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Abstract’

The impedances and field distfibuﬁiﬁns of thé.symmetricéi three
plate and two plate transmission lines are calculated. ‘A correction
is made for the replacement of the conducting plates by grids of wires
(parallel to the direction of propagation). Thus we can evaluate each
of these transmission lines in view of botk matching various impedances

and of having a certain degree of electromagnetic field uniformity over
part of the cross section of the transmission line.
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I. Introduction

Certain types of EMP simulators (or calibrators as described in Sensor
and Simulation Note I} make use of cylindrical transmission lines to form
the electromegnetic field distribution. For these cases in which we desire
a uniform field distribution we can use a parallel plate transmission line,
and near the flat conductors, we have an almost uniform field over certain
regions. The purpose of tzis note is to discuss the impedance and field
distribution characteristics of such transmission lines.

We first consider the symmetrical three plate transmission line (illus-
trated in figure 1l,, outer plates at the same potential) assuming that the
outer plates are infinitely wide for our calculations. We next consider the
symmetrical two plate transmission line which alsc covers the case of the
finite width plate over an infinite (or sufficiently large) conducting plane
because of the field symmetry. Finally we consider correcticns needed if the
conducting plarnes are replaced by grids of parallel wires in the direction of
current flow. The finite thickness of the conducting planes is ignored.

We do not intend to derive the conformal transformations but rather to
use them to obtain useful numerical results. As a matter of convention the
notation for the elliptic integrals and related functions is that found in
chhHandbook of Mathematical Functions, AMS 55, Naticnal Bureau of Standards,
1964. ‘ L _

II. Symmetrical -Three Plate Trapsmiggion Lipe

Consider the symmetrical three plate transmission line as in figure 1lA.
To analyze the impedance and field distribution we first study the simpler
problen of a semi-infinite center plate with infinite ocuter plates, and then
we let the center plate be finite. Finally we consider the approximaticn
involved in assuming the outer plates infinite.

A. Seni-infinite Center Plate

First consider the case of large a/b and locok at the field distri-
buticn near the edge of the center plate. Similarly we can also get an
approximation for the impedance including a correction for the edge effects.

The conformal transformation for this geometry is given byl

2 = - %__ In {cosh (w)] ‘ : (1)
where 2 = x =, - | _ (2)
and = u+]v (3)

This is illustrated in figura 2. llote that we have normalized the vroblem by
setting b to one and taking the edge of the semi-infinite center plate as the
origin of the coordinate system.

1l. For this and other conformal transforms see !loon and Spencer, Field Theory
Handbocx, 1961, except for those in Section IV.
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A. INFINITE OUTER PLATES, THREE CONDUCTOR, PARALLEL PLATE
TRANSMISSION LINE

ANOTHER POSSIBLE

B. TWO CONDUCTOR, PARALLEL PLATE TRANSMISSION LINE

FIGURE |. SYMMETRICAL, PARALLEL PLATE TRANSMISSION LINES
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FIGURE 2. FIELD AND POTENTIAL DISTRIBUTION WITH SEMI-INFINITE CENTER CONDUCTOR IN
INFINITE THREE CONDUCTOR PARALLEL-PLATE TRANSMISSION LINE
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In figure 2 the equipotentials and magnetic field lines are given by
constant v and the electric field lines by constant u. Rewriting the
conformal transformation as

LT

w = arc cosh (e-22%) (4)

we can solve for u and v a52
2
u = arc cosh (a) = 1n [a + (a - 1)1/2] (5)

v = * arc cos (B) (6)

(+ for negative y)

where p m
rx 2% . 1/2 -rx . BF 1/2
a = 1 + 2e cos (5 y)+1] + 1 [e7"*2e cos(° y)+1] (7)
2 2 T .'
1 -TX " - il 1/2 1 -rx = 2% b 1/2
g = E [e + Pe Z 20Ss (-é- y) + l] - E [e -2e COS(E }’)+l] (8)

Let Us simplify matters by looking at the field distributions along some
convenient lines. First consider the field distribution along the outer plates
(y = #1). In both cases we have from equations (5) and (7)

a = (&%« p)t/2 (9)

m ki i
- x -a% -
T 1)1/2 +e? ] = arcsinn - (e 1§§ (10)

u 1n [(e

Noting that the difference in potential f‘unctlon3 v, between the plates is
7/2 we can calculate a normalized electric field~” (in the y direction) along
the outer plates as
1
E = -

x y-1/2 (11)
Yrel y=+1

gg (L +e"
ax

2
™ i

2. For these types of identities see AMS 55, Handbook of Mathematical Functions,
National Bureau of Standards, 1964. .

3. The normalized magnetic field is the same as the normalized electric field,
but perpendicular to it.



Second consider the field distribution along the semi-infinite center

plate (y = 0, x < 0). In this case we have
. ®
a=e 2; (12)
and -Ex
u = arc cosh (e 27) (13)

The normalized electric field (in the y direction) along the center plate
is then

B, |,p =-2 2w o= (1-e™)H? (14)
Yre1 'V T X

Third we can consider the field distribution to the right of the center
plate (y = O, x> 0). Using the v functions we have
T

8 =e 2 (15)
and
. lx

v = + arc cos (e 2 ) (16)

The normalized electric field (in the x direction) off the edge of the center
plate is then

E, [y=0 =% I%{ = ("% -1)1/2 (17) .

rel

These normalized fields are plotted in figures 3 and 4 on linear and
logarithmic scales respectively. In figure 4 in two cases we can see how closely
the normalized fields approach unity as a function of position. This shows the
distance from the edge of the center plate required for a given degree of field
uniformity.

The field distortion at the edge of the center plate has the effact of
lowering the impedance of the transmission line. For £ >> 1 we can approximate

b
the impedance by calculating an effective width of the center plate. Using the
potential function of equation (13) we can calculate the effective position, ax,
of the edge of the center plate required to terminate a uniform field {nc fringing)
as
Tx b

Ax = lim {x +21n (e (&7F —l)l/z]f

B Tr - -

b Ll

T
= lim {x + 2 1n (62 4 21n [1 + (1 -_e"x)lm];
Xriw T T d
= lin 21 [ 1+ (1-e"01/3 (18)
xrse— T ’ 6



FIGURE 3. NORMALIZED FIELD DISTRIBUTION WITH SEMI-INFINITE CENTER CONDUCTOR IN
INFINITE THREE CONDUCTOR PARALLEL PLATE TRANSMISSION LINE
T
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or

Ax = 2 1n (2) (19)
™

Using the dimensions indicated in figure 1A we then have for large a/b a
geometric factor, £ _, in the transmission line impedance (accounting for

fringing on both edfes of, the center plate) of

T
fg'-’{h [5;- + -i-mz]} (20)

-

This geometric factor relates the transm1531on line lmpedance, ZL’ to the
wave impedance, Z, by

Z, = fZ (21)

The wave impedance in turn depends on the permeability, permittivity, and
conductivity of the medium inside the transmission line.

B. Finite Center Plate

Now let the center plate be finite. The conformal transformation ish’5

z = % in [\/m sn® (wim)] (22)

where z is the complex conjugate of z. This is illustrated in figure 5 for

positive x and y for the case of a 50 & transmission line, assuming a wave
impedance equal to that of free space. Here the equipotentials and magnetic
field lines are given by constant u and the electric field lines by constant v.
By symmetry this figure can be extended to all four quadrants.

Instead of solving for u and v we can solve for x and y as

— ( N

]

x ==-11n {\ﬁi /sng(u?m dnz(vgm,) + cnz(ulm)dne(ulm)sn (vpm)cnz(
m

(1 - an>(ulm)sn (mef J i (23)

-

Vi )\,

=

L. See AMS 55 (ref. 2) for the notation regarding the elliptic integrals F
(or XK) and E, the Jacobian elliptic functions sn, cn, and dn, the Jacobian zeta
function, Z, and related quantities.

5. In Moon and Spencer (ref. 1) this transform is interchanged with another one
in the figures (pp. 74 and 75). 9
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and

y = 2 arctan Tcn(u;m)dn(u!m)sn(v!mzcn(v gg

m [ sn(uim)dn(vim
L 1) ]

J—

(2k)

In this normalized geometry where the outer plates are at y = +1 we can.
relate the width of the center plate to the parameter, m, (or its complement sy
= l-m) in the elliptic funetions. At y = 0 for ‘xw < a/b we have

u=K (m)_ - (25)
and =1 1n dn? (vim) (26)
ki \;?n"
At v=0we then have
X leg =-1 1n (m) (21)
27

(28)

X

V=K(mf=£ ln(m)
Thus the origin of the coordinates is in the center of the middle plate and we

have the important result that

= - 1 1n (m) (29)

a
b 2

We also have the geometric factor in the impedance as

£y = X (m) (30)
2 K (mi
Since
ol
m=1l-m=e 0 (31)

we can calculate the impedance as graphed in figure 6.

In equation (20) we have an apnrox1matlon to f, for small b/a. For
large b/a we can take limiting forms of K(m) and K {my to obtain

g 2!
2 l-m 2n T a /

Thus in figure 6 we also plot approximations to fs for both large and small b/a as

well as the difference of these approximations from fg.

A ! Y
fo=1 1n (_1_6_‘, . L 1n(§ : (32)
™

For various applications we may desire certain specific transmission line
impedances (generally a convenient number times 50 @ ). Taking the definition
of the permeability of free space

11
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v‘b = 4borx 10-7 henries (33)

. meter

and the measured value6 cf the speed of light in vacuo

S) X 108 meters (34)
sec

C

2.99793 (+ 10~

we can construct a table of b/a for desired values of ZL(equation (21)).

ZL (ohms) fg b/a

25 .06627 . .30018
50 , .13254 .6920
100 .26508 1.9793

200 .5302, 10.96k

Table I. Impedances for Three Plate Transmission Line

As before we can calculate the field distribution at convenient locations.
First along the outer plates (y = + 1, u = 0) we have from equation (23)

[ 2
x=1 1 en” (v (35)
3 \[m%smg |

The normalized electric field (in the y direction) along the outer plates is

‘ , then

E
y

=-1  3v (36)

reliy=+1

which after some manipulation becomes

Ey = n_ [1+m+2ym cosh (nx)] ™2 (37)
2K(m)

rel |y = 1

For the special case of x = 0 we have

B
J o = =

+1 2 K(m) [1+ & (38)

rel

With the use of equation (31) we can relate these quantities to b/a. We

can note that in the limit of small b/a the normalized field (equation (37))
behaves like that for the semi infinite center plate near the edge of the center
plate. Using equation (38) we can see how small we must make b/a to approach a
normalized field of one in the center of the ocuter plates. This latter parameter
is plotted in figure 7. '

Second let us consider the field distribution along the center plate
(y=0, |x{ s a/b, u = K(m)) where we have

x=11n r dn® (v'mﬁ] (39)
® L yE |
6.

13
Americen Institute of Physics Handbook, Second Edition, 1963.
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The normalized electric field (in the y direction) along the center plate
is then

&

v (Lo)

X

Q»

1
y=0 K(m)

rel

Q

which after some manipulation becomes

%Y (1 +m - 2/m cosh ( Trx)]-l/2 (1)

y=0 =I_.

rel 2% (m)

and which is similar in form to equation (37). For the special case of
x = 0 we have

E

4 = (Lk2)

: 2 K(m) (1 —y/m]

rel

y

which is also plotted in figure T.
Thus we can determine the impedances and field distributions in this type
of parallel plate transmission line. In addition we can determine the degree

of uniformity of the fields over a given part of the transmission line.

C. Effect of Finite Quter Plates

In practice the outer plates must be of finite width, introducing an error
into the previous calculations. Since the case of small b/a is of interest (for
uniform fields) and a comparatively simple case, we can look at figure 4 to get
an idea of how far beyond the edge of the center platewe need extend the outer
plates until the fringing field is below a specified level (relative to the field
at x = 0), If a' revresents the half width of either of the outer plates, then
the one percent level i1s, for example, at

a' - a =3 (43)

Instead of looking at the fringing field level we might look at that part
of the impedance attributable to field lines terminating on the outer plates
for [z| >> a/b. From equation (37) we have for x: > alb,

;y . [\ﬁ;' ewx]-l/Q (LL)

elly =217 2% m)

Using equation (30) for f, we can then say for a relative part of l/fg due to
field lines beyond a' (for all four ocuter plate edges)

= g
fg A 1 \= - K (m) x b o7 e dx (ks)
— =.a T,
£, 2 K(my 2 K(m) mt Lo
b



or

- a' ‘
& fg s-r 8l =2 g2 0 (46)
e o
For ‘small b/a then
L a' -8
L -2z ef (47)
fs T a

showing that both small b/a and large (ata)/b contribute to a small uncertainty
in the impedance.

Thus we have two criteria with which to judge the effect of the outer plates,
one based on the size of the fringing field at the edge of the outer plates and
one based on that part of the impedance due to field lines beyond the edge of the
outer plates. However these criteria are very approximate in that if the outer
plates are of finite extent the field distribution will be rearranged in the
vicinity of the edges of these outer plates. Thus equation (47) is not a —_
correction to the impedance but an indication of the size of the error.

III. Symmetrical Two Plate Transmission Line

Now consider the symmetric two-plate transmission line as in figure 13B.
We consider first the case of semi-infinite plates and second the case of finite
plates. Our results also apply for a semi-infinite or finite plate parallel to ‘
an infinite plate because of symmetry in the field lines.

A. Semi~infinite Plates

Let a/b be large and look at the field distribution near the edges
of the plates. The conformal transformation is

z=1 [w+1+e)

T (48)

which is illustrated in figure 8 in normalized form for positive y. The plot
for negative y is a nmirror image.

The equipotentials and magnetic field lines are given by constant v and the
electric field lines by constant u. We can solve for x and y as

x=1 [u+1l+e”cos (v)] o (49)
k)
and
y =1 [v+ e sin (v)] (50)
" 16
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First calculate the field distribution along the plane of symmetry
(y = 0, v =0), Here we have

=}_[u+]_+eu] (51)
w

Thus we have a normalized field distribution

E - uq-1
¥ =1 3u = [1+e"]
rel v =0 T = (52)

obtaining u from equation (51}.

Since in a conformal solution we can place a conductor along any equipotential
line then equation (52) also describes the relative field over an infinite
conducting plate (y=0) from a semi-infinite conducting plate. Thus we are
solving for two interesting transmission-line geometries.

Second calculate the field distribution along the semi-infinite plates
(y =+1, v=+ ). Here we have

=‘];[u+l_eu] (53)
kil

However we have two field distributions: one outside of the plates {u > 0) and
one inside the plates {(u < Q). Thus

-1

E'yrel : = 1

T

3u [ =\ {1 - &%} inside (u < 0)

X

(54)

(b —l]-l outside (u > O}

obtaining u from equation (53).

These normalized fields are plotted in figures ¢ and 10 on linear and
logarithmic scales respectively. Again in figure 10 the magnitude of the
difference of the normaiized fields from unity is also plotted sc that we
can determine the distance from the edge required for a given degree of
field uniformity.

Unfortunately we cannot calculate an approximation for f‘g for small
b/a in the same manner as for the three plate transmission line (equation (20)).
If we try to integrate the "excess" field (the difference from a uniform field)
over cne of the semi-infinite plates we shall have a divergent answer from the
contribution of the field on the cutside of the plates.

B. Finite Plates

For finite plates (as in figure 1B) we have the conformal transformation

(3]

= 2 K(m) Z(w + 3 K(m){m) + 3§ _ (55)
n 18 .
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This is illustrated in figure 11 for positive x and y for the case of a

100 Rtransmission line (assuming a wave impedance equal to that of free space).
If we place a conducting plane at y=0 we also have the field distribution for

a 50 Q transmission line consisting of a finite width conducting plate parallel

to an infinite width conducting plate. ..The.equipotentials and magnetic field
lines are given by' constant, w¥dand the electric field lines by constant u. By

symmetry this figure can be extended t¢ all four quadrants.

Expanding the transformation we have

x = 2 K({mn) JE(uim)-uE(m) + m sn(ufm) cn(ulm)dn(ulm)sn2(vﬁggA; (56)
" K(m) 1-dn2(u|m)sn?(v'|m) ,
and ~
y = 2 K(m) E(v}mi-f E(m)+ nv - dn (ulm)Sn(Vlchn(vﬂden(vde (57)
= K(m) - 2K(@)K() T~ an2(ulm)en2(vin] j
where
v'= v+ K(m (58)

In this normalized geometry (outer plates at y = + 1) let us next relate a/b
to the parameter, m, in the elliptic functions. At y = + 1 for ‘xl< a we have

b
v = + K(m) (59)
and
x = 2Km) | E(ulm) - u E@m) (= 2 K(m) 2(ulm)
T K(m) T (60)
Varying u between O and K(m) corresponds to moving from x = Q0 to x = a/b on
the outside of one of the plates and then from x = a/b back to = 0 on the
inside of the plate. (See figure 11l.) Thus we have
a = 2Km) 2z
5 =" "max (61)
where Z __ is the maximum value of Z(ulm) for a fixed m.
For convenience we can rewrite equation (60) as
x =2 {:K(m) E(¢|m) - E(m) F(¢'m{} (62)
L . .
where we use the amplitude, ¢ , (instead of u). Then let
| =0=2)|K(m) [l-msin%&jl/z - E(m) [l-msin2(¢&]~l/2
3 T (63)
b= ¢4

21
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Thus

1 -~ msif "m )= E(m) (64)
K(m)
or
sin (¢ ) = < /i - E(m)\«il/2 (65)
Q m k K(m)"l
and finally
& = g(K(m) E(¢cim) - E(m)F(«boim)} (66)
b i

The geometric factor in the impedance is

f_ = K(m% (67)
g K(m

2

Thus relating m to >

in figure 12.

from equations (65) and (66) we can calculate fg as graphed

For both large and small b/a we can obtain approximate expressions for fg'

For smazll b/a we have the approximation
r

£,=h é 1+b [i + 1n (2 ﬂa)}v-l (68)
a

T a b

This is also plotted in figure 12 together with the difference from the more

exact ralculation. The latter could only be calculated down to a b/a close to

0.1 because of computer accuracy problems associated with m very close to one.
Fortunately the approximation of equation (68) is within about a percent at

this point as can be seen in figure 12. For large b/a (corresponding to small m)

we can take first order expansions, in m, of equations (65), (66), and (67), obtaining

b0 ¥ T (69)
L

and

% = % (70)
and finally

- b, ;
f2=1 1n (;_é 1 ln (b 3) : (T1)
™ m ks

which is also plotted in figure 12.

T. A.E.H. Love, Prcc. London Math. Soc. 22, 337-369, 1923
23
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For convenience as in Section II B we can tabulate b/a for a few
impedances (for a wave impedance equal to that of free space).

Z, (ohms) fs b/a

25 ) . 06627 .0TL8Y
50 .13254 .16652
100 .26508 LoéL1
200 .5302 1.2335

Table II. Impedances for Two Plate Transmission Line

Now let us consider the field distribution. First along the plates
(y=21," v=+ K(m)) we have

x =2 )K(m) E(ulm) - u E(m{} (12)
b
The normalized electric field along the cuter plates is then
Ey = |1 3 u (73)
rel| y=+1 K(?f T x
or
EV = | K(m) dn? hﬂm)—E@)-l (78)
rel .
y=z1 2 K(qf

The absolute value is indicated because the expression changes sign depending
on the value of u which governs whether the expression pertains to fields on
the outside (]y| = 1 +) or on the inside (ly| = 1 -) of the plates.

For x = 0 we then have two special cases. At the center inside the plates
(u = K(m)) we have

E
y
rel s . = i (75)
x=olinside) 2 K(n) [E(m) - m,k(0)]
=1
and at the center outside the plates (u=0) we have
Ey .
re . = T (76)
= gloutside) 2 K(my [K(m) - E(a)]
sl

With the use of equation (66) we can plot these last two quantities against
b/a as in figure 13.

Second along the plane of symmetry which is also an equipotential
(y=0, v=0) we have
25



0" T T 7T T T TIT T 7T T T T T T T T T
10" | -
N i,
: 2 5
N Eyrel|X29 | (INSIDE) £ -1
) ¥ ;4EYF9*1§=t|(|NS|DE}]_
L W&y rell’;zgh :
n =l ]
E /// //// E -
: // // Yre!'?;g N
/ .
- [/ . .
lo—l ‘/‘/
- //7 .
A _ y 3
- "By rellzg outsioe)/ .
- ) f .
- ’ -
_ ,’ ]
- /I _
162 & — .
- ,/ ]
- I -
L / .
N ! ]
a / ]
N I i
s !/ -
IO‘3 i i 1 11 ll N ! I S O O O I O ! ] | IS R S S O OO I B 5|
Tox 10°  b/a o' 102.

FIGURE [3. NORMALIZED FIELD VARIATION FOR FINITE, SYMMETRICAL, .

TWO PLATE TRANSMISGSION LINE
2



.

x =2 K(m) | E(ulm) - u E(m) + ecn{uim) dn{uim) ; (77)
- Kim) snl{uim) /f

This gives a normalized fieid

5 - (78)
Yrel =- 1 2n
=0 K(mj 3 x
or
ol = : m) o+ en(uln)lt (79)
re =0 2 K(m) K(m) zKGn) sn2(ufm)
For x=0 (and u = K{m)) we have
E N
y = i (80)
Ehad 2 X(m] E(x)
=0

This is also plotted in figure 13.

Thus we can determine the impedance and field distribution for this two
plate transmission line. Likewise using equations (75) and (80) we can deter-
mine the field uniformity near the middle (x=0) of the transmission line. These
results also apply to a transmission line consisting of a conducting plate of
width 2a at a distance b from an infinite conducting plate if we divide £, by
two. However if we look at figures O and 1C we can see how slowly the field falls
off with increasing distance from the finite plate, at least compared with figure
3 and 4 for the three plate transmission line. Thus the conducting plate at y=0
should extend significantly beyond the edges of the other plate to intercept most
of the fleld for the calculations to ve wvalid.

IV. Effect of Replacing Conducting Plates with Wires

In scme cases it is desirable to replace some of the continuous conducting
plates with grids of parallel wires, each wire being parallel to the direction
of propagation of the wave on the transmission line. Let us then consider the
field distribution arocund a grid of parallel wires, each of radius, ¢ , and
spacing between centers, 2d, all lying in a common plane as illustrated in
figure 14. To simplify the calculations let the grid extend to infinity on
both sides, i1.e., let the structure be periodic. Thus we can consider a
repetitive cell of width, 24, which we can solve by conformal transformation.
Also consider only the case in which the wire diameter is much less then the
spacing between wires.

All the wires are assumed to be at the same potential and two types of
field distributicns are considered. First is the case in which the grid supports
a uniform electric field cn one side and no field on the cther. In the second
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case the grid supports equal (but opposite in direction) uniform electric

fields on both sides of the grid. Since these grids can be used to replace

the conducting plates of the parallel plate transmission lines (as in figure 1),
it is necessary in such a case that the wire spacing be much less than the
characteristic dimensions (b and a) of the transmission line if these calcu-
lations are to apply. Thus significant distortions will be confined to the
vicinity of the grids over a distance on the order of the wire spacing. This
field distortion is also reflected in an increase in the transmission line
impedance which we can look upon as an increase in the "effective" plate spacing.

A. Uniform Field on One Side of Grid

Consider first the case in which the grid supports a uniform field on
one side. The conformal transformation is

z=j 1ln[e¥ + 1] (81)
w

one dell of which is illustrated in figure'15. The equipotentials.and magnetiec

field lines are given by constant w and the eleckric field lines by constant v.
We have neormalized the problem by setiing 4 to one.

Rewriting equation (81) as

w=1n (e 1] (82)
we have
u = % 1n [e2™ _ 2 e™ cos (mx) + 1] (83)
and
v = - arctan |e'” sin(mx) (8k)
™

e'v cos(mx) -1

For small _z} (or large negative u) the equipotentials approach circles,
approximating the wire shape. For convenience define the wire potential, uo,
by setting x = 0 and y = c.

Thus d

"<

ue = 1n [e d 1] (85)

For large positive y we have
u= Ty (86)

giving an approximately uniform field distribution. Let us then determine
that y for a uniform field distribution, y,, which would be at a potential,
Us, and match the potential of equation {(86). Thus
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Yo 1 uo =1 1n [e
ki

This represents an "effective" position of the grid for use in impedance
calculations, i.e., this is the position of the flat conducting surface
equivalent to the grid. Removing the normalization of the coordinates
we have a shift, Ay, of the grid to an equivalent electrical position
(as a conducting plane)

[
=
by =-dilnfed -1l =d1n ida_ (88)
n T ime

We can use this approximate formula to calculate an increase in transmission
line impedance due to an increase, 4y, in effective plate spacing.

Near the wires the field distribution will be significantly distorted.
In the normalized geometry consider first the potential distribution along a
plane midway between two adjacent wires (x=+1, v=%n). Thus from equation (83)

w=1n [e™ + 1] (89)

which gives a relative field distribution

E - -
Yrel =1 du = [1+e V] t (90)
s 3y

x=+1

Second along the plane, x=0, we have
u=1n [l - 1] (91)

which gives a relative field distribution

|

E - - -Tyq,-1
Vel % _g_u___ = [[1-e 7] (92)
x=0 Yy

Note that for negative y the field along the plane, x=0, is opposite in
direction to that along the planes, x=+1., These field distributions are
plotted in figure 16 showing the extent of field distortion due to the wire
grid.

B. Ecqal and Opposite Uniform Fields on Both Sides of Grid

For the case that the grid supports equal and opposite uniform fields
on both sides we have the conformal transformation

z =2 arc sin [e"] (93)
™
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one cell of which is illustrated in figure 17. The equipotentials and
magnetic field lines are given by constant u and the electric field lines
by constant v. Again we have set d to one for the calculations

Rewriting equation (93) as

w=1n [sin(gz)] ' (9k4)
we have
u=21 1n [sin® (%—x) cosh? (g%y) + cosz(g-x) sinhg(%-y)] ? (95)
2
and
v = arctan [cot (%’x) tanh (%’y)] (96)

Again the equipotentials approach circles for small |21, approximating the
wire shape. Taking the position x=0 and y = :-E to define the wire potential,
Uy, We have

Uo = 1n [sinh(g—'gﬁ] (97}

For large positive y we have

y - 1n(2) (98)

u = s
2

That y for a uniform field distribution, yo, which would be at a potential,
Uo, and match the potential of equation (98) is

Yo = 2 [uo *+ 1n(2)] = 2 In |2 sinh (19-] (99)
- - 2 d

Removing the normalization of the coordinates we have a shift, Ay, of the wire
grid to an equivalent electrical position (as a conducting plane)

Ay = - 24 1n[2sinh(g-9-)] =24 1n
m T

' (100)
=

roy

Note that this is twice as large as the effective grid displacement for a uni-

form field on one side of the grid (equation (88)). We should also note that

the effective displacement of equation (100) contributes to an impedance increase

on both sides of the grid. For example, in the case of the three plate transmission
line (figure 1A), if the center plate were replaced with a wire grid we would use
equation (100) to calculate an effective increase in the plate spacing, b, on each
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side of the center plate. Eguation (88) would apply to replacing one of
the outer plates with a wire grid.

Looking at the field distribution near the wires first consider the
potential distribution along a plane midwey between adjacent wires
(x=+1, v=0,*7). Thus from equation (95)

vl (101)

u = 1ln [cosh (3

which gives a relative field distribution

I L1
Eyrel = % Juls= !tanh(—e y)! (102)

Q
&<

x=+1
Second along the plane, x=0, we have

u = ln[fsinh(%-y)l} (103)
" which gives a relative field distribution

E&rel = |2 au| = |[coth (%— y) (1ok)
T Y

1x=0

Both of these field distributions are symmetrical about the plane of the
grid (y=0) and are plotted for positive vy in figure 18.

Thus we can make a first order correction to our impedance calculations
for the use of periodic wire grids (parallel to the current flow) in place of
conducting plates. Likewise we can calculate the minimum distance away from
the grid we must maintain for a given field uniformity.

V. Summary

We can calculate the impedances of both the symmetrical three plate trans-
mission line with sufficiently large outer plates (figure 6) and the symmetrical
two plate transmission line (figure 12). The latter solution also applies to
the transmission line consisting of a finite width conducting plate parallel to
a sufficiently large conducting plane if we halve the impedance. If the
conducting plates are replaced by grids of parallel wires we can make a first
order correction to the impedance, increasing the effective plate spacing.

For use in design of electromagnetic field simulators we can also determine
the field distribution and degree of field uniformity over certain regions in
the transmission line structures. However we should be careful in our application
of these results because there may be some other effects which influence the
impedances and field distributions in certain cases.

We would like to thank Mrs. Linda Crosby and Mr. Robert Mercer who
programmed the computer solutions for the plots and tables contained in this
note. '
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