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.. -- .. ABSTRACT

A theoretical model is defined for an electromagnetic

pulse (EMP) simulator for testing EMP effects on high

altitude satellites. The simulator is composed of three

flat-plate transmission line sections. The first and third

sections are tapered to accommodate, respectively, a gen-

erator and a terminating resistor. This problem Is analyzed

in the frequency domain over those frequency components

which are known to contribute most significantly to a typ-

ical EMP waveform.

The analysis uses a numerical technique to solve the

basic problem of an unknown current distribution on a curved,

tapered strip, excited by a known electric field. The

unknown current is solved by the method of moments, using

triangular basis functions. To check the computer program,

input impedances are computed f“’or the triangular dipole. It

is shown that these solutions compare quite favorably with

experimental results. Variations in the solutions are also

demonstrated for these same cases when edge singularities

are not taken into account in the analysis.

For the transmission line simulator, computed input

impedance, VSWR, power dissipated in the terminating resistor,

and the power lost to radiation are presented as a function

of frequency. The computed current distributions are used



. .

to calculate the electric fields between and immediately a
beyond the parallel plates. Although a considerable portion

of power is converted to radiation at the higher frequencies,

it is shown that at least within the working volume the ele-

tric field maintains a reasonably constant level.
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I. INTRODUCTION

Static field analysis has shown that the TEM mode of a parallel plate

transmission line can simulate a free-space plane electromagnetic wave over

a substantial portion of its interior region (Ref. 1). This method, however,

does not account for the presence of higher order modes which may exist

whenever the plate separation exceeds half a wavelength. For this case a

dynamic field solution would be necessary. A high altitude EMP waveform

consists of frequency components in the HF-VHF regime. Many wavelengths

may therefore exist between the parallel plates of a transmission line

designed to accommodate EMP testing of missiles or satellites.

This paper considers the dyna]mic field analysis of a high altitude

EMP simulator. The simulator consists of a parallel plate transmission

line that is tapered at both ends to accommodate a generator and a terminat-

ing load. The analysis is performed in the frequency domain, using the

method of moments (Ref. 2).

This numerical technique has the overriding advantage that the cur-

rent everywhere on the transmission line can be accurately computed. lt is

then reasonably straightforward to obtain all of the quantities of interest

(e. g., the electromagnetic fields both interior and exterior to the transmis -

sion line, the input impedance, the power absorbed by the terminal load, and

the power lost to radiation). The principal disadvantage is that the method

of moments cannot be applied to structures whose dimensions are consider-

ably larger than a wavelength. This limitation is dependent on the storage

capacity and running costs of the particular computer being used.

For the purpose of the analysis, the basic element of the simulator if;

a tapered conducting strip. The numerical analysis of flat strips and rectan-

gular plates has been considered previously (Refs. 3, 4), and the tapered

strip may be treated in generally the same manner. At the outset one shoulcl

allow for two -dimensional variations for the unknown current density vector.



* *

However, this would lead to a system of two integral equations whose

solution would be practical only at the extremely low end of the frequency

band. In the discussion to follow, it is shown how the frequency range can

be extended by making some a priori assumptions on the fo rrn of the unknown

current. These important assumptions are checked by considering some

special test cases for which there exists experimental data.
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II. THE GEOMETRY

The simulator geometry relative to a cartesian coordinate system is

shown in Fig. 1. In the “working volume” (i. e., the region in which the test

object is usually placed) the two plates are of width WH and are separated by

a distance H. Outside of the working volume the plates are tapered down to

where the y can be made both physically and electrically compatible with the

voltage suurce and the terminal load. For this study, both the source and

the load are assumed to be uniformly distributed across the gaps at

x = -(R + D/2) and x = +(R + D/2) respectively.

$

-----’”
-----

<-

‘H11—.—------. —-,.
‘----- I

1 I

TOP VIEW

AZ
A

H ‘-—l___z’,...-.—.---.-—------ _.—.
T’___ “7

k“– ‘-‘Q ““““‘— –-D-----L--=3
SIDE VIEW

Fig. 1. Transmission Line Simulator Geometry
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III .

Let S be the surface defined

THEORY

by the conducting plates and the non-

conducting source and terminal gaps of the transmission line. Then one can

obtain the following integral equation for the unknown current density J:

= -E:n +-Zs(~7, on S

where

(1)

Eq. (1} is known as the, electric field integral equation and stems

from the boundary conditions on the total electric field. Its derivation is

given elsewhere (Ref. 5). In Eqs. (i) and (2), ~ and ~’ are vectors from

the origin to the source and field points, respectively. Also, ~~n is the

tangential component of the incident (or excitation) electric field, which is

zero everywhere on S except across the source gap, where it is assumed

known. The load impedance Zs is for a unit length and unit width and is

nonzero only acress the terminal gap. Finally, Vt is the gradient operator

in the direction tangent to S, and k = U(PO ~o} i‘2 is the free-space wave

number.

The induced current actually resides on both sides of S. However,

because of the assumption that S is infinitesimally thin, Eq. (i) correctly
4

involves only J, which is the sum of the currents on both sides, and the

(2) m
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o
integration is performed

next expanded in a set of

follows :

over only one side of S. The current density is
+

basis functions Jn (to be defined later) as

where N represents the number of subintervals to be defined later.

If the inner product of Eq. (i) is taken with ~m, Eq. (i) may be

transformed into a set of algebraic equations given by

where

0

[
Zm + ZL

-1
[In] = [vm]

ff .
Vm = ~ ● %/an dS

s

(3)

(4)

(5)

Zm = jrd~o JIIT[7“(7) “ r-n(7’) -j(vt” ~m)(V; ● 3n)] q!)cIS’dS (6)
Ss

],[1], and[V are the generalized impedance, current, and voltage

matrices ,nrespectively, and’[ ZL= ] is a matrix determined by the terminal

load. Again, the detailed steps leading to Eq. (4) are well documented

(Ref. 5). This technique is known as Gale rkin’s method and is a special

case of the method of moments.

Eq. (4) may be solved on a computer using a standard matrix

inversion algorithm. Once [~] has been determined, the problem is

essentially solved. However, we need to investigate more fully the deter-

mination of [ Z -] , since this is the most difficult portion of the calculation.

a)
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The first step is to define the basis function Jn.

describe S parametrically in terms of a single variable

It is convenient

t* According to

Fig. 1, the projection of S onto the x-z plane may be represented by the

o
to

curve x = x(t) and z = z(t). If W is defined as the width of S, then W may

also be expressed as a function of t. These three parametric expressions,

which describe S uniquely, may be easily derived in terms of the dimensions

of the simulator and are given in the Appendix. Both the starting and ending

points (t = O and t = L, respectively) have been arbitrarily set at

(X= -R-D/2, z= O). The total arc length L is also given in the Appendix.

The basis function may then be expressed in terms of t and the

cartesian coordinate y. The basis function should be relatively simple,

so as to make the calculation of Z rnn as ‘ractable as POssible J but ‘t ‘hOuld

also provide a reasonable approximation to the current. It is assumed to

be of the following form:

Tn(t) V(t, y)
Fn(t, y) = w(t) ir(t, y)

Tn is the triangular pulse function used by Barrington and Mautz (Ref. 5),

and

V(t,y).(f -#-)-’’2+(l+f”2”2 (8)

w; + VW’;
;(t, y) = t ‘ Y

J=RF
where ;t and ~y are unit vectors along the t and y

(9)

directions respectively (&t

is a function of t, and its parametric representation is given in the Appendix).

10
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The triangular function provides

variations of the current with t.

at the edges of S (y = +W/2), and

a piecewise linear approximation to

The function V(t, y) is integrable singular

the Sommerfeld edge condition is satisfied

by this assumption (Ref. 6). The unit vector ;has been selected such that

the basis function is directed along the edge of S at the edge and along the

center line at y = O and is linearly distributed in between.

To recapitulate, the basis function has been s elected such that

variations of the current in the transverse clirection (y) are specified, varia-

tions in the longitudinal direction (t) will be determined in a piecewise linear

sense by solving Eq. (4) for [In] , and the direction of the current is also

specified. Obviously we have not started with the most general basis func-

tion. But the assunled function provides for greater than a factor of 2

reduction in N, the size of [Z -] , and therefore represents a significant

savings in computer storage and computation time. Substitution of Eqs. (7) -

(9) into (6) gives

(io)
r+

1

‘w‘(t) w‘(t‘
x Ut”:fl+yy w(t) W(t’) ‘1 /

- A T’ (t) T~ (t?) $)dydy ’dtdt’
~2 m n

where

[ .1
-1/2

K(t, y) = ~ V(t, y) I W2 “t (yw’)2 (ii)

The integrations over y and y ‘ may be performed numerically. The integra-

tions over t and t? may be handled in the same manner as shown by Barrington

and Mautz (Ref. 5). Thus, further details will not be given here.
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The generalized voltage matrix defined by Eq. (5) is quite easy to

calculate. From the previous discussion it should be clear that there is a

one-to-one correspondence between the subscripts m or n and the triangular

pulse function. When m, n = i we shall center the triangular function at

t = L/N; when m,n = 2 we shall center the triangular function at 2L/N, etc. ;

then if it is assumed that a 1-volt source is applied across the feed gap

The above matrix was

infinitesimally small,

siom of interest, this

[1
o.

[Vm] = ;

1

derived assuming that the gap height G is

so that ~~an is a delta function. For the dimen-

approximation is quite reasonable.

Using the same previous arguments, the matrix

to derive. Since the terminal Ioad is located at t = L/2, one gets

[1zLmn 1
0....
“ “o
.= ‘L

.

0.. 1
.0

.

.
0. ..

● “o

(12)

also easy o

(13)

Once [In] has been determined from Eq. (4) the electromagnetic fields

may be computed. If the field point is far away (many wavelengths) from the

simulator, the current may be approximated by N discrete sources whose

amplitudes are In, and the field calculation is quite simple. If the field point

is near or within the simulator the piecewise linear approximation must be



retained, and an integration over S must be performed. The integration may

be approximated in the same manner that Eq. (10) was approximated, and

the details will not be presented here.

We include one final word on [ Z -] . Since the simulator is sym-

metric about both the z = O and x = O planes, it should not be necessary to

compute all of the elements of [ Z ~] . This is illustrated in Fig. 2. Only

the matrix elements in the shaded area need to be calculated. It can be

proven that A, B, C, and D are axes of symmetry (D is an axis of symmetry

because of reciprocity). Therefore all matrix elements in the unshaded

region may be generated by making four successive mathematical reflections

about A, B, C, and D. This results in a significant reduction in computer

time.

D

B

[1
z =

mn

c

\

A

K
\

D

Fig. 2. Symmetry Axes in Generalized
Impedance Matrix
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IV. RESULTS

Calculations were first made on a triangular dipole antenna (i. e., a

center -fed symmetric dipole whose radiating arms are triangular plates),

since these results can be compared with existing experimental data (Ref. 7]

The calculated and measured input impedances are shown in Fig. 3.

Representation I is the calculated result using the theory presented in

Section ILI. It can be seen that agreement with experiment is excellent.

Representation II is the result of using a simplified basis function.

For this case the basis function was assut-ned to be uniform in the transverse

direction, and in each subinterval the width of S was assumed to be constant.

Thus instead of Eqs. (8) and (9)we now have V(t, y) = 1 and ~(t, y) = ~t.

Representation H, although inferior to Representation 1, gives reasonably

good agreement with the experimental results. Thus Representation U may

be used whenever it is considered desirable to trade off accuracy with mor

favorable computer costs. Most of the calculations on the simulator used
*

Representation 11.

For this study a single set of dimensions was selected (Table 1). The

feed (terminal) gap was designed such that

the input (output) is i 000 according to the

Table 1. Simulator

H =12rn

G = 0.2

WH=i8m

the characteristic impedance at

formula Zo ❑ (Vo/~o)i’2 G/WG.

Dimensions

m

~G = 0.754 m

R =20m

D =i8m

14



EXPERIMENT
(BROWN & WOOOWARD
REPRESENTATION I

REPRESENTATION II

Ii!N

20”

ANTENNA LENOTH, dog

(a)

— EXPERIMENT
(BROWN & WOOOWARD)

~ REPRESENTATION I
O—Q——O REPRESENTATION II

t

.4X3--Jso

ANTENNA LENGTH, dog

(b)

Fig. 3. Input Resistance (a) and Input
of Triangular Dipole Antenna

Reactance (b)

15



For the set of dimensions given in Table 1, the total arc length L is

ii9.81 m. Calculations were performed for frequent ies ranging from 2 to

30 MHz. It was found that sufficient accuracy can be obtained for the pararn -

eters of interest (most of which are near field parameters) when the subinter -

val size is less than one-eighth of a wavelength. Therefore the number of

subintervals N ‘was chosen to be 40 at the lower frequencies and was

increased to 100 at the higher frequencies.

Computed total currents as a function of t are shown in Figs. 4 and 5.

The total current is defined by

s?Vf2
I(t) = ~t) ● :(t, y) dy

-w/2
(14)

These values result from a i -volt source applied across the feed gap. The

current on the bottom plate is equal in value, but opposite in direction, and

is therefore not shown. The load impedance ZL for all cases was 100 Q. It

,can be seen that the current decays with distance from the feed gap and that a

the decay is faster at the higher frequency. This suggests that energy may

be leaking away through radiation.

The input-resistance and input reactance are shown as a function of

frequency in Figs. 6 and 7 respectively. Since a perfectly matched line

would have zero reactance, and the input resistance and the characteristic

impedance of the line would be equal, it is possible that iOO G! is not the opti-

mum load. However, as shown in Fig. 8, the impedance mismatch is minimal.

It can be seen that the maximum VSWR (relative to 100 0) is i. 8, but that

mostly it is below i. 5, which corresponds to a power reflection coefficient

of less than 0.06. Also shown in Fig. 8 is the percent of incident power

being radiated. This is easily determined from the input current and the

current at the load. It can be seen that a large amount of power is radiated

at the higher frequencies, which is consistent with the current decay shown

previously.

16
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The electric fields within and just beyond the working volume are

shown in Figs. 9 through i i. In Fig. 9 the ideal line is one in which the

vertical electric field is 1 volt divided by the separation distance between

plates. It can be seen that within the working volume the vertical electric

field is very nearly ideal, and it is only beyond the working volume that the

field drops off at the higher frequencies. In Fig. 10 the discontinuity in E=

is due to the charge density on the plate. Actually Ez reverses direction

when z > 6m, but this does not show up on a plot of absolute field strength.

Fig. i 1 shows the vertical electric field plotted as a function of y.

Radiation field patterns are shown in Figs. 12 and i 3. On the y = O

plane the electric field vector is linearly polarized, since E~ = O from sym-

metry. In both Figs. i2 and 13, tihe 0° and f80° directions correspond to

viewing the simulator from the top and bottom plates respectively, while the

900 and 2700 directions correspond to viewing the simulator from the source

end and the load end respectively. It can be seen that the simulator is tend-

ing to be an end-fire antenna at the higher frequency.

20
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V. CONCLUSIONS AND DISCUSSION

The transmission line simulator is apparently an efficient radiato t at

the higher frequencies. The radiation pattern resembles that of an end-fire,

or traveling wave ~ antenna. The radiation, however, appears to be taking

place beyond the working volume of the simulator; a large contribution may

come from the discontinuity y between the end of the working volume and the

beginning of the tapered section. Inside most of the working volume, the

electric field was reasonably uniform and quite close to its ideal value.

Furthermore, the power lost due to reflections was low. It can be con-

cluded, therefore, that this geometry appears acceptab~e from the stand-

point of EMP simulation.

No attempt was made at optimizing the selected design, although it

is obvious that the present computer program could be extremely useful for

this purpose. Finally, some remarks should be made about the extension of

the calculations to higher frequencies. For the calculation at 30 MHz the o
arc length L was divided into 100 subsections (N = iOO), and the calculation

required slightly less than 3 minutes on the CDC 7600 computer. The com-

puter time increases faster than N2 because of the required integrations over

y and yt . Therefore, even though there is sufficient storage capacity to

handle factors of 4’ or 5 increase in frequency, which requires N to be

increased by the same factor, such a calculation may be undesirable from

the standpoint of cost.
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APPENDIX

The parametric equations which describe S can be derived from

Fig. 1. First, the total arc length L can be expressed in terms of the

dimensions of the simulator as

[L=2G

Next let

follows :

R2 + (H - G)2 1 (A-i)

4R
a

X= L-2(G+D)

2( EI -G)CY=z L-2(G+D)

4(WH - ‘G)

aw=L-2(G+D)

Then x(t), z(t), W(t), and ~t(t) are given as follows:

z= t

-b Iost<~

w =’WG

=;
‘t z

x= -(R+;)+ ax(+)]
G ()Z+azt-:z=—

IGSt <k-;

()
2 4

w=wG+ o@-;

+

‘t
=axiix+azz

z J

(A-2)

(A-3)

(A-4) 0

(A-5)

(A-6)

0
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9B
Lx=

‘-T
1

H
z=-

2

+-lL D<t<&+D----

W=WH 4 2 4T

=U‘t x

(X=; +axt -$;

‘1

-0 + +

=(Y u -a u
“XXZZ

x= R+:

L
z=-

2
-t 1

J

(A-7)

(A-8) ‘

(A-9)

W=WG

4

‘t’-”z ‘1

+ +
where Ux and Uz are unit vectors in the x and z directions respectively.

Finally, the expressions for L/2 s t s L may be generated from Eqs. (A-5)

through (A-9), since from symmetry

()xt-~ =x(’)
2

()zt-~ =-z(t)
2

(A-1O)

(4s-11)
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()Wt-; =W(t)

+
u

()
●ztt-+=-zxx “ :t(t)

4+

u “u
z ()t’-: ‘%” $(’)

(A-i2)

{A-13)

(A-14)

●
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