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STATEMENT OF THE PROBLEM

In this study, the propagation of electromagnetic waves along a class
of open structures is investigated by introducing a new set of basic functions
in the representation of the surface field. To illustrate this approach, let
us consider the waves guided along a curved transmission line coniposed of
infinitely long, symmetrically located conducting circular sectors as shown
in Figure 1. Assuming that the time dependence and z-variation of the
field to be et~ 3B % (B is the unknown propagation constant to be determined),
all the field components may be generated from a single field component

EZ (for TM modes) or Hz (for TE modes). Explicitly, for TM modes, we

denote,
x Z {(vr)
E(r, ) = Z A %% cos (2n+1) ¢ (1)
n=20 2n+1 v
where
2
w2
v 5 - B . (2)

The Zn(’z)are Bessel functions, representing Hankel functions of the second
kind Hn for r >a and the Bessel functions Jrl for r <a. The unknown
propagation constant is then determined from th.e boundary conditions as
r—» a. For perfectly conducting structures, these conditions are listed
below.

(a) The vanishing of the tangential component of elestric field
on the conductors yields:

a
E (a, p)= HZOAD cos (2n+1) = 0 (3)




-




and
[¢4

Ea, §) = 1B Z (2n+1) A_sin (2n+1) § = 0 (3)
# T azo n
for f e L , where L, denotes the range of ¢ such that —¢0<¢<¢0, and

z-¢0<¢<z+¢o,

(b) The discontinuity of the tangential component of magnetic field across
the conductors yields,

Zweo A!1
J (a, # ol i B cos (2n+1) =0 (4)
Ty a %0 H2n+1 (va) J2n+1 (va)

for f e L,, where $e L, denotes the range of § such that

2

po<p<=z-4,. T+, <p<er-p,
Similarly, for TE modes, we denote

- v/ (vyr)
H, (x, P = z OBn ——Z,ZD-H ) sin (2n+1) § (5)
2n+1 Y

The boundary conditions are:

(a) E¢(a, #) =

(o4
Ko Z B_ sin(20+1) $ =0 (6)
v n=0

for § ¢ L
o
(2n+1) Bn

rya n=0 Hy ,(ady,
and o B 'n
. J¢(a, $) = 2 = - gin (2n+1) #

]
YA fog Hypy (@) Iy L, 0ra)

cos (2n+1) §

for § € L,




It is interesting to note that in both cases, the boundary conditions

may be expressed in the following general form:
a
J(¢)=Z C cos(n+—1')2¢=0, del, . (8)
=5 n 2 2

and
o

E(§) = Z CnGn("ya)sin(n+%)2¢=0, fe L (9)
n=20 ’

1

Here, except for a constant factor J ($¥) denotes J (2, #), and E(#) denotes

E ¢(a, #). Gn( va) are known functions of {+vya), for the TM case, we use

. T (2)
G, (va) = 3 (2n+1) H2n+1 (va) Sont1 (ya) (10)
while for the TE case, we use”
(2)
J! (ya) H {vya)
_ X _2ntl 2n+1 2
Gn(ya) =3 GatD) (va)~ . (11)

Mathematically, therefore, our problem of finding the propagation constants
for the transmission line illustrated in Figure 1 is equivalent to that of find-
ing the set of values of v ( or ya ) such that nontrivial solutions exist for the
homogeneous "dual summation equations' given by Egs. (8) and (9). Although
detailed analysis concerning the existence of solutions of such a problem is

difficult to carry out, we assert that solutions do exist, based on the following

% '
These particular forms of Gn('ya) were chosen to simplify the expressions
developed later for approximate sclutions of ~a.




two physical arguments:

(a) It is known that the structure illustrated in Figure 1 supports
the TEM mode of propagation, In this case, = %:— , and vy = 0, thus
we know the ""dual summation equation' has at least one solution -~ namely
va = 0.

(b) In the published works on wave propagation along slotted
cylindrical waveguide, such as the works of Harrington (1943) and Goldstone
and Oliner (1961), experimental evidence of high order propagation (with
imaginary vart of [3< 0) was reported. On physical ground, therefore, one
may suspect higher order modes also exist in the present structure which
may be considered as a eylindrical waveguide with two slots. Our primary
objective, therefore, is to develop a systematic approach, with the help of
computers, to determine numerically the solution set (ya) for the system
of dual summation equations. Based on the known solutions given by the
TEM mode of propagation, we first define sets of functions as the basis
of approximating the field components. These sets of functions, including
members trat are discontinuous and unbounded, may be used to accurately
represent the dominant components (from the well known ‘edge condition) of
the surface fields. Using this basis for the field representation, an infinite
system of equations is obtained for the propagation constant. Since the
dominant components of the fields are included in the first few terms of the
field representation, truncatien of the infinite system appears to be reason-
able, Procedures of approximate evaluation of the higher order propagation
constants by including N (arbitrary) equations of the infinite set are then
developed.
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CONSTRUCTION OF BASIC FUNCTIONS

It is well known that the structure illustrated in Figure 1 supports
the TEM mode of propagation. For this mode, the field components may

be represeunted by

w
_j—c-z
E=e vV ix, (12)
and
iR,
1 Jc A

H= e ZxVVI(x, ¥y (13)
=7 hge

where V (x, y) satisfies the two dimensional Laplace squation and the boundary
conditions. By obtaining V through the use of conformal transformation, it

is easily verified that, except for multiplicative constants,

0 $e L1
E¢ (ap ¢) = (14:)
1 $ e L,
‘/coszﬁo-coszﬁ
and '
1
I (a, §= per,
z L/cos 2§ - cos 2 ¢0 (15)
0 fe L2 .

On the otherhand, in the dual summation equations (8) and (8), we
see that for v=0,

Gn(-ya) =1




Thus Equation (9) and (10) are reduced to:

(04 .
J(§) = z Cncos(n+%)2¢=0 fe L, (16)
' n=0

€
E(§) = Z Cnsin(n+%)2¢=0 ¢€L1,. (17)
n=20

Comparison of (14), (15) with (16) and (17) reminds one of the Dirichlet-

Mehler relations involving associated Legendre functions. From the

Dirichlet - Mehler relations, we have (Erdélyi, et al, 1253) for 7 >A>0,

o

I'(:-L-w‘-m) Z P—n(cosA)cos(n+—l-)x
2 2= n 2

‘/%si{mA(cosx-cosA)m—lm 0<x<A

= (18)
0 A<x<gxw
And, if we replace x by 7 -x and Aby 7 =4,
Q.
l"(l'*'m) 2_‘ P—m(—cosA) (—1)nsin(n+l)x
2 n 2
n=0
0 0<x<A
(19)

% (-1)m sin-m A{cos A- ¢cos x )m'l/2 A<X < T .




In the above, ifwelet m =0, x=2@, and A=2¢0, we have

o
Z P_(cos 2¢0) cos (nf—é) 2 ¢

n=0
1 1
- 2/605256-0052;30
0

and

= (oo’ ) sin(a+l) 2
Z ' (cos” p) sin(n+7 ¢
n=0

0

1 1
> 7

0032ﬁ0—00s2¢

0<2y§<2p?50

(20)
29, <2p<n |
0<2¢<2%

(21)
2¢G<2¢<7r

From Equations (20) and (21), and their periodic extensions, it is evident

that Equations (16) and (17), i.e., the dual summation equations (8) and (9

for the case of v = 0, admit the non-trivial solution:

C =P, (cos 2 9!0)

Moreover, this solution yield values for E () and J (f) that agree with the

solution obtained by using the conformal transform techniques.

In general, since dominant components of the fields (J (¢) and E (¢))

are the same as that of the TEM case, it is logical tc expand the fields in a

set of furctions including those given by (20) and (21). We therefore introduce

10




a new set of basis functions that may be used to represent J(@). These are:

©
£ (4, x)= }: sin™ a P ™ (cos A) cos (n+l)x . (22)
m n=0 n 2 |

For all ranges of real x, the functions fm (A, x) are sketched in Figure 2.

The dominant features of this set of functions are:
a) In the interval:‘ L’2 : {2(k—l) T+ A <x<2kr - A},
f (Ax)=0 (23)
m

b) In the complementary interval Lj: {Zkvr - A <x <2km + _é} .

Ly m = 3
fm(A' x) =+ 2(cosx-clos A) (24)
' (m+3)
2
where the positive sign holds for even k and the negative sign for odd k.
c) fo is discontinous, unbounded, and at the end points of L'1
£ (A, x)~ : (25)
o' /cos x - cos A

d) f1 is continuous, but has discontinuous derivative; f2, together

with its first derivative is continuous. In general, fn € Cn—l’

" Note that for A =2, x=2§, Ll andL} are L, and L, together with
their periodic extensions.

I




Figure 2: Sketches of fm
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These features illustrate the advantage of using the f function as
the basis of expansion for J (§).

Another set of functions, '"dual" to the fn's , ©can be obtained
from Equation (22) by replacing & and x respectively by 7 - A and

7 - X. This set of functions is defined by

g (A x)=f (r-4,7-%

QO
- Z (-1 sin™ AP™ (~cos 4) sin (n+-é")x . (26)
n=20

For real values of x, the functions gm (A, x) are sketched in Figure 3.

Again, the following dominant features are obvious:
a) Inthe interval  L! (2kr - A<x <2k7 +4),
gm(A, x)=0. (27)

b) In the interval L'2 {2(k—l) 7+ A<x<2k7 - A},

1
/i m-=
d ]2 (cos A- cfs x) 2 (28)
P(m +§ )

gm(A.x)=

c) g, is discontinuous and unbounded. At the end points of L',

. , ,
g, (4, X)N/cosA-cosx . (29)

d) In general, g, € Cn— 1

13
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/‘\K2
| J I\\ i 20+A | —x
0 A T 2x-A 2 \ 3
£
g
AR /
/ \ /

Figure 3: Slstohes of g
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This set appears to be appropriate in using as basis of expansion for E (§).

A set of relations, useful in solving the type of dual summation

equations of iulerest, are noted here. From the relations

1 1 1 H
(1- 2)§m P (%) = P (x) dx™ (30)
X n PR n
X X

and

n

P (x =— : "q"-n-(x2 - . (31)
2" n! dx
We see that for n>m,,
+

P = (DT RT () (32)

where for n < m, P;m (x) and P;m (-x) are linearly independent. Using
Equation (31}, it is easy to deduce from Equation (22) that,

QO
Z (1) sim™ & P7™ (~cos &) cos (n +% ) x =

n=20

+n_-
_( 1)n1f (A X) ( 1)nlzsm A[P m(GOSA) (-1)m ( -COS A)J cos (n+_) x

n=0
(33)

Similarly, from Equation (26), we have

®
Zsinm AP;m (ecos A) gin (n +-;- ) x =
n=0

: R
=<-1>mgngA.x>+z smmA[ ™08 §-(- 1) p” - (-cosA)]sin(n-*-'%)x
n=0 (34)

15




We shall use these new basis functions to deduce the approximate disper-

sion relation of the curved transission in the next section.




m

THE DISPERSION RELATION

By denoting x=2f Aa=2¢ the problem of finding the

0 3
propagation constants of the higher order modes of the open transmission
line illustrated in Figure 1 may be stated as follows:

Find the set of v such that non-trivial solutions of the following

dual summation equations exist:

@
J(¢)=nZ=OCncos(n+%)x=0 x e Ly (35)
®
. 1
E(¢)=nZOCnGn(ya)sm(n+§)x=O xely . (36)

Moreover, due to the well known edge conditions, we require, as x — 0 in

1
Ll

3 () L (37)

/ cosx-cos A

andas x-~—» Ain L':2

1

‘ (38
/cos & - cos x ’ (38)

E (f) ~

In order to derive an equation from which +vya ( or 8) may be solved, the

the following facts are to be noted.

17




(a) Any member of fm (x, A) satisfies Equation (35) {c.f. Eq. (23)),
In particular, f0 (x, A) also satisfies the edge condition, given by Equation

(37). Thus, we may represent
o o)

TW=Y. af (x4) (39)
m=0
(bp) As n—» o,
2) ' 2
nHY (2) T (z) —s 4 [1+ 5—] ) (40)
n n x 2
4n
Thus, for the TM case,
x (2) (2) (ya)°
Gn( va) 5 (2n+1) 1-1211_}_1 (ya) J211+1 (va) —» 1 + 5 - (41)
4 (2n+1) ¢
Similarly, as n—» o ,
(2) ‘
CHY {(z) I (=) . 2
s B _ gy Al g2 . (42)
n T 2 2 i
Z 4n

Thus, for the TE case,

H! (va) I (va) 2
+ +
G ('ya)=—1r 2n+1 2n+1 (7‘)2 _’1+_jﬁL2_ (43)
In either case, we may write
G (va) 2 1+5 (1) (44)
n = n \T*
* The completeness of such a representation can be easily demonstrated .

and will not be considered here.

18




and note that as n —» o,

2
8_(ya) — 2 . (45)

4 (211+1)2

Equation (45) justifies our truncation procedure introduced later that

Sn (va) may be neglected for any particular +a such that
(ya) <<(2n +1)

(¢) For Sn (ya) = 0, Gn (va) =1, we have ~va = 0, corresponding
to the TEM mode of propagation.

(d) For Sn (va) = -1, Gn (va) = 0, then, <va are the zeros of

(va) for the TM case and the zeros of J' (vya) for the TE case.

J2n+1 2n+l

(e) In terms of Sn (ya), we may rewrite Equatior (36) in the form
o) ed)

E(¢)=ZC sin(n+l)x+ZC S ('ya)sin(n+-1-)x . (48)
ne0 1 2 Sorn 2

Here, the second summation in Equation (36) is of higher order in "1—2 in
comparison to the first summation, and may be neglected (at least palll'tially
for large n) in numerieal computations.

Based on the above facts, let us deduce in steps the approximate
dispersion relations for +vya. In the zeroth apprbximation, let us neglect
all the Sn's except So and take only one term of Equation (39) in repre-

senting J (). Thus we let,

19




J(P) = a fo {4, x) . (47)
From Equation (22), we have,

C, = «, P, (cos A) . (48)

Substitute into Equation (48), and use Equation (34), we have,
1
= A — =
E (§) aogo( ,x)+a0 Pn(cosA) SO('ya) sin(n+2)x O
x el . (49)

Since g, (A, x) is always 0 for xe L'l, Equation (48) is satisfied only

when,

SO('ya) =0

This is the TEM solution, i.e.,

va =0

In the first approximation, let us assume that S0 and 81 are non-zero,
and use two terms in Equation (39), Thus,

J(¢)=aofo(A, x)+e £ (A x) . (50)

This means

sin A p;l (cos A) . (51)

C11 =a Pn {cos A) +a1

20




Substituting Equation (51) into Equation (46), and using Equation (39), yields
= - A +
E(f)=ag (& x-a 8 (A x)

- -
X r -1 -1 -1

+ — + -

sin2 aCSOPn(cosA) arlsosinAPn (cosA)}‘alsinA ‘Po (cosA)+ Po ( cosA)J"“

3 [ -1, )
—_ + = t
+ sinz xLaroSan(cosA) alslsinA Pn (cosA)J; 0 x<L, . (52)
This is possible only if
o S P (cosA)+a, |S sinap m&Lm A [P cos a)e 27X Af—o
S, P 1 |S,8inAP (co ) n , (cos. , (-cos _J-
(53)
a S.P (cosA)+a, S sinAP—](cosA)=O . ' (54)
oln 171 n

For non~trivial solution of a, and @, the dispersion relation takes the form:

S

Sl 39(1-0053)2-2008/_‘3 =0 . (55)

The condition S, = 0 yields + =0, the TEM propagating condition, whils the

1
other condition is

4 s A :
e s . » (56)
(1 - cos 4)

S, (va) =

The interpretation of Equation (56) is interesting. For A = 1800, ¢o =907,

corresponding to 2 closed circular gyide,

S =~ 1,
O('ya)

21




Thus, in the limiting case, the solution of Equation (56) yields the ™,
or TE1 modes of propagation. For the lowest mode, TE 11’ if we assume
that va for the open structure is close to that of a closed circular guide,

i.e., vaZ 1.84, then

~ (1. 84)
4 x (B)

S (a) =,03 <<1

The approximsation introduced, i.e., neglecting Sn (ya) for n > 2 appears
to be reasonable. For the TM case, and for high order modes, however,
higher approximation is necessary.

For the second order approximation, we assume that Sn (va) Zo

for n > 3, and represent

J($) =af (x, &) +a £ (x, &) +a_f, (x, A) . (57)

The resulting approximate dispersion relation is,

1
'
_ I
SOPO(cos A) 1 8in A [SoPol(cos 4) I SinzA[S P (cos A)
I
I
I
I

+ P’2 {cos A) ~ P;Z(-cos Ai]

— e o = . - —— wmm e ete  mim am e ewe  wee e s wme wme a2 A A e sem e e e s =]

Z i
Pl(cos A) | 8in A S1 Pll (cos A) ,Sin2 A.I:SIPI2 {cos A)
[ I
: ! + P-z (cos A) + P—2(—cos A)]
s R
2 2 (cos A). Sin A S2 P2 {cos A) Sin ASZ P2 (cos A)

22




Explicitly, Equation (58) may be written as

4 3 2 J 16 32 | 2.1
o - + - — o— - Y Q 4 = - =
82 [Sosl [3 y -15y + 32y - 24 S1 (3 - 2y) bo v6 (2-6y+3y )] 0

v4 y4
(59)
where, for simplicity, we denote
y = (1 - cos A) . (60)
In the limiting case of cos A= - 1, y = 2, Equation (59) is reduced to:
S, (va) [Sl (ya) + 1] [so (ya) + 1} =0 . (61)

The three factors in Equation (26) yield the propagation constants (i..e, <va)
for TEM, TM1 (or TEl) and TM3 (or TE3) modes of propagation respectively.

In general, of course, we should represent

Q0

J(P)-= Z a £ (x4 (62)

m=0 m

and an infinite determinant is obtained. However, if we are computing <va
numerically, we may truncate the determinate to ( N+ 1) x (N+ 1) order,

i.e., represent

J(¢g)-= iamf (x, &) . (63)
m=0 m

Any solution of the truncated determinant satiafying the criterion that (c.f.
Equation (45))

23~




2
4 (2N+1)
should yield numerically acceptable propagation constants. It is to be noted
that with our particular choice of basis functions in representing the surface

fields (J (§) or E (§)), the truncation appears to be reascnable since,

(a) The first few terms of the series represent the dominant components

of E (§) and J (#) correctly,

(b) The edge conditions are automatically satisfied in this representation,
and .

(¢) It has been shown that results of the first few orders of approximation
yield exact results in the limiting case of A_ = 90°. This fact is easily shown

to be true for any order of truncation.

For the N-th approximation when J {(f) is approximated by Equation (84)

we have
N
c = Z « sin® A P ™ (cos A) . (64)
n =0 m n

The truncated determinant, i.e., the approximate dispersion relation, takes

the form

Det|x |= 0 : | (65)
n, m

where

m -m
= A A
Kn m Sn( vya) sin Pn {cos A)

+sin™ A P;m {cos A) - (_1)m+n P—m (-cos A) (68)

24




Some reduction of the determinant, and the numerical scheme for
computing vya from the determinantal equations are discussed in the

next section.

25
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NUMERICAL COMPUTATION OF va

Although in principle, the solution for the set of +ya satisfying the
dispersion relation for any order (N) of approximation appears to be a
straightforward mathematical problem, the actual numerical computation
of ya 1is far from trivial due to the complicated functions (Hankel functions
for compiex arguments) involved in these equations, For the first order
approximation, the dispersion relation given by Equation (57) are re-

written as:

4 cos A
(1 - cos A)z

F(vya) = Sg ('ya) = (68)

For a given A =2 ‘QU’ the solution of Equation (68) for complex v a can be
carried out by Newton-Raphson's iterative method. The convergence in
this case appears to be good. For TM modes, some of the numerical re-

sults are tabulated in Table 1. For large # , the solutions are close to

O)
the zero's of Bessel functions; for the smaller 950, the deviation from the
zero's of Bessel functions becomes greater.

For the second order approximation, Equation (60) is again written

as
4 3.2
F (ya) = S (v2) S, (ya) +25 (351557 432y-20) 5, (y2)
¥
16 2
- (3-2y) 8, (ya) +32 (2-6y +3y9) = 0 (69)
y6
y
where

y = (1 - cos 4)

26




va From First Approximation TM Mode

Table 1.

First Set of Roots

Second Set of Roots

¢0 Re Im Re Im
87.5°  3.8316950 0.0 7.0155994 0.0

75° 3.8416062 0.0000934 7.0337080  0.0603267
60° 4.0425478 0.0474268  7.3553023  0.1318178
500 4.3667455 0.4574768 7.6335518 0.6966593

27




For any given A, Newton- Raphson's method is again used to compute
the complex roots. In this case the convergence is very poor, and no
numerical acceptable roots were obtained after 10 iterations even when
we start wite the initial guess predicted‘ from the first approximation. A

modified conjugate gradient program was also tried in an attempt to solve
|F(va)l =0 (70)

without success. After considerable amount of numerical experimentation,
we have developed a scheme combining the searching and iterating tech-
nique in computing va . The convergence is greatly improved in using

this scheme. Since the numerical problem of computing complex roots of
complex equations involving transcendental equations is known to be a very
difficult task, our new scheme appears to represent a significant contribution
in solving such problems. A detailed description of this searching and
iterating secheme is given in Appendix A, For TM modes of propagation,
some numerical results are given in Table 2. It is to be noted that not

all of the roots in Table 2 satisfy the criterion

lval? << ax@N+1% =176

They are tabulated, however, to illustrate the feasibility of evaluating all
the complex roots,
For any higher order approximation, the dispersion relation given

by Equation (66) may be written in the form,

F (ya) = det[K]=0 (71)

28




(vya) From Second Approximation TM Mode

Table 2.

First Set of Roots

. Second Set of Roots

¢O Re Im Re Im
87.5 3.9685815 0.4489306 6.0104261 0.6061281
75° 4.1029203 1.5604187 5.7068481 1.2732071
60° 3.9995496 1.4339417 5.6891943 1.8720847
50° 2.8350118 1.5225492 5.9726308

29
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where K is a matrix, with elements

m m
= A A
Kn, ‘a {ya) Sn {va) Sin Pn (cos A)

+8in" A [P;m (cos A) - (-1)"1“3’:‘13;m (-008 A)]

n,m=0,1,2, ......... N. (72)

Explicit expression for the dispersion relation using a Laplace development
of the determinant appears to be unnecessary since we are interested only
in the numerical solutions. For numerical computation, however, since

each of the matrix elements Kn o 2re functions of {(ya) and A, they

3

must be calculated for each A and every iteration. To 8implify the com-~

putation, we have succeeded in reducing Equation (70) to the following form:
F(ya) =det ({8] + [Q]) =0 (73)

where

Sy (ya)
[s] - 8, (va) (74)
SN('ya)

is a diagonai matrix, and is independent of A . On the otherhand, [Q] is
a matrix depending onlyon A =2 ¢0. For any A, if we denote

y=1-cosa,
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the elements of [Q] may be computed by using the following equations:

o 2j i-j-1
_ it 2 t, ¥\t (2j-t-1)!
alh; =0T tgo D) G v gacen
i>]
Ay =0 1<

N (tkir): 1 n* g
b) Cn,k_nio(zm-r)! kn! 1 (2

For a fixed N and A, the matrix elements Qi | can be computed first,
and in the iteration solution for va, only the elements of S matrix need

to be computed in each iteration. The detailed derivation of Equation (73)

(75)

(786)

(77

{78)

(79)

is given in Appendix B. Computation of ya, using this scheme appears to

be feasible if N is not too large. Actual computation to date, however,

has been completed for N = 2 only.
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CONCLUSIONS AND RECOMMENDATIONS

The modal analysis of the guided wave propagation along an open
structu:;'e such as illustrated in Figure 1 yields a set of ""dual summation
equations" for the propagation constants, By introducing new sets of basis
functions in the expansions of surface fields, the approximate dispersion re-
lation (for any order N of approximation) have been developed, Numerical
scheme for obtaining the complex roots of the dispersion relation were de-
veloped. Although the actual computation was carried out only for N = 2,
there appears to be no doubt that the scheme is applicable for moderate
values of N. Future work concerning this problem should probably include
(a) more calculations for higher values of N to investigate numerically the
effect of truncation, and (b) more detailed analysis to determine the behavior
of the matrix elements Qij which, physically may be interpreted as ""coupling
coefficients' between different modes.

The basic mathematical scheme developed in this study may in principle
be modified and extended to include the solutions of the following problems:

(a) The propagation of waves along a circular waveguide with one
longitudinal slot. Although others have performed a theoretical analysis of
propagation along slotted cylinders previously, for example, in the works of
Goldstone and Oliner (1961), Harrington (1959) and Chen (1973), theoretical
analysis and numerical computation of the propagation constants for higher
order modes are still lacking.

{b) The complex rescnant frequency of spherical resonators. The
modal analysis of such an open structure yield also a set of dual summation

equations involving associated Legendre functions le (cos 8). The solution
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of the dual summation equations by introducing the proper basis function
to represent the surface field should be worth investigating.

(¢) The modal analysis of scattering problems involving open
structures such as slotted cylinder and slotted spheres yields a set of
inhomogeneous dual summation equations., A systematic approach for
solving such scattering problems by introducing proper basis functions
for the representation of the surface fields should also be tried. The
scattering problem of the sources by slotted cylinders has been investigated
by Hayashi (1966) by using singular integral equations. It appears that
the basic advantage of using singular integral equations is to obtain the
dominant component of the surface fields which is the first term of our
representation. The computation of other higher order terms, however,

is more involved in the singular integral formulation.
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APPENDIX A

SEARCHING AND ITERATING PROCEDURE

Let us consider the problem of finding a complex root z =x+jy

satisying the equation
f(z) =0 (A.1)

where f(z) is a complex function, involving transcendental functions such
as Hankel functions. When the standard Newton-Raphson's method of find-
ing roots of Equation (A.1) is not successful, a searching and iterating pro-
cedure may be used in improving the convergence. In illustrating this pro-
cedure, we assume that near any zero of f(z), the function is analytic

and the derivative of f(z) may be computed. We shall denote

£(2) = f(x+iy) = U(x, )+ V (x, y) (A.2)
f'(z) = A:;Z) = U (X, ) +1V_(x, )
= + Vy (x, y) - i Uy (x, ¥ (A.3)

and assume that given xandy , U, V and their partial derivitives may be
evaluated. Our suggested procedure for finding the complex roots are
illustrated schematically in Figure A-1. The procedure may be described
in the following steps:
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(a) Given any initial Yo compute U (x, yo) and V (x, yo), and scan
x coarsely over a chosen range. As illustrated in Figure A-1, there exists
points A (xg, yo) such that U(x:, yo) =0, and B (x:, yo) such that
v (x?, yo) = 0. From the coarse searching, in general for simple roots,
U changes sign at xz and V changes sign at xz . Values of xi and x];
may be computed more exactly, from the results of coarse searching and
Newton-Raphson iterative procedure. To improve convergence, if the dif-
ference between xz and xg are too large, anather value of Y, may be

chosen and the coarse searching repeated.

(b) From xi, yo, and xg, yo, we determine yl, corresponding to the
y coordinate of C, which is the intersection of the two tangent lines AC

and BC. To determine Yo We first computed

a a
Uy = Uy (Xo ? yo}

R ¢

(e

U= %, y)
y y o’%0o
b _ b
VX—VX (xo , yo)
b _

Vy—Vy (xlg, yo)

From these partial derivatives, it is easily seen that

o o_,.a b 1_1;_ ‘_73_
= — -
V1%, " %)/ & Vb (A.4)
X X
5 \va Vb Ta~ Ub (4.5)
¥y y y y




Figure A-1:

Nlustration of Searching and Iterating
Procedure,
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(¢) Start from (Xl’ yl}, i.e., the point C. The process may be

repeated, until for any Yin?

- are less than some preset criterion of convergence.

(d) In some cases, this procedure may fail. For these cases in

general

|X;' X;] > IXZ-l - X?n-z. :

If this happens, the role of x and y should be interchanged in order to

obtain convergence.
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APPENDIX B

REDUCTION OF THE DISPERSION RELATION

The dispersion relation for the N-th approximation, given by

Equation (66), indicates that the determinant of matrix [K] should be

zero. If we denote
y =(1 - cos 4)

m ~m
= si A A
P (y) = sin Pn (cos 4),

]

s
"

sin™ A [Pl;m(cos A) - (-1)

+
pn’ m(y) - (-n™ npn' m(2—y)

the elements of [:_KJ matrix are given by

Kn’ m =Sy (va) Py m(y)+Hn‘ oy

Thus, the [K] matrix may be written as

[x] = [s][e] + []

i"'S —
o]

!

mt -
np

n

(B.1)

(B.2)

M -cos A)]

(B.3)

(B.4)

(B.5)




and the matrices [p] and [H] have elements p11

)

- and H11 m respectively.

14

Since S depends only on{ya) and p and H depends only on y, the

roots (ya) of the dispersion relation are the same as that of the equation,
: -1
dget ([s]+ [m][p]” ) =0 . (B.6)

Therefore, the matrix [Q] in equation (73) is given by

2] - Bl ‘ o

) [][e]= 2] - (B.8)

The scheme for evaluating the elements Qij of the matrix [Q] given
in Equation (75) through Equation (79) can be derived from the expression

of P, m {c.f. Hobson, 1955).

. r
() m (nir)! 1 _(-1) (Y)r . (B.9)

=~ (n-1)! 1! (mtr)! "2

The derivation makes use of a discontinuous summation formula which we

shall state now. This relation is given by

n

n! (-1)F (atr)!
g {n-1r)! r! (bt+r)!
=
((Ta_:i%l—)? (—l)n-(j%-b_f_;)-;_ a>(a-b) >n
A

0 otherwise.

40




The proof of this relation is straightforward. One starts from the binomial

expansion
n

ki r |
(1-0)"= Z e R i (B.11)

- 1.
0 (n-1) r!

Multiply the above by Ua, differentiate both sides of the produce (a - b) times
and let U —+ 1 thus obtaining the first part of Equation (B.10). Similarly, if
we integrate both sides of the product (b - a) times, and let U —» 1, the second
part of Equation (B. 10) is obtained. The third part of Equation (B, 10) be-

comes clear after the first two parts have been determined. Based on Equation
(B.10), one finds that

n
_om (ntr)! 1 (-nt Y
Pn, m(z—y) 2 rzzo(n-r)! r! (m+r) (1 glrtm

—

m-1 s n r
_.m (-1)" vy 8 (ntr)! (-1) 1
=2 Sgo s! ( 2 ) Z (n-r)! r! (m-s+r)!

(B.12)
r=0

n+m " n T
m (-1)8 y 8 (otr)! (-u¥ 1
2 _z s! (5) _Z (n-r)!  r! (m-st+r)t
s=m r=s-m

-

In Equation (R.12) the series in the square brackets may be expressed in

closed form by using Equation (B.11). Therefore, we have

X r r+m
! m+n (-1) (n+r)! ¥y
Pp,m2 ¥ =2 (1) (rm)! (a-pirt (2)
r=0
n—mfl s
m (-1)" vy .8 (m-s-1)! 1 ,
*+2 s§=:0 s! ( 2 ) (m-n-s-1)! (n+m-s)! (B.13)
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where the second series is nonvanishing only if m >n. Thus, we have

~ m-n-1 s
ot (_l>m+n+1 (-1) (X8 {(m-s-1)!"
- (m-n-8-1)! (m+n-8)!
Hn, m(,y) = 4 m>n
0 m<n . (B.14)
-

In other words, the matrix [H] is an upper triangular matrix with diagonal

terms zero.

In order to find [Q] , we would like to find the inverse matrix [p]-l.
However, since the order of matrix N is kept arbitrary, one finds that a
relation independent of N, which reduces the[p] matrix into triangular
form may be more suitable for computational purposes. This relation is .
given by:

[»] [a] = [c] (B. 15)

where l:a:l is a lower triangular matrix while [C] is an upper triangular
matrix. The diagonal elements of [C] are unity, and the element of [a]

are
o

i
yit]

where aij are constants (independent of y) and satisfying

& =0 a>j . (B. 16)
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The quantities «,

ij

By matrix multiplication, we see that the elements of the f_C] matrix is

given by,
n p a
c = r,s sn
+
rm T, ys+n
r n o
_ 1 Z (r+t)! (_l)t(x)z sn
- 2 +t) !
A&y (x-0 & s
Since C__ =1, r=n,andC__ =0 r<n, the set o _ satisfy
rn rn sn
n
Z “sn
~ = 0 t<n
I + !
Lo, G
n
(~1)"n! .n =
~ (2n)! 2 t=n

Using Equation (B. 10), it is evident that

ntm m! o (n+m-1)!

(m~1)! n! (m-n)!

an m - (_l)

and
n-s
_ (ntr+s)! r 1 y X _1
Cn,s-;) (n-r-8)! (-1) r!(2) (28+1)!

Now, if we multiply both sides of Equation (B.8), by [a/] we have

[](c]= [][] = [4]
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and Cij can again be deduced by using Equation (B.10).

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)




The elements of the A matrix is easily shown to be

J s
Ay = :2 B Tkt
2\ 1 . 2'
- o O
j=i-1 j
€ (j-t-1)! (- l)kLk;l-j-al)! 1 1
j-t-i-1)! (J-t+i)! Z (k+t-3 -k Kk
k=j-t

(B.22)

Z -0t (L) (
t=0
Again, use Equation (B.10), we have
t (2j-t-1)! 1
(t)} (j-t+i)!

, 2§ §-i-1
i+l 2 WX
A ) i GO ot

t=0
From Equation (B.21) and (B.22), the expressions for the elements Q j

then easily deduced.
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