ~ |
s+ (y=h

e (x,y) = %....LM‘C +h)2 - %-—-——Y-—Hz‘ ( )2 (39)

X +(y+h) x +(y-h)

Do

whereas the normalized magnetic field distribution is Eo(x,y) = ixgo(X,y)-

The normalized field distribution of the antisymmetric TM modes are given by

- /3 5
3y = L X%+ (y+h) ¥ K1<pn X +yth) )
) 2 -
fxleyrny? Ky lpph)
- /3 N,
1 xf+(y-h)§ Kl(pn x +(y-h) )
2 -
C ePry-m? Kleh)

N

€
-1

U

_t_xn(x,yi = Zxe_(x,y)

and gn(x,y) has been normalized such that Eﬂ(0,0) = 3.

The variation along the y-axis of the electric and magnetic fields of the-
TEM mode and the three lowest TM modes is shown in Fig. 4. This figure clearly
shows that the field of each mode has an oscilliatory variation between the platen
whereas outside the plates the field increases exponentially, The variation
along the x-~axis of the field is shown in Fig. 5. This figure shows that. |
although the absolute value of:the field is fairly constant the phase varics ’
.quite rapidly with the distance from the center of the simulator.

To get more understanding for the properties of the higher order modes,
the transverse field lines of the TEM mode and tb? two lowest TM modes are‘shown

in Figs. 6-8. It is noted from these figures iﬁ;t the magnetic field lines form \
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orthogonal trajectories to the transverse electric field lines. These mode

(11]

the major difference being that the leaky modes are complex whereas the field

patterns show a resemblance with those of the TM modes on a closed waveguide

components of an "ordinary" waveguide mode can be expressed in terms of a real
function. The mode patterns in Figs. 6-8 mainly show the direction of the
electric and magnetic fields of the modes. Therefore, as a complement to these
plots the magnitude of the field of the TEM mode and the two lowest TM modes
are portrayed in Figs. 9-11. Again it should be noticed that the absolute value
of both the transverse and longitudinal fields increase almost monotonically
away from the waveguide whereas the real and imaginary parts have both "peaks"
and "valleys'". Around the center of the waveguide the field of the lowest
modes is reasonably uniform such that the normalized transverse electric field
is in the y-direction, the normalized magnetic field is in the x-direction and
that both fields are almost real. Finally, it should be pointed out that, of -
course, the transverse spatial variation is more rapid for modes with a large
transverse propagation constant than for those with a small transverse

propagation constant. -
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Figure 4a. The variation along the y-axis of the absolute value of the
' normalized clectric field for the TEM mode (n = 0) and the
lowest antisymmetric TM modes (n = 1,2,3). The plates arc .
located at y/h = % 1,
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symmetric T™M modes (n = 1,2,3). The plates are located at-
y/h=11.
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Figure 5b. The variation along the x-axis of the rcal part of the normalized

electric field for the TEM mode (n = () and the lowest .
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Figure 6. The electric field lines (solid lines) and the magnetlc
field lines (broken lines) of the TEM mode.
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Fiyure 7a. ‘Thg electric field lines
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™ mode.
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“iqure 7b. The electric field lines (solid lines) and the magnetic field
lines (broken lines) of the imaginary part of the f{irst anti-
symmetric T™M mode.
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Figure 8a. The clectric field lines (solid lines) and the magnetic fiald

lines (broken lines) of the real part of the second anti-
symmetric TM mode.

37



x/h

Figure 8b. The electric field Tines (solid 1ines) and the magnotie
field -lines (broken lincs) of the fmaginary part of the
h second antisymmetric TM mode.
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Figure 9. Lines of constant magnitude of the normalized electric and
magnetic ficlds of the TEM mode.
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Figure 10a. Lines of constant magnitude of the absolute value of the
transverse part of the normalized electric and magnetic

fields of the first TM mode.
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Figure 10b. Lines of—constant magnitude of the real part of the transverse
-part of the normalized clectric and magnetic fields of the flrat

™ mode. o _ ,,
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Lines of constant magnitude of the imaginary part of the transversc

part of the normalized electric and magnetic fields of the first
™™™ mode.
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Figure 10d. Lines of constant magnitude of the absolute value of the

longitudinal part of the normalized electric field of the
first ™ mode.
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Figure 10f. Lines of constant magnitude of the imaginary part of the
longitudinal part of the normalized electric field of the
first T™™ mode.
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Figure 1lla. Lines of constant magnitude of the absolute value of the
transverse part of the normalized electric field of the
second T™ mode.
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Figure 11b.
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Lines of constant magnitude of the real part of the transverse

part of the normalized electric and magnetic fields of the
second TM mode.
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Figure 1lc. Lines of constant magnitude of the imaginary part of the transverse
part of the normalized electric and magnetic fields of the

second TM mode.

48



Figure 11d. Lines of constant magnitude of the absolute value of the .
‘ longitudinal part of the normalized electric and magnetic fields
of the second TM mode.
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Tigure lle. Lines of constant magnitude of the real part of the longitudinal
part of the normalized electric field of the second TM mode.
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Figure 11f. Lines of constant magnitude of the imaginary part of the

longitudinal part of the normalized electric field of the
Second TM mode.
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V. Fredholm Integral Equation of the Second Kind
for the ™M and TE Fields : .

In section II it was observed that the TM field (TE field) 1s obtained
by solving a two-dimensional scalar Dirichlet (Neuﬁannf bdundéfy—valué problem.
These -two boundary-value problems were then reduced to solving two integral
equations of the first kind. In the special case of narrow plates these integral
equations were solved analytiéally by first transforming them into Fredholm
integral equations of the second kind. 1In the general case of arbitrary
separation-to~width ratic of the plates the sets of integral equations th) and
(12) cannot be solved using only analytical techniques. In this case one has to
resort to numerical methods and it is then important to start the numerical
calculations from an equation that is suitable for numerical treatment. To
this end an integral equation of the second kind will be derived in this section.

In Appendix A, scalar scattering from open surfaces is considered. Two
cases are treated, namely, (i) the case where the Dirichlet boundary condition
applies on the scaﬁtering surface and (ii) the case where the Neumann boundary
condition applies on the scattering surface. The results obtained in Appendix A
will be used in this section to derive integral equations of the second kind ‘

for both the TM modes and the TE modes of two parallel plates of finite width.

A. Transverse Magnetic Modes

With the aid of the analysis in Appendix A, (c.f. (A9), (Al4), and (Al9))

cne can derive the following homogeneous integral equations for the TM modes
w W
u, (x) - j L(x,x",05p)u (x")dx" 3 J L(x,x",2h;p)u_(x")dx' = 0 (41)
* . . —w i
Th

whereas the TE modes are determined by the nontrivial solutions of the "transposc

integral equation

W
vt(x) - [w L(x}x,0;p)v, (x")dx" % f L(x',x,2h;p)v, (x")dx' = 0 (42)
- - - -

- )

where
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. . ‘
L(x,x' ,y "sp) = B-—-lim 3; J e — Kl(p/(x—x”) +y ) ( /Qx T-x™) +y )dx"
y’—)'o -w /(x‘_xu)2+y2 | (43)

- W

+ y+2h Kl(p/(X"X")z'*'(y+2h) Z)Ko(p/(xl_x'l)z-}-ylz)dxh .
v /Qx-x?)2+(y+2h)2

It was pointed out in Appendix A that the kernel in the integral equations
(41) and (42) has certain undesirable properties as far as the edge conditions
are concerhed It will later be shown exp11c1tly how functions satisfying
certain edge conditions are transformed by the integral operators defined by
the kernels L(x,x',y';p) and L(x',x,y':p). But, first, consider an alternative
integral equation for u,(x), namely, the one that corresponds to (A32) in
Appendix A. o ) '

In the case of two parallel plates one can derlve the following integral

equations from (A29) and (A32)

v w o, W
u, (x) - J L(x,x',O;p)u+(x')dx' T J L(x,x',Zh;p)u;(x')dx' = Q (44)
— —w — —w A —
where
- 2 ¥ x"-x' / Y
L{x,x',y";p) = p sgn(x”-x)Kl(plx”—x!) : Kl pY(x"=x") "4y’ )dx"
— ety Lyt

W "
+ p2 } i K (p#(x"—x)2+4h2)

1
v (x”—x)2+4h2

- o x"-x

Kl p/?x"—x')2+(y’—2h)2) dx"

/Qx"-x')2+(y'~2h)2
v
- p? f KO(PIX"‘Xf)KO( xext) Pyt 2)

-W

w
- p2 J Ko(p/(x”-x)2+4h2)Ko<p/Qx”-x’)2+(y'~2h)2)dx” . (45)
-w



From this expression one notes that ﬂ(x,x',y';p) is a continuous function of

x and x' when y' # 0 and that _ .

L(x,x',0;y) = ﬁl(x,x';p) + Lo(x,x';p)

1" dx" R
= ;"2" f-w (X"—}C) (X""X') + Lo(x,x ;p)
= ,];_ 1 _(w+x) (W-—x') “ .
= 11'2 x-x' In ‘(W-X) (s ") + Lo(x,x ’P) ¢46)

where ﬁo(x,x';p) is a continuous kernel. A relationship between the two
kernels L(x,x',y";p) and L(x,x',y";p) will be derived later.

Finally, it is of wvalue to know how functions u+(x) that satisfy the
appropriate edge conditons at x = *w are transformed—by an integral operator
with the kernel ﬁ(x,x',O;p). Since the functions u, (x) are proportional ﬁo
the charge denéity on each plate it is expected that Ehe nontrivial solutions of
(44) satisfy the edge conditions u+(x) ~ (w2 - x2 % as X -+ iw. Indeed, the
analysis in Appendix B shows that aZ_Ll nontrivial solutions of (44) must satisfy .
these edge conditions. One therefore concludes that (44) is suitable for
numerical treatment.

Going back to the integral equation (41) one observes that the kermel

in this integral equation can, with the aid of (A26), be cast into the form

. on -2 / 2 .2
L(x,x",y'sp) = LGoLx",y'sp) — pK]vEp(w-X)]K(J(p (w-x") "4y’ )
+‘ﬁ—2pKI[p(w+x)}Ko<p¢(w+x')2+y'2)

(T )
VAR ©
{(w-x)"+4h

o ly — R K1<P‘/(W+X)2+4h2)iio(p/(w+x')2+(2h-y')2) (47

(tx) 2402
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' from whicﬁ it fc;lrlowsr tﬁat

L(x,x',0;p) = f,l(x,x';p) + ﬂz(x,x';p) + £3(x,x';p)

- _].__ 1 ) (w-x")} 1 1 . lwtx!
- g2 XX I (w=-x) (wtx') o2 WX 1n W
I S e ',
+ 7]-2 — ln[ - ]+ L3(x,x ;p) (48)

where £3(x,x’;p) is a continuous function. From (48) it is noted that an
integral operator with the kernel Lz(x,x';p) transforms any integrable function
u,(x) into a function that behaves like l/(w2 - x2) as x = *w, Thus, the
k;rnel L(x,x',0;p) maps any function u, (x) that satisfies the edge conditions
u, (x) ~ (w2 - xz)—% as X = tw into a f;nction with higher singularities at
t;le edges. ffhis feature of the kernel in (41) is considered undesirable and
therefore the integral equation (44) is preferable to (41) when determining

the properties of the TM modes on two parallel plates of finite width.

B. Transverse Electric Modes

To find the properties of the TE modes one needs the solution of (42).

For this reason the kernel L(x',x,0;p) dis first investigated,

L(x',x,0;p) = L (wtx) (uox)f 11 1n[w+X]

1
7r2 x~x' In (w-x) w+x") |~ Tl'2 wtx! W

1 1 -— A~
7 wx' l“[%f}i] * Ly (xx3p)
™

-+

I (y-x")1n[ .(fo' ) ) = Cu=x) 1n[ Gr-x) /w]

1
2 y-x' x-x'
oL W

1 Grkx") In[ Grtx ') /] = Grbx) Lol Gubxe) /ud]

1
- 2 wtx' x~-%'

+ Ly x3p)  (49)

which shows that  L(x',tw,0;p) is an integrable function of x'. Putting

X = ty in (42) and noting that v,(tw) = 0 one gets, after multiplication

“ with (w#x)/2,
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W W
(wix)/ZU L(x',tw,0;p)v (x")dx' * J L(x',tw,%;p)v+(x')dx] = 0. (50)
- - - -

Combining (42) with (50) yields the following integral equation for v, (x),

W ' W :
v, (x) - J E(x,x‘,o;p)v+(x')dx‘ T J ﬁ(x,xﬂZh;p)v+(x')dx' = ( (51)
- ~-w - -w - .

where
v, .
L(x,x',y3p) = LG&x',x,y3p) - LGL(x',w,y35p) + (x-w)L(x',w,y;p)]/2,

By using methods similar to those employed in Appendix B one can show that=the
1

nontrivial solutions of (5I) behaves like v _(x) ~ (w2 - xz)ﬁ as x -+ tw

which is in accordance with the edge conditions. It is therefore concluded

that (51) is suitable for numerical calculations.

C. Numefical Solution of (44) and (51)

A brief-discussion is now given of one method of solving (44) and (51).
Starting with (44) one notes that the edge conditions and the properties of ‘
the kernel i(x,x',o;p) imply that 1t is feasible first to expand the unknown
function u+(x) in the following series

0, = @ - %D

I o~1 8

uIT, (x/w) (52)
§=0 J 1

where Tj(i) is the first Eind Chebysheff polynomial of degree j. To find

the unknown coefficients U; one first substitutes the representation {52}

for ui(x) into (44) and then multiplies this equation with Ti(x/a) and
integrateS'oYer the width of each plate (the method of moments). This procedurc
leads to the following set of simultancous equations,

[2e}

(n/2)e 6, u> - § [L..(03p) £ 1. (2hip)]u =0 i=0,1,2 ~(53)
/2)e, 8, u - .(03p) = L., (2h; . =0, =0,1,2,...
1333 45 13 P 13 7Pl

[}
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 where

. Wow . 9 5
Lij(y;p) = [ J Ti(x/W)L(x,X',y;p)<w -x") 6Tj(x'/W)dx'dx

and aij is the Kronecker symbol, &,, =1, i=3 and 6,, =0, 1 # j and

ij ij
ey = 1+ 6io' |
Similarly, when using (51) to numerically determine the TE modes the edge
conditions and the properties of %(x,x',o;p) suggest that it is useful first
to expand the unknown function vi(x) in the series '
+

v (x) = (w2 - xz)% Y viu, (x/w) (54)
- j=1 J J

where Uj(g) is the second kind Chebysheff polynomial of degree j. Again,

by using moment methods one obtains the set of simultaneous algebraic equations
+

for v7,
J

/2)8, v [T..(0 Ly 2h N 0 i =1,2,3 55
(Tf ) ijvj - Lij( 9P) - Lij( ’p)]vj - b i = s b 3 s ( )

No~18

j=0

where

w 1
ﬁ.,(y;p) = J u.(x/w)f .(x,x',Zh;p)(w2 - xg)éu (x'/w)dxdx'.
ij v i 1j 3

To numerically determine the transverse propagation constants and the
field distributions of the TM and TE modes the sets of equations (53) and (55)
are truncated to form a set of N equations for N unknowns. These numerical
aspects of the problem will be left to future work where the methods outlined
above are intended to be used when determin;ng the properties of the TM and

TE modes.
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Appendix A
Fredholm Integral Equation of the Second Kind for ‘
Scattering From Open Surfaces

It is well known that scattering from an open, infinitely thin surface
can be reduced to integral equations or integral-differential equations of the
first kind. From both theoretical and computational standpoints it is of great
value to reduce the scattering problem to a Fredholm integral eqdéfion of the
second kind. In this éppendix scalar scattering from open surfaces will be
considered. The Dirichlet as well as the Neumann boundary conditions are

considered and the results are valid in both three and two dimensdions.

A. Dirichlet Boundary Conditions

Let an open surface S with boundary L be illuminated by an incident
scalar field ¢0(g). The scattered field ¢(r) these satisfies the Helmholtz
equation outside § + L,

v2 - p% = 0 (A1)

and the boundary conditions

0

+ - .
¢ () =¢ (@ =-¢ () r€s (A2)
where ¢+(£) (6" (r)) denotes the limiting value of ¢(r) as r approaches

a point on S from the positive (negative) side of S (see Fig.12 ). By 5‘51?
applying the Green's theorem on the region outside S + L and noting that ¢ S
satisfies the Sommerfeld radiation condition at infinity one gets

$(x) = j C(x,r")E(r')ds' (A3)
S
where
TS 96
£(x) = ’3’%‘(5) - 5‘3‘(2) ’ res (A4)
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Figure 12. The surfaces S, z, "Sow and the boundary curve ..
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G(r,r') 1is the free space Green's functionm,

exp (~p|z-r'[)

'y = .
G(x,x") = in 3 dimensions
. (A5)
| K (plzz'D
6(,x") = ——5— in 2 dimensions

and Kb(x) is the modified Bessel function.
First, complete the surface S with an other open surface I having the
boundary L so that S + £ forms a closed surface Sc. Next, by applying

the Green's theorem to the region outside S0 one gets

+ L
T @ '3‘5[ ot (LEh has! -J 3 (@' i @hes,
S0 So :
r€s, (A6)

which combined with (A3) and (A4) results in

+ 2
.].‘.. Ei.. [ ,3_. ?_G__ t t t o __3__(_3__ tt i i (KW t '
+ J 3G (), rmygst J 3G (e Y E(") S, r €S8, (A7)

g T BE g amn EOEOEE s,

o

Similarly, by applying the Green's theorem to the region inside S0 one
derives an expression for 93¢ /dn which is given by (A7) provided that the
following substitution 1s made in the left-hand side of (A7),

+ -—
3 3
5—3—-—&»-—%—. | (A8)

: +
By adding the two integral expressions thus obtained for 3¢ /3n one arrives

at the following integral equation of the second kind for £(x),

Lew - f L(r,e)E()ds' = £ (1), r€s (49)
S L )
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where

= - ——---8 _.___aG ' t
£, 5n Js ot (r')e, (z')ds, res (A10)
and
ezc
L(x,z') = -J oo (L.r"6(c",r')ds"

",r' yas", r€s, r'€s.  (All)

3G
+ IS 'a'r'{ (E_’E_") 3 YT

(o]

The kernel L(r,r') is independent of the choice of the auxiliary surface I

as can be seen in the following way. Let Sl be a closed surface enclosing

the fegion V1 and let r and r' both be either outside or inside Sl'

One then has

J [VG(r r'") a — (",r") - V= 3 — (x, ")G(_I;",_r_')]dS"
S

Il

v J [G(g _1;") T (", r') - 6(",x") a .. (x, r")]dS"
S
1

]

v j [G(E,_")V"ZG(E”’E_') - G(E_"’_I;')VHZG(E_,E">] asll
\Y
1

= 0. | ’ (A12)
By letting r and r' approach points on the surface S1 one gets

2
aG 1 1"t LI
IS [ (z,x ) a7 ') - g (r,r)6(x Lg'{]ds 0, r€s,r'€s .(Al3)
1 .

From (A13) it is ;hen clear thatr L(g,gf) can be cast into the following form
"which is explicitly independent of the auxiliary surface I-

L(x,x') = E"‘f gi” (r,x")G(x",x')ds", r€s, r'es, (Al4)
S
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Equations (A9), (Al1OQ) and (Al4) constitute a Fredholm integral equation of the
second kind from which one can determine the scattered field. Before continuing
with the investigation of this integral equation a corresponding integral

equation of the second kind for the Neumann scattering problem will be derived.

B, Neumann Boundary Conditions

Consider the case where the open surface § is illuminated by an incident

field wo(z). The scattered field y(r) satisfies the Heimholtz equéﬁfeﬁ‘(Ai) h

outside S + L and the boundary condition

+ - Y | '
_3__4{_=§_'5[)__=___2 on S. . (AIS)

on an an

Using the same approach as in the case with the Dirichlet boundary conditions one

arrives at the following expression

_%_4“'}'(5—) - fs —g% (_r_,_l_‘_")dS" fs _g_g_r (_E",_}_:_')g(_];_')dsi
o
3G 3G 3,
+ J T (Zr'ds” J o (£'r'elr')ds’ + J 6(r,x') 57 (£')ds!
Z S S
BZG . \
- JZG(_gEP)dS” Js SaenT (x",x")g(x')ds’ (A16)
where
L B B
g(r) =¥ (x) - ¥ (x). (AL7)

Similarly, w—(g) is given by (Al6) provided that one makes the following
substitution in the left-hand side of (Al6),

¢+(_r_) > =y (). (A18)

Equations (Al6)-(Al8) make it possible to derive the following integral
equation for g(x),
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71;8(5_) - j L(x',r)g(r')ds' = g, (x) (A19)
S

where L(z,r') is given by (Al4) and

, 30
go(_x;) = ISG(_r_,_z:,') 5-5?- (r')ds'. (A20)

Equation (A20) is the Fredholm integral equation of the second kind
sought for the scattered field. The formal similarities between (A9) and (Al9)
| is striking ih fhat the Diriéhiét and Neumann problems can be obtained from
the solution of two intééral equaﬁions whose kernels only differ in the order
of the arguments r and r'. The solutions of the two integral equations (A9)
and (Al9) are of course very different since the kernmel L(x,r') is not
symmetric, ' : S '

C. Alternative Integral Equations

The solutions of the integral equations (A9) and (Al9) must satisfy the
edge conditions on L. A careful investigation shows that the integral
operators with the kernels L(r,r') or L(r',r) does not in general transform
a function satisfying certain edge conditions into a function satisfying the
same edge conditions. Starting with the integral equations (A9) and (Al9)
alternative integral equations will be derived with kernels that preserve the
edge conditions. '

For that reason consider the following integral expression (the reason

for doing this will become clear later on)

B(z,x") =3€

G(r,z)G(x",r")ds",  r,x' § s+l (A21)
L

so that with a = a(r) being an arbitrary vector satisfying necessary

continuity requirements one has, by using the Stoke theorenm,

a'[vxN(x,")] = j§~V><[_r1"xvc;(_1_~_",3')G(£,1:_")]dS”
S

+ j G(_;_",_r_')_g_'VX[_q"XV”G (.l.‘.’..l_..”):] dS", (A22)
S
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Furthermore, since VG(r,r") = -v"G(r,r") and since VZG(_r_,_r:") - PZG(E’E.") =0

for £_¢ S+L one gets
.i'vx[}l"XV"G(E",}'_’ )G(_r_,g_")] = V"G(l:_,r_"') '[f;x (_I.I.HXV“G (5." ,.r-l )] (A23)

go that

a:-V{n"xv"6(x,x")] = -pz_a'_"G(i,z_") - (2-V) (0"-V)G(x,x"). o (a24)

Therefore,

:&_-[VXN(_I_‘.‘_,E_')] - j {E‘.XEP_HXVHG(E_'"E‘)]}'V"G(E.’E.")ds'"
S

- PZ JE'P_"G(E’.EII)G(.F_"!E')dS"
s
- J (.?_'V) (EH'V)G(EA_’{_")G(_E”,E_')ds' (A25)
S

and by letting r and ' approach points on S and by putting a(r) = n(x),

r € S one obtains

%E J _g__l%_' (E:E_")G<£"s£')d5" = f {_I_I_X[_Q"XV"G(E",E_')]}'V"G(_l_f_,_r_")ds."
S S

- PZ JE_'_I_’;"G(E_’E_")G(E"!E.')dS"
S

- neUx § G(x,r'")6(c",r')d" (A26)
L
where f denotes the principal value integral.

Similarly, by making the same manipulations on the right-hand side of-

" (A9) one arrives at the following expressions



£ (@ =- -—f — (&,r")¢_(x')ds'
— o —
S
=- f {nxfn'xv'¢ (x")]}-v'6(z,r"as" + p? fg-g’G(z_,_r_')%(_r_')dS'
s .
+ neVx § G(E_,E')d)o(_g_')d_&' a27)
L
resulting in the following alternative equation for f£(r)

;l;f(_lg) - f B,z E(x')ds' = fo(_r_') + neVx <§ G(x,r')¢ (r')ds’

—

S L
o - g_-‘fx J £(x')ds’ % G(x,r"G(x",r')de" (A28)
S L
where
£(£’£1) = f {E"[E""V"G(E"’_E')]}'V"G(_Es};")ds"
S
- p2 fP_'E”G(L,E")G(_E",‘_r_')dS" (A29)
S ‘
and
£ (x) = - f [ox{n'xv'¢ (')]}+v6(z,r")ds"
o= g = o — —
+p Jg'g'GQr_,_r_'wo(_r_')ds'. (A30)
S

"The last two terms in (A28) cancel asg can be seen from the following counsideration.
By changing the order of . integration in the last term of (A30) and observing '
that $(x) = —¢o(_r_) on S+L one obtains

nevx § G(_E:.’_-’_")d_%_" j G(_l_?_",_l‘_')f(r_')dS' = E.VX % G(E’E")¢o(£")d£"' (A'}l)
L S

L
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To sum up, the followiﬁg integral equation has been derived
%-f(g) - j £(r,r‘)f(£')ds' = EOQE) (A32)

g =

which is the Fredholm integral equation of the second kind sought fér the
scattered field. The integral equation (A32) has been used in Sec. V to
formulate an equation which was used to study certain properties of the trans-

verse magnetic field on two parallel plates of finite width.
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Appendix B
Properties of the Kernel il(x,x';p) in (46)

This appendix presents a study of how an integral operator defined by the

kernel il(x,x';p) transforms a fgnction f(x) of the form
gy
£x) = @ - x) %) | (1)

where g(x) is continuous for [x! < w and g(zw) # 0. The kernel ﬁl(x,x';p)
is defined by ' 7 ' 7 ' 7

> ‘. 1 (wtx) (w-x") |
L (x,x";p) = ln[ — . (B2)
1 wz(x~x') (w-x) (wtx') |
One has
W .
F(x) = j Ll(x,x';p)f(x')dx*
-
1" 1 i) r-xD ], 2 2=, .,
=5 J — 1n (w-x)(w+x')] (W™ =x'7) Tg(x")dx'
it -
0 201
1 2 2. -q Ent+l In n En-1
== (v -x) J (—‘——) g( )dn (83)
1T2 0 &41 (n_l)nu En+l
. where
_owix
£ = WX

It is easy to see that the integral in (B3) is finite for all values of x such
. that |x| < w. The integral therefore defines a function which {s cont Inuoun
and finite for ix{ <= w. Thus, F(x) 1is of the form (Bl), showlny that any
function of the form (Bl) is transformed into a function of the same form by an
integral operator defined by the kernel £l(x,x';p).
Next, the values of a are found that allow nontrivial solutions of--(44).

Substituting the expression

ui(x) = (w2 - x2)_agi(x), oo <1 (B4)
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into (44) multiplying this equation by (w2 - xz)a and putting x = w in the
equation thus obtained one arrives at the following expression .

g, 1 - @]l =0 (85)

where

h(a) ____LZ..J —]ﬁ—n—;dn«
' ™ ‘0 (n=1)n

It is easy to see that (i) h(a) has a ﬁinimuﬁ for « =-% and (ii1) that

h(%ﬁ = 1, Thus, the only value of a for which (44) has a solution such that

g, (*w) #0 is o = %3 showing that the solutions of (44) indeed satisfy the
: .

edge conditions at = tw,
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