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I

STATEMENT OF THE PROBLEM

In this study, the propagation of electromagnetic waves along a Glass

of open structures is investigated by introducing a new set of basic functions

in the representation of the surface field, To illustrate this approaoh, let

us consider the waves guided along a curved transmission line composed of

infinitely long, symmetrically located conducting circular sectors as shown

in Figure 1. Assuming that the time dependence and z-variation of the

field to be ewt - jpz, (/3 is the unknown propagation constant to be determined),

all the field components may be generated from a single field component

Ez (for TM modes) or Hz (for TE modes). Explicitly, for TM modes, we

denote,

where

Hankel functions of the second

Jn for r <a. The unknown

The Z ‘s are Bessel functions, representing
~tid ;(2)

for r > a and the Bessel functions
n

propagation constant is then determined from the boundary conditions as.
r+a. For ~rfectly conducting structures, these conditions are listed

below:

(a) The vanishing of the tangential component of electric field
on the conductors yields:

CY

(1)

(2)

Ez (% p) = ~ An cos (2n+l) @ = o
n.o

(3)
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and
c1

E (a, ~) =-~ ~ (2n+l)An sin(2n+l) #=0
f n.()

(3)

I
for j e L1 , where L1 denotes the range of # such tbat -$.<$40, ancl

~-flo<!<~+l$y

(b) The discontinuity of the tangential component of magnetic field across I
the conductors yields, /

2&E. z A
Jz(a, j?!)=—

n
2

cos (2n+l) ~ = O (4)

7r~a -0 H:;+l (-ta)J2n+l (@

for j! e L2, where p e L2 denotes the range of j! suoh that

Similarly, for TE modes, we denote

Hz (r, $) =
z

Bn ‘2n+l (yr)
— sin (2ni-1) @

-0 Z;n+l (ya)
(5)

The boundary conditions are: I
(G)

a (2n+l) B
(b) Jz(a, #) =* ~

n

2n+l ‘W) “2n+~ (W)
x ~3a n .0 H,(2)

cos (2n+l) $

and
Bn

(’7)
a

J (a, @) = ~a
‘$ z

– sin (2n+l) $
0 ‘k+l ‘W) “2n+l(P)

for$c L2.
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●
It is interesting to note that in both cases, the boundary conditions

may be expressed in the following general form:

cl

J(@)= ~ Cncos(n+:)2 @=0, ~eL2.
Zt=o

(8)

Here, except for a constant factor J ($!) denotes Jz(a$ #), and E(@) denotes

E (a, ~). Gn(W) are known functions of ( ya), for the TM ease, we use
P

Gn (-ya) = ~(2n+l) H~~+l (va) J2n+1 (~a)

while for the TE case, we use’~

(WL)2●

(lo)

o
(11)

Mathematically, therefore, our problem of ftidhg the propagation constants

for the transmission line illustrated in Figure 1 is equivalent to that of find-

ing the set of values of y ( or w ) such that nontrivial solutions exist for the

homogeneous “dual summation equations” given by Eqs. (8) and (9). Although

detailed analysis concerning the existence of solutions of such a problem is

difficult to carry out, we assert that solutions do exi~t, based on the following

:+
These particular forms of Gn(@ were chosen to simplify the expressions
developed later for approximate solutions of -@.
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two physical arguments:

(a) It is lmown that the structure illustrated in Figure 1 supports
g

the TEM mode of propagation. In this case, P = ~ , and y = O, thus

we know the “dual summation equation” has at least one solution - namely

ya = O.

(b) In the published works on wave propagation along slotted

cylindrical waveguide, such as the works of Harringbm (1943) and Goldstone

and Oliner (1961), experimental evidence of high order propagation (with

imaginary .wrt of ~ < O) was reported. On physical ground, therefore, one

may suspect higher order modes also exist in the present structure which

may be considered as a cylindrical waveguide with two slots. Our primary

objective, therefore, is to develop a systematic approach, with the help of

computers, to determine numerically the solution set (ya) for the system

of dual summation equations. Based on the known solutions given by the

TEM mode of propagation, we first define sets of functions as the basis

of approximate@ the field components. These sets of functions, including

members that are discontinuous and unbounded, may be used to accurately

represent the dominant components (from the well known edge condition) of

the surface fields, Using this basis for the field representation, an infinite

system of equations is obtained for the propagation constant. Since the

dominant components of the fields are ticluded in the first few terms of the

field representation, truncation of the infinitesystem appears to be reason-

able. Procedures of approximate evaluation of the higher order propagation

constants by including N (arbitrary) equations of the infinite set are then

developed.



II

CONSTRUCTION OF BASIC FUNCTIONS

It is well known that the

the TEM mode of propagation.

be represented by

-jgz
~=e Vv (x, y)

structure illustrated in Figure 1 supports

For this mode, the field oompommts may

(12)

and

-j~z
g==Le ?! Xvv(x, y) (13)

@co

where V (x, y) satisfies the two dimensional Laplace equation and the boundary

conditions. By obtaining V through the use of conformal transformation, it

is easily verified that, except for multiplicative constants,

[,

●
o #eL1

E (a, $$)=
@ 1

#~L2
cos2po-cos2@

and

[d

1
Jz (a, ~ = $EL1

oos2&oos2flo

o #~L2 .

On the otherhand, in the dual summation equations (8) and (9), we

see that for -y= O,

Gn(ya)=l .

(14)

(15)
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Thus Equation (9) and (10) are reduced to:

cl

J(#)= ~ Cncos(n+~)2 @=0 ~~L2
n=O

E

n=~

Comparison of (14), (15) with (16) and (17) reminds one of

Mehler relations involving associated Legendre

Dirichlet - Mehler relations, we have (Erd~lyi,

Q

l?(~+m) z Pin (COSA) cos (n + ~
~.o

functions .

the Dirichlet-

From the

(16)

(17)

et al, 1%53) for r >A> O ,

)x

(T‘x ‘m A (cOS X - COSA)m -
1/2

- sin2
O<X<A

=

\

(18)

o A<x<z .

And, if we replace x by z - x and A by z = A,

c?

r( ++m)I P;m (-COS A) (-l)n sin (n+; ) x
n.o

‘{
o O<X<A

= (19).-
~-1/2 A<x<m ●

; (-l)m sin-m A(COSA- COSX )



.

h the above, if we let m = O, x=2$, and A=2@o, we have

Ea pn(c0s2#o) cos(n++)2ji!

n.o

{’
~ 1

2 cos2$-cos2#o=

o

o<2f<2jlio

(20)

and

z
a Pn(c0s2j$o) sin(n+~)2#

n=O

[/

o o<2p<2po “

= (21)
~ 1

2$0-=P- “
●

2 cos2#o-cos2#l

From Equations (20) and (21 ), ad their Periodic exten~ions~ it is evident

that Equations (16) and ( lT), i.e., the dual summation equations (8) and (9)

for the case of y = O, admit the non-trivial solution:

Cn = Pn (Cos 2 #o) .

Moreover, this solution yield values for E (@) and J (#) that agree with the

solution obtained by using the conformal transform techdques.

k general, since dominant components of the fields ( J (d) and E ($)

are the same as that of the TEM case, it is logioal to expand the fields h a

set of fumtions inoluding those given by (20) and (21). We therefore htroduoe

10



a new set of basis functions that may be used to represent J(@). These are:

co

fm(A, x)= z sin m A P-mn (cos A)cob(n+~)x .
n=O

(22)

f (A, x) are sketched in Figure 2.For all ranges of real x, the functions ~

The dominant features of this set of functions are:

::<
a) h the interval I& {2(k-Om+A <X<2M - A},

fm( A,x) = O (2!3)

b) In the complementary interval L’ :
1 ( 2kr

)
-A<x<2kr+ A-“

1

/7(‘2 COSX-COSA)
‘-5

fm(A, X) =~
r (m++)

where the positive sign holds for even k and the negative sign for odd k.

c) f. is discontinuous, unbounded, and at the end points of Li

(24)

(25)

d) f~ is continuous, but has discontinuous derivative; f2, together

with its first derivative is c cmtinuous. In general, fn c Cn ~.

>;:

Note that for A = 2 ~, x = 2 ~, Li and L; are L1 and L2 together with
their periodic extensions.

11
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These features illustrate the advantage of using the f function as

the basis of expansion for J (@).

Another set of functions, “dual” to the fn’s , can be obtained

from Equation (22) by replacing A and x respectively by r - A and

7T- x. This set of functions is defined by

gm(A, x)= fm(r-A, n-x)

03

= z (-l)n Sinm AP~m (-cos A) sin(n+~)x .

n.o

For real vahes of x, the functions gm (A, x) are sketched in Figure 3.

Again, the

a)

b)

following dominant features are obvious:

In the interval L; {2kr-A<x<2kr+ A},

gm(di,x)=o.

{In the interval Lb 2(k-1) r +A <x <2kn - A ,
}

I/m
1

‘/2 cos A- CGSX)m ‘~
gm(A, x)=7

P(m+~ )

c) go is discontinuous and unbounded. At the end points of L’,

‘
1–.go(A, x)*

cos A - Cos x

d) In general, gn e Cn, ~.

(26)

(27)

(28)

(29)

i3
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This set appears to be appropriate in using as basis of expansion for E (~).

A set of relations, useful in solving the type of dual summation

equations of ~u-%rest, are noted here. From the relations

1 ! !!
-m

JJf
(1.X2)2 P;m(x) = ● .. Pn(x)dxm

xx

and

1
=

2n n!

dn—(X2 -
dxn

We see that for n ~ m ,

l)n

P:~ (.x) = (.l)n+m P;m (x)

.

(30)

(31)

(32)

where for n < m, P‘m(x) and P-m (-x) are linearly independent. Using

Equation (31), it is ~asy to deduoenfrom Equation (22) that,

a

E (-l)n Sinm A P-m~ (-cos A)cos(n+~ )x=

n=O

=(-l~fm(A, x)-(-l~
~’sinmA[P~~ 1OOSA)-(-I~+nP~m( -COS A) cos (n + $ ) x

n=()

(33)

Similarly, from Equation (26),we have

03

EStim Al?-m* (eos A)sin(n+~ )x=

n=O
m=l

=(-lrg~A, x)+
~[ 1S~mA p~m(cos +(- l)n+mP~m(-oosA) sin (n+ ~ ) x

n=O (34)

15



We shall use these new basis functions to deduoe the approximate disper-

sion relation of the curved transmissionin the next section.

16
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III

THE DISPERSION RELATION

By denoting

propagation constants

x=2j?l A=2fo, the problem of finding the

of the higher order modes of the open transmission

line illustrated in Figure 1 may be stated as follows:

Find the set of y suoh that non-trivial solutions of the following

dual summation equations exist:

& 3
J($) =~Cncos(n+~)x=O

n.()

Moreover, due to the

Gn(~a)sin(n i-~ )X=o

XEL’
2

(35)

(36)

well known edge conditions, we require, as x ~ O in

L!l

J($)@
1

cos x - cos A (37)

and as x~Ain L’
2

E ($)‘i/co~ A1-~08 x “ (38)

b order to derive an equation from which ya ( or P) may be solved, the

the following faots are to be noted.

17
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●
(a) Any member of f (x, A) satisfies Equation (35) (c. f. Eq. (23)),

m
h particndar,

(37). Thus,

J (~) =

(b) As

f. (x, A) also satisfies the edge oonditkm, given by Equation
+

we may represent
03
F

L am fm (x, A) .
~.o

Xl+ co,

(39)

(40)

Thus, for the TM ease,

(2) (’Ya)2 (41)(2) (Ya) J2n+1(’P) -1 + ~ ~2n+1)2 “Gn(W) =; (2n+l) H2n+1

●
Similarly, as n 4 m s

H~2) (z) J’ (z) 2
n J&(l ++) “

+-Tn Z2 4n

Thus, for the TE

Gn(ya) =- ~

(42)

case,

“2n+l ‘W) ‘~n+l ‘~)
(2n+l)

(W)2 * 1+< (43)
4(2*1) .

h either ease, we may write

A
Gn (p) = I + Sn (w) (44)

‘~$Th-ec~mpletenes~ of such a representation cm be easily demonstrated
and will not be considered here.

18
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and note that as n -+ m,

Sn (ya) - (Ya)2

4 (2n+l)2
(45)

Equation (45) justifies our truncation procedure introduced later that

S- (~) may be neglected for any particular ya such that
u

(~a) << (2n +1)

(c) For Sn (ya) = O, Gn (-@ = 1,

to the TEM mode of propagation.

(d) For Sn (~) = -1, Gn (~a) = O,

we have ~ = O, corresponding

then, ~ are the zeros of

‘2n+l (~a) for the TM case and the zeros of J’ 2n+1 (w) for the TE ease.

(e) In terms of Sn (p), we may rewrite Equation (36) h the form

m 03

E (@) = E Cn sin (n+; ) x + E CnSn(@sin(n+~)x . (46)

n=O n=O

.
Here, the second summation in Equation (36) is of higher order in 4 in

n2
comparison to the first summation, and may be neglected (at least partially

for large n) in numerical computations.

Based on the above faots, let us deduce in steps the approximate

dispersion relations for ~. In the zeroth approximation, let us negleot

all the Sri’s except S and take only om term of Equation (39) in repre-
0

senting J (@). Thus we let,

19



J (~) = aofo(A~x) .

From Equation (22), We hW3,

Cn = CYoPn (COSA) .

Substitute into Equation (46), and use EqWtion (34)* we ~ve,

●
(47)

(48)

.

E (~) = a. go(A, X) + a. Pn (cos A) So (P) s~ (~+ :)x=o

xeL’l . (49)

since go ( A, x) is always 0 for x e L’l, Eq~tion (49) is satisfied o~Y

when,

S&t) =0 .

This is the TEM solution, i. e.,

p=o

In the first approximation, let us assume that SOand S1 are non-zero,

and use two terms in Equation (39). Thus,

J(@) =aofo(A~x) +EZ1fl(A, X) . (50)

This means

Cn = CYoPn(cos A) +@l Sti A P~l (COSA) . (51)

20
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Substituting Equation (51) into Equation (46), and using Equation (39), yields

E(@=aogo (A, x)-al gl(A, x )+

Xf+ sin –
}[1

a S P (COSA)+Q1SoslnA P~l(cosA) a1sin4 P~l(cosA) + P~l(-cos~) +
2~con

[

7
+ sin; x ~oSIPn(COSA) +alSISin A P~l (COSA) \= O XCL’ .

J I (52)

This is possible only if

[

-1
QOSOPD(COSd)+ Q

[

7
~ Sosin AP~l(cos A~sin A P~l(cos A)+ P~l(-cos A) = OJ

(53)

aosl Pn(cos A)+ Q1sl sin LP; l(cosa) = o . (54)

●
For non-trivial solution of Q. and al , the dispersion relation takes the form:

[ 1
2(1- COSA)2-2COS,4 =0 .

‘1 2 (55)

The condition S1 =0 yields -y=O, the TEM propagating condition, while the

other condition is

so (’p) =
4 cos A

(56)
(1 - cos A)2 “

The interpretation of Equation (56) is interesting. For A = 1@3°, PO = 90°,

corresponding to a closed circular gyide,

So(ya) =- 1.

21



Thus, in the limiting ease, the solution

or TE ~ modes of propagation. For the

that ~ for the open structure is close

i. e., ~ ~ 1.84, then

~ (1.84)2
S2 (~a) = ‘.03 <<

4 x (5)2
1

.

0
of Equation (56) yields the TM1

lowest mode, TEll, if we assume

to that of a olo~ed ciroularguide,

.

negleotiqg Sn (~m) for n >2 appears

and for high order modes, however,

The approximation introduced, i. e.,

to be reasonable. For the TM ease,

higher approximation is necessary.

For the second order approximation, we assume that Sn (w) ~ O

for n >3, and represent

J(@) =~ofo (x, Oyfl(x, A)+aaf2 (x, A) .

The resulting approximate dispersion relation is,

[
SOPO(COSq ~Sin A SoP~l(cos A)

I

I
I
I

[
ISin2A So P~2 (OOSA)
I

(57)

I
I

1
+ P;l (COSA) + P;l(-oos A) ; + P:2 ‘(COS@ - P;%os d

J I..-. --— ____ ____ ____ ___ —.. --- __
SIP1(COSA) ~Sin A S1 P~l (eos A)

I

I [
,Sin2 A S1P~2 (COSA)
I

I I + P~2 (COSA) + l?~?-cos AI J
L.-— —.—.- —- ___ ___ ___ ___ !--–—-–———— ——

S2P2 (COSA) fSin A S2 Pi 1 (COSA) .2 -2
pm ‘s2 ‘2 ‘OOs A )I

I
I I

(58)

=0

●
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Explicitly, Zquation (58) may be written as

‘,~.’l+%[’y’-’+y’+’’y-”l ‘1 - $-’.+%~’-’?ly’?l‘0
(59)

where, for simplicity,

y=(l, -cos A)

In the limiting case of

we denote

. (60)

cos A= - 1, y = 2, Equation (59) is reduced to:

-.

‘2 (w) [sl(74 + 1]PO(w) + lJ = o . (61)

The three factors h Equation (26) yield the propagation constants (i. . e, ‘ya)

for TEM, TM1 (or TE ~) and TM3 (or TE3) modes of propagation res~ctively.

In general, of course, we should represent

m

J(P)= ~ am fm(x, A)
m=()

(62)

and an infinite determinant is obtained. However, if we are computing ~

numerically, we may truncate the determinate to ( N + 1 ) x (N + 1) order,

i. e., represent

J(p)=
f am fm(x, A) . (63)

m=O

Any solution of the truncated determinant satisfying the criterion that (c!. f.

Equation (45))

23



. .

●
2

ya <<1
4 (2N+1)2

should yield numerically acceptable propagation constants. It is to be noted

that with our particular choice of basis funotions in representing the fmrfaoe

fields (J ($) or E (#)), the truncation appears to be reasonable sinoe,

(a) The first few terms

of E (j!) and J (#) correctly,

(b) The edge conditions

and

yield

to be

of the series represent tb,e dominant components

are automatically satisfied in this representation,

(c) It has been shown that results of the first few orders of approximation

exact results in the Hmiting case of A. = 90°. This tict is easily shown

true for any order of truncation.

For the N-th

we have

lN
-

approximation when J (#) is approximated by Equation (64)
o

c= = L a Sinm A P-m~ (COSA) . {64)
m

m=O

The truncated determinant, i.e., the approximate dispersion relation, takes

the form

Det K =0
n, m

where

K* ~ = 5n(@ stim A P~m (COSA )
8

+ sinm A P-m~ (COSA ) - (-l)m+n P~m (-COS A)

(65)

(66)

n,m=O, l, . . . . . . N.

24
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Some reduction of the determinant, and the numeriaal scheme for

computing ya from the determinantal equations are discussed in the

next section,

I
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NUMERICAL COMPUTATION OF “~a

Although in principle, the solution for the set of v satisfying the

dispersion relation for any order (N) of approximation appears to be a

straightforward mathematical problem, the aotual numerioal computation

of ya is far from trivial due to the complicated functions (Hankel fumtions

for complex arguments) involved in these equations. For the first order

approximation, the dispersion relation given by Equation (57) are re-

written as:

(68)

For a given A = 2 $., the solution of Equation (68) for complex y a oan be
e

carried out by Newton-Raphson’s iterative method, The convergence in

this case appears to be good. For TM modes, some of the numerioal re-

sults are tabulated in Table 1. For large PO, the solutions are dose to

the zero’s of Bessel funotions; for the smaller $., the deviation from the

zero’s of Bessel functions becomes greater.

For the second order approximation, Equatio~ (GO) is again written

as

F (w) = SO(W) Sl(w) +%{ 3Y3-15y2+32y-24) S1(@

Y

32 (2-6y + 3 y2) = O-+(3 -2y)SO(w)+y6
Y

(69)

where

y={l - cos A) .

26



Table 1.

ya From First Approximation TM Mode

First Set of Roots Second LSetof Roots

PO Re Im Re Im

87.5° 3.8316950 0.0 7.0155994 0.0

75° 3.8416062 0.0000934 7.0337080 0.0603267

60° 4.0425478 o.~474268 7.3553023 0.1318178

50° 4.3667455 0.4574768 7.6335519 0.6966593

27
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For any given A, Newton- Raphson’s method is agah used to oompute

the complex roots. In this case the convergence is very poor, and no

numerical acceptable roots were obtatied after 10 iterations even when

we start with the initial guess predicted from the first approximation. A

modified conjugate gradient program was also tried in an attempt to solve

~F(w)l=O (70)

without success. After considerable amount of numerical experimentation,

we have developed a soheme combining the .searoh@ and iterating teoh-

nique in computing ~ . The convergence is greatly improved h using

this scheme. Since the numerical problem of computing complex roots of

complex equations involving transcendental equations is known to be a very

difficult task, our new scheme appears to represent a significant contribution

in solving such problems. A detailed description of this searohing and ●
iterating scheme is given in Appendix A. For TM modes of propagation,

some numerical results are given in Table 2. It is to be noted that not

all of the roots in Table 2 satisfy the criterion

lqa12 << 4X(2 N+1)2 =176 .

They are tabulated, however, to illustrate the feasibility of evaluating all

the complex roots.

For any Mgher order approximation, the dispersion relation given

by Equation (S6) may be written in the form,

F (ya) = det[K] = O

28
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Table 2.

(ya) From Second Approximation TM Mode

First Set of Roots , Second Set of Roots

P. Re Im Re h

87.5° 3.9685815 0.4489306 6.0104261 0.6061281

75° 4.1029203 1.5604187 5.7068481 1.2732071

60° 3.9995496 1.4339417 5.6891943 1.8720847

50° 2.8350118 1.5225492 5.9726308 0.4743322
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where K is a matrix, with elements

K {-p) = Sn (~a) Sinm A Pnm(COSA)
n, m

[

n+m -m
+ SinmA %m (cos A ) - (-1) Pn

1
(-ODSA)

n,m=O,l, 2, . . . . . . . ..N. (72)

Explicit expression for the dispersion relation using a Laphme development

of the determinant appears to be unnecessary since we are titerested only

in the numerical solutions. For numerical computation, however, since

eaoh of the matrk elements Kn In are functions of (p) and A , they

must be calculated for eaoh Q Ad every iteration. To simplify the oom-
0

putation, we have succeeded in reducing Equation (70) to the following form:

F(@=det(~S ]+[Q’1)=0 (73)

where

[1s=

.

so(w)

s, (w)

L
(74)

is a diagonal matrix, and is independent of A . On the otherhand, [Q] i~

a matrti depending only on A= 2$0. For any A , if we denote

y=l-cos A,
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[
the elements of Q] may be computed by ushg the following equations:

2j i-j-1
a) Aij = (-l)i’-j+ ?;) ~ (-l)t( ~)t

(2j-t-l)!

t.() 2 (j-t-i-l)! t! (j+i-t)!

A =0
ij

i>j

b) Cnk= t
(n+k+r) ! —— (# ( ;)r

> n=o (2k+r)! (n-;-r)! .

c) QiN= AiN
s a

(75)

(76)

(77)

d) Q =A -Q iNc NN1i. N-1 i, N-1 , , -

N

e) Qik=Aik= I Qij Cj, ~
* # j =k+l

For a fixed N and A , the math elements Q
i, k

can be computed first,

and in the iteration solution for ~ , only the elements of S matrix need

to be computed in each iteration. The detailed derivation of Equation (73)

is given in Appendix B. Computation of ~, using this scheme appears to

be feasible if N is not too large. Actual computation to date, however,

has been completed for N = 2 only.
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CONCLUSIONSAND RECOMMENDATIONS

The modal analysis of the guided wave propagation along an open

structure such as illustrated in Figure 1 yields a set of “dual summation

equations” for the propagation constants. By introducing new sets of basis

functions in the expansions of surfiace fields, the approximate dispersion re-

lation (for any order N of approximation) have been developed. Numerioal

scheme for obtiining the complex roots of the. dispersion reiation were de-

veloped. Although the actual computation was carried out bnly for N = 2,

there appears to be no doubt that the scheme is applicable for moderate

values of N. Future work concerning this problem should probably include

(a) more calculations for higher values of N to investigate numerically the

effect of truncation, and (b) more detailed analysis to determine the behavior

of the matrix elements Q.. which, physically may be interpreted as “coupling ●
q

coefficients” between different modes.

The basic mathematical scheme developed in this study may in principle

be modified and extended to include the solutions of the following problems:

(a) The propagation of waves along a circular waveguide with one

longitudinal slot. Although others have performed a theoretical analysis of

propagation along slotted cyllnders previously, for example, in the works of

Goldstone and Oliner (1961), Barrington (1959) and Chen (1973), theoretical

analysis and numerical computation of the propagation constants for higher

order modes are still lacking.

(b) The complex rescmant frequenoy of spherical resonators. The

modal analysis of such an open structure yield also a set of dual summation

equations involving associated Legendre functions P: (COS6). The solution
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of the dual summation equations by introducing the proper basis fungtion

to represent the surface field should be worth investigating.’

(c) The modal analysis of scattering problems involving open

structures such as slotted cylinder and slotted spheres yields a set of

inhomogeneous dual summation equations. A systematic approach for

solving such scattering problems by introducing proper basis functions

for the representation of the surface fields should also be tried. The

scattering problem of the sources by slotted cylinders has been investigated

by Hayashi ( 1966) by using singular integral equations. It appears that

the basic advantage of using singular integral equations is to obtain the

dominant component of the surface fields which is the first term of our

representation. The computation of other higher order terms, however,

is more involved in the singular integral formulation.
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SEARCHING

APPEND= A

AND ITERATING PROCEDURE

Let us consider the problem of finding a complex root

satisying the equation

f(z)=o

where f (z) is a complex function, involving transcendental

z=x+jy

(A. 1)

functions such

as Hankel functions. When the standard Newton-Raphson’s method of find-

ing roots of Equation (A. 1) is not successful, a searching and iterating pro-

cedure may be used in improving the convergence. JRiHustrating this pro-

cedure, we assume that near any zero of f (z) , the function is

and the derivative of f (z) may be computed. We shall denote

f(z) =f(x+jy) =U(x, y)-i-j V(x, y)

A f(z)
f’(z) = A= = Ux (x, y) i- i Vx (x, y)

=+ Vy(x, y)-i Uy(x, y)

analytic

(A.2)

(A,.3)

and assume that given x and y , U, V and their partial derivatives may be

evaluated. Our suggested procedure for finding the complex roots are

illustrated schematically in Figure A-1. The procedure may be described

in the following steps:
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(a) Given arty initial yo, compute u (x, yo) and V (x, yo)~ and scan

x coarsely over a chosen range. As illustrated in Figure A-1, there exists
b

points A (x~, yo) such that U (xa, yo) = O, and B (x , yo) such thato
v (x:. y~) = O. From the coarse searching, in gener~l for simple roots,

U changes sign at x: and V changes sign at x: . Values of x: and Xbo
may be computed more exactly, from the results of coarse searuhing and

Newton-Raphson iterative procedure. To improve oonvergencw, if the dif-

ference between x: and x: are too large, another value of y. may be

chosen and the coarse searching re~ated.

(b) From x;, yo. and Xbo, yo, we determine yl, corresponding to the

y coordinate of C, which is the intersection of the two tangent lines AC

and BC. To determine y
1’

we first computed

u; ‘ Uy (x: , yo)

v; =Vy (X5 , yo)

From these partial derivatives, it is easily seen that

(A.4)

(A. 5)
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A

V=o U=o

---- ---- ____ _-

*X

Figure A-1: Illustration of
Procedure.
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0
(c)

repeated,

Start from (xl, yl), i.e., the point C. The process may be

until for any ym,

I
a ~b-x

x -x
mm’ m m

are less than some preset criterion of convergence.

(d) Jnsome oases, this procedure may fail. For these cases in

general

a b
x -x

I -1
> X:_l - x: ~,.

mm

If this happens, the role of x and y should be interchanged b order to

obtain convergence.
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APPEND~ B

REDUCTION OF THE DISPERSION RELATION

The dispersion relation for the N-th approximation, given by

[1Equation (66), indicates that the determinant of matrix K should be

zero. If we denote

y=(l-cos A)

Pn ~, (Y) = sinm A P~m(cos A) ,
$

H
[

= Sinm A P-m
n, m n (COSA) - (-l)m+n P~m(-cos A)

1

m+n
= Pn ~(Y) - (-U Pn ~(2-y)

● ●

L]
the elements of K matrix are given by

Knm=sn(ya)p n, m(y)+Hn m(y) .* s

Thus, the [K] matrix may be written as

[K] ‘[m + [4
where

(B. 1)

(B.2)

(B. 3)

(B.4)

(B. 5)

I

I

I

I
1

I

/

I
I

I
I

I
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and the.matrices[p] and [H]hweelements pn,m, and Hn,m respedvely. .

Since s depends only on (@ and p and H depends O~Y on Y , the

roots (-ya) of the dispersion relation are the same as thab of the equation,

det ([i]+ [H][p]-l ) ‘O .

. .
Therefore, the matrix lQ] in equation (73) is given by

[Q]=[4[4-’

‘r[Q] [PI= k] m

(J3.6)

(B. 7)

(B. 8)

The scheme for evaluating the elements Q,.lJ
of the matrix [Q] given

in Equation (75) through Equation (79) can be derived from the expression

n ~ (c. f. Hobson, 1955).of p
J

n

E
(n+-r)! 1 (-l)r ~;)r .

nm(y)=ym —P
n=O (n-r)! Z =

(B. 9)
)

The derivation makes use of a discontinuous summation formula whioh we

shall state now. This relation is given by

f

‘a-b)! (-1)” ‘#-J
(a-b-n)! .

a ~(a-b) ~n

b>a

otherwise.

(b. 10)
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The proof of this relation is

expansion

n

straightforward. One starts from the binomiaI

I

I

1

1

1

(B. 11)

Multiply the above by Ua, differentiate both sides of the produce (a - b) times

and let U -1 thus obtaining the first part of Equation (B. 10). Similarly, if

we integrate both sides of the product (b - a) times, and let U + 1, the second

part of Equation (B. 10) is obtained. The third part of Equation (B. 10) be-

comes clear after the first two parts have been determined. Based on Equation

(B. 10), one finds that

U

(2-y) = 2m z
-@&l.l J. (-l)r (1 Y)r+mPn, m ~ . O(n-r)! r! (~ -2

i

m-
= 2m x

f

lms(;f ~ (n+r)! (-l)r
S=o s!

1
r=o (n-r)! ~ (+!

(B. 12)

+ 2m

L

n+m (_~)s ~ s - n

z s, (2)
(*r)! (-l)r 1

s=m “ r=?m ‘n-r)’ 1T_(rn-s+r)! “

In Equation (R. 12) the series in the square brackets may be expressed in

closed form by using Equation (B. 11). Therefore, we have

x
(-l)r (n+r)!

r+m
P (2-y) = 2m (-l)m+n

n, m I (r+m)! (n-r)!r! (;)

r=O
n-m-1

z
(-l)s ( ; )s ~:-:-:)!l), *+ 2m

---~=o s: . . (B. 13)

,

●
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where the second series is

<

nonvanishing only if m > n. Thus, we have

H {,y) =
n, m

{
m>n

[

o nl~ll . (B. 14)

-.

lJIn other words, the matrix H is an upper triangular matrti with diagonal

terms zero.

~ order to find [Q], [1
-1

we would like to find the inverse matrk p .

However, since the order of matrix N is kept arbitrary, one finds that a

relation independent of N, which reduces the [p] matrix into triangular

form may be more suitable for computational purposes. This relation is

given by:

(B. 15)

where [a] is a lower triangularmatrix while [C] is an upper triangular

matrk. The diagonal elements of ~C] are un.iiy, and the element of [a]

are

1
yi+j

where a are constants (independent of y) and satisf@ng
ij

Q’.. = o
lJ

CY>j ●
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The quantities CY, and C.. can
lj lJ

By matrix multiplication, we see

given by,

n P
c= E

r,s asn
rn

s =0
ys+n

r

again be deduced by using Equation (B. 10).

that the elements of the rC matrix isL]

Since Crn = 1, r=n, and C =0 r<n,
rn

n

I

CYsn—=
(s+t)~ o t<n

s =0

= (-l)nn! ~n t s n
(2n)!

Using Equation (B. 10), it is evident that

and
n-s

the set a~n satisfy

c= ~ ‘*N*): (-l)r
~_. (n-r-s)! ~! ( ~ ‘r (2~+r)!n,s

Now, if we multiply both sides of Equation (B. 8), by [a] we have

[QIM=[4[44 [4
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(B. 18)

(B. 19)

(B. 20)

I
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The elements of the A matrk is easily shown to be:

‘ij = ~ IIik ~
k=i+l

=* (-1)~+1 ( y
.

j-i-l

x (-J ( 1$ o-t-l}!
j

2 {j-t-i-l)! (j-t+i)! E
(_@&llL--&

t=o
(k+t-j) (j-k)! *

k=j-t

Again, use Equation (B. 10), we have

2j “-i-1

Aij= (-l)i+j+l( $
h

(-1)1’ ( ; )
t (Zj-t-l)!

(j-t-i-l)! (t)! (j~t+i) !
~=o

(B. 22)

From Equation (B. 21) and (B. 22), the expressions for the elements Qij
are

●
then easily deduced.
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