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A Figure of Merit for Transit-Tiine-Limited
Time-Derivative Electromagnetic meld Sensors

Carl E. Baum
Air Force Weapons Laboratory

Abstract

This note derives a sensitivity~bandwidth figure of merit for com-
pa~ng t~e performance of sensors designed to measure the time derivative
of D or B. This figure of merit is a dimensionless number combining
sensitivity and upper frequent y response (bandwidth) in a form equivalent
area times the square of bandwidth. The larger the j“igure of merit A,
the more efficient is the design. This figure of merit is appropriate where
sensor size is not a factor, but sensitivity y and bandwidth are of primary
concern.
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I. Introduction

In designing sensors for the time derivative of electromagnetic fields

one would like to have quantitative parameters for deciding what are the

best designs. Previous notes
2,5

volume V eq and a figure of merit

an appropriate geometric volume

have discussed the concept of equivalent

based on the ratio Veq/Vg where Vg is

m which the sensor is to be enclosed.

Such a figure of merit is a measure of how efficiently the sensor fills the

specified geometrical volume. Based on the usual electromagnetic scaling

procedures this dimensionless figure of merit is independent of size for a

given sensor design shape. This figure of merit is appropriate where

enclosing volume is a constraint on the sensor design. For defining this

equivalent -volume figure of merit the sensor was assumed electrically

small for all frequencies of interest and the characteristic L /R time for

loops and RC time for electric dipoles was assumed large compared to

transit times on the sensor geometry.

This note defines a different figure of merit based on a different

type of design constraint. Let us assLme that the sensor can be any size

or shape for measuring electromagnet Lc fields in an incident plane wave

propagating in the ~, direction with unit vectors ~. and ~. for polarizations
J. ‘4 .J

as illustrated in figure 1.1 and with orthogonality conditions

T1XT2=?3, T2X?=T
31’

Y3XT1=T2

7“?=6 n, m=l, 2, 3 (orthogonal unit vectors)
n m n,m ‘

Let the surrounding medium be free space with permittitity E.

m eabilit y Ho for which we have

(1.1)

and per-

(1.2)
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sensor volume V~
bounded by surface S$

Figure 1.1. Electromagnetic Field Sensor in Free Space
Illuminated by a Uniform Plane Wave
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where s is the Laplace transform variable (two sided) corresponding to

time dependence e
St

for CW purposes. Our incident plane wave is then

described by

or in

(f2 t
iiinc(Zt)’+rx

0’
iinc(F,t)

E. =ZH
00

Laplace form by

1
+-+

{ Ifiinc(~,s) =E. T,(s)r, + ~3(s)~3 e
-I ll”r

++.
.

I I
-yll”r

z in(,(~, S) = Ho ~,(s)~, - ~3(s)~2 e

where the

7(s)

s=

with $20to

tilde ~ over a quantity indicates th? Laplace transform as

(1.3)

(1.4)

aJ Qo+iw
=

1
f(t) e ‘Stdt , f(t) ‘ &

I
;(s) est ds

-CO f20-iw

(1.5)
(J+ibj

the right of any singularities in the complex s plane. For pre -
.

sent purposes constrain the incident wave to have a single polarization

~e for electric field and ~h for magnetic field as
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ie~ih=il,r.~h=o e

(1.6)

In this note we first review the characterization of the sensor

res~lonse under the assumption that the sensor is electrically small. Then

we j ntro{iuce the high frequency limitation as the characteristic frequent y

or t~xne for which the ideal time derivative behavior becomes invalid.

Considering the power delivered to the load at this maximum frequency

appropriately normalized to the power in the incident wave and ac countj ng

for the time derivative nature of the response an appropriate dimension-

les~: figure of merit is defined.

The sensors of concern are designed to measure a broadband tran- 0

sient pulse and often drive a coaxial or twinaxial transmission line of

character@ tic impedance Zc which is approximately frequency indepen-

dentt. We then assume that the load is purely resistive and frequent y

indt:pendent and denote its value by Zc. In common practice Zc is 50 ohms

(coax for s’ingle ended

for differential output ),

possible.

outputs) or 100 ohms (twinax or two coax in series

although other constant resistive impedances are

-5-
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● II. Electrically Small Antennas

By electrically small antennas (or scatterers) is meant that the

maximum linear dimension is small compared to the radian wavelength

X (or Iyl
-1

in the complex frequency sense). More strictly it means that

the first terms in the low frequency expansion (around s = O) are adequate

to describe the open circuit voltage and short circuit current from the

antenna. For electric and magnetic dipole sensors these have well-known

forms.

A.. Electric dipole sensors

An electric dipole is constructed by two separated conductors

(perhaps containing some impedance loading). This can transmit an elec -

tric dipole field at large distances and low frequencies by its electric

dipole moment. As a sensor (receiving antenna) its induced electric

dipole moment is of concern and leads to a concept of an equivalent length

(height ) and an equivalent area both of which are constant vectors. In

free space its impedance at low frequencies is described by a capacitance,

This leads to equivalent circuits as in figure 2.1.

Such a sensor has basic parameters at low frequencies

c sensor capacitance

Te equivalent length (height)
eq

I equivalent area
‘eq

which are related by

x =~r
e e
eq o eq

Ae =~Qe
eq o eq

(2. 1)

Ae I=~e, Qe ~ z
e

eq eq eq eq I
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sensor ~load

A. Thevenin equivalent circuit

1

-A “
eeq

sensor ~load
I

8. Norton equivalent circuit ‘

V+/vO.c.

e
C. Electric dipole sensor

Figure 2.1. Electrically Small Electric Dipole Sensor in Free Space
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We also have (with fields evaluated at the sensor “location” y = 7)

v’ - ze “ ainc
O*C.

open circuit voltage
eq

I
S.c.

- iie .a+
= ~ Dine short circuit current

eq

binc +
=~E.

o mc

Ve
eq

Scz
=7 c

Ooc. 1 + Scz
c

1=—
Sc

voltage into load

current into load

source impedance

=z - load impedance
c

ire “ Te
eq eq

(2.2)

equivalent vol[ [me

B. Magnetic dipole sensors (loops )

A magnetic dipole is constructed by a conducting loop 7 (perhaps

with some parallel impedance loading). This can give a magnetic dipole

field at large distances and low frequencies by its magnetic dipole moment.

A,s a sensor its induced magnetic dipole moment leads to the concepts of _ .

vector equivalent length and equivalent area. The low frequency impeda-

nce is an inductance. Equivalent circuits are given in Figure 2.2.

This ty~]e of sensor has basic low-frequency parameters

-8-
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sensor! load

A. Thevenin equivalent circu’it

I
I

sensor ~ load

8. Norton equivalent circuit

S.c,

C. Magnetic dipole sensor (loop)

Figure 2,2. Electrically Small Magnetic Dipole Sensor in Free Space
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L sensor inductance

7L equivalent length
“eq

+

-%
equivalent area

‘-e q

which are related by

L+

Zh =ph
eq o eq

‘1
‘h ‘~h

eq eq

%
= Xh ,Qh= Th

eq eq eq eq

++
We also have (with fields evaluated at the sensor “location” r = O)

v
O.c.

I
S.c.

5.
mc

7

=2 ● 2_g
h at inc

eq

=;
h

“ G.
mc

eq

+
= PO Etinc

=?
1

O.c.
1+s4

= i-c.

Vooc,
= SL

YS*C*

=Z
c

ZI
c

L
s Yc-

1 +s&-
C

open circuit voltage

short circuit current

voltage into load

current into load

source impedance

load impedance

w .+
= 2A.

‘heq L h
“x =:;

h h
“F

h
=x

h
“ii’

h
eq eq o eq eq eq eq

(2. 3)

(2.4)

equivalent volume
-1o-
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III. High Frequency Limitation

Assuming that the sensor is desired to have a

behavior then we need to determine some maximum

for which this time -derivative behavior is followed.

time-derivative

frequency wc = 2Tfc

This is the sensor

bandwidth for a time-derivative sensor. Corresponding to the character-

istic time which might be defined in terms of w or might be defined
c

directly in terms of a time domain measurement or calculation.

For elect ric dipole sensors the time derivative behavior is as so -

ciated with the short circuit current characterized by an equivalent area

Zee For magnetic dipole sensors the the derivative behavior is as so -
q“

ciated with the open circuit voltage characterized by an equivalent area

~h Note that these equivalent areas are constant vectors by definition;
eq”

they are vector coefficients in the asymptotic forms of the low frequency

response.

In summary then we have the i jeal sensor behavior for time-

derivative operation

I =-xe
ideal

eq

v ‘ Xh
ideal

eq

● ☞ 5inc electric dipole sensor

“ $ Einc magnetic dipole sensor

(3. 1)

or in frequency domain

electric dipole sensor

.

Tideal= - s Xe “’ 6
inc

eq
(3.2)

Videal = s ~ “ ainc magnetic dipole sensor
eq

We are then interested in characteristic frequencies or times for which

V :md I begin to detiate from the ideal form above.

-11-



One possible definition of the

= 27rfc = $“=
c

[

1
Ez-

C

z
c

z-

bandwidth is

electric dipole sensor

(3. 3)

magnetic dipole sensor

where these correspond to frequencies that the magnitude of the response

is 1/& times the ideal magnitude. This is based on the equivalent cir-

cuit and is a very natural definition for cases that tc >> transit times on

the sensor, i. e. for cases that the sensor is still electrically small at

this characteristic frequency.

1
However, as has been discussed previously, maximizing the equiva-

lent area for a given upper frequency limit implies increasing the sensor

size until transit time limits are of the same order as circuit relaxation

tinle limits (CZC or L/Zc). Hence a sensor with maximum bandwidth for

a given sensitivity (equivalent area) will not be able to directly use the

definitions in equations 3.3.

It would be desirable to have a definition of Wc and/or tc which can

be directly measured in CW and/or transient experiments. Let us men-

tion a few possible definitions. For CW purposes (or from transformed

time -domain data) one might define Uc as the first frequency for which the

response magnitude deviated from its ideal form by some fractional

amount $, i. e.

ti(iuc)

T
ideal(iwc)

Note that voltage o, I current can be used interchangeably since they are

related by the constant impedance Zc. Since the sensor response is a

Q

function of the directions of incidence ~1 and field directions ~2 and 7.),
‘“)

-12-



and since for a non-electrically-small sensor ~(iu) does not in general

have the simple dot-product angular dependence (equations 2.2 and 2.4 )
.

as does Videal(iu)~ then this limitation may have been imposed in an upper

bound sense over all directions of incidence and field directions. Another

approach might be to define a weighted average of the left side of equation

3.4 (averaged over directions of incidence and/or field directions) and

require this weighted average to be less than or equal to S.

In time domain one might excite the sensor by an ideal t,ype of tran-

sient wave, say a step function of near zero rise time. Integr[tting the

sensor output gives a step-like waveform, the early portion o] which can

be used to define tc. If there is no significant overshoot or other pro-

nounced oscillatory behatioj >one might define some kind of rise time such

as the usual 107o to 907’oor some other form (07’o to 507’0, etc. ). If this is

taken as some & then one might define tc in any of several ways such as

tc = At

by varying ~1, etc.
(3. 5)

tc = max (At)

tc = avg (At) with appropriate weighting

Having define tic and/or tc this can be converted to characteristic

length lc by

Qc = Cic

and/or

Q c=-
Cw

c

This parameter Ic will be used in defining the figure of merit.

Note that there are many possible detailed ways to define Uc,

(3.6)

(3. 7)

tc,

and Q One should be specific in the definition. To distinguish one
c“

choice from another one might use subscripts, for example 110 go based

on 107?0to 90’7’0rise time, or 10 ~ based on a deviation of the response
●

magnitude of 3070, etc.
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IV. Figure of Merit

The figure of merit, which might be referred to as a sensitivity -

bandwidth figure of merit, is defined in a manner such that a larger value

of this parameter means a larger bandwidth for a given sensitivity, or

conversely a larger sensitivity for a given bandwidth. The figure of merit

should combine the sensitivity and bandwidth in a manner which gives a

number independent of size of the sensor, i. e. in scaling the sensor

dimensions this number ‘should not change. This indicates that the sensi-

tivityy which is an area and the bandwidth will combine like sensitivity

times bandwidth squared, i. e. like A
-2

u20r A t
eq c eqc’

A. Definition of figure of merit

‘1’aking the incident wave as defined in equations 1.6 consider the

ideal voltage normalized to the incident electric field multiplied by the

normalized bandwidth as the definition of a voltage figure of merit AV~

specifically

A=
v

Tideal(iuc) iu T
c ideal(tic) 1— =

Eo~(iwc) c Eo~(iuc)
< (4. 1)

For this definition the orientation of the field (electric or magnetic depend-

ing on sensor type) is taken parallel to ~ to maximize the result, ar~d
eq

where the ideal voltage is evaluated at s = b c to maximize the result.

Similarly define a current figure of merit AI with the current normalized

to the incident magnetic field as

idea:(iuc ) iu‘Y
ideal(tic) ,

Y

5
c= — =

Ho~(iuc) c Ho%)
< (4.2)

These definitions both apply to both electric and magnetic dipole sensors.
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Both AV and AI are dimensionless fi~ures of merit but they have a

certain deficiency. If one were to take the sensor output into impedance

Zc and introduce an ideal 1 to N turn transformer and change the load

impedance to N2 Z ~ on the transformer secondary the voltage would be

increased by a factor of N. This would increase ~v by a factor of N since

the load on the sensor has remained Zc and hence the upper bandwidth has

remained u Similarly the current and AI would be decreased by a factor
c“

of N. To make the figure

the sensor

A=

output define a

kAI]l’2

of merit independent of this type of change to

figure of merit as

? ideal) Tideal(iuc) 1/2~
<

Eo~(iuc) HoT(iwc )

From another point of view this figure of merit combines

and current in the form of the square root of power. Pow er is

on passing through an ideal transformer. This figure of merit

the form of (power)
1/2

times bandwidth.

B* Electric dipole sensor

(4* 3)

voltage

conserved

is then in

Applying these re suits to an electric dipole sensor the ideal voltage

and current from section 3 together with the incident wave give

-15-
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●
z z b12()Av =~Ae Q~2 =$Ae <

0 eq o eq

bJ2
A

I
= Ae Q:2

()
=Ae :

eq eq (4.4)

The high-frequency figure of merit A is then proportional to ~~
o

for an electric dipole sensor. The equivalent area and characteristic

length form a term A.e 2-2
eq c which reappear in the same form in the mag-

netic

c.

dipole sensor.

Magnetic dipole sensor (loop)

Applying equations 4.1 through 4.3 to a magnetic dipole sensor

gives

L112
A
v

= Ah X-2
()

=Ah ~
c

eq eq

z
A =~A

()
l-2=~A %2

IZchc Chc
eq

z 1/2

()
fi=~

Zc %eqQi2 = ~~j’2Aheq(%)’

(4. 5)

The magnetic dipole sensor then has A proportional to ~ , the

reciprocal of the factor appearing in the case of the electric dipole sen-

sor. It is this square root of an impedance ratio which makes the fig;ures

of merit for the electric and magnetic dipole sensors comparable. h~ote

that Aeeq and Ah are not physically the same since they relate differ -
eq

ent fields to different circuit quantities (volts, current),

-16-



v. Extension to Sensors on Ground Planes

.

●
The previous discussion has centered around electromagnetic sen-

sors in free space spaced away from other objects. Often it is desired to

mount such sensors on conducting ground planes for measurement of the

surface fields, or equivalently of the surface current and charge densities.

For this purpose the ground plane is assumed to be approximately flat, at

least in the vicinity of the sensor.

Consider a sensor with an electromagnetic symmetry planes located

in free space as illustrated in figure 5.1. In such a situation it measures

fields in some incideni wave ~inc, =inc. U is convenient to define mirror
4

quantities Eincm and ~~incm via a reflection dyad as

+
r ‘z”;
m

+.

tiinc(Fro,t) = 3 “ Einc(;,t)
m

+

Ginc (Fro, t) = - R ● Einc(J,t)
m

(5. 1) ●

This formalism can be extended to all electromagnetic quantities.
8

Here
*
1 is the unit

plane.

Let us

plane. This

tangential E

+m

dyad (identity) and ~n is a unit vector normal to the symmetry

assume that the symmetry plane is replaced by a conducting

forces the fields to be antisyrnmetric8 so as to enforce zero

on the plane, i. e.

[ 1(a) =+Hinc(at) - Einc (Zt)
‘inc

as m

iiinc
[

(;, t) = ; ii

ml
-jnc(;’t) - ‘iinc‘;St)

as

(5. 2)

●

-17-



.

t

F“

I P~++++---- -—-- -—

/

sensor
or

(J
sensor
image

inc ~
@“

\<nc
m

.—.
I7“

electromagnetic
symmetry

---- .— -- —--— —-
or ground

Figure 5.1. Electromagnetic Field Sensor with Symmetry Plane
or Ground Plane
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On or near the ground plane the fields are En normal to the plane ad tit
oparallel to the plane, i. e.

(5. 3)

Et”rn=o

Fief ce o~ly antisymmetric field distributions need be considered (includ -

ing the image in print iple ). A. sensor for use on such a ground plarie is

the 1appropriate e only for mess uring the antis ymmetric quantities, ~ and
n

fit, there. Equivalently it is used for measuring surface current and

charge densities through

(5.4)

?s=i-nxi!it

Note that in the presence of a ground plane one may consider incident and ●
reflected fields as separate quantities and refer measurements to them.

More generally since ground planes are often small (say the surface of an
* +

aircraft) it is convenient to refer all measurement to ps and Js, or E n
and Ht, as the resulting quantities at the measurement location in the

absence of the sensor. This is the convention adopted here.

In taking a particular type of sensor design and cutting it in half to

mount on a ground plane some of the electrical parameters are changed.

If the original output is differential (say 1009) then the halved sensor is

made to clrive half the impedance (say 50 Q) neglecting introduction of

transformers. In the process V is halved with I remaining the same.

The equivalent area is then halved for magnetic dipole sensors but re -

mains the same for electric dipole sensors. This is summarized in

table 5.1. Note that the directions of the vector sensitivities for ground

plane application are constrained by

-19-



,

in x Xe =;, i-nxr =$
e

eq eq
(5.5)

Tn” K
h

=0, rn”~
h

=0

eq eq

The upper frequency response M has remained unchanged in con-
C

version from free space to ground plane since the linear dimensions are

not altered except to remove half the sensor. The sensitivity-bandwidth

figure of merit (equations 4.4 and 4.5 ) is then altered as indicated in

table 5.2. Note the factor of 1/& reduction in A which applies to both

electric and magnetic dipole sensors. One should be careful when comp-

aring sensor designs whether the free space or ground plane parameters

are being used. The conversion between the two is quite stiple.

-20-



electric
dipole
sensor

[
C (ground plane) = 2C (free space)

Zc (ground plane) = ~Zc (free space)

CZC (ground plane) = CZC (free space)

x (ground plane ) = ~e (free space)
e

eq eq

T (ground plane ) = + Te (free space)
e
eq eq

v (ground plane ) = + Ve (free space)
e

eq eq

[

L (ground plane) = *L (free space)

Zc (ground plane) = *ZC (free space)

L/Zc (ground plane) = L/Zc (free space)
magnetic
dipole

1

Xh {ground plane) = ~~h (free space)
sensor

eq eq

Fh (ground plane) = Zh (free space)
eq eq

‘h
(grolmd plane) = ; Vh (free space)

eq eq

Table 5.1. Change in low-frequency sensor parameters in conversion
from differential free-space snesor to ground plane version

-21-
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Wc (ground plane) = We (free space)

tc (ground plane) = tc (free space)

Ic (ground plane) = lc (free spa(e)

A (ground plane)
1= —A (free space)

n

Table 5.2. Change in figure-of-merit parameters in
conversion to ground plane sensor

-22-
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VI. Surnmary

By defining a dimensionless

for electric and magnetic sensors

sensitivity y-b andwidth figure of merit A

(operated in time-derivative manner)

based on power delivered to a constant resistive load at the sensor!s max-

imum frequency response the performance of various sensor designs can

be compared on a common basis. Several sensor designs for high band-

width with given sensitivity y have been realized in various specific models

with various sizes (sensitivities) and application (free sPace~ ground Plane)*

These are list ed in the Electromagnetic Pulse Sensor Handbook. 10 An

important example is the basic MGL (multi-gap loop) design3 for mess ur-

ing aS/8t. Taking the MGL -1 data of Ah = O. lm2
eq

, measured 107oto 90%

rise time of about 3.0 ns as tc, and load impedance of zc = 100 Q, gives a

figure of merit (free space) of Alo go ~ O.24. Another exaxnple is the

basic HSD (hollow spherical dipole) design6 for measuring 8~/ M. Taking

=0.1m2the HSD-2 data of Aeeq , measured 10% to 90% rise time of about

2.7 ns as tc, and load impedance of Zc = 100 Q, gives a figure of merit
o

(free space) of A10-911~ O.079. A new 8~/M design is the ACD (asymp-

totic conical dipole ) sensor4 which has an increased figure of merit,

approaching that of the MGL design.

Having defined the sensitivity-bandwidth figure of merit A for elec -

tromagnetic sensors one can ask some fundamental questions about optimal

sensor design. For example, what is the best way to define AC (from Wc

or tc). This may require some detailed understanding of the high-frequency

behavior of transit-tine-limited time-derivative electromagnetic field sen-

sors. For a given definition of lc what is the theoretical maximum A?

This would give some idea of how close existing designs approach the

optimum performance and indicate for future designs when the optimum

performance was being approached. Hor this purpose one might consider

an idealized spherical sensor as a resistive spherical shell and assume all

the power deposited in the shell associated with the lowest E and H modes

were available to drive Zc of electric and magnetic dipole sensors respec - 0

tively. Such calculations might even suggest sensor designs with larger

values of A.
-23-
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