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Abstract

An efficient method has been developed for analyzing modal character-
istics of a finite–width parallel-plate waveguide. The method is based on
an extension of Galerlcinlsprocedure applied in the Fourier transform
domain. Numerical values of propagation constants and field distributions
have been obtained for various structural and modal parameters.
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SECTION I

INTRODUCTION

Parallel-plate transmission lines are often employed as a guiding

structure for electromagnetic pulse (EMP) simulators. This type of transmission

line, as shown in figure 1, has in addition to the dominant TEMmode an infinite

number of higher-order modes. Because of the open nature of the structure, the

propagation constants of these higher-order modes are usually complex,

representing the propagation as well as radiation loss of the modes. When

an object to be tested is placed in the present structure, it is illuminated

by electromagneticwaves consisting of a combination of TEM and a number of

higher-order modes. The scattered field is also a superposition of TEM and

higher-order modes. Hence,

parallel-plate transmission

the nature of

line is worth

the higher-order modes in the

investigating and the develop-

ment of a computer program to obtain the propagation constant and the modal

field distribution is important for EMP studies.

The problem of parallel-plate transmission lines has been studied by

several worlcers(refs. 1 and 2) using various approaches.

a new method is presented for attaclcingthis problem. The

extension of Galerkinls procedure in the spectral

version of this method, which has been applied to

transmission line structures (refs. 3 and 4), is

the structure with complex transverse propagation

domain.

In this paper,

method is an

The original

many microstrip-type

extended here to apply

constants. In the

following sections, the formulation of the problem, numerical procedures,

to

and some results are presented;
,
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Figure 1. (a) Cross Section of a Finite-Width Parallel-Plate
(b), (c) Equivalent Structure.
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SECTION II

FORMUiLA1’IONOF THE PROBLEM

The cross section of the parallel-plate transmission line is shotm in

figure 1. Assume that the plates are infinitely thin and that both the plates

and the medium are lossless. It is well knoom that the dominant mode in this

structure is TEM with the propagation constant identical to the free-space

wave number. All of the higher-order modes may be classified into the two

sets, TM and TE, with respect to the z-direction. Assuming exp(jwt - j~z)

variation, where the propagation constant 6 is complex, in general, all of

the field components of the TM and TE modes may generally be expressed in

terms of scalar potentials as

~2 2
Ez=j’-6

B
‘+(:%Y)

(1)

TE modes

(2)

Hz=j
k2 -62 $(x,,,)

f3”

‘po~ E .Ex=— ‘PO w
B ay Y ‘Tax

Hx=~ H .$
. Y .1

where k = 2n1A is the free-space wave number, and co and P. are the permittivity

and permeability of free space, respectively. The common factor exp(jut - j~z)

has been and will be omitted throughout this paper.

7
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In addition to the TE and TM classification, the symmetry of the structure

allows us to further subclassify the modal spectrum. For instance, the

symmetricity of the direction of the z-component of induced current on the

plates allows

table 1. The

TM modes only

us to subclassify the spectrum into the four cases listed in

detailed formulation will now be given for Cases 1 and 3 of

(odd TM modes), and only the resultant equations will be

summarized for the rest of the cases. Because of the nature of the present

method of analysis, the distinction between Cases 1 and 3 (and between

Cases 2 and 4) is not necessary in the formulation process.

Table

CLASSIFICATION BY

1

SYMMETRICITY

Case x> 0, y > ()

1 +

2 -1-

3 i-

4 +

x< (), y > 0 X<o,y<o X>o,yco

-1-

+ +. -+

+-

+

-1- Jz flows in the positive z direction

Jz flows in the negative z direction

Such distinction is undertaken only at the stage of preparation for numerical

computation.

In the odd TM mode cases, it is

structure shown in figure l(b) where

only necessary to consider the equivalent

the y = O plane is an electric conductor.

Since the structure is infinite in the x-direction, the electromagnetic

boundary value problem is formulated in the spectral or I?ouriertransform

domain as opposed to the conventional space domain formulation (refs. 3 and 4).

8
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To this end, let us define the Fourier transform ~(a,y) of the scalar potential

f$(x,y) via

ii(%Y) = l’ @i(x,Y)
-w

where i = 1 and 2 designates the regions O <

ejctx ~x

(3)

y < d and y > d, respectively.

The transforms of field components may be defined from equations (1) and (3)

as

—

Since @i satisfies the wave equation, @i is a solution of

where

ud2—_ 72 ii(a,y) = o
dy2

y2=a2+62-k2

Because of the boundary conditions E= = Ex ==O at y = O and the radiation

condition at y + +CO, the solution of equation (5) is

~l(a,Y) ‘A(a) sinhyy O<y<d

i2(%Y) = B(a) exp[-y(y - d)] y>d

where A and B are unlcnoorns.Note that Re y > 0 and Im y > 0 are to be

(4)

(5)

(6)

(7a)

(7b)

satisfied so that equation (7b) represents a valid form for y + +~ .

9
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The next step is to apply the interface conditions at y = d in the

transform domain. Since

Ezl(x,d-) = Ez2(x,d+) all x

Efi(x,d-) = Ez2(x,d+) all x

Hxl(X,d-) = Hx2(x,d-) 1X1 >W

the interface conditions expressed in the transform domain are

(8)

(9)

(lo)

~a(a,d-) = fix2(a,d+-)

fixl(~,d-)- fix2(a,d+-)= ~z(a)

where jz is the transform of the z-directed, unknovm, induced current on the

plate at y =

the relation

A and B. If

expressed in

d. Substitution of equatioils(4) and (7) into equation (8) gives

between A and B. Equation (9) is automatically satisfied for

these quantities are substituted in equation (10), A or B is

terms of another unknown jz(a).

.

(11)

(12)

B(a)

Go(a,13)=

= i++a) 3Z(U)

-f3
(IICoy[l+ coth yd]

where

the

can

Now, the final boundary condition Ez(x;d) = O for lx] < w is imposed in

transform domain. Since Ez(x,d) is unknown but nonzero for lx] > w, it

be written as

1.0

.—— ——.. ..- —---



Hence, the transform is

1C2- $2 “
~z(a,d) = j ~ u(a)

where
-v

C(a) =/ u(x) ejaxdx
-OJ

Eliminating B(a) from equations (8), (11)

Go(a,f3)3Z(U)

It should be mentioned that equation (15)

co

+ ~ u(x) eJax dx
V7

and (14), obtain

= ti(ci)

is the transform of the integral

(13)

(14)

(15)

equation of the convolution form encountered in many conventional space domain

analyses. It may also be worthwhile to mention that equation (15) contains

two unkno~,msj~z and fi;

the unknowns, U, may be

~z only.

however, it is possible that in the solution one of

eliminated and that equation (15) is solved for

Before concluding this section, let us summarize the resultant equations

for other symmetries and polarizations.

TM, even in y (Cases 2 and 4 in table 1)

Ge =

.

-6
ticOy[l+ tanh yd]

11
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(16bj
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io(a, f3) ~z(a)= V(a)

io(a) = YB

j(k2 - f32)[l+ cothyd]

TE, even in y

i@,B) 3=(CX)= i(a)

Ze(a) =
y$

j(k2 - 62)[1+ tanhyd]

For TE cases,

-t7

~(a) =/ v(x) ejaxdx+~m v(y) ejaxdx.
-co w

(17a)

(17b)

(18a) -

(18b)

(19a)

(19b)

12
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SECTION 111

METHOD OF SOLUTION

In this section, a method of solving algebraic equation (15) is

discussed. The method, which is applicable to solving equations (16a), (17a),

and (18a) as well, is based on Galerkints procedure applied in the Fourier

transform domain.

The first step expands the unknown ~z(u) in terms of known basis

functions ~n(u), n = 1, . . .,N.

(20)

where c 1s are unknown coefficients to be determined. The choice of ~n(a)is
n

is such that they are the Fourier transforms of appropriate functions with

finite support, viz., Jn(x)ts, the inverse transforms of ~n(a)ls, are zero

for lx! > v7.

Substituting equation (20) into equation (15) and taking an inner

product of the resultant equation with one of ~m(a)’s, m = 1,2, . . .,N,

one obtains

where

The right-hand side

$= Sin(a)
-m

~ K (6)cn =0, m=l,2, . . ..N
n=l m

K (6) = ~w ~m(a) ~o(c@) ~n(a) da
-w

of equation (21) is zero using Parsevalls relation

ti(a)da = 6 ~= J (-x)“E (x,d) dx >0
j(lcz- f32)‘-m m

z

because Jm and Ez are nonzero only over complementary regions of x.

13
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When Jn(x)’s, whose transforms are to be used as basis functions ~n(a)fs,

are chosen, they must satisfy certain symmetry requirements in addition to

being zero for lx! > v7. For instance, in Case 1 in table 1, Jn(x)ls must be

symmetric with respect to the y axis, while in Case 3 they are required to be

antisymmetric. Furthermore, it is desirable to use Jn(x)ls which well

represent the edge condition at x = tw where the actual z-directed current

shows square integrable singularity. Using these basis functions, equation (21)

is solved for unknown propagation constant 6 which is usually a complex number.

After 6 is obtained, the field distribution may be calculated as follows.

Except for the normalization factor, the ratio of all Cn’s is determined, which

gives the current distribution

J(x) =~c J(x)
z nn

n=l
(23)

The field distribution of Ez maybe obtained from equations (7), (11), (15)

and (20)-

(24a)

[

k’-~’ N~ c ~rnsinhyy
.

Ez(x,y) = j ~ Go(a) ~n(a) e-Jax da
n _m sinh yd

n=l

rj<y<d
,

~2 _B2N
~ cnJmexp[-Y(Y

-jcixda
- d)] ~O(a) in(a) ej’fi (24b)

n=l -m

y>d

All the higher-order TE and TM modes in the present structure may be

designated by a set of numbers (p,q) for each symmetric subgroup. The number

p is associated with the field variation in the x direction and number q for

the variation in the y direction. In the present method, p can be predetermined

by the appropriate choice of basis functions ~ for the current distributionn

14
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on the plate. However, there is no built-in process to choose q in the

analysis procedure. Ratherjq is controlled in the numerical process of

finding 13by the judicious choice of a starting point in the root-seeking

algorithm.

15
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SECTION IV

NUMERICAL PROCEDURE

A numerical algorithm has been developed for TM modes of Case 1 with

the mode index p = O. This choice of p corresponds to the higher-order

modes with the least field variation in the x-direction. The basis functions

have been selected so that the qualitative nature of the actual current is

well represented. Specifically the following functions have been employed:

The basis

equations (25)

Although

could be

Only two

that is,

{

Jl(x) = 1 1X1 <w

o otherwise

(.0

functions for equation

arid(26)swhich are

ii(a) =

~2(a) =
4 sin aw

a

otherwise

(21) are the Fourier

2 sin aw
a

2_—
2 (1 - Cos (w)

these given by

(25)

(26)

transforms of

(27)

(28)

the above equationsany number of functions similar to

used as a set of basis functions, N in “equation(21) was set to two.

basis functions (27) and (28) were employed for economic reasons,

for minimizing the computer time. It was found, however, that quite

satisfactory answers were obtained for

on~.or two basis functions of the type

(ref. 4).

16

many microstrip problems by using only

similar to equations (27) and (28)
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Equations (27) and (28) are substituted into equation (22) to numerically

compute K~ls, and complex roots 6

det

of

Km(Ol = O (29)

are found by a complex root-seeking algorithm. This algorithm finds the

closest zero from a given starting point. At this stag~only the mode

number p is given and another mode number q is left undecided. It is possible

to correlate the value of q and the appropriately chosen starting paint of the

algorithm.

The starting values of the route-seeking routine have been chosen in the

following way. The present structure can be viewed as a fictitious closed

vaveguide with sidewalls with complex surface impedance. For well-guided

modes, these sidewalls may be very close to the magnetic walls since,for

such modes,the radiation loss may be quite small. Hence, the propagation

constant 6 of waveguides with magnetic sidewalls may be chosen as a starting
s

point of the algorithm.

Case 1 and TM, 6s may be

(See figure 2.)For the present mode spectrum of

given from figure 2a

(30)
,=4C2

s s

‘f=-[:12-1%2~p=0,1,2~o** ●

q =1, 2, . . .

Note that we are concerned with p = O modes in the present numerical computa-

tions using equations (27) and (28) for basis functions.

It is hoped in the numerical algorithm that the zero of

closest to the value of $s be obtained for a given q; such a

the propagation constant ~ of the TM mode of Case 1.
Pq Pq

17

equation (29)

zero is called
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Figure 2. Classification by Symmetry for the Determination
of the Starting Value of B.
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SECTION V

NUMERICAL RESULTS,

Some typical computer solutions are summarized in table 2 with d, w and

the wavelength A being input parameters. Also,the p = O and q values are

specified.

In many FJ4Pproblems, the so-called transverse propagation constant a
Pq

is more preferable than the propagation constant 6Pq (ref. 1). The

definition of u is
Pq

,~=fi (31)
Pq Pq

The transverse propagation constant a here corresponds to pn given in
Pq

ref. 1. Notice, however, that unlike.in

indices p and q because the structure in

plate width.

ref; 1,-cias T17ellas 6 carries tT70

the present case has non-negligible

The magnitudes of the Ez field in the waveguide cross

are computed using equation (24), are plotted in figure 3.

section, which

It is clear that

the field decays away from the waveguide in both the x- and y-directions.

Although IEZI must be zero on the plate at y = d, the numerical results did

not predict that it would be zero, but would approach zero. It is hoped that

these values approach zero as the number of basis functions are increased.

It is also seen that the number of peaks in the y direction for O < y < d

coincides with the given value of q.

19
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10 1

COMPUTER SOLUTIVLvS

2$~d

24.32 - j2.432

10.88 - jl.088

24.32 - j2.432

37.17 - j3.717

49.84- j4.984

62.5 - j6.25

125.5 - j12.55

62.5 - j6.25

41.4 - j4.14

30.8 - j3.08

24.4 - j2.44

19.98 - jl.998

.12.46 - jl.246

10.88 - jl.088

10.88 - jl.088

24.32 - j2.432

37.2 - j3.72

0.2 - jO.02*

Table 2

OF PROPAGATION CHARACTERISTICS

(0,1) MODE

21.76 - jO.114

10.82 - jO.0652

21.72 - jO.0448

20.82 - jO.0335

55.92 - j6.68

54.1 - jO.163

107.2 -.j14.72

59.6 - j1415

45.8 - jll.78

.34.4 - j3.94

21.8 - jO.045

16.74 - jO.060

12.36 - jO.021

10.78 - jO.044

10.29 - jO.044

19.28 - jO.068

50.88 - j12.66

(0,2) MODE

2apqd

-.1972 -i-j12.58

-.1104 +j6.382

-.0728 -1-j12.644

-.0222 +j31.428

-27.28 + j13.696

-.276 +j31.96

-22.28 +j70.80

-28.46 l-j30.36

-25.52 -1-j21.14

-15.92 +j8.52

-.078 +j12.50

-.080 +j12.58

-.040 +j6.50

-.074 -1-j6.46

-.063 + j7.22

-.081 +j16.12

-36.3 + j17.70

0.078 - jO.8~,, -7.6 X 10-7

No.
Iter.

16

5

12

45

15

24

7

25

29

8

12

12

5

5

8

15

27

12
x 10--’ + j9.56

*The ~~tu~l z~~d ~,7~~ 0.0 _ joooa However, 2B~d was shifted to 0.2 - jO.02

for numerical convenience.

20
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Figure 3. Field distribution in the Cross Section of the Waveguide
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SECTION VI

CONCLUSIONS

A simple and efficient numerical method has been developed for analyzing

a finite-widthparallel-platewaveguide. Sample computations based on this

method predicted the propagation constants of the modes in such a structure

and the field plots so obtained have shown the expected physical nature of

these modes.

22
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