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ABSTRACT

The problem of pulsed antennas has two complementary parts:
(i) analysis of the radiation field when the driving voltage is
given, (ii) synthesis of the driven voltage when the radiation
field is given,

In this paper a number of heuristic procedures are presented,
relating to the computation of transient radiation from elementary
sources, coaxial apertures, infinitely long cylindrical antennas,
finite cylindrical antennas, and loop antennas. Comparison with

available rigorous solutions and experiments is also provided.
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University of Naples, Italy.

- n AN



1. Introduction and Discussion of Principal Results

In early 1969 Prof., T. T. Wu stated: "It is worth emphasizing
that our knowledge about the transient response of antennas is very
meager indeed. Any progress in this rather neglected field is certainly
going to be of tremendous va]ueé [1]. Although a few new papers have
appeared on this subject since then, the above statement is probably
still valid.

Most of the papers concerned with transient currents on and
transient radiation from antennas use solutions of frequency-domain
integral equations which are the? transformed into the time~domain by
Fourier techniques. These papers cover the transient behavior of the
infinite cylindrical antenna [2,3,4,5,6,7], the finite cylindrical
antenna driven by a coaxial line [8] or by a gap type excitation [9,10],
the conical antenna [11], the apérture antenna [12,13,14], the loop
antenna [15,16], and the loaded antenna [17]. In a few papers, an ex-
perimental verification of the theéory is provided, with reference to the
radiated and received fields [18,19] or to the input response of the
antennas [20,21]. A1§o, the effects of thin-wire approximations and of
source-excitation modeling can Be found in the literature [31,32]. Other
approaches that have been used are the singularity expansion method [22,
23], the solution of the transient current integral equation directly in
time-domain [24,25,26,27,28,29], and an almost rigorous application of
Wiener-Hopf technique [30].

A general characteristic of most of the referenced material is the

emphasis on either the extensive use of numerical methods or the
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presentation of the solution in an integral form that must be evalu-
ated numerically or at least asymptotically [7]. A somewhat different
approach has been suggested [33] which aims at the general properties
(if any) of transient radiation. In this paper, this approach is
formalized and further developed.

Ih Section 2, fhe tréﬁgieht radiation %rom elementary electric
or magnetic sources with prescribed current distributions is analyzed
by using a formal Fourier inversion of known steady-state results. The
source environment is assumed not only isotropic and homogeneous, but
also nondispersive, since completely different results are obtained
when dispersion is taken into account [34,35,36,37]. This assumption
will apply throughout this paper. The analysis shows that the transient
radiated power is expressed in terms of the 1/r components of the
field only, when the antenna excitation is confined in time. These com-
ponents in the case of an electric dipoie are proportional to the time-
derivative of the current i(t*) and to the second time-derivative of
the input voltage V(t*), at the retarded time t* =t = r/c . In the
case of a magnetic dipole, the 1/r fields are proportional to f(t*),
V(t*), where I(t),V(t) are respectively the current along, and the
voltage across the small current Toop,

In Section 3, a deeper analysis of transient radiation from the
elementary sources is presented. For the electric dipole, a model of
two opposite charges which collapse one upon the other is assumed. For

the magnetic dipole, a pulsed current along a circular Toop is considered.

In each case, it is shown that the far-field waveform is not proportional



to the first, or second time derivatives of V(r) or I(t), when the .
time resolution is greater than h/c , h being a characteristic Tinear
dimension of the antenna, and c¢ the Tight velocity. In this same
scale, the radiation due to an assumed pulse of current appears in

the form of two pulses (electric dipolé), or a continuous radiated
waveform with square-root singularities (magnetic dipole)}. However,
when a time scale larger than h/c is considered, it is shown that a
proper Timiting process leads to the formal results of Section 2.

From é physical standpoint, the process can be understood as a con-
traction of the physical dimensions of the radiators, or equivalently,
as a limited time-resolution of the field measuring devices.

Also the more complex radiating structures that will be con-
sidered here are subject to the above time-resolution property. Accord-
ingly, a macroscopic and a microscopic approach are defined for the .
transient radiation, with respect to a time-resolution of order h/c .

In all cases the transition from one time-scale to the other is developed
in detail.

In Section 4, an analysis of transient radiation from coaxial
apertures is developed. In the macroscopic approach, advantage is taken
of the equivalence between the aperture field and a distributed magnetic
loop [38]. The far field is shown to be proportional to V(t*), v(t)
being the voltage across the aperture. In the microscopic approach, the
far field is computed as due to the sudden reflection of the current at
the open end along the edges of the conductors of the coaxial aperture.

The radiated waveform is characterized by four square-root singularities,



where the incident voltage is a pulse and the coaxial aperture is cir-
cular. These results are in agreement with a quasi-rigorous solution
of the problem [30].

In Section 5, the radiation coming from the gap of a linear
antenna is considered. In the macroscopic approach, the far field turns
out to be propoftiona] to V(t*). In the microscopic approach, the
radiated waveform has a square-root singularity when the applied voltage
is a step. This last result is consistent with the early-time behavior
of the far field radiated by an infinitely long cylindrical antenna [7].

In Section 6, an approximate method is developed for computing
transient radiation from 1ineér antennas and Toops large with respect to
¢T , T being the pulse width. The approximation involved is the use of
transmission line analysis for modeling currents and voltages. This
results in a sinusoidal current distribution. It is therefore expected
that the results of the analysis are valid in the limit of vanishingly
small wire radius [39].

For the linear antenna, the far field turns out to be radiated
from the input terminals and the end-tips, as qualitatively suggested
in previous analyses [11,13] and experimentally confirmed [18]. For the
loop antenna, the far field appears in the form of a continuous waveform,
with square-root singularities (when the applied voltage is a Dirac i
pulse). For each observational position there are two flash points on
the loop from which most of the radiation appears to be emanating. |

In Section 7 conclusions and recommendations are made. The sug-

gested recipes and techniques of analysis are simple and rather general

and allow the handling of a Targe variety of radiators of practical
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interest. However, the dispersion of the pulsed waveforms propagat-

On the .

other hand, this dispersion will produce a continuous radiation, which

ing along the radiating structures is not taken into account.

is generally small and gives the late-time response of the radiating

structure [7].
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2, Formal Solution for Transient Radiation from Elementary Sources

Suppose we have an infinitesimal oscillating electric dipole of
moment Pe = poexp[-iwt] in a homogeneous isotropic environment. The
dipole is located at the origin of a spherical coordinate system
(ry6,0) and is oriented parallel to the direction 6 =0 . The com-
ponents of the dipole's electromagnetic transformed field are given by

the well known expressions

N 2p exp[ i £ r] :
- 0 c _dw ¢
Er(w) =z . cos% 9[ = + ';2-] (la)
~ pexp[ 1 £ y] . N2
<, .0 c . (w)® _dw, ¢
Eglw) = ¢ T sin 6 [F— =+ :2-] (1b)
W
~ poexp[ 1 e r] ﬁw}z 1w
H¢(w) = P sin 6 [ - -?'] (Te)

where & = /iJe and ¢ = v/ep . -
From (1) the transient fields can be easily obtained for the case
of a nondispersive environment, when the dipole moment varies arbitrarily

in time, i.e., Pe = be(t) . By taking the Fourier transform of (1)
+o0
E(t) = 5= f Er(w) exp[-iwt] dw (2)

and doing the same for the other field components, it is easily obtained

t* (t*
2r Pe(t™) cpe2 )] (32)

= & ‘
Er(t) T C0S of = +
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p (t*)  p_(t*) (t*
= ﬁ? sin e[pec + per + Cp‘:z )] (3b)
(t*) P (t¥)
H¢(t) z~—-s1n e[ = ] (3c)

where t* =t - r/c is the retarded time and a dot means derivation
with respect to time.
The corresponding expressions for the magnetic dipole are imme-

diately obtained by duality (H~+E, E~» -H, £+ 1/¢, Pe > -pm). Thus

b, (t9)  cp, (%)

H.(t) = Hzﬁ cos [ ———+ 7 ] (4a)
(t*) b _(t*) (t*
Ho(t) = 1—-— sin e[pm + pmr + Cpmrz ) ] (4b)
(t* p_(t*)
E¢(t) z - z——-s1n e[pm ) + pmr ] (4c)

The r-component of the Poynting vector is

Sh(t) = (8) . SQt) = -E(t) Ho(t) (5)

for the electric and the magnetic dipole respectively. The radiated

energy density at (r,8) is

+oa : +oo

2 +o0
e - e - zsin"e 2 cy2
Wo(r,8) = _i sa(t)dt m Lp dt+2 [ (£)p P + g(r.) pe}_m
(6a)
oo oo 1 oo
m _ m _ sin 6 b c\2
W (Y‘,e) = -OJ; Sr(t)dt = ——m ipmdt-{- [pm Y‘ pm+ ?(F‘) pl’ﬂ] o

(6b)



When the dipole excitation has a finite duration the bracketed
terms inside the large parentheses are equal to zero, and eqs. (6)

transform as

2, 7%
W (rp0) = (_2%’2?3" [EXCRT (7a)

L2t
Mp,0) = —100 5 (t) dt 7b
wir C(I4'rrr’).2.C‘2- -o[ Pm (7b)

Equations (7) show that the total radiated energy is dependent
only on the 1/r components of the field accordingly identified as.the
"radiative" terms, 7

It is interesting to calculate in which region of space the
radiative terms areithe dominani field components., Reference is made

‘I’ to a gaussian pulse of electric moment
- . 2,2
Pe(t) = py exp[-2t7/T7] (8)

T being the effective width of the pulse (distance between inflection
points). Substituting (8) in (3) one obtains

m
D
g
]
wn
-l
=
<D
™
——
o0
-
=+
1
£
——
?
.

p (f*) * *
H.(t) = r in o[{8(kn)2- 4} - 4 L & (9¢)
¢( ) 22?22?77 sin o[{8() } = ] c

It follows from (9) that the radiative terms are always

" dominant provided that



r>> cT (10}

save in the neighborhood of t* = T//2 , where the radiative terms
are zero. Identical results are obtained for the case of a magnetic
dipole. It is concluded that the spherical surface r = cT divides
the space into two regions, which can be labeled as inductive space
(inner region) and radiative space (outer region). In the following,
only radiative fields will be considered.

Equations (13) and (14} can be used for computing radiation
from “small" dipoles and loops, where "small" applies to the c¢T space

scale. The following results are obtained:

(i) Electric short dipole of effective height h :

E(t) = 2 (t) (102)
_ I{t%)h _ O ChV(t*)
H¢(t) - e sin 6 = - 'ZF&E_L sin 8 (10b)
(ii) Small loop of area A :
I(t*)A .. V(t*A .
H.(t) = sin g = - sin 6 (11a)
6 dnre Amrc™L

In (10) and (11) C and L are the static capacitance and
inductance of the dipole and the loop respectively, I(t) and V(t)
the current along and the voltage across the radiators, and the quasi-

static relations

(dipole) I{t) = CV(t) ; (loop) V(t) = -LI(t) (12)

10



have been used.

Equations (10) and (11) clearly show that the radiative fields
are not a faithful replica of the transmitted signals (currents or
voltages on the radiators). In particular, if the current is propor-
tional to a Dirac pulse §&(t) (electric dipole), and to a step function
U(t) (magnetic dipole), the radiative field turns out to be proportional

to &(t) . Therefore, the radiative field flip-flops.

11



3. Physics of the Transient Radiation from Elementary Sources

In this section a deeper analysis of transient radiation from
elementary sourcés will be made.? - . ; |

For the case of an electric dipole, reference is made to Fig. 1.
Two charges, +q and -q, are located at a distance 2% apart. At a time
t = -2/v the charge +q 1is suddenly accelerated and is then made to
travel at constant velocity v , so that it collapses on the charge -q
at time t = &/v . The plot of the electric moment p(t) of the system
vs. time is given in the graph of Fig. 1. Accordingly, a pulsed current
is flowing in the time interval |[t] < %/c, from z=2 to z = -¢,

Formal expressions of current density in the time and frequency

domains are the following:

I(r,t) = -e,qv 8(x) 8(y) s(z+vt) = -g,q 8(x) 8(y) s(t+ 5-) . |t 5_%.
Irat) = 0 ot > &
(13)
i(r_,w) = -e.q 6(x) 8(y) expl-iw %] s z| <2
J(ryw) = 0 s lz] > s
(14)
CH being a unit vector in the z direction, The transformed radiative
fields associated with (14) are
R ~ exp[i -‘é’-r] sin[% 2(n + cos 6)]
Eglw) = -1 ——— q — 55D sin (15a)

12



.' Hd)(w) = - , n =% (15b)

By Fourier transforming (15) into the time-domain, the result

7_ q ' sin 9 * '7&_ &; _ * L _ 2
Ee(t) =L TToos® [s(t* + ~ + 2 cos p) - &(t* - = - = cos 8)]
(16a)
= h * = - r..
H¢(t) Ee/C ’ t t c (16b)

is obtained. Equations (16) clearly show that the radiation emanates

from the end points of the configuration at times -2/v (acceleration)

and +2/v (deceleration), respectively (see the diagram of Fig. 1).
Accordingly, the radiated field is not proportional to the time derivative
of the current (see eq. (10)), when a time séaTe less than 2%/v is

" considered.
The transition from (16)--microscopic approach--to (10)--macro-

scopic approach--is readily accomplished by letting 2&/v approach zero.

One obtains

2q% sin o S(t*+ x) - 8{t*- x)

E.(t) = 1lim z
8 20,/v+0 4nre 2X
o Pe e 2
=T Imye Sin @ s(t*) , X = E(n + cos 9) (17a)
H¢(t) = CEG (17b)

thus recovering (10), since I(t)2% = -q8(t)28e = -poé(t) .
For the case of a magnetic dipole, reference is made to Fig. 2.

A constant current I0 is suddenly switched on at time t = -1 and

13



switched off at time t =+t . The current fiows in a circular loop
of radius R located in the plane (x,y).
Formal expressions of the current in the time and frequency

domains are the following:

1(t) = I[U(tr) - U(t-)] (18)
I(w) = 21 0ot (19)

The transformed radiative fields associated with (19) are

A RI
Hy(w) = - 750‘ sin(wr) J](Sg- R sin 6) exp[i ig-rj (20a)
E¢(w) = = He (20b)

Jl(x) being the Bessel function of first kind.

By Fourier transforming (20) into the time-domain, the result

I
] 0 e
Holt) = - mrgins (Mo * Hol (212)
E¢(t) = -gHy (21b)
*
HE(t) = + t iz , ltzt| <Rsine  (22a)
o B/ Y Y2 c
\/Qz-s1n 8)c - (t*t T)
Ho(t*) = 0 L lte] > % sin 8 (22b)
is obtained.
14
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Equations (22) clearly show that the antenna radiates at times
t=-1,t=1. For each direction of pbservation there is continuous
radiation for [t-t| < R sin 6/c , characterized by square-root singu-
laries (see the diagram of Fig. 2). The radiation emanates mainly from
points AA' (flash points) at the intersections of the loop with the
plane containing the direction of observation and the z axis. No
radiation emanates ffom‘points BB' (black points), due to a cancellation
effect. Accordingly, the radiated field is not proportional to the
second time derivative of the c;rrent (see eq. (11)), when a time scale
less than R/c is considered.

The transition from (21)--microscopic approach--to (11)--macroscopic
approach--is accomplished by letting R/c approach zero.

Reference is made to the radiation which takes place at t=-1 .
For R~ 0, it seems quite reasonable to substitute for the actual
radiated waveform some equivalent pulses (see Fig. 3). Reasonable re-
quirements are (i) the strength of each pulse must be equal to time inte-
gral of the actual waveform; (ii) the time allocation of each pulse must
divide the actual waveform into parts of equal area, When these require-

ments are fulfilled, eqs. (21) and (22) transform into

IR [s(th1+ 3 x) - 6(tm - 3 X)]

H.o(t) = Tim ‘
0 R/c »0 2mre X
5 IOWRZ ,
=& sin 6 S(t*+t) (23a)
4nre
T - = B— 1 ¢
E¢(t) ;He(t) » X = sin ) (23b)

15



thus recovering (11), since I(t) = U(t+t), apart from the factor .
3/m = 0.995 = 1 . (depending upon the somewhat arbitrary identification

between actual radiated waveforms and equivalent pulses).

e 8
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4. Transient Radiation from Coaxial Apertures

In this section, the transient radiation from coaxial apertures
will be considered. Reference is made to Fig. 4 where the radiation
from an open ended coaxial cable of circular cross-section is considered.
However, the results which will be presented can readily be generalized B
to apply to radiating apertures of different geometry.

First, the macroscopic approach will be exploited.

Let V(t) be the incident voltage at the open end of the coaxial
cab]e. Under the a§sqmptioq“pf perfect open-circuit conditions, the
électric field in the aperture has only a p-component given by

e (1) = -2utl | | (24}
P P n Py

and the magnetic field is zero.
By using the equivalence theorem, the radiated field can be com-

puted as due to an equiva]eht magnetic current density with only a

1l

component, Jm¢(t) Ep(t) . A z-directed electric dipole of moment [38]

"as given by b
pe(t) = 2V(te J %-wrzdr = e LEL (12_52)
in — n =
a a a
= b V(t) (25'
~ 2mc Zo )
is therefore associated to the aperture, In (25) A = w(bz-az) and is

the aperture area, and Z0 = [§ an EJ/ZW and is the characteristic imped-

ance of the coaxial cable.

17



When A 1is small compared to (cT)2 the higher order moments
associated with the aperture are negligible, and the radiated field can

be obtained from the results of Section 2. Hence

o) = T 7 grvgr Sin 0 (262)
E (t

H(t) = o't (26b)

¢ z ,

Accordingly, the radiated field is proportional to the second
time-derivative of the incident voltage.

As a preliminary to the study of the radiation from the micro-
scopic point of view a model similar to that of Section 2 for the elec-
tric dipole is considered. A charge q at position z=-2 is suddenly
accelerated at time t = -z/v and is then made to travel at constant
velocity v along the positive direction of the z-axis. At t =0 and .
z = 0, the charge is suddenly reflected and is again made to travel at
constant velocity v along the‘negative direction of the z-axis. At
t = 2z/v and z=-2 the charge is suddenly stopped.

The radiated field can be computed by following the same proce-
dure as in Section 3. Only the results are given in the following. The
field is radiated at times t=-&/v , 0, &/v , from points z=-%, 0, %,
respectively. Particularly, the field radiated at t=0, z=0 (refliec-

tion of the charge) is given by

E(t) = czﬂ— nsind  s(¢x) (27a)
0 - CO0S e :
E.(t)
_ <o N
Hy(t) el n = % (27b)

18
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Turning to the coaxial structure of Fig. 4, let I(t) = g8(t-z/c}
be the current propagating along the cable. The pulsed linear charge
densities on the inner and outer conductor will be q/2ma, -q/2mb
respectively. These pulsed charges will apparently be propagated with
velocity ¢ along the cable. Accordingly, the radiated field can be
computed via (27) (with n=1) and superposition. Hence

2m "y 21

-
E(t) =¢ 9 s(t - =do - | 8(t -~ =2)d 28)
e( ) (Zwizf sin 8 OJ ¢ 14 L ( c /9 (

where Py p are the distances of the point (r,8) from the inner and outer
.

rims of the cable respectively:

ry=r-a sin 6 cos ¢ rp =T - b sin 6 cos ¢ (29)

In order to compute the integrals which appear in (29) it is con-
venient to use the Fourier transform:
+oo 27
J dt exp[iwt] f S(t* + %—sin 6 cos ¢)do
-0 0
2

" +o0
[ ) j S(t* + %-sin ocos ¢) explint] dt

0
i

exp[i £ r] do exp[- 19 b sin 6 cos o]
c c
0

27 exp[i %-r] JO(%-b sin o) (30)

and similarly for the other integral. By Fourier inverting (30) in the

time-domain and substituting in (29), the result

19



Eglt) = €& e [ED(1%)- E3(t¥) (31a)
Hyt) = Eg(t) / ¢ (31b)

is obtained. In (31) the functions Ea'b(t*) are given by

EX(t*)= ] ' . !t*lg_% sin 6 (32a)

\/k§-sin 6)2- t*2

EX(#*)= 0 | t*] 5_§-sin 8 (32b)

A plot of the radiated field is given in Fig. 5. The above re-
sults are in complete agreement with those of an exact analysis carried
out by using Wiener-Hopf.techniques [30] when pulses such that
¢T << b are considered. This last restriction does not apply jn the
proximity of the forward direction.

Equations (31) and (32) clearly show that, for each direction of
observation, there is a continuous radiation for |t*| < b sine/c
characterized by square-root singularities. The radiation emanates mainly
from points AA', BB' (flash points). Accordingly, the radiated field is
not proportional to the second time-derivative of the incident voltage
v(t) = 49 §(t) = Vs(t) (see Egs. 26), when a time scale less than b/c
is considered.

Also in this case the transition from (31)~-microscopic approach--
to (26)--macroscopic approach--can be accomplished by substituting for the
actual radiated waveform equiva]entrpu1ses (see Fig. 5) as already done in
Section 3. Then b/c and a/c are required to approach zero. One

obtains (see Fig. 5)

20



- lim 2oV §(t*-x) - 8(t*-y)
| Balt) = M gm0y S
a/c->0
= (X")’) 6Lt*+)’) -f@(t*+x) }
X-y
= 19 c V b-a {( + ) G(t* 3 %X-) ” G(t*+%i)
A T L (O 5 }
a/c~+0
;g A V(%) .
= sin 6 (33a)
o ' Z;Z'TF dmre
! E.(t) . ,
H(t) = ] , ¥ = b sin 6 , y=2sin 8 (33b)
¢ 4 V2 ¢ 2 ¢
" thus recovering (26), since V(t) = Vs(t).

5. Transient Radiation from the Antenna Gap

In order to compute the transient radiation from the gap, an
infinitely long cylindrical antenna of circular cross-section is con- '
sidered (see Fig, 6). The antenna is excited at a gap of thickness 2d
by a step voltage V(t) = VOU(t) . Let E(z,t) = Eo(z) u(t) e, be the
electric field across the gap. The radiated field can be computed by
using the equivalence principle [38]. The gap is short-circuited and a
magnetic current density

In(zst) = E(2) 8(p-2) U(t) g (34)

" is assumed to flow around the antenna, where the gap was located. When

21



the gap thickness is vanishingly small, the magnetic current distribution

(34) can be substituted by a ring of magnetic current

00 d
1 - j do J 3 (z,t)dz = -V U(t) (35)
0 -d

On the other hand, the radiation from a loop of electric current was
computed in Section 3 (eqs. (21) and (22)). These results can be easily
accommodated for the case at hand by using duality (see Section 2). For
each observation point only one half of the magnetic ring will contribute
to the radiation, the other half part being screened by the metallic
cylinder. Accordingly, only the singie flash point A will be present
(see Fig. 6). Furthermore, the radiated field will be doubled, due to
the image of the magnetic ring on the metallic conductor.

The resulting radiated field is given by

V0 -z—sine- t*
Eo(t) = st s o (36a)
\/t*(—a— sin g - t*)
E.(t)
= —Q———- * _2_&_ i
Hq)(t) = . 0<trsFsineg (36b)

and is zero for t <0, t* > (2a sin 6)/c . MNote that the distances are
measured from the flash pofnt A .

When t* = t - r/c can be neglected with respect to (2a sino)/c ,
equations (36) coincide with those describing the early-time behavior of
the radiated field of an infinitely long cylindrical antenna given by
Latham and Lee [7]1. When the assumption of infinitesimal gap is relaxed
and the gap is allowed to be of finite dimensions, the results given by

TRote that the voltage applied to the gap is -VOU(t) in the reference [7].

22



Pyne and Tesche [32] for the early-time behavior of the field can be
obtained.

7 Eduétiohsr(36)”gi§erthe”fie1ﬂ radiated b& the gap,.and previous
analysis proves that this field coincides with the early-time behavior
of the field., Obviously, the Tlaunching of the currents onto the antenna
will produce other fields, which add to the fields (36). These further
terms will be given in Section 5.

The transition from (36)--microscopic approach--to the macroscopic
formulation is readily obtained by using the techniques presented in
Sections 3 and 4. The field waveform (36) is substituted by an equiva-
lent pulse, and theﬁ a/c is made to approach zero. The field radiated
by an applied voltage V(t) can be obtained by differentiating (36) and

using convolution. Hence

_ o V(t*) a

e (1) = UEa (372)

(G - 8 _ r

qu(t) = __c— . t* =t - T (37b)
23



6. Elementary Theory of Radiation from Linear Antennas and Circular
Loops .

An approximate analysis of transient radiation from linear antennas
and loops of arbitrary dimensions is possible by using transmission line
techniques for modeling currents and voltages.

A cylindrical antenna of height 2h and diameter 2a is considered
(see Fig. 7). If the assumption is made that the antenna is very thin,
i.e., @ =2 anf2h/a] >> 1 , the current distribution in the frequency

domain reduces to [39]

. sin[£ (h-|z])]
I(z) = 2Ty, c (38)
: hoin oy cos[%-h]

where Qin is the transformed voltage at the antenna terminals. Equation

(38) is formally equivalent to that of the current distribution along an

open ended transmission 1line of length h , characteristic impedance .
Zo = ¢Q/2n and fed by an ideal voltage generator of zero internal impedance.
When the  jinternal impedance of the generator is different from zero

and equal to aZo(real), Eq. (38) can be immediately generalized by using

the above transmission line analogy. Hence:

o sl (- 2]

I(z) = (39)

0 o sin[%-h] + 4 cos[%—h]

where G is the transformed voitage of the generator.

The transformed fields associated with (39) are readily seen to be

~ .. exp[i 2¢1 cos[®h] - cos[£h cos 0]
£ = - ic ’ c C
RACRREEE 1+ T exp[2i & h]

9]
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" 4 ~ expli %:)-Y*] W W S n . W
= 7311157-V o cos[E-h] - cos[E-h cos 8] Zn (-T) 'exp[2ni E-n]

’ (40a)

) H o= -2 (40b)

where T = (1-a)/1+a) 1is the reflection coefficient.

By Fourier transforming (40) the radiated fields in the time-domain

are obtained. For a Dirac pulse excitation V(t) = Vos(t) » V.=V, and

the radiated fields are given by

) ®
Eo(t) = 7ary Zvete (6(4) ¢ (1) gn(-r)“ s(tx - 2lnrny
-3 (-D)M(t%- BEL < hocos 0)+ 6(th- EEL b+ h cos 6)]
0
(41a)
.’ Eglt)
Holt) = —7— | (41b)

Equations (41) show that the transient radiation of the antenna coh-
sists of a chain of Dirac pulses, each being a replica of the applied
signal (save for the amplitude and eventually the sign). The first pulse
(first term inside the large parenthesis of Eq.741a) represents the radia-
tion due to the launching of the current along the antenna at time t =0 .
The second series in Eq. (41) represents the radiation from the upper and
Tower tips of the antenna due to}the charges associated to the current and

going back and forth along the antenna.
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The first series in Eq. (41) represents the radation due to the currents
relaunched toward the generator. These currents are abgg}bed in the '
internal resistance of the generator itself. When the antenna is short-
circuited at its terminals T =1 and these last terms disappear.

For an arbitrary applied voltage V(t), the radiated field is
easily obtained from (41} by using convolution. A sketch of the transi-
ent field radiated by the antenna when the applied voltage is a rectangu-
lar pulse is given in Fig. 7.

Previous results can be easily appiied to the case of a monopole
antenna on an infinite perfectly cénducting ground plane. The radiation
from the lower tip of the antenna disappears, but the transient pulses
reflected from the ground plane must be taken into account. In this way,
a very satisfactory agreement with the experimental results given in [18]
is obtained(z)

The transient radiation from a circular loop can be obtained fol-
Towing similar 1ines. The loop, of radius R, is fed by a voltage
generator of internal impedance oZ (see Fig. 8). The transformed
radiative field due to a traveling-wave current I0 exp[i sy] along the )
loop is given by [40]

. J. (&R sin8) o (-1 (¥R sing)
E¢ = E, {- 1 CZS + zn Ifn C2 [s cos né + in sin nél

1 S =-n
(42a)

N ® X
~ @ (~i)'n Jd (=R sin 8}
E, = Escos 6§ nc

0 1 ]n (52- n2) %-R sin 6

[s sin n¢ - in cos n¢] (42b)

(Z)No checking relative to the amplitude of the fields is unfortunately
possible, due to the lack of quantitative data in [18].
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N e
H = “”; (42c)
where
. Ion ‘ W
E, = 1T 5o (exp[i2ns] - 1) exp[i ¢ r] (43)

Expressions (42) are the generalization of the field radiated by
a loop with a traveling-wave current Ioexp[imx] , M integer. Letting
s =m+ £ and then £ approach zero, the conventional results [41] are
recovered,

Now, the transformed curvent along the loop is assumed to be co-
incident with fhat ofra transmission 1ine of length 7R , characteristic
impedance Zo(rea1) and short-circuited at its end. Hence:

cos[Z R(m - [x])]

o, SRR ML L
cos[E-R] 0

cos{%’- R(m- [x])]

o cos[-‘é’- R] -1 s1'n|:-°(‘:i R]

(44)

where Q is the transformed voltage of the generator.

Expression (44) can be recast in terms of two traveling-wave
currents moving in the positive and negative x angular coordinate direc-
tions, By algebraic manipulation

" exp[i £ RX] + exp[i = R(2m-x)]

= 7T ) (45)

i W
1 - T exp[2mi E'R]

From (45) and (42) with s = wR/c , and using superposition, the

transformed field radiated by the loop can be computed. Hence:

. J (2R sin 6) o (=1)"3' (&R sin 8)
1
E =Ej {- ; + 2 %-R Zn = n ; 2 cos no} (46a)
ER 1 (_C- R) -=n
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N w .
- 2 cos 6 (-i)'n Jn(E'R sin 8}

9 o sin 6 &n © o2 2 sin n¢ (46b)
1 (E'R) -
~ gr xE
H. = z (46(:)
where
- 3 CQ 217R

‘Eo= 1 (exp[iw ==] - 1) expli —-r]

0 7 ( o+1) 2vrc

. En " exp[enti %-R] (47)

0

The solution for the transient radiated field is obtained by Fourier
transforming (46). In the case of a Dirac pulse excitation v{t) = Voé(t) and

the formal solution is the following:

8

n+1

E¢(t) = F¢(t*) - (1-1) %n " F¢(t* 2 — 7R) (48a)
£ (1) = Fo(t%) - (11) [ 17 Fo(ex- 2 2L o) (48b)
0
e xE(t)
H(t) = T (48c)

The functions F.(t*), Fe(t*) which appear in (48) can be com-

¢
puted in terms of the following auxiliary functions different from zero

only in the indicated time intervals:

cos[n cos'}( ct* ) ]

6 (t%) = RsTn § , [t*] < 2 sin o (49a)
R sin 8)2— 42
C
s . ct* R s
Sn(t*) = sin[n sin e(ﬁngﬁ”g + 1)1, tx > - Zsing (49b)
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. t* .
Cn(t*) = cos[n sin e(ﬁ-§75—5-+ nl, t* > - %-s1n ) (49¢)
Hence:
z v 1

_ 0 C
Folt*) = T 1) Te+TT ZnF 7R sTn 0 {E*G, (t%)

ST (1" nlese (69  [S (£4)]) (50a)
" —
- (%) = Evo 1 c b n * *
Fo(tx) = - Z (a*T) 2mr TR sTn 6 2 gn('1) nlG, ()] « [C, (t*)]
(50b)

It is understood that in Eqs. (50) the asterisk between functions means

the convolution operation.

7. Conclusions and Recommendations

In the preceding sectiorns the transient radiation from a number
of radiating structures has been considered: elementary electric and mag-
netic dipoles, coaxial apertures, infinitely long cylindrical antennas,
cylindrical antennas ana Toops of finite dimensions. It has been shown
that two approaches--the microscopic and the macroscopic--are possible,
depending on the time-scale which is being considered. The procedure for
recovering one result from the other has also been exploited.

The cases considered cover most practical applications, and the
theory developed seems to be simple, sound, and apt to an engineering
development. The only limitation is the neglecting of the dispersion of

the pulsed currents along the radiating structures.
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In the case of coaxial apertures, this corresponds to neglect-
ing higher order modes of excitation. It is reasonable to surmise that
this is acceptable provided that the transverse dimensions of the aper-
ture are small compared to c¢T, T being the equivalent duration of
the applied pulse. This has been rigorously proved by using a frequency
domain analysis for the circular coaxial aperture [30].

In the case of cylindrical antennas and loops, the approximation
corresponds to neglecting the dispersion of the current pulse injected
in the radiating structure., The deformation of the pulses increases as
time elapses, so that the deformation becomes more pronounced on "long”
radiating structures. Therefore, the analysis presented is acceptable

provided that the radiator dimensions are not large compared to c¢T , or,

in any case, if reference is made to the early-time behavior of the fields.

A better understanding of the pulse deformation along the radia-
tors is therefore a necessary condition for extending the validity of
the results presented in this paper. "A wise man once said that science
is no good because it generates ten new problems for every problem it
solves. A wiser man answered him by saying that science is good because

it uncovers ten new problems for every problem it solves" [42].
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Fig., 1 - Relevant to the physical model for

computing transient radiation from
" an electric dipole
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Fig. 3 - Relevant to the transition from the
continuous radiation to equivalent
pulses
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Fig. 4 - Relevant to the transient radiation
from coaxial apertures
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Fig., 5 -~ Plot of the field radiated by a coaxial circu-
lar aperture, and transition from the con-
tinuous radiation to equivalent pulses. Note
that the radiated field is the superposition
of the positive and negative plots of the
figure.
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Fig. 6 - Relevant to the transient radiation
from the gap of a cylindrical antenna
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Fig. 7 - Plot of the field radiated by a linear

antenna fed by a vo]tage pulse. The
input reflection coefficient T is
assumed to be close to unity,
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Fig. 8 - Relevant to the transient radiation
from a circular loop
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