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Abstract

A new closed form solution in terms of elementary functions is
developed for the fields radiated by an impulsively excited electric or
magnetic dipole orientedarbitrarily in the presence of a perfectly
conducting wedge, Previously, this type of solution has been available only
for dipoles oriented parallel to the edge. The solution for the required two-
component Hertz vector is constructed by an image method utilizing an in-
finitely extended é.ngula.r space, and expressions for the electromagnetic field
components are derived therefrom. It is shown that the new result reduces
properly to known solutions in the limiting cases where a) the wedge degenerates
into 2 half plane and b) the source is moved to infinity to generate an incident
plane pulse. For application to parallel plane waveguide simulators fed by a
conical transmission line, it is of interest to examine temporal source functions
that lead to local simulation of an incident step function plane wave field by
transient dipoles. Such temporal scurce profiles are derived and are employed
for numerical evaluation of the resulting diffracted field. The field plots are
compared with those obtained previously for plane wave incidence and permit

an assessment of the effect of source location.
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I. Introduction

One type of parallel plane simulator for EMP diffraction involves a
conical, two-conductor feed region that is joined to the parallel plane region
by a bend in the conductors. Since the junction affects the incoming electro-
magnetic field, it is necessary to understand the effect of thé bend on the
field transmitted into the parallel plane test region. Because of the complexity
of the actual junction problem, attention has been given to the simplest con-~
-stituent configuration, an interior or exterior bend in a single, infinite, plane,
perfectly conducting sheet. For large exterior bend angles, a sharp edge is
produced and the resulting configuration, a wedge, is of interest for applications
involving terminated ground planes. In previous studies in this series [1,27,
the incident electromagnetic field was assumed to be a plane pulse incident
perpendicularly to the edge, along one face of the wedge. For applications
involving parallel plane simulators or finite ground planes, a more realistic
incident field is provided by a spherical pulse generated for example, by an
arbitrarily oriented electric or magnetic dipole source. The present note is

concerned with the solution of dipole diffraction by a wedge.

_ The wedge diffraction problem is one of the first to have been treated
by rigorous analysis. While the early concern was with the time-harmonic
regime, the solution for which could be represented variously by integral
transform and eigenfunction expansions, it was found subsequently that pulse
diffraction results were sometimes obtainable in closed form. An excellent
summary of the history of wedge diffraction may be found in the paper by
Oberhettinger [3] . It is shown thére'that the scalar field solutions for plane
and spherical delta function pulses incident on a wedge with Dirichlet or
Neumann boundary conditions can be obtained in terms of elemantary functions.
Since the electromagnetic fields radiated by axial* electric and magnetic
dipoles can be derived by differentiation from the scalar Dirichlet and Neumann
soluti.ons, respectively, it follows that these fields are also expressible in

closed form. However, closed form results have not previously been presented

* The terms "axial™ and "transverse" denote directions parallel and perpen-
dicular, respectively, to the edge of the wedge.
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for the non-scalarizable fields radiated by transverse dipoles. It is shown

here that-such solutions may indeed be developed, by a fundamental procedure
utilizing an image representation in an infinitely extended angular space. Thus,
a principal new result of the present study is the construction of a closed form
solution of the time-dependent dyadic Green' s ‘function for a perfectly conduct-
ing wedge. For the special case when the wedge degenerates into a half plane,
a closed form for t.he dyadic Green's function has recently been given 47 . It

is shown that our wedge solution reduces properly to the half-plane limit. By
moving the dipole source to infinity, omne may gene.fate near the edge an incident

plane wave field. Our solution reduces to the known results also in that limit.

In establishing a connection with the previous numerical solutions of
Baum [11 a.n;i'Higgins {'2],77 it 1sof iﬁterest to e;«cplore the deviation of the spherical
pulse solutions from the idealized plane pulse solutions. We have therefore
congidered simultaneous excitation by electric and magnetic dipoles with a time
dependence sucih t'hat the incident field at a selected point on the edge is the
same as for a unit step incident planér wave. Plots of numerical results for
the field near the edge have been made for some of the parameters used in
1] and [27 so that direct assessment of the influence of the source point dis-

tance from the edge is possible.



IT. Formulation of the Problem

1. Use of Hertz potentials ‘

The transient fields due to vector source disfributions with arbitrary
space-time dependence may be derived by integration of space-time dyadic
Green's fuhctions, which provide the fields excited by arbitrarily oriented
electric and magnetic dipole sources with impulsive time dependence. If
é} (x, L5 t t ) and G (r r t t’) denote electric and magne’cic dvadic Green's
functlons respectwely, then the vector electric field E (r, 1‘;';1:, t’) due to an

1mpu151ve electric dipole with moment density

P(r, t) = p(r)6(z-r") 8(t-t") | M
is given by

A ] b / !

E_( t,t) = - G (r,r"t,t) - p, (2)

~ while the vector magnetic field Hm(r, r';t,t’) due to an impulsive magnetic

dipole with moment density

M(r,t) = m(z’) 6 (x-r') 6 (t-t") (3)

~

is given by

L4

“ht) = - G (rritt)) - m . (4)

~F A

(r

~m L E

Here, p and m are (genera.lly non-coinciding) unit vectors at the source

point r . The magnetic flelii Ele corresponding to %e in (2) and the electric

field E correeponding to I;Im in (4) are then ob’;ained from the time-depen-

dent Maxwell field equations., According to causality, all fields vanish identically

for t<t’.

In the present treatrnent it will be more convenient to deal directly
with the fields E and I{ instead of the dyadic Green's functions, Calculation
of the former is simplified through use of the electric and magnetic Iarts
vectors ﬁe(g, ;;'; t,t’) and f‘m(g, g'; t,t’}, respectively, which are solutions

" of the time-dependent wave equations

2
2 ) - 1
(v "ueg;'z_>lle(£;£,;t’tl) = “EE(E)t) ] (5)
2\
2 a
(v - ¢ egtT)im(E’E.,;t’t,) o Mv<£’ t) ) (6) .
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! o ’ 1, o B ’, !
E(r,rit,t) =90 T (r,rhit,t) -He—T (r,r5t,t) (7)

ot ‘
1 (c,r it t) = M?xa-— S it th), (8)
and - i ) )

" ) 7 ! - 7 az - I 4
m(r,r,t,t)zvv 1 (r,r,‘c,t)-ue———z—ﬂm(r,r;t,t), (9)
- L ’ 3 2 ; ’

. - . 10
}Em(E '1: »t,t ) = vag‘t—zm(’l;,{ ,tyt ) s ( )

with ¢ and U representlng the (dispersionless) permittivity and permeability

in the homogeneous med1um

If the electric and magnetic dipole moments are distributed throughout
a volume V with density functions fe(r) and fm(r), respectively, then the

corresponding electromagnetic fields are

V ~

E (rit,t’ jf )E,(r,x'it,t') dr’ ,  ize or m, (11)

and similarly for Hi' Note that the orientation of p(r 'Y and m(r ')may change
with r ‘. Alternatively, if the electric and magnetic dipole moments have the

respectlve temporal variations F (t) and F (t) for t> 0, with Fe m - 0 for

i

t< 0, then the correspondlng electromagnetlc fields are

- t . .
fi(r, r’ t) = J‘Fi(t') Ei(r, r';t,t')dt', i=e or m, (12)
o

and similarly for ﬁi' Finally, if the dipole moments are spatially distributed
and are active over a specified time interval, the corresponding fields are

obtained on integration of Ei and H, over the appropriate space-time volume.

~

2. Boundary conditions for a ﬁerféctly coridy_gting_ wedge

When the dipole sources in (1) and (3) are located in the presence of a
perfectly conducting wedge, the tangential electric field on the wedge must
vanish, and an "edge condition' must be satisfied, for all t, If the wedge

faces are located on the half planes o =0 and 4 = & in a cylindrical (p, ck, z
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coordinate system (see Fig. 1), then the required conditions are Ep = Ez =0
at (¥ = 0,0, Expanding the right hand side of (7) into cylindrical components,
one may show that the boundary conditions are satisfied if ‘
I =0 2m =0, T =0 at 4 =0,0 . (13)
ep ’ -5_5 e&' ' ez ! ’
Similarily, itfollows [rom (10) that the magnetic potential must satisfy
a A _ “ _ a A ~ )
3 "mo= 0 Tmd = O 54 "mz = 00 2t 40,0, (14)

It will be convenient to represent the Hertz vectors in rectangular rather

than cylindrical component form. Since

~

szﬂxéos$+ﬂysiﬁ$, ﬂ[¥=-ﬂxsin$+ﬁycos$, (15)

one may write (13) and (14) as

~ ~

Hex cos c‘ + Hey sinc* = 0, —5%[- nex sin¢ + Heycos c!;]: 0, Hez =0, (16)

%[Hmcos ¢+ Hmysin é]: 0, -mesinc$ + HmycosuL =0, —a% 0 ,= 0,(17)}

at$ = 0 and & = 0., These rectangular components then satisfy the wave equa-
tions [see (1), (3), (5) and (6)]:

1 0
< cosv_cos 8
(2 3%\ 2 l . '
\V - —s Hex = - 6 (r-17) 8(t-t") , (18)
ot mx cosv cos Oml
! m
1. \
¢ ~ sinv cos®
‘ 2 € e e
2
(v - u e—a—z-)ney = - ‘rﬁ(z-f") s(t-t'y (19)
ot my sinv_ cos 8
k m m
—e-sinee
2 32 N2 ’ ‘
v _ug._._z_)ﬂez = - §(r-r ) b(t-t"}) , (20)
at mz gin 6
m

where Vi and ei, with i=e,m, determine the dipole orientation at r’

s o o s e o e
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x cosv cos® +vy sinv cos 8 +z sin |
~0 e e Lo e e <o e (21)
= i in ©

m = x_cos vy cos em +y, sin v cos em tz  sin
Vg and er are the orientation angles of the projections of the electric and
magnetic dipoles, respectively, on the x-y plane, while ee and em are the
angles of inclination of the dipoles with the x-y plane; Ve o is measured

- o : ’
counterclockwise from the positive x-axis, When R and 0 equals 7/2
(z-directed dipole), the electromagnetic field is derivable solely from the
single component Hez or nmz of the Hertz potential, When ee or em equals
zero (transverse dipole), one requires the two transverse components

A~

Il or ]

f , which are coupled by the boundary conditions.
ex,y mx,y

The prece_c»liné'fo:‘:mﬁlation has previously been presented for time-
harmonic problems [67, and its extension fo the time-dependent case has

been straightforward,



III, Relation Between a Class of Time-Harmonic and Time -Derender.lt Problems

For some diffraction problems, the time-dependent solution turns out .
to be simpler in form than the time-harmonic solution. In particular, it has
been noted [ 7 ] that for certain integral representé‘tidns of the time-harmonic
field, there exists a direct inversion yielding a closed form for the transient
field, If a time-harmonic scalar Green's function G(r,r '+w) (i.e., the time-
harmonic response to point source excitation at 1;') c;ane expressed as a

Sommerfeld integral

-
¥

Glr,r'5w) = '!‘g(g,1;'.W)expt'i%Y({,g',W)__!dw (22)
C ,
where C is the intelgra.tion path in Fig. 2 (symmetrical about w=0), w is the
frequency, c=(u €)% is the speed of light, and an exp(-iwt) dependence is sup-
pressed, then the time-dependent scalar Green's function é(r, r'it, t } cor-
responding to excitation by a point source at E' with impulsi\:e Behavior

§(t-t') is given by:

Glr,z":,t) = 0, t-t' <2, R=y(r,z’,0) (23a)
Re[i&(r,z’, - iB) |
= . zc__[ ~ ] , t-t'>% (23b)
(d/aB) v (x,x’, - iB) o |
Here, B = B(r,r’, t-t')is defined implicitly by
clt-t’)y =v(r,r’' - iB) , (24)

and it has been assumed that i F(r,r’, w) is real for real w, and that-

Y(r,.r', -iB) is real fdr real B.

It has been shown previously [ 7] that the scalar time-harmonic Green's
functions for a wedge with Dirichlet (G=0} and Neumann (BG/B& = 0) type
boundary conditions can be expressed in the form (22) whence the corresponding
time -dependent Green's functions are given explicitly by (23). It may be noted
from (16) and from (18) - (20) that for a z-difected electric dipole, which
generates a Hertz vector ﬁe =z ﬁez’ the scalar function € Hez is equal to the

Green's function with Dirichlet boundary conditions, Similarly, from (17) and

from {18) - (20}, a z-directed magnetic dibole generates a Hertz vector .
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Izm =2z H.mz’ with the scalar function Hmz equal to the Green's function satis-
isfying the Neumann boundary conditions. When the dipoles are not oriented
parallel to the edge on the wedge (z-axis), the required transverse components
of the Hertz vector are not directly expressible in terms of séalar Green's
functions, as is evident from (16) - (19)., Nevertheless, it is found to be pos-
sible to express Hix and Hiy,r i=eorm, iAn the forﬁm of an integral as in (22)
and thus to provide the transient ;s?lgtions ,Hix and Hiy in the elementary form
(23). Moreover, one may relate Hix and Hiy to the scalar Neumann and
Dirichlet Green's functions, but not in a simple fashion., These aspects are

considered subsequently.



IV. Construction of the Solution By Image Method

Since the perfectly conducting wedge is a ""separable! boundary surface .
in a cylindrical or spherical coordinate system, the method of separation of
variables can be employed to construct a variety of alternative representations
of the field solution. Such representations have been discussed in| 7], and
the choice of a particular representation depends on the parameter range under
consideration, For construction of the transient solution in closed form,' an
image representation in an infinitely extended angular space [7] is highly suit-
able since the time-harmonic field generated by a typical scalar source in
such a space is expressible in the form (22): the corresponding transient field
is therefore given simply as in (23). Moreover, it has been found that the
scalar images can be summed into a closed form. This has led to the known
result, in terms of elementary functions, for the transient field generated
when an incident scalar spherical pulse is diffracted by a wedge [ 3]. In view
of the remarks made previously, these scalar solutions may be employed
directly for calculation of the field due to a pulsed electric or magnetic dipole

directed parallel to the z-axis,

For transversely oriented pulsed dipoles, a closed form solution in
terms of elementary functions has not been reported previously when the .
wedge angle @ is arbitrary; for the special case of a thin half plane (a = 2m),
such a solution has been published recently [ 4]. We shall demonstrate below
that the image method is successful in dealing with the vector problem and in

providing a closed form result for arbitrary wedge angles,

1. Time-harmonic solution

An arbitrarily oriented electric or magnetic dipole may be regarded
as a superposition of longitudinal and transverse dipoles. For convenience,
we list first the known result for the longitudinal case; we then construct the
solution for the transverse case. A time dependence exp(-itt) is suppressed
throughout. Equations (16) - (21) apply to the time-harmonic prohlem pro-
vided that az/atz.-* - wz and the 6(t¢t’} factor is omitted.

a) longitudinal dipoles

The electromagnetic fields due to a longitudinal electric dipole of

unit moment strength (i.e., pzzo) may be derived from the z-component of

the electric Hertz potential, Hez(a, r',w), This potential may be separated .
into a geometric optical part, ng,. and a diffracted part, HSZ
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1 =18 « ¢ | (25)
eZ:: qz 7 ez

The geometric - optical part accounts for rays that emanate from the source

and are multiply reflected between the wedge faces:

exp [ik|r-r ‘]
mE e weg) =T g |44 )

€~ 4rlr-r |
n ~ ~n

exp [ik |r-T_| -
_ 1 P ””n]U(TT-H-4‘), (26)

€ 4W‘r-; l n
'R *n

where k = W/c, and Ufa) = 1 or 0 for a > 0 and a< 0, respectively, while
ti‘én:ZnaJré', Enzz.na-<$', n=0,+1, +2... (27)

_ ' ! - ’ / — oyt
ro= (04,2, T = (07,4 ,2"), r_=r'=(0",4",2"). (28)

The diffracted part, which accounts for radiation scattered by the edge, may

be written in the form of the integral (22), with

Y(IL, EI,W) = [92+' O’2+ (z_z')2+ 2p0p’cos w]% (29)
ey ) = < S BAAGw) - B dw) o)
T 8m-e Y(r,r "ow)
’ T TTZ 1
B(4, ¢ ';w) = 5 sin - - ’
conff - 4+ 4] - cos T

where Im v >0 on c.

Similarly, - the electromagnetic fields due to a longitudinal magnetic
dipole of unit moment strength (i.e., m:zo) may be derived from the z-
component of the magnetic Hertz potential, Hem(r, r’, w:

—— -8 , nd i
ﬂé‘ﬁ‘i - »Héi’ﬁ *_ ﬂé‘rﬁ ’ (31)

where the geometric op’cibal parf is éiven by

11



rexP[ik‘r-r i
n€ (r,x’, 0 = =2 — U - ¢ -4 D)
- amlzen

exp[ik |r-T —
B bt ENUSERTR 1Y 52)

~ qnlr-r | n
~ o~

n

The diffracted part may be written in the form of the integral (22), with

Blr, x !, W) = - — 5 B, ¢";w) + Bd,-d'w) (33)
o 8m Y(f,g';W)

and v(r,r’;w)given by (29).

The preceding results for nez and Hmz are exact; they are especially
useful for the high-frequency range, or for large distances (in terms of wave-
length) of the source and observation points from the edge, since the diffrac-

tion integrals can then be reduced by asymptotic techniques.

b) transverse dipoles

When the dipoles are transverse to z(ee m 0 in (21)), the electro-

’

magnetic fields are derivable from Hi X, v’ i=e or m., To synthesize these
Hertz potentials in the form of (22), with £ given in a closed form, we

utilize the same image procedure as for the longitudinal dipoles (see [ 7 ]).
When o = ﬁ/N, N integer, the effect of the wedge bocundaries can be accounted
for by a set of (2N-1) image sources with appropriate orientation (Fig. 3).
For arbitrary ¢, the image procedure may also be utilized; however, the set
of images does not now close upon itself, and utilization of an infinitely
extended 4-space is required. The source and images lie in the plane z=z !

. on the circle p:p' and decompose into two sets with the angﬁle;r cooydiné.teé
$n and ;n given in (27), An image at an has the orientation

P

p =X cos (Zna + \)e) +y, sin {(2no + ve) , (34a)

while an image at 4n has the orientation

= - X_ cos {(2no - ve) - Yo gin {2n0 - \)e) . (34h)

El’l o] -~

The Hertz potentials H:X v excited by a typical image source in the infinitely

extended angular space satisfy the time-harmonic form of (18) and (19) with

12
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cos Vv, and sin Ve replaced by the appropriate quantities from (34a) and (34b).
Instead of (16), the boundary condition requires ''outgoing waves'' toward

c} = + o, The desired field solution in the wedge region follows on summation
over all images.

To synthesize the solution for H:x - we consider first the time-
b

harmonic, outgoing-wave, scalar Green's function Gm(r, r’, w) in the domain
- m<($,40) <o 0<(p, p')<® -o<z<o;this Green's function is defined
by the equation:

2 2

(v + K7 GT(r, v, 0) = - B(xer ), r = (0,4 ,0), (35)

~0’ ~ ~O

It is known that G~ is representable as follows [ 7 |-

| iklr-r_|
cCr,r W) = e U - 14 - 4D
© 4Tr\r-r \ ©
~ ~0
C exp[iky(r, r , w)] -
s ] S (36)
8 - v(z, r W)

where C is the ’integration path in Fig., 2, v is defined in (29), and

. , E
‘r-r0| T[‘D~D ‘2 ) ZZT )

~ ~ 0

A%, 4 ,w)

1 .
° mel4-d |- w w4 ld-d | 1w

Evidently, rthe form of (36) is the same as
(22) whence recovery of the transient solution is immediate via (23). The
source coordinate 40 may stand for 4n or :{n' The first term in (36) represents
the incident spherical wave in the geometrically illuminated region while the
second term repres;ents the diffraction fibeld.' Since the infinite angular space
simulates boundary conditions on the face of a ''perfectly absorbing' wedge,
there are no gedmetrically reflected contributions. Comparing the time-
harmonic form of (18) and (19) with (35) and replacing P in (21), with ee:O’
by P, in (34a) or En in (34b), it follows that the time-harmonic Hertz potential

descriptive of a transverse vector dipole source at T in an infinite angular

space can be represented as:



H:x(z;, oot = %— cos (2na + v ) Gm(i, r, 0, (39a)
N0 (x,z, 0 = 5 sin @no+ v) G(r, 7, 0) (39b)
o (x, T, w):-% cos (200 - v ) G7(z,T W) , - (402)
n:ykz,‘gn, w)=- % sin (2n0 - V) G“’(N,E w . (40b)

To synthesize the Hertz potentials for the perfectly conducting wedge,
the solutions in (39) and (40)_must be summed over all n, The contributions
from the first term in (36) will be finite in number and yield the geometrically
reflected fields. However, all of the images contribute to the diffracted field
as represented by the second term in (36). Since A occurs only in Am the
images may be grouped so as to be included in one or the other of the follow-

ing summable series [ 8 ]

[-s3
Z cos 2n& _ __ cos (20 - m)}y , (41a)
n-{ sin T
Nn=-o
. _
}* sinZpa . osin (20 - mié (41b)
/T n - sin T )
n=-.@

where 1 has the form (ZOL)"1 [4 F 4 F(m+w)], with all combinations of signs
occurring. In achieving the grouping of images, and also for simplification
of the result, one may utilize the fact thai: v in (29) is an even function of W
and that the integration path C in (36) is symmetrical with respect to w=0;
thus, only those portions of the image sums that are even functions of w con-

tribute to the integral, Details are given in Appendix A,

Performing these manipulations yields the following solution for the

time-harmonic Hertz vector:

T(r,z’, o) =8, 0+ I,z 0), £' = (0',4,2"), (42)

~C

where HE is the geometric-optical part

= 4
While & has to be restricted initially for applicability of (41a) and (41b), the
closed form result can subsequently be employed for 0 < a < 27, '

14
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The diffracted part H: is given bﬁf

, . expliky(r, ,w)]
IS L R - A (4,4, waw, (44)
Y enters y(g,g',W) Y
where 7 o
A= - 2o{re,d-4" -0 ¢4 cosv-roz(c.&-cl’noz<c¥+&')1si‘nv}, (452)
A= _%{{Q24 b’y <L+c}, )cosv+[Q <$ ¢)+Qp(d+d ") sinv}, (45Db)
and

- Q,(m)

Ql(@P) Q (CP w) = cos {-w-TT)cot - W cos (+w+r) Cot%%v%ﬂ (462a)
= Q (@, w) = sin (8p-w-17) cot %—‘OTV;%—TI - sin (¢p+w+1T) cot 9;&\;%3 . (46b)

2

2

One may ver 1fy that A Ly and hence Hd Ly satisfy the boundary conditions (16).

The form of the solutlon above is 81m11ar to that obtained by Malyuzhinets and

Tuzhilin [e1, who used a different procedure and different contours of integra-

tion for constructing the functions A

)

For a magnetic dipole source transverse to z the image dipoles at cL

are the same as P, in (343.) while those at ;g are given by - _Isn n (34b), The

solution for the magnetic Hertz vector therefore takes the same form as eH
in (43) and (44) prov1ded that the second sum in (43) and Ql 2 d+cl> Yin 45) are

multiplied by (-1), and that appropriate duality replacements are made when

calculating the fields,
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2. Transient solution

The time-dependent Hertz vector for a dipole with impulsive dipole
moment is. recovered at once ori applying (22) and (23) to (25} - (30} for the
longitudinal electric dipole, to (31) - (33) for the longitudinal ma.gnef:ic dipole,

o0 (42)-(46) for thetransverse electric dipole, and to the above-noted modified
version of (42)-(46) for thetransverse magnetic dipole. The electromagnetic
fields are then calculated from (7) - (10). The resulting expressions are
listed below. '

Longitudinal electric dipole

1 =18 +q¢ (47)
ez ez ez
. 8(t-t’- | r-r ‘/c
18,37 X B g,
S odmleer |
n ~ ~1
Lo et r.?n!/c)
-6-7 - Ul - 14-¢_) (47a)
- 4Trlr—r \
n ~ ~I
. " Re B(4,d"-i0 - Re B, - 47 -iB)
fd-lad. o - u(t-t’ - %) (47b)
€ 4me . pp’ sinh B

where é—ld is the diffracted part of the scalar Dirichlet Green's function [7] and

éinﬁ ‘L-éf-ﬂ' s1n b 6 +m)
Re B(b, §' ;-i8) = - =
) v Za[COSh ’COS 4’ ‘$ coshT?Bw— cos—-—c{a b’ +n)]
- %[sing(é-cl’-n) A, - sing(cl.-é’m)A_J , (47¢c)
2 PVA 2 2 1.2
coshp=Sltt) cPop cfez) . [(O*,‘D’)Z*P(z-z')z]é . (47d)
2pp ,
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,,,,,,,,, 23
cr cCr
‘L’l n n
2.z T 3 ’ ?n 3 Y B 1 Wy L4 —r-n
22 ) To-pleos (§- )] —eb(t4 - =g b (et - P 5 (- =2 [U(r-[d-4 )
o n crn cr.
(48a)
2 . ‘
~d 3% 4
B0 =557 Tz =71~ 72, (48b)
_ K (z-z)(potp) Ypop! X
Jl - —?——T—"_CSChB (S+A+ - S_A_) J (t"t - E')
c” L7pp
; ) ' /
+B22) csen B{[-cscthothB(zeer’Jr peosh Bt LN (s A -5 A )
c 0 p/Z ,LZ + -
2 2 %
- ZcschBsinh T e (zp+p’+p' coshf)(S, A7~ S A’ )}' Bt-t’- )
7 !’ .
+ K_(.Zg'.z_,.%cschzai[pcs‘chﬁ(z COchB-FfCSChZKB)+'*3OI coth B cschZS](S+A_{_-S_A_)

PR

' ., TDom n 2a . .
+g{p cschB(3 cotthmh—C?-a-cosh-a—B-H 0’ (3 coth”B smh]—;-!:Li --g-coth B8 cosh%§=251nh%ﬁ)

? 8 s
+2(§) cscthmb 5 (ote ‘coshB)( S, A -S A }U - =) . (48c)
=J (48d)
1 Idl" 3 4/
In (48a), & () = (a/da¢) 8(0), r, = = ‘1' rn', |t‘ I‘ ‘ and it is assumed that

H C‘ | #-, 14 3' L4 (48d) implies that the expression for J
for Jl provided that c¥ is replaced by (L . Moreover,

5 is the same as that

s _ e o1 = o 1 . C
s, = sma-(é-é T, A - = T K=gmse— - (48e)
- cosh-——- - cos—

These expressions, while derived in a straightforward manner from (47a) and
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(47b), are evidently quite involved. For this reason, we shall not write out - - . .

explicitly the results of the differentiations required for the remaining field

components, which are obtained from the following: .
|

~ z o~ ~ Z ~ 2 ~ ;

1 9 3 1 3 z

ed ° 7 ac&az ez’ Eez - 32 Moz - :Z atz Bz » (49)

~ _ € 77877 ~ a ~ _ ‘

Hep ™5 adat Tepr Heg=- ¢ 55t lezr Tlez = O (50) ;
Longitudinal magnetic dipole _ : 1
n -nf4nd (51) :

mz mz mz ;

ﬁgz = same as (47a),with e€=1 and minus sign in front of :

™ the second sum changed to plus (51a) :

~ ~ I_ _ 3 _ N _ » :

Hd :}_sz ¢ ReB(4,05-ip)+ReB(d, - ¢ iB) U(t-t'- %)’ (51b) :

mz e 411'2 pp’ sinh ] :

where é; is the diffracted part of the scalar Neumann type Green's function ['7].
The field components are given in terms of the Hertz potentials by (48a,b),

(49) and (50) with the following duality replacements:

T -0 ,E ~H ,H-.E_ , u<>ce¢ (52)
e m e m e m
¢
Transverse electric dipole: Special case -- vertical dipole on wedge face $:O
H = H g4 H s (53) ;
~e ~e
%
- g 1 S(t-t'- r /c)
Ee = % f, 2Te T 81n(é-2ma} U(m - M’ - Zrnd.‘)
m :
| |
§(t-t'~ x_/c) . !
1 m :
+ éo / TrE p COS(4 - Zmoa) U(m - ‘(‘ - Zma‘) (53a) ,
m m ] , U
T'Ied = ~—S-sin %ﬁ[ B ! =B ! J Ut-t'- ;L-)
P Ameapp’ cosh—-— - cosa(d TT) cosh - CO8 = 4-!—1'1‘) ¢

(53b) .
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l | N ‘
~ —( - )
‘ Hd Zoe e cothB[ o 4 i - ! 4+ﬂ )]U(t t'-.’@)
| 4+ ¢

e 4Treor,pp cosh—--cosg(c}a T7) cosh——[s--cos
{(53¢)
Then
o2 A
) _ e
Mep * R Fed
with
S /P )
g - 1 ]
HE “2?-?“& [—7 A=t - ro /et =t rm/c)] cos(h - 2ma) U(r-]$-2mn|)
m T ro
(54a) .
»~ 2 o ', | ~ 2, ~ -
d ec (t-t)(z-z)l: 2 3 ~d 2,3 d L
Hep_ ") -csch Bcothﬁgg He$+ csch B—-——Z He(b,JU(t—tl- 'E)
(pp’) 3B
e(z- £lz-z ) -z' 74 2
Ltclt-t Jcschﬁ[ ]6(t t'-2) ———Z—LF 8/ (t-t'- 54
o {_ 3% Tod T Ty 8kt (s4b)
The B - derivatives of Hd&’ are then calculated from (53c), Similarly,
® L
g . ..0 .
Fed = = 5em T - - (552
ﬁd(b = same as (54b) except that H eb is replaced by H and each term is multiplied
by (-1) | (55b)
Hez =(R/3tL(1/0)3/30)(0T y) - (1/0)B /24, ] (562)
1 1, |
ev Z[o -0 cos( 43 2mae.)] [Crzé (t-t' - rm/c)+ r—3—6’(t-t'- rm/c)] U(m - H)-Zmd,D
m m (56b)
- 2 '
I—Ijz = ELS____ {[pcsch B cothB +p’ csch B ($
(pp")? e
2 - 32
2 ’ d d L4
- [pcsch™B + p csch B coth 8] 1 pcschB————-—H Ut-t'- 2y
282 ©4’ apad ©P ©
cschB, notp'yd 2d ~d ) 'L
- e{ o [p+p coshB+ c(t-t )~1——]§B o —5~;Hepf S{t-t - E-)
‘ e{ pt d L
(p o) 7 4’5(“ -2 | (56 0)



I3 ! :
The electric field components are derived in a similar manner. Because the

expressions are quite lengthy, we shall not list them in detail:

~ ~ : A 2 I )

2 132 3 13 13

A T s |~~~ >

Eep -é‘ap-gp'(p p)+appa(¥ Heé CZ atz Hep (57)
s A 2 rs 2 ~

1 3 (3 13 1 8
=22 (o2 )2, - (58)
ed ;zs—< B en/ T 2542 ed " 232 ed
s o132 (25 ), 138 ] (59)
ez =730 \P 3z lep/ T D ed

Transverse magnetic dipole: Special case--tangential dipole on wedge face d=0

The resulting expressions for the potentials and field components are

obtained from those for the vertical electric dipole by the following replacements:

e“ep”’“m4 , ene$~-nmp (60}
= ‘ i ' - : 61

H = same as (57) with Hep,$ Hmp,4 (61)

Hmci = same as (58) with Hep,& - Hmo,& (62)

Hmz = same as (59) with He p,& - Hmp,é 7 (63)

~ aZ ~ A 32 ~

Eo =M 5657 md © Fmd™ M 5557 Tmp (64)

- 313, = 13 &

TR PR Y 'ng“mp] (68)
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V., Simplifications for Special Cases

To check the validity of the results derived in Section IV, we have
considered two special cases, which have been treated previously by other
methods. In the first case, the incident pulse is planar instead of spherical

while in the second case, the s{:her‘ical pulse strikes a half plane (& = 2m),

1. Incident plane pulse

When the location of an impulsive point source is moved to infinity,
the incident sphericalvwavefront appears planar in any finite observation
_region. To assure that the incident field is non-vanishing, the source strength
must be increased appropriately; moreover, the time reference must be
shifted froxln the turn-on time of the dipole in order to eliminate parameters

descriptive of the infinite travel time from the source to the observation point,

These considerations are evident from an examination of the functions

that characterize spherical and plane pulses. For a scalar spherical pulse

originating at r' = (p',é', z'),

- ‘ sft-t'-|r-r’|/c]
Glr,r'st,t’) = B , (66)
- 4ﬁ\r-£ |
where in the plane z=z /,
. 1 ’
‘;2_5'] = {pz + p'z -2pp’ cos(q@_—&')]g , z:z' . (67)
As the soui'ce point is moved to infinity in the’cL ‘. direction. in the plane z=z ‘
one has - » ' | '
1
lr-r’| ~ 0’ - pcos(d-4) + 0=} , p' e, (68)
e
so that
. 5[t+ (p/c) cos(¢-9") - t' - p'/c] ,
G. ~ , p me, (69)
inc ’

41 p
A pléhe pillse incident :aloing the direction cL:é’ is usually described by

~

w,_~ 8[t+(p/c) cos(d-¢ "], (70)

inc

implying that time t=0 corresponds to the instant when the wavefront passes
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through the origin p=0. Comparing (69) and (70), one obtains the following
prescription for converting a spherical pulse solution G(r,r “t,t’) into a
plane pulse solution H(r, 4’ )
~ ¥
8z 4',t) = Um [4m0’ Gz, rt, - £9]. (71)
L p’—m

The limiting operation is now performed on the solution £or a pulsed
vertical electrical dipole on the & =0 wedge face, We identify G in (71) with
the magnetic field component Hez(r r' i, t ), and calculate first the incident
field, Asthedipoleis moved to infinity and the limit is calculated according

to (71}, one obtains from (56a) on omitting the image contributions:

z
~ 13 pcoscl
% zg;z‘““ ) : (72)

Since the incident field is the conventional scalar plane pulse operated
on by (Bz/catz), the limiting form of the spherical pulse solution should be the
known plane pulse solution subjected to the same operator. Indeed, we find

from (56a) that the limiting geometric-optical field is:

{2?6(1: + P-E"_”i_{%ﬁrf—"'—)) U - 14 - Zmal)} : (73)

C,oncerning the diffraction field in (56b), we note first that the operation p’—*w,

with ct’ = - p’, yields

2 e 2 12 72
B = cosh™t| St} -9 -p - (22 ) ]-* cosh™? ('C'E)‘ (74)

200’

Then one may show that :

ﬁd:%%{ZZReBJJO-lB)U( _O/C)} ) | (75)

ﬂ‘c) - (o/c)*

The expressions inside the braces in (73) and (75) are the correct plane pulse

solutions as given in [ 7 ].
2. Half Plane

When the wedge degenerates into a half plane (a=2m), the general

solutions in Sec. IV. 2 simplify substantially, An interesting form of the

22

s s e 3 i 3 S



vector Hertz potential due to an arbitrarily oriented pulsed dipole in the pres-
ence of a perfectly conducting half plane has been presented recently [4 ]. It
was shown that the Hertz vectors l'[e or Hm can be obtained as a superposition
of three contributions, The first two involve respectively the Dirichlet and.
Neumann scalar Green's functions while the third resembles the form ot a
line source f{ield originating at the edge. The third contribution is required to
satisfy the edge condition on the vector field when the dipole sourcec has trans-
verse components this cannot be accompllshed by use of only the two scalar
Green's functlons. We shall flrst show how certain terms in our general

solution for a transverse electrlc dlpole reduce when 0.=21, and we shall then

cast the reduced solution 1ntovthe form described above.
Setting a=2m, one has from (46a) that

Pow -17 P+w+T

Ql(ﬂp,w) = - cos(M-w) cot 7— + cos (¢+w) co ot——7—. (76)
Then setting w=-if, using the identity
- ..y _ sin 2x - i sinh 2y :
cot(x+iy) = cosh 2y - cos 2x '’ (77)
and simplifying, one finds that
Re Ql(ﬂp, -iB) = 4 cos % coshg - 4 Re B(w, -iB) , (78)
where
- ' ,e'eshg cos %3
Re B(y, - if) = - (78a)
' 2(cosh2§- sin2 S—g)
Also, from (46b), with rx;Zﬂ ,
! S . © 8
Re QZ(CP, -iB) =4 sin > coshé— . (79)

When these expressions are substituted into (44), one may derive the following

form for the diffracted components of the Hertz vector:

d
ex

tl

I —l—cosv E}d(r,r':t,t')
€ e 12~

1

, g o

cosh , ,

+ 4116 %TC 7[sin%ﬁsin%-cos Ve - sin%—cos%—sinve] Ut-t’
PP s1nh6 .
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1, ~d et
=z sin v, GZ (f’f it,t)

B

> cosh = ! '

41 £ 2 [- cosésin-—cosv +cc>s-é-c:osi sinv ]U(t-t'-i),
TE T pp' sinh B 2 2 e 2 2 e c

(81)
where Gld and ézd are the diffracted parts of the scalar Dirichlet and Neumann

Green's functions given in (47b) and (51b), respectively, with Re B(¢, * ¢’; - iB)
in (47c) replaced by Re B(d + ¢/, - if) in (78a). ~Moreover, since

ol

2 (ore)® - (2227

4 pp’ -

L
8 _ (coshB-1" Te(t-t)
2.7 N 2/ L

sinh

2

S Jt)® - (2/e) (82)

2./p0’
one may eliminate cosh (B/2) (sinh B)—l =[2 sinh(B/Z)]—1 via (82). Recalling
that the scalar line source Green's function is [7 ]
- ' ' 1 ' ‘B—E’l 1
G (p’ p ,t’t ) = x= UEt‘t ) - (83)
< )2 ' 2 2 2 C .J
2 [(t-t")" - p-01%/¢"%]

one identifies the second terms in (80) and (81) as the previously mentioned
contributions due to a virtual line source at the edge. When the geometric -
optical contributions are added, one fin:is that ﬁ XAa,nd ﬁey are given by (80)
and (81), respectively, provided thhat G{i hand G; are replaced by the
complete scalar Green's functions G, and GZ' The resulting expressions
then agree with those in [ 4], except for a factor accounting for a different

normalization employed here.
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VI, iS_imulaitiien of an Incident Plane Pulse

In order to examine the effect of an electromagnetic pulse on various
structures and equipment, it is necessary to produce a suitable pulse form.
Ideally, we wo@ 111;tobe able to Errc;duce:a:stepr function electromagnetic
wave, i.e. an’v electrier field thai;, at e\}ery point in'slp'ace,. is zero until time
t(x, v, z) and then in:sitantaneously changes to a fixed vector value %o; the
corresponding magnetic field should change simiiarly at time t from 0 to
H_, the directions of }ijo, I-EO and Vt being mutually ne.z'l)hendicular, with the
magnitudes of E o’ H related by the intrinsic impedance of free space. In
principle, such a fleld d1str1but10n can be produced by crossed electric and
magnetic dlpoles whose source strength varies quadratlcally with time, pro-
vided that the test region is very far from the dipole location. In practice,
that distance is not very large, with the unfortunate consequence that the
field amp] itede cannot then be 1ndependent of position. Nevertheless, we
shall show that it is possible to simulate plane wave behavior at a point,
With a suitably de signed, physically reallza.ble elec’crlc d1pole alone it is
possible to produce a step-function electric field while with crossed electric
and magnetlc. d1poles it is possﬂale to qynthesme step function electric and

magnetic f1elds at right angles to each other and related by the free spaceim-

‘dance [97. A brief discussion of a possible method of realization of such an

excitation will be given. Fmally, the 1nhomogene1ty of the field distribution

will be examined, so that the size of a usable test region can be estimated.

1. Electric dipole excitation

Let us consider the electromagnetic field in vacuum® due to a z-directed

electric dipole whose moment is p(t). We obtain at (r,8,4) in a spherical co-

ordinate system (107

ﬁemr/c) C:;i} e (P- + E— <E) (84a)
) ’ o r
-~ . W / .
Hy(thz/c) = %%@— (B-+ B (84h)
EAZ (i - 2 COé 8 :P_i P .
+r/)——-——-———<C 5 . (84c)

where pl and g” denote the first and second ’cimel derivatives of the dipole moment
plt), C:(eouo)—g is the velocity of light, Q:(‘u‘7
ance. The dipole is switched on att=0, Alternatively, the same fields can be

/60),‘;? is the free space imped-

% ‘
Note that the coordinate system employed in this section is not related to the
wedge -centered coordinate system employed in Secs. II-V,
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5

generated by a current element i(t} (i denotes fhe product of current and

length of a short dipole;or inavolume current density distribution jz=6(r) i(e)) .

i(t) = p ' (t). (85)

We can now ask what function p(t) will yield an electric field at (a, /2, 0},

which has a step function behavior. Since,Er::O for 8=m/2, we set

Eg(a,n/2,0) = E_ Ult) (86)

where U(t) is the unit step functionwith t measured fromthetime of arrival of the

wave atthe observation point. Thus we seekthe solution of the differential equation

(g/4ﬂac)[p” b (c/a)p ¥ (c/a)? p:! =E_U(1), (87)

subject to the initial condition p "< p=0att=0, Solvi ing this equations, we obtain

pt = U I '&/3 ,F‘I l
() 4 e a E (f) 1 - ; - 3 )
= 4mne a B (T 1 2 e" 2 5 .«/3!

. V3
where T = ct/a. _ .

The corresponding variation of i(t) and Hé is

() = (81a2/C.) E_U(m) e” /% sin (/3 1/2) (89)
I-‘lt& = {Eo/g) e-T/Z (cos -A-%-—T +‘71_3— sin[Z—I (90)

The seemingly arbitrary choice of 6=n/2 at the field point is due to the fact
that the radial component of the electric field vanishes there and, in addition,

the 6 - derivative of Ee vanishes, thus assuring maximum homogeneity of the

electric field distribution.

~

The temporal variation of ée, H&, p and i is shown in Fig. 4. We
see that the magnetic field begins to deviate significantly from (EO/C) at
times less than (a/c) after wavefront arrival and, for all practical purposes,
vanishes for t > 6a/c., In order to overcome this difficulty, an additional
magnetic dipole is necessary, We may note that as "a' increased, the time
axisg is stretched out and, for a long time, the desired p(t) behavior is parabolic.‘
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2. Electric and magnetic dipole excitation

In order to achieve step' function behavior for both electric and mag -
netic fields, we must introduce another degree of freedom ih the source
function - -a magnetic dipblé whose time dependence is to be determined. This
dipo‘le must be oriented at right a.'ngl.esv td the electric dipole and to the radius
vector from the source to the field point in order that it contribute to the same
field components as the electric dipole, The source is then described by the

electricﬁipole P and magnétic dipole M given by

P = p(t) 8(z) 7, | (91a)

and

(91b)

In this case we obtain a pair of coupled differential equations for p(t) and m(t)

by equating (in Cartesian coordinates)

E (a,0,0) = - E_ Ult) (92a)

2

Hy = (Eo/g) U(t) (92b)

where t is againrneasured fromthetimeofarrival ofthewavefront. These dif-

ferential equations are

[p + (a/c) p' + (a/c)2 p"] - (1/c) [(a/c)m’ + (a/c)zm"] = 477 eoa3EoU(t)
(93a)
[(a/c)p'+ (a/c)zp”] - 1/c[m + (a/c)m '+ (a/c)zm/’]: 41 e a3E U(t).
: o o (93b)

From these equations; as well as directly from the symmetry of the problem,
it follows that
p(t) = - m(t)/c A (94)

and the éystem (9‘3) re&uces to the second order equation
' 2 » 3
p +2(a/c)p’ + 2(a/c) p" = 4m e 2 EO U(t) . (95)

The solution of this equation is

p(t) = 4m e.o,a3 EO{I - exp(-T/2)[8in (7/2) t cos (T/Z)]}
:4TT€oa3Eo{] -2 exp(-7/2) sin (T/2 + Tr/4)} (96a)
mi(t) = - ¢ p(t) . | , | (96b)
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This combination of electric and magnetic crossed dipoles will produce at the

i

point (2,0, 0) an electromagnetic field perfectly simulating that of plane wave, .

3. Waveform realization

In attempting to synthesize the required p(t) variation, we can pro-
ceed on the assumption that, from a circuit point of view, the dipole isa
capacitive structure, with the dipole moment proportional to the capacitor

voltage. Consider then the network shown in Fig. 5, consisting of the dipole

structure with capacitance C,, a charged condenser Cs, which is connected

d!
to the dipole by a series switch, an inductance L, and a resistance R, The

initial values of the voltage across C ., and its first derivative, are zero, as

d!
is required for p(t). Hence if the inductance and resistance are adjusted to make
the complex resonance frequency w = ~2_c_£ (1-1) for the transient given by (96)and
w = -295:(:\ 3 - i) for that given by (88), then a step function field is obtained,

The resonant period of the circuit must be of the order of magnitude of the time

T

of travel of the wave from the source to the observation point, This circuit
is a modification of one given by Baum [ 9]. Using the resonant frequencies

above in the circuit of Fig. 5 and assuming CS and Cid to be given, one finds

from the resonance condition : -
®

et R -l =0, Cztl‘stclg' (97)

that for the transient ip (96),
R=Z 2, L=é(%)2, (98a) *

while for the transient in (88), f
R=z %, thlr(%’z : (98b) |

g g

The design of a suitable generator circuit for a magnetic dipole is
more difficult but again, circuits discussed in [10] can be used, with the proviso

that resonant frequencies and damping rates be suitably adjusted for source

proximity.

e T e
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7 . 4. Field amplitude homogeneity

Although no exhaustive study of field var1at10n was performed there
are reasons to believe that the pr1mary limitation is the l/R field dependence
of a static dipole. The electric field on the x axis was calculated and found
wobe R - : : :

2

Ez = - E‘? (%)3{1 - e-T/Z[(l _ _3:_)2 Sir,l,%+ (1 - 2;7) cos %]} (99)

We see that, for large T, the static dipole result mentioned above is evident.
For ‘x-a‘ << a the fractional change in field amplitude is 3 [x-a I/a. The
initial response, for T-0, is proportional to (a/x), so that the fractional
change is only ‘x al/a Numerzcal examination of (99) for (x/a) close

to unity shows that, as a functlon of T, there is a gradual transition from
the relatlvely weak 1n1t1a1 1nhomogene1ty to the static field inhomogeneity,
Since there are no f.1rst order 1nhomogene1ty effects in the transverse d1rec-

tions, if is expected tha.t the limitation due to x- dependence will be the

limiting factor.
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Carefully tested numerical results for three selected special cases
of wedge angle and observation angle are plotted in Figs. 6(a) - (¢}, for excita-
tion by a vertical electric dipoie. The dipole moment is the function given in
(88), with a = p’, i.e,, the incident electric field at the edge behaves like a unit .
step function. In each figure, the temporal field variation in the plane z = z/ is
shown for p = 0,0l and p = 0,2, with p’ = 1 (see als¢ Appendix C, Sec. 6). Here,
p and p’ denote normalized distances; unnormalized results are obtained by inter-
preting p as the ratio of edge-to-observation-point to edge-to-source-point dis-
tance., The case 'p = 0.0l represents a very distant source, and the fields should
thus be nearly identical with those for an incident plane pulse., The curves ob-
tained for p = 0.01 do, in fact, show agreement with previously obtained results
for the plane wave case [27 and this check confirms the correctness of the com-

puter program.

- We can now assess the effect of dipole proximity near the edge by
comparing the p = 0.2 curve with the quasi-plane-wave case, p = 0,01, in each
plot. The electric and magnetic fields are normalized to the (unit amplitude)
field discontinuity across the wavefront at the edge, and time t = 0 corresponds
to the time of arrival of the incident field at the observation point. For p = 0.01,
the observation point i8 near the edge and near the wedge face whereon the dipole
is situated; therefore, thé incident :EY and ITIZ fields behave almost as those in a
plane pulse (see Fig. 6(b)}). For p = 0.2 in Fig. 6(b), the observation point is .
sufficiently far removed from the edge and the dipole plane to exhibit noticeable
deviations of the incident fields from those of a plane pulse., These deviations
of the incident and also reflected fields (initial portions of the curves in Figs, 6(b)
and 6(c)) are O(p/p'), as is to be expected from the discussion in Sec. VI. 4,

The diffracted fields (curved portions of the graphs) differ by a similar amount
over the initial period following the arrival of the diffracted wavefront. However,
the long-time behavior for p = 0.2 can deviate more significantly from that for

p = 0,01,

The three configurations in Figs. 6 differ as follows: in Fig. 6(a) only
the diffracted field reaches the observation point; in Fig. 6{b), the incident and
diffracted fields are present; and in Fig. 6(c), the observation point is reached
by incident, reflected and diffracted waves, The order of magnitude of the proxi-
mity effect within the time interval under consideration is substantially the same
in all three cases, Further examples of transient ficld behavior are shown on
Figs. 7-26, for wedge angles ranging from 135° to 270°, For small valges of
p/p"the proximity effect, i.e. the Cﬁange in thc;vdriffracté'd;fieid, is of the order L
of (p/p’). We see that there are locations in which the field appears to vary .
much less than in the plane wave incidence case. For example, the 270° wedge
region (Fig. 10) seems to provide a region in which the field remains relatively

constant over a time range, an



Appendix A,

Summing the image series

When the image solutions in (39) and (40) are superimposed to satisfy
the boundary cond1t10ns for a perfectly conductmg wedge one encounters
infinite series whlch are typef1ed by the one for A cL 4w ) derived from
(392):

T d CL, w) = y [ + ! jcos(Zn{:L-k\)e).

e 14- zna+4 |ow 4 |d-(2n0+47) |+w

(Al)
Important in subsequent manipulations is the recognition that only the even
part in w of the function ALI) contributes to the integral in (36). Therefore,
we may change w into -w, or omit odd functions in w, without affecting the

value of the resulting integral.

For n>0 and c$><$',we have

m - |4-(2na 4 ) low = 1o 2n0+ (b-d")ow (AZa)

m+ d-(2no 4 ¢ 4w = e 2na - (4-4 "Yw (A2b)
while for n< 0 and ¢ > ¢,

7 - |d-(2na + ') |-w = 7208 - (4-4')-w | (A3a)

o+ ld-na+ 44w = m - 2na b (d-d 4w (A3b)

Changing w into -w in (A2a) and (A3a), we may regroup the images and obtain

the following expressio,ﬁ for the series in (Al):

-] . o
. cos(2na + \) cos(Z2nd + v
A0 b :_1_7 *(2n ’__1-2 ki U VR
* 20 L é Jp 2a (d-b ) twtm
v n=- Vn:_,co n - 58,
Writing
'c“oé‘(Zn& + \)e) = cos(2nd) cos Ve - 8in{2na) sin \)e, (A5)

one observes that the series in (A4) are of the kind shown on the left-hand sides
of (41a,b), and are therefore givén by the closed forms on the right-hand sides.
Thus, ST - . , |



A _c—os[(ZCL-TT)Cp_] ) c.os[(Zd.-Tr)Cp_}]
€
sin[nm_]. | sin[ﬂfP+J

- sinEZOL-TT)QIT_J ) sin[(ZG_rr}ep+j

+ 5y siny, J (A6)
] el
where

-4 - wem 4 - ¢’ + wim

v = 55 , cp+ = 5 (Aba)

Consider now the expression inside the first braces in (Ab):

{ } = cos(cx-&' - w-n)'co{m_] + sin(cL-cL' - W-TT)

' 4 . '

- cos{d-& + w+T) co L.TTCP'FJ - s1n($-$ + W) (AT)

Combining the two sine functions, one obtains cos@)-&) ‘Ysinw, i.e., an odd
function in w, which does not contribute to the integral in (36). Therefore,
only the first and third terms in (A7) are significant. An analogous simplifi-

cation is obtained for the expression inside the second braces in (A6).

The image sums derived from (39b), (40a) and (40b) are treated in a

similar manner,
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Expressions for the Fields near the Plane z=z'

-The exact expressmns for the field components in Sec, IV, 2 simplify
when the fields are evaluated in the source plane z=z', To explore the field

! . .
behavior near the plane z=z', we have examined the power series expansion

32R

(z-2") "+ ....
32|

zZ=2z v. (Bl)

where B stands for any of the field components. For the vertical electric

Nl»—‘

B(p, z, p',z’;t, t')- = B‘ + T‘ z z')

dipole located on the wedge face $:O, one has
-, - -, oo N , . B . .
I—Ip = I-IA = Ez =0 when z=z |, (B2)

whence these field components behave lirkbe (BB/BZ)VZ_Z (z-z') near z=z'. The
remaining field components H,E, Eé are finite when z=z' and have vanish-

ing first derivatives at 7,z:z,:/, whenpce the corrections for zaz’ to their values at
7=z’ are Q[(z-z ’);]; this requir.e.s evaiuation of the second derivatives of the
field components and leads to expressions that are no simpler than the exact
ones, Therefore, nothing is gained by explicit analytical calculation of the

approximate forms for I—IZ, Ep and Ed

Even the expressions for Hp,‘ H) and Ez turn out to be fairly compli-

cated. One obtains for observation points off the wavefront:

~

ZA
oH 2 ' ot 371 -
P = fﬁ-(t——'f—)—[-cschzﬁ coth B ——B——e&’%- cschﬁ———gé ‘ (B3)
L P _ ° 98 =z’ '
26
BHé 7 1 DT
_ee (t-t )[: csch™B cothB i 2 i
AT Ll S B - csch™B (134)
5z — (00" 8B~ ‘ op .y
3o af ?’Za
Z
T = - {[pcsch BcothB% p csch B] —EB—_-[DCSCh B%D csch BCOthB] gé?_

Z=2 (pp

cH

e
+ P CSChBR ’ B - | (B5)
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where

i
‘E'Eeﬁ -Ecsch Bs1n-—(c§ AM ——cothB s1nh sm (447 A (4)]
(B6)
221 8
_ =[-2csch BcothBA(ci)--—csch B sinh ZF A%d)
aB zez !
2 2
+ @) coth Beosh T2 A%(4)-2(0) coth Bsinn® I A 4)] sin-g-(a-m
(B7)
_EE.EZ:Z’:[—cosh—— &)--—- ZWB 2($ L, '(¢7"‘¢)
(B8)
-
3T 2
Tasep z:z’:[g) [sinh%gA@ -3 smhI‘-—B-co hE—EE 2(4)+2 sinn> T2 nB 3(4)]23"(4*4)
(B9)
" |
? leo - (E)Zi-coshzr-ﬁsinﬂﬁ mAZ(4)-2 sinb® 2 sinT(d-m A3 4] 4--4
W I-—- o L a AN - n E-Slna -TF ( ) e +( - )
Z=2 -
(B10)

In these equations, (cL—*-&;) denotes the preceding terms with & replaced by —4 .

34

(d=-4)

S F

i Ao

Py GO Y R FOR S

e et



Appendix C

1. The Computer Program

The analytical results obtained in the preceding sections hold for the
most general situation, e.g., regardless of the wedge angle or the source
location and orientatioh. The present computer program is, however, de-
veloped only for the special case where an electric dipole is situated on and
perpendicular to the surface of the wedge at ¢ = 0, The reason for doing this
will be explamed subs equently .

As shown in Sectmn v, the electromagnehc fleld can be subdivided
into geometric opt1ca1 and diffracted fields. The geometric optical field can
be simply and dlrectly accounted for, even in the case of a dipole with arbitrary

time variation. On the other hand, the dlffracted field is analyzed through the

vector Hertz potent1a1 Fur thermore for a source of arbitrary time variation,
the field is determmed by the convolutlon of the source function with the time-
dependent Green's functions obtamed in Section IV, Smce no analytic result
is expected for the convolution integrals encountered here, they are evaluated
numerically, It is this numerleal evaluation of convolution integrals that
consumes substa;ﬁtrial computer time and space, especially for long observation
times., For this reason, the scope of the compufer program has to be restricted.
It-should be pointed out, however, that if the computer time and space are not
of primary concern, the present program can be modified for the general case
without major effort, _ |

A nuraber of " comment" statements are provided in the program and
the output data are all under appropriate labellings. Therefore, the program

“ghould be easy to read and interpret.

2. The Computational Scheme

The humerical c'omp‘utation of. the electromaghetic field due to a. time
varying dipole in the presence of a perfectly conducting wedge can be sub-
divided into the relatively simple computation of the incident and geometrically
reflected fields and the more c_omplica.ted evaluation of the diffracted field.

The diffracted field is obtained by making use of the expressions for the vector
Hertz potentials obtained in Section IV, 2, We could proceed by calculating first

the electromagnetic field of an impulsive (delta function) dipole and then convolve
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this response with the time variation of the actual dipole or, alternatively, we
could first convolve the Hertz potentials with the d:ipole time variation and then .
differentiate these to obtain the electromagnetic field, The latter approach was
taken in order to reduce the singularity of the functions to be differentiated, Pro-
ceeding the other way necessitates the analytic separation of singular terms from
the solution, the differentiation and integration of these terms, and subsequent
combination of these a;;laIYtic results with the corfespond.ing results obtained by
numerical integration and differentiation of the well-behaved part of the solutions.

The choice of the ® convolution first - differentiation second" approach
necessitated an immediate decision concerning the dipole time dependence, For
this reason, the electric dipole producing a step-function electric field at the edge
of the wedge (cf. Section VI) was selected. This dipole rnoment time variation
appears in the computer program as function PN(TA); it also appears indirectly in
the e}{pressions for the incident and reflected fields. These expressions would
have to be modified if a different dipoie moment time dependence were to be used,
For a vertical electric dipole on the wedge face ¢ = 0, the dipole orientation is
along ¢ and the location was chosen at (p, ¢, z) = (1, 0, 0},

The numerical computation procéeds by calculation of the radial and angular
components of the Hertz potentials at the observation point (p,q)c, 0), and at a num- .
ber of neighboring points in drder to provide for numerical differentiation, These
differentiations are then carried out, and the diffracted electromagnetic field is
calculated. The diffracted field is then added to the correéponding field of the i
dipole and its image. It is assumed that no more than a single image dipole con-
tributes; this restricts the exterior wedge angle ¢ to the range a> fn/Z; should the
need arise, a modification for smaller values of ¢ is ﬁot difficult to write into the

program, |

3. The Convolution Integrals

Concerning selection of the basic time increment, it was found that ‘
cAt = p/400 gave better than 1% accuracy for times up to 4p/c behind the diffracted ;
wavefront, Using this incrementation, the expressions (53b) and (53c) are pro- ‘
grammed in a subroutine AMPS(GRHO, GPHI) and returned to the main program
evaluated at a set of points separated by the selected value of cAt. The convo-
lution of these functions with the similarly evaluated &ipole moment function is
carried out by the trapezoidal rule with three exceptions: (1) If the convolution

extends over one time interval only, the dipole moment function is assumed to .
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vary quadratically, then the p and ¢ components of the Hertz potential for the im-
pulsive source vary like ’cl/2 and t_l/z, respectively; and the integral is evaluated
analytically in terms of the values of PNN, GRHO and GPAI at the end of the first
interval, (2) For larger multiples of cAt the contribution of the first interval is
evaluated by assuming quadratic variation of PNN and linear variation of GRHO and
an GPHI, (3) The last interval contribution is evaluated eesuming linear variation

for PNN, tl/Z{ féor GRHO, and t_l/zrfor GPHI. These convolution integrals are stored,

as arrays, for all 6 points necessary for numerical differentiation under the names

PIRHO and PIPHI.

4, Numerical Differentiation

Numerical differentiation is straightforward, with one exception, Since the
Nth value of PIRHO or PIPHI denotes the values of these potentials N time intervals
behind the diffracted wavefront, a change in the p coordmate of the observation point
involves both a change 1nmthe coordinates for Wthh G 7 G are evaluated (i, e. a
different value of J from among the 6 points) and an appropriately different value of
N for absolute (Vi. e, not "behind wavefront") time. Hence, differentiation with re-
spect to p involves simultaneous shifts in both J and N. For simplicity Ap = cAt
was used, so that the appropriate shift in N is unit}‘r.v The differentiation was carried

out numerically according to (56) - (58),

5. Geometric Optical Fields

- The geometric optical field consists of the incident and reflected fields. The
latter can be evaluated by the method of 1mages, taking into account the time delays
between the times of arrival of the various field constituents and restricting appro-
priately the angular range of contribution, These computations are included in a
subroutine label?led GEOFD, for which another subroutine, DIPFVLD, is provided for

evaluating the radiation from a dipole in free space,

6, Normalization

“The normalization in this computer program was intended to facilitate com-
parison with the results of Baum [l] and H1gg1ns [2.] The electric and magnetic
fields are normalized to the d15cont1nu1t1es in the incident fields at the wavefront
when the latter is at the edge of the wedge, Time is printed out in units of p/c and
t = 0 corresponds to the time of arrival of the incident wave at the obs ervation

point,
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Fig. 3 Image Cohfiguration
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Figure 22. Field Calculation: p =
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