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ABSTRACT

The problem of pulsed antennas has two complementary parts:

(i) analysis of the radiation field when the driving voltage is

given, (ii) synthesis of the driven voltage when the radiation

field is given.

In this paper a number of heuristic procedures are presented,

relating to the computation of transient radiation from elementary

sources, coaxial apertures infinitely long cylindrical antennas,

finite cylindrical antennas, and loop antennas. Comparison with

available rigorous solutions and experiments is also provided.

~+ ‘On leave of absence from Departmnt of Electrical Engineering,

‘F,
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1. Introduction and Discussion of Principal Results

In early 1969 Prof. T. T. Wu stated: “It is worth emphasizing

that our knowledge about the transient response of antennas is very

meager indeed, Any progress in this rather neglected field is certainly

going to be of tremendous value~’[I]. Although a few new papers have

appeared on this subject since then, the above statement is probably

still valid.

Mmt of the papers concerned with transient currents on and

transient radiation from antennas

integral equations which are then
f

Fourier techniques. These paper$

use solutions of frequency-domain

transformed into the time-domain by

cover the transient behavior of the

infinite cylindrical antenna [2,3,4,5,6,7], the finite cylindrical

antenna driven by a coaxial line [8] or by a gap type excitation [9,10],

the conical antenna [11], the ap6rture antenna [12,13,14], the loop a

antenna [15,16], and the loaded antenna [17]. In a few papers, an ex-

perimental verification of the theory is provided, with reference to the

radiated and received fields [18,19] or

antennas [20,21]. Also, the effects of

source-excitation modeling can be found

to the input response of the

thin-wire approximations and of

in the literature [31,32]. Other

approaches that have been used are the singularity expansion mthod [22,

23], the solution of the transient current integral equation directly in

tire-domain [24,25,26,27,28,29],and an almost rigorous application of

Wiener-Hopf technique [30].

A general characteristic of nmst of the referenced material is the

emphasis on either the extensive use of numerical methods or the
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presentation of the solution in an integral

ated numerically or at least asymptotically

approach has been suggested [33] which aims

form that must be evalu-

[7~. A somewhat different

at the general properties

(if any) of transient radiation, In this paper, this approach is

formalized and further developed.

In Section 2, the

or magnetic sources with

transient radiation from elementary electric

prescribed current distributions is anal,yzed

by using a formal Fourier inversion of known steady-state results, The

source environment is assumed not only isotropic and homogeneous, but

also nondispersive, since completely different results are obtained

when dispersion is taken into account [34,35,36,37]. This assumption

will apply throughout this paper. The analysis shows that the transient

radiated power is expressed in terms of the I/r components of the

field only, when the antenna excitation is confined in time.

ponents in the case of an electric dipole are proportional to

These cam-

the time-

derivative of the current ~(t*) and to the second time-derivative of

the input voltage ~(t*), at the retarded time t* = t = r/c . In the

case of a magnetic dipole, the l/r fields are proportional to i(t*),

~(t*), where I(t),V(t) are respectively the current along, and the

voltage across the small current loop.

In Section 3, a deeper analysis of transient radiation from the

elementary sources is presented, For the electric dipole, a nmdel of

two opposite charges which collapse one upon the other is assumed. FOYI

the magnetic dipole, a pulsed current along a circular loop is considered.

In each case, it is shown that the far-field waveform is proportional

3
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to the first, or second time derivatives of V(r) or I(t), when the ●
time resolution is greater than h/c , h being a characteristic linear

dimension of the antenna, and c the light velocity, In this same

scale, the radiation due to an assumed pulse of current appears in

the formof two pulses (electric dipole), or a ’continuousradiated

waveform with square-root singularities (magnetic dipole). However,

when a time scale larger than h/c is considered, it is shown

proper limiting process leads to the formal results of Section

Froma physical standpoint, the process can be understood as a

that a

2,

con-

traction of the physical dimensions of the radiators, or equivalently,

as a limited time-resolution of the field measuring devices.

Also the more complex radiating structures that will be con-

sidered here are subject to the above time-resolution property. Accord-

ingly, a macroscopic and a microscopic approach are defined for the

transient radiation, with respect to a time-resolution of order h/c .

In all cases the transition from one tirw-scale to the other is developed

in detail.

In Section 4, an analysis of transient radiation from coaxial

apertures is developed. In the macroscopic approach, advantage is thken

of the equivalence between the aperture field and a distributed magnetic

100P[38]. The far field is shown to be proportional to ;(t*), V(t)

being the voltage across the aperture. In the microscopic approach, the

far field is computed as due to the sudden reflection of the current at

the open end along the edges of the conductors of the coaxial aperture.

The radiated waveform is characterized by four square-root singularities,



.

where the inc.

cular. These

dent voltage is a pulse and the coaxial aperture is cir-

results are in agreement with a quasi-rigorous solution

of the problem [30].

In Section 5, the radiation coming from the gap of a linear

antenna is considered. In the macroscopic approach, the far field turn:;

out to be proportional to ~(t*). In the microscopic approach, the

radiated waveform has a square-root singularity when the applied voltage

is a step, This last result is consistent with the early-time behavior

of the far field radiated by an infinitely long cylindrical antenna [7].

In Section 6, an approximate method is developed for computing

transient radiation from linear antennas and loops large with respect to

CT , T being the pulse width. The approximation involved is the use of

transmission line analysis forrmdeling currents and voltages. This

results in a sinusoidal current distribution. It is therefore expected

that the results of the analysis are valid in the limit of vanishingly

small wire radius [39].

For the linear anlienna,the far field turns out to be radiated

from the input terminals and the end-tips, as qualitatively suggested

in previous analyses [11,13] and experimentally confirmed [18]. For the

loop antenna, the far field appears in the form of a continuous waveform,

with square-root singularities (when the applied voltage is a Dirac
.

pulse). For each observational position there are two flash points on

the loop from which most of the radiation appears to be emanating,

In Section 7 conclusions and recotrrnendationsare made. The sug-

gested

and al”

recipes and techniques of analysis are simple and rather general

ow the hand”ing of a large variety of radiators of practical
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interest. However, the dispersion of the pulsed waveforms propagat-

ing along the radiating structures is not taken into account. On the o

other hand, this dispersion will produce a continuous radiation, which

is generally small and gives the late-time response of the radiating

structure [7].

6



2, Formal Solution for Transient Radiation from Elementary Sources

Suppose we have an infinitesimal oscillating electric dipole of

nwment pe = poexp[-iut] in a homogeneous isotropic environment. The

dipole is located at the origin of a spherical coordinate system

(r,9,$) and is

ponents of the

the well known

@ = c

:e(u) = ~

oriented parallel to the direction 6 = O . The com-

dipole’s electromagnetic transformed field are given by

expressions

2poexp[ i ~r]

4w

poexp[ i ~ r]

47rr

PoexP[ i ~ r]
$(u) = 47rr

Cose[+ +$-]
r

where ~ = Jji7Fandc= @i,

From (1) the transient fields can be easily obtained for

(la)

(lb)

(It)

the case

of a nondispersive environment, when the dipole nment varies arbitrarily

in times i.e., pe = pe(t) . By taking the Fourier transform of (1)

*

Er(t) = ~
~

A
Er(LO)exp[-iut] dw (2)

-co

and doing the same for the other field components~ it is easily obtained

be(t*) cpe(t*)
Er(t) = & COSE&y- +~~

.=

(3a)

7
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E6(t) =&sin

H@(t) =+~in

where t* = t - r/c is

with respect to time.

pe(t*) ~ pe(t*) cpe(t*)
e[T —+-&r (3b)

pe(t*) ~ be(t*)
e[~ —Ir (3C)

the retarded time and a dot means derivation

The corresponding expressions for the magnetic dipo-

diately obtained by duality (H_+E_, g+ -~, c+ l/c , pe

Pm(t*) cpm(t*)
Hr(t) ‘+ cos e[ ~ ‘-p+

Pm(t*) bm(t*) cpm(t*)
He(t) ‘& sin 13[~+~ ‘---&

Pm(t*) + Pm(t*)
E+(t) = - & sin e[~ -Y--I

The r-component of the Poynting vector is

s;(t) = E@(t) H@(t) , Sp(t) = -EO(t) He(t)

e are imme-

+ -pm). Thus

(4a)

(4b)

(4C)

for the electric and the magnetic dipole respectively. The radiated

energy density at (r,e) is

.
(6a)

(6b)
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When the dipole excitation has a finite duration the bracketed

terms inside the large parentheses are equal to zero, and eqs, (6)

transform as

*.
we(r,O) =

~ ~ be(t) dt
(7a)

A

+@J

wm(r,e) = sin20
~
~m(t) dt (7b)

q(47rr)2c2~

Equations (7) show that the total radiated energy is dependent

only on the l/r components of the field accordingly

“radiative” terms.

It is interesting to calculate in which region

identified as.the

of space the

radiative terinsare the dominantifield components. Reference is made

to a gaussian pulse,of electric moment

Pe(t) = P. eXp[-2t2/T2j (8)

T being the effective width of the pulse (distance between inflection

points). Substituting (8) in (3) one obtains

*L pe(t*)
Er(t) = CT ‘*+ (+’)21cose[-4 ~-$

4mr(cT)2

Pr(t*)
H+(t) =

Gz7
sin 0[{8($)2- 4} -4~$1

(9a)

(9b)

(9C)

It follows from (9) that the radiative terms are always

dominant provided that

9
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r >> CT (10)

save in the neighborhood of t* = T/~ , where the radiative terms

are zero. Identical ~esults are obtained for the case of a magnetic

dipole, It is concluded that the spherical surface r = CT divides

the space into two regions, which can be labeled as inductive space

(inner region) and radiative space (outer region). In the following,

only radiative fields will be considered.

Equations (13) and (14) can be used for computing radiation

from “small” dipoles and loops, where “small” applies to the CT space

scale, The following results are obtained:

(i) Electric short dipole of effective height h :

E6(t) = 3H@(t)

..

+
Ho(t) ❑ - i ::ch sinfl=- +

ChV t* sin 0
wrc

(ii) Small loop of area A :

(lOa)

(lOb)
o

(Ila)

In (10) and (11) C and L are the static capacitance and

inductance of the dipole and the loop respectively, I(t) and V(t)

the current along and the voltage across the radiators, and the quasi-

static relations

(dipole) I(t) = C~(t) ; (1OOP) v(t) = -Li(t) (12)

8
10



have been used,

Equations (lO)and (11) clearly show that the radiative fields

are not a faithful replica of the transmitted signals (currents or

voltages on the radiators). In particular, if the current is propor-

tional to a Dirac pulse d(t) (electric dipole), and to a step function

U(t) (magnetic dipole), the radiative field turns out to be proportional

to :(t) * Therefore, the radiative field flip-flops,

11
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3. Physics of the Transient Radiation from Elementary Sources

In this section a deeper analysis of transient radiation from

elementary sources will be made,

For the case of an electric dipole, reference is made to Fig. 1.

Two charges, +q and -q, are located at a distance 2L apart. At a time

t= -t/v the charge +q is suddenly accelerated and is then made to

travel at constant velocity v , so that it collapses on the charge -q

at time t = $/v ● The plot of the electric mament p(t) of the system

vs. time is given in the graph of Fig. 1. Accordlngly~ a pulsed current

It~<L/c,fromz=ktoz=-R,is flowing in the time interval _

Formal expressions of current density in the time and frequency

domains are the following:

J(r,t) = -E!zqv6(X) d(y) d(z+vt) = -~zq (s(x)d(y) &(t+;) , Itl 5$-- ●

J(r,t) ❑ O ,It[>$-.

(13)

,

being a unit vector in the z direction. The transformed radiative
%

fielckassociated with (14) are

(15a)

12



“

(15b)

By Fourier transforming (15) into the time-domain, the result

~[b(t’+ $+gcose)-d(t’ -$- :Cos e)]Ee(t) = ~& q+cos e

(16a)

H+(t) = E6/L t*=+ (16b)

is obtained. Equations (16) clearly show that the radiation emanates

from the end points of the configuration at times -!L/v(acceleration)

and +L/v (deceleration), respectively (see the diagram of Fig. 1).

Accordingly, the radiated field is proportional to the time derivative

of the current (see eq. (10)), when a time scale less than 2E/v is

considered.

The transition from (16)--microscopic approach--to (lO)--macro-

scopic approach--is readily accomplished by letting 2k/v approach zero.

One obtains

E6(t) = lim 2L sin @d(t*+ ‘) ~x6(t*- ‘)~z%2R/v+o

P.
‘~m sin e $(t*) , x = $(V + Cos e)

——

H+(t) = CEe

(17a)

(17b)

thus recovering (10), since I(t)2L = -q6(t)2!J= -pod(t) .

For the case of a magnetic dipole, reference is made to Fig. 2.

A constant current 10 is suddenly switched on at time t = -T and

13
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switched off at time t = +T . The current flows in a circular loop

of radius R located in the plane (x,Y).

Formal expressions of the current in the time and frequency

domains are the following:

I(t) = IotU(t+~) -U(t-~)] (18)

i(u) sin a-c= 210— u
(19)

The transformed radiative fields associated with (19) are

RI
fie(u)= - #sin(w) J1(~R sin 6) exp[i ~r] (20a)

@ = -ci6 (20b)

J,(x) being the Bessel function of first kind,

By Fourier transforming (20) Into the time-domain, the result

10
l-lo(t)= - Zrr sln 0 [H; + Hi]

E+(t) = -&16

Hi(t) =~
t**~

- (t*t7)~

H~(t*) = O

is obtained.



Equations

t = -T, t = T ●

radiation for

laries (see the

points AA’ (fli

(22) clearly show that the antenna radiates at times

For each direction of observation there is continuous

t-~1 SR sin O/c

,—-.

~ characterized by square-root singu-

diagram of Fig, 2). The radiation emanates mainly from

sh points) at the intersections of the looP with the.

plane containing the direction of observation and the z axis, No

radiation emanates from points BB’ (black points), due to a cancellation

effect. Accordingly, the radiated field is proportional to the

second tinw derivative of the current (see eq~ (11))~ when a time scale

less than R/c is considered.

The transition from (21)--microscopic approach--to (11)--macroscc)pic

approach--is accomplished by letting R/c approach zero.

Reference is made to the radiation which takes place at t=-~ .

For R+ O, it seems quite reasonable to substitute for the actual

radiated waveform some equivalent pulses (see Fig. 3). Reasonab”

quirements are (i) the strength of each pulse must be equal to t

gral of the actual waveform; (ii) the time allocation of each pu’

divide the actual waveform into parts of equal area, When these

meritsare fulfilled, eqs, (21) and (22) transform into

IOR [d(t*+~+~x) - 6(t*+7 -ix)]
He(t) = lim ~~.

R/c +0 x

EA(t) = -gH9(t)

e re-

me inl;e-

se must

require-

(23a)

(23b)
Y .

15
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thus recovering (11), since I(t) = U(t+r), apart from the factor
o

3/T = 0,995 = 1 . (depending upon the somewhat arbitrary identification

between actual radiated waveforms and equivalent pulses).

16 “8



4. Transient Radiation from Coaxial Apertures

In this section, the transient radiation from coaxial apertures

will be considered. Reference is made to Fig, 4 where the radiation

from an open ended coaxial cable of circular cross-section is considered.

However, the results which will be presented can readily be generalized

to apply to radiating apertures of different geometry.

First, the

Let V(t)

cable. Under the

electric field in

macroscopic approach will be exploited.

be the incident voltage at the open end of the coaxial

assumption of perfect open-circuit conditions, the

the aperture has only a p-component given by

(24)

and the magnetic field is zero.

By using the equivalence theorem, the radiated field can be com-

puted as due to an equivalent magnetic current density with only a

component, Jm$(t) = EP(t) . A z-directed electric dipole of moment [38]

as given by b

(25]

is therefore associated to the aperture, In (25) A = ~(b2-a2) and is

the aperture area, and Z. = [G !Ln~]/2m and is the characteristic imped-

ance of the coaxial cable.

17
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When A is small compared to (cT)* the higher order moments

associated with the aperture are riegligible~and the radiated field can

be obtained from the results of Section 2. Hence

sin 0 (26a)

(Mb)

Accordingly, the radiated field is proportional to the second

time-derivative of the incident voltage.

As a preliminary to the study of the radiation from the micro-

scopic point of view a model similar to that of Section 2 for the elec-

tric dipole is considered. A charge q at position z=-R is suddenly

accelerated at time t = -z/v and is then made to travel at constant

velocity v along the positive direction of the z-axis, Att= (land

z = o, the charge is suddenly reflected and is again made to travel at

constant velocity v along the negative direction of the z-axis. At

t= z/v and z=-!t the charge is suddenly stopped,

The radiated field can be computed by following the same proce-

dure as in Section 3. Only the results are given in the following. The

field is radiated at tires t=-$t/v, 0 , k/v , from points z=-k, O, t,

respectively, Particularly, the field radiated at t=O, z=O (reflec-

tion of the charge) is given by

(27a)

(27L))

●

0
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Turning to the coaxial structure of Fig. 4, let I(t) = q6(t-z/c)

be the current propagating along the cable. The pulsed linear charge

densities on the inner and outer conductor will be q/2ma, -q/2mb

respectively. These pulsed charges will apparently be propagated with

velocity c along the cable. Accordingly, the radiated field can be

computed via (27) (with n=l) and superposition. Hence

[

27r

1E8(t) = L ,* 2\ a(t - >)d$ - j d(t - >)d$ (28).
0 0

where ra,b are the distances of the point (r,O) from the inner and outer

rims of the cable respectively: +

r =r- a sin 13cos,$ , rb.r -bsinecos$ (29)
a

In order to compute the integrals which appear in (29) it is con-

venient to use the Fourier transform:

-b 2Tr

J
dt exp[iut]

~
6(t* + ~sinecos $)d@

-m o
!

2’Tr +’=

o -m

21T

= exp[i ~r]
J

d~ exp[- # b sin 6COS $]

o

= 21Texp[i ~ r] Jo(~b sin 6) (30)

and similarly for the other integral. By Fourier inverting (30) in the

time-domain and substituting in (29), the result

19



E$t) = c; ~~ [Eb(t*)- E’(t*)

Ho(t) = E@(t) / L

(31a)

(31b)

is obtained, In (31) the functions Easb(t*) are given by

Ex(t+ 1

f if s \t*l<~sln 0-c (32a)m
J( ~sin O)c- t*L

Ex@) = o

radiated field

agreement with

it*\ <~sin6
-c (32b)

is given in Fig, 5. The above re-

those of an exact analysis carried

[30] when pulses such that

restriction does not apply in the

A plot of the

suits are in complete

out by using Wiener-1-lopftechniques

CT << b are considered. This last

proximity of the forward direction.

Equations (31) and (32) clearly show that, for each direction of

observation, there is a continuous radiation for lt*l &b sin 6/c “

characterized by square-root singularities. The radiation emanates mainly

from points AA’, BB’ (flash points). Accordingly, the radiated field ~s

not proportional to the second ti~-derivative of the incident voltage

V(t) = Zoq 6(t) = ~6(t) (see Eqs. 26), when a time scale less than b/c

is considered.

Also in this case the transition from (31)--microscopicapproach--

to (26)--macroscopicapproach--can be accomplished by substituting for the

actual radiated waveform equivalent pulses (see Fig, 5) as already done in

Section 3. Then b/c and a/c are required to approach zero. One

obtains (see Fig. 5)

20
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Ee(t) = Iim
b/c+O f zTrr:ifl, { ‘x-y) ‘(’*-x):: (’*-y)

a/c+O

- (x-y) 6~’*+y)- ‘(’*+X)
x-y “

E8(t)
H+(t) = — bsinO, y=asin6

s x=-—
c ,P c Zc

(33a)

(33b)

thus recovering (26), since V(t) = ~d(t),

5. Transient Radiation from the Antenna Gap

In order to compute

infinitely long cylindrical

the transient radiation from the gap, an

antenna of circular cross-section is con-

sidered (see Fig, 6). The antenna is excited at a gap of thickness 2d

by a step voltage V(t) = VoU(t) . Let E(z,t) = Eo(z) U(t) ~z be the

electric field across the gap. The radiated field can be computed by

using the equivalence principle [38]. The gap is short-circuited and a

magnetic current density

~(z,t) = Eo(z) d(p-a) U(t) ~ (34)

.

is assured to flow around the antenna, where the gap was located, When

21
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the gap thickness is vanishingly small, the magnetic current distribution

.

(34) can be substituted by a ring of magnetic current ●
al d

~1
Im = dp Jm(z,t)dz = -V. U(t)

o -d

(35)

On the other hand, the radiation from a loop of electric current was

computed in Section 3 (eqs. (21) and (22)). These results can be easily

accommodated for the case at hand by using duality (see Section 2). For

each observation point only one half of the magnetic ring will contribute

to the radiation, the other half part being screened by the metallic

cylinder. Accordingly, only the single flash point A will be present

(see Fig. 6). Furthermore, the radiated field will be doubled, due to

the image of the magnetic ring on the metallic conductor.

The resultlng radiated field is given by

V.
E6(t) = m sln 0

Ee(t)
H@(t) =r

J%==
s O<t*<Qsin~-c

(36a)
●

(36b)

and is zero for t < 0 , t* > (2a sin 6)/c , Note that the distances are

measured from the flash point A .

When t* = t - r/c can be neglected with respect to (2a sin [))/c ,

equations (36) coincide with those describing the early-time behavior of

the radiated field of an Infinitely long cylindrical antenna given by .
.

Latham and Lee [7]1, When the assumption of infinitesimal gap is relaxed

and the gap is allowed to be of finite dimensions, the results given by

‘Note that the voltage applied to the gap is -VoU(t) in the reference [7],

8
22



Pyne and Tesche [32] for the early-time behavior of the field can be

obtained,

Equations (36) give the field radiated by the gap, and previous

analysis proves that this field coincides with the early-time behavior

of the field. Obviously, the launching of the currents onto the antenna

will produce other fields, which add to the fields (36). These further

terms will be given in Section 6.

The transition from (36)--microscopic approach--to the macroscopic

formulation is readily obtained by using the techniques presented in

Sections 3 and 4. The field waveform (36) is substituted by an equiva-

lent pulse, and then a/c is made to approach zero. The field radiated

by an applied voltage V(t) can be obtained by differentiating (36) and

using convolution. Hence

Ee(t) = &Lk
nrc

t*=t.,:

(37a)

(37k)

23
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6. Elementary Theory of Radiation from Linear Antennas and Circular

w ●
An approximate analysis of transient radiation from linear antennas

and loops of arbitrary dimensions is possible by using transmission line

techniques for modeling currents and voltages.

A cylindrical antenna of height 2h and diameter 2a is considered

(see F

i.e.,

domain

where

g. 7). If the assumptior~is made that the antenna is very thin,

Q= 2 $n[2h/a] >> 1 , the current distribution in the frequency

reduces to [39]

(38)
sin[$ (h- IzI)]

i(z) = ~v.
‘n ‘n i cos[~hj

;in is the transformed voltage at the antenna terminals. Equation

(38) is formally equivalent to that of the current distribution along an

open ended transmission line of length h , characteristic impedance @

Z. = @/2n and fed by an ideal voltage generator of zero internal impedance.

When the internal impedance of the generator is different from zero

and equal to aZo(real), Eq. (38) can be immediately generalized by using

the above transmission line analogy. Hence:

i
sin[~ (h - \zl)]

i(z) = ~
o asin[~h] + i cos[~h]

(39)

where ~ is the transformed voltage of the generator.

The transformed fields associated with (39) are readily seen to be

~ exp[i ~rl cos[~h] - cos[~h COSO]
i. =

*V nr sine
=

1 + r exp[2i : h]

24
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exp[i ~ r]

‘*imr~in@
\ I

Cm
cos[:h] - cos[~h cos e] In (-r)nexp[2ni~ n]

o
(40a)

i’
i =+ (40b)

where r = (1-a)/l+a) is the reflection coefficient.

By Fourier transforming (40) the radiated fields in the time-domain

are obtained. For a Dirac pulse excitation V(t) = Vod(t) , ~ = V. and

the radiated fields are given by

V.
Ee(t) ‘~~nr sin 0 {6(t*)+ (1-r) j’n(-r)n Nt*-2(n~1)h)

o 0

- ~n(-r)n[6(t*- ~ h - h cos e)+6(t*- ~ h + h cos e)]
o

(41a)

(41b)

Equations (41) show that the transient radiation of the antenna coi~-

sists of a chain of Dirac pulses, each being a replica of the applied

signal (save for the amplitude and eventually the sign). The first PUISIS

(first term inside the large parenthesis of Eq. 41a) represents the radia-

tion due to the launching of the current along the antenna at time t = O .

The second series in Eq, (41) represents the radiation from the upper and

lower tips of the antenna due to the charges associated to the current and

going back and forth along the antenna,
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The first series in Eq, (41) represents the radation due to the currents

relaunched toward the generator. These currents are absorbed in the ‘o

internal resistance of the generator itself, When the antenna is short-

circuited at its terminals ~ = 1 and these last terms disappear,

For an arbitrary applied voltage V(t), the radiated

easily obtained from (41) by using convolution. A sketch o

ent field radiated by the antenna when the applied voltage ~

lar pulse is given in Fig, 7.

field is

the transi-

s a rectangu-

Previous results can be easily applied to the case of a monopole

antenna on an infinite perfectly conducting ground plane, The radiation

from the lower tip of the antenna disappears, but the transient pulses

reflected from the ground plane must be taken into account. In this way,

a very satisfactory agreement with the experimental results given in [18]

is obtained(z)
o

The transient radiation from a circular loop can be obtained foi-

Iowing similar lines, The loop, of radius R , is fed by a voltage

generator of internal impedance aZQ (see Fig. 8). The transformed

radiative field due to a traveling-wave current 10 exp[i SX] along the

loop is given by [40]

Jl(~ R sin 6) ~ (-i)nJ~(~R sin 6)
$ = E, {- +

2s 1 2 z [s cos n$ + in sin n$~

in ‘-n
(42a)

co (-i)nn Jn(~ R sin 6)
i. = Elcos 6 In [s sin no - in cos n$] (42b)

~ (s2- n2) ~Rsin6

‘2)N0 checking relative to the amplitude of the fields is unfortunately

possible, due to the lack of quantitative data in [18].
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A

(42c)

where

1. RU
E. = i~ + (exp[i2ms] - 1) exp[i ~ r] (43)

Expressions (4Z) are the generalization of the field’radiated by

a loop with a traveling-wave current Ioexp[imx] , m integer. Letting

s = m + g and then & approach zero, the conventional results [41] are

recovered.

Now, the transformed current along the loop

incident with that of a transmission line of length

impedance Zo(real) and short-circuited at its end.

is assumed to be coJ-

mR , characteristic

Hence:

where ~ is the transformed voltage of the generator.

Expression (44) can be recast in terms of two traveling-wave

currents moving in the positive and negative x angular coordinate direc-

tions, By algebraic manipulation

A $
exp[i ~ RX] + exp[i ~ R(2Tr-x)]

1=- l-rexp[2mi~R]
(45)

From (45) and (42) with s = uR/c , and using superposition, the

transformed field radiated by the loop can be computed. Hence:

J1(& R sin 0) ~ (-i)nJ~(~ R sin e)
i = E. {- +2:R~n cos n+} (46a)

~R 1 (~ R)z - n2
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where

● ;nrn
o

The solution for the

transforming (46), In the

the formal solution is the

.

(46b)

●

(46c)

(exp[iw AI - 1) exp[i $ r]

exp[2nni f R] (47)

transient radiated field is obtained by Fourier

case of a Dirac pulse excitation V(t) = Vo6(t) and

following:

E+(t) = F@(t*)
i

- (l-~)mnrn F@(t*-2~nR) (48a)

●

The functions F~(t*), Fe(t*) which appear in (48) can be com-

puted in terms of the following auxiliary functions different from zero

only in the indicated time intervals:

cos[n cos-l(R
Gn(t*) =

J:*e)]
9

(~sin 9)2- t*2

sn(t*) = sin[n sin 6(*+ 1)1~

28
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-c
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.

(49C)

Hence:

m

~ (-l)nn[t*Gn(t*) ]*[Sn(t*)]}‘in (50a)
I

Lvo m

Fe(t*) = -
~&mRs~n02~n (-l)n n[Gn(t*)] * [cn(t*)]

(50b)

It is understood that in Eqs, (50) the asterisk between functions means

the convolution operation.

7. Conclusions and Recommendations

In the preceding sections the transient radiation from a number

of radiating structures has been considered: elementary electric and ma~.”

netic dipoles, coaxial apertures, infinitely long cylindrical antennas,

cylindrical antennas and loops of finite dimensions, It has been shown

that two approaches--the microscopic and the macroscopic--are possible,

depending on the time-scale which is being considered. The procedure for

recovering one result from the other has also been exploited,

The cases considered cover most practical applications, and the

theory developed seems to be simple, sound, and apt

development, The only limitation is the neglecting

the pulsed currents along the radiating structures.

to an engineering

of the dispersion of
-.
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In the case of coaxial apertures, this corresponds to neglect-

ing higher order modes of excitation.
●

It is reasonable to surmise that

this is acceptable provided that the transverse dimensions of the aper-

ture are small compared to cT, T being the equivalent duration of

the applied pulse. This has been rigorously proved by using a frequency

domain analysis for the circular coaxial aperture [30].

In the case of cylindrical antennas and loops, the approximation

corresponds to neglecting the dispersion of the current pulse injected

in the radiating structure. The deformation of the pulses increases as

time elapses, so that the deformation becomes more pronounced on “long”

radiating structures. Therefore, the analysis presented is acceptable

provided that the radiator dinmsions are not large compared to CT , or,

in any case, if reference is made to the early-time behavior of the fields.

A better understanding of the pulse deformation along the radia- ●
tors is therefore a necessary condition for extending the validity of

the results presented in this paper. “Awise man once said that science

is no good because it generates ten new problems for every problem it.—

solves. A wiser man answered him by saying that science is good because

it uncovers ten new problems for every problem it solves” [42].

Acknowledgment

The authors are indebted to Mrs. Ruth Stratton for the careful

typing of the manuscript.

30



References.—

[1] T. T. wu, “Introduction to linear antennas”, in Antenna Theory

(R, E. Collin, F, J, Zucker, Eds.), McGraw-Hill, New York (1969),

Vol. 1, Ch, 8, p. 350,

[2] P. O. Brundell, “Transient electromagnetic waves around a cylindrical

transmitti-ngantenn~’-,Erricison Technics l&, No, 1, 137-162 (1960),

[3] T, T. Wu, “Transient response of a dipole antenna”, J, Math, Phys. ~-,

No. 6, 892-894 (1961).

[4] S. P, krgan, “Transient response of a dipole antenna”~ J. Math, Phys,

~, No. 3, 564-565 (1962).

[5] O, Einarsson, “The step voltage current response of an infinite conduct-

ing cylinder”, Trans. Royal Inst. Tech., Vol. 191, Stockholm (1962).

[6] C, W, Harrison, R.W,P, King, “On the transient response of an infinite

cylindrical antenna”, IEEE Trans. Antennas i?Propagation AP-15, No. 2,

301-302 (1967).

[7] R. W. Latham, K.S.H. Lee, “’Wa~eforms-Near a Cylindrical Antenna”,

Sensor and Simulati-on”’Note 89; June-1969.
———...

[8] T. T. Wu, R,W,P. King, “Transient response of linear antennas driven by

a coaxial line”~ IEEE Trans. Antennas & Propagation AP-11, No. 1,

17-23 (1963),

[9] R, J, Palciauskas, R. E. Beam, “Transient fields of thin cylindrical

antennas”, IEEE Trans. Antennas & Propagation AP-18, No, 2, 276-278

(1970).

[10] A. M. Abo-Zena, R. E. Beam, “Electromagnetic fields at points near a

pulse excited linear antenna”, IEEE Trans. Antennas & Propagation AP-19,.—
No, 1, 129-131 (1971).

[11] C. W. Harrison, C. S. Williams, “Transients in wide angle conical

antennas”, IEEE Trans. Antennas & Propagation AP-13$ No, 2, 236-246

(1965).

[12] C. Polk, “Transient behavior of aperture antennas”, Proc. IRE ~, No. 7,

1281-1288 (1960),

31



. .

—. ___ .

[13] D. K. Cheng, F. I. Tseng, “Transient and steady-state antenna pattern

characteristics for arbitrary time signals”, IEEE Trans. Antennas &

Propagation AP-12, No, 4, 492-493 (1964).

~14] D, C. Chang, C, W. Harrison, “On the pulse response of a flush mounted

coaxial aperture”, IEEE Trans. Electromagnetic Comparability Q, No. 1,

14-18 (1971).

[15] A. M, Abo-Zena, R. E. Beam, “Transient radiation field of a circular

loop antenna”, IEEE Trans. Antennas & Propagation AP-20, No, 3, 380-383

(1972).

[16j A. R, Dion, “Transmission of step functions by loop antennas”, IEEE

Trans. Antennas &Propagation AP-18, No. 3, 389-392 (1970).

[173 D. L. Sengupta, Y. P, Liu, “Maveforms radiated by continuously loaded

linear antennas excited by gaussian pulse”, presented at Spring URSI

Meeting, Washington$ D,C,3 1972,

[18] H, J. Schmitt, C. W. Harrison, C, S. Williams, “Calculated and ex-

perimental response of thin cylindrical antennas to pulse excitation”,

IEEE Trans. Antennas &Propagation AP-13, No. 2, 120-127 (1966).

[19] D. Lamensdorf, “The transient response of the coaxial-cone antenna”,

IEEE Trans, Antennas & Propagation AP-18, No. 6, 799-802 (1970).

[20] R.14.P.King, H, J. Schmitt, “The transient response of linear antennas

and loops”, IEEE Trans. Antennas & Propagation AP-10, No. 3, 222-228

(1962).

[21] H. J. Schmitt, “Experimental observation of the transient response of

linear antennas and loops”, IEEE Trans. Antennas & Propagation AP-11,

No. 4, 509-510 (1963).

[22] C, E. Baum, “Electromagnetic transient interaction with objects with

emphasis on finite size objects~ and some aspects of transient pulse

production”, presented at Spring URSI Meeting, Washington, D.C., 1972.
.——.— —— —. ..

8

—

32



. .. “

.
-=, ,

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

F. M. Tesche, “On the “Singularity Expansion Method as
Applied to Electromagnetic Scattering ‘from Thin-Wire$”,
Interaction Note 102, April 1972.

C. L, Bennett, J. Martine, “A space-time integral equation solution

for currents on wire structu~es with arbitrary excitation”, presented

at Fall URSI Meeting, Columbus, Ohio, 1970,

A. J. Poggio, “The space-time domain magnetic vector potential inte-

gral equation”, IEEE Trans. Antennas & Propagation AP-19, No. 5,

702-704 (1971).

C. L. Bennett, A. M. Auckenthaler, “Transient and time-domain solu-

tions for antennas and scatterers”, IEEE Int, Conv. Dig,, 624-625

(1971).

E, P. Sayre, R, F, Barrington, “Time-domain radiation and scattering

by thin wires”, Appl. Sci. IU?S. &, No. 6, 413-444 (1972).

E. K, Miller, A, J. Poggio, G. J. Burke, “An integro-differential

equation technique for the time-domain analysis of thin wire structures

1, the numerical method”, J. Comput. Phys. 12_,No. 1, 24-48 (1973).

T. K. Lui, K, K. Mei, “A time-domain integral equation solution for

lineal antennas and scatterers”, Radio Science~, Nos. 8-9, 797-804

(1973)*

N, L. Broome, “Transient radiation from coaxial waveguide and cylin-

drical monopole antennas”, Caltech Antenna Lab, Report No. 67 (1973).

R. M. Tesche, “Numerical Determination of the Step Wave
Response of a Thin-Mire Scattering Element Arbitrarily
Located Above a Perfectly Conducting Ground Plane”, Sensor
and Simulation Note 141, February 1972.

[32] Z. L. Pyne, F. M, Tesche, “Pulse Radiation by an Infinite
Cylindrical Antenna with a Source Gap with a Uniform
Field”, Sensor and Simulation Note 159, October 1972.

[33] C. H, ’Papas, “Pulsed Antennas”, in Yerevan Lectures on Electromagnetic

I&U!@ ‘“ p~~=)~ 64-71 ~1972)”



[343

[35]

[36]

[37]

[38]

[39]

[40]

~41]

[42]

,

P. I. Richards, “Transients in conducting media”, IRE Trans.

Antennas & Propagat, ~, No. 2, 178-182 (1958). ●
J. R. Mait, “Propagation of electromagnetic pulses in a homogeneous

conducting earth”, Appl. Sci. Res. (Sect. B) ~, No. 3, 213-253 (1960).

J. R. Wait, “Exact field of pulsed dipole in a homogeneous cold

plasma”, J. Appl. Phys. Q, No. 7, 2880-2884 (1970).

J. R. Wait, D. A. Hill, “Transient signals from a buried magnetic

dipole”, J. Appl. Phys, @ No. 10, 3866-3869 (1971).

R. F. Harpington, Time-Harmonic Electromagnetic Fields, McGraw-Hill,

New York,(1961), Ch, 3, pp. 110-113.

J. D. Kraus, Antennas, McGraw-Hill, New York (1950), Ch, 9, pp. 235-

247 and 247-249,

S. M, Prasad, B, N. Das, “A circular loop antenna with traveling wave

current distribution”~ IEEE Trans. Antennas & Prop,a~at.AP-18~ No, 2,

278-280 (1970),

R.W,P. King, “The loop antenna for transmission and reception”,

in Antenna Theory (R, E. Collin, F. J. Zucker, Eds.), McGraw-Hill,

New York (1969), Vol. 1, Ch. 11, pp. 458-482.

C. H, Papas, “Pulsed Antennas”, in Yerevan Lectures on Electromagnetic

m(~” H“ Papas)$ p“ 79 (1970)*

34



4 z

/+q
/

24 *
Y

/ ●

-q

p(t)

t

.4.-
V I

v I

+&
v

Ses

1

h---
2A -
~ Cose

-%

Fig, 1 - Relevant to the physical model for
computing transient radiation from
an electric dipole

I 35

t



.

I
I
I
I

2A

(
**

A’

x

b
I(t)

10

I
*

“7- +T
t t

I I
I
I
I

I
I
I
t
t
I
I
1
I
I

He(i)

)

i
I
I
I
[
I
I
I
I

I
I

I
I

1
I

I
I
I
I

Fig, 2 - Relevant to the physical model for
computing transient radiation from a
magnetic dipole



, .

\

I

\

D rac pulses

I

14’ -
p+ -r

I

1’I

Fig. 3 - Relevant to the transition from the
continuous radiation to equivalent
pulses

.

37



. *

-1

—.—. — .—. —. — —.

b-i,7h/
1-0

.-—. ——— ——— —--
—

0’/ IB’
t

FL

Fig, 4 - Relevant to the tvansient radiation
from coaxial apertures

o

38 8



b
C$

.-

I
I

I
I
I
I

I
I1
I

b
-— sin8
+/2C

L

I
I
i
I

I

)’

I
1
I

I
I
I
I
I
I
I

I

Dlrac puIses

/

b
— 8in8

[
/’zc

in6 ,

L
T

\
I

@c I I
I
I
I

Dirac Pu,$e$

Fiq, 5 - Plot of the field radiated by a coaxial circu-.
lar aperture, and transition-from the con-
tinuous radiation to equivalent pulses, Note
that the radiated field is the superposition
of the positive and negative plots of the
figure,

39

I



I i;1.

Fig. 6 - Relevant to the transient radiation
from the gap of a cylindrical antenna

40



EJt:

o“

Fig.

.

7

r“
h

I
T

h~

-4k-
2a

n
2h/c

(

4

3h/c
L

t*

3h h
— -~ COINc 3h h~+= COS(9

- Plot of the field radiated by a linear
antenna fed by a voltage pulse. Theinput reflection coefficient 1’ is

to be close to unity.assumed

41



v

Fig, 8 - Relevant to the transient radiation
from a circular loop

.,

.

42

.— . —. .—+9.


