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ABSTRACT

Although many electromagnetic problems can be treated
satisfaéfbr{1y by means of & static or steady-state approx-
imation, there are an increasing number of problems in which
the transient behavior is of paramount importance. A con-
tinuing need exists to handle these problems efficiently and
in such a way that a wide range of responses to differing
inputs may be considered or that the desired response may be
synthesized. The purpose of this work is to show how the
singularity expansion method (SEM) may be used to significantly
simplify the calculation and synthesis of the response of a
transmitting loop antenna excited by an electromagnetic pulse.

Paralleling the well-known description of lumped circuits
in terms of their poles and zeros, a compact representation

of the loop antenna in terms of its poles and zeros ng@é@iaad}
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The resulting time domain description of the loop response is
simply a sum of terms involving the residues, the excitation,
and the exponentially damped sinusoids whose complex fre-
quencies are the pole frequencies. These poles or natural
frequencies are the freguencies at which radiation from a
scatterer or antenna can take place without an applied
excitation,

One objective of this research is to investigate the
possible use of the singularity expansion method to synthe-
size radiated time domain waveforms by uniformly loading a
loop antenna. In particular, one wishes to choose the load-
ing so as to realize some desired pole-zerc configuration on
the structure. It is shown that the effect of the loading
can be interpreted as introducing a feedback Toop into a
block diagram representation of the impedance transfer func-
tion. This observation permits one to use the root-locus
techniques well-known in the areé of feedback control theory
to predict certain features of the pole trajectories as the
loading is continuously varied. Furthermore, the pole posi-
tions for a given impedance loading can be found with the aid
of contour plots of the magnitude and phase of the impedance
transfer function.

Combining the use of the above techniques for the anal-

ysis of loading together with the singularity expansion repre-



sentation, we extend tore1ectromagnetic problems a capability
to possibly synthesize the desired response when the input

or excitation waveform is given.
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CHAPTER I
INTRODUCTION

Although there aré many electromagnetic problems
which can be treated satisfactorily by means of a static
or steady-state approximaticn, there are an increasing
number of problems in which the transient behavior is of
paramount importance. These problems are usually diffi-
cult because they pose the problem of solving the field
equations as functions of both time and space.

A few electromagnetic scattering and radiation prob-
lems can be analytically solved directly in the time
domain. However, for most problems a direct time domain
solution generally must be obtained by numerical methods.
These methods are, at best, tedious to apply and are
often plagued by stability problems.

A commonly more fruitful approach to obtaining
transient field solutions is to first transform the time
out of the field equations. Most engineers are familiar
with this transform technique. In this method the time
dependence is transformed out of the field equations by
either a Fourier or Laplace transform. The transformed
equations are functions of space, with frequency appear-

ing merely as a parameter of the problem. The problem

12



is then solved in th§ fréquency domain'ejther analyti-
cally or numerically ﬁs}ng,ifo} examp]é, a moment method
technique. Once this steady-state solution of a problem
has been obtained, it is then relatively simple to obtain
the more general solution representing the response of
the object to an impressed field varying arbitrarily with
time. This is done by Fourier inversion of the spectrum
of the solution quantity weighted by the spectrum of the
excitation.

For solutions obtained either by time harmonic anal-
ysis coupled with Fourier inversion or by direct time
domain techniques, a change in the spatial or temporal
behavior of the‘excitapion requires that considerable
effort be spent in recalculating the response of the
structure. One is lead to ask whether or not the long-
established description of lumped circuits in terms of
their poles and zeros might also be used to provide a
more compact representation of e1ectkomagnetic field
problems. In the case of electrical networks, specifying
the finite number of pole and zero frequencies of a net-
work quantity (impedance, transfer function, etc.) com-
pletely determines the quantity at all frequencies.
Furthermore, the time domain response of a linear circuit

excited by an arbitrary waveform may be determined from



knowledge of the location of these pole singularities of
the response functicn in the complex frequency plane, as
well as their corresponding residues. The resulting time
domain description of the circuit response is simply a
sum of terms involving the residues, the excitation, and
the exponentially damped sinusoids whose complex fre-
quencies are the pole freguencies.

The techniques of circuit theory are based on the
assumptions that path lengths in the circuit are neglible
and that all electric and magnetic fields are essentially
confined to the circuit elements. Field theory, on the
other hand, must deal with fluxes in two or three space
dimensions. Given that circuit theory actually has its
foundations in field theory, one might suspect that cir-
cuit theory techniques should have analogs in the field
theory.

That the pole-zero techniques of Tumped circuit
theory can indeed be extended to electromagnetic scatter-
ing was recognized by C. E. Baum [1] who formalized the
singularity expansion method (SEM) as applied to general
scattering probliems. In his approach a conducting
scatterer is described in terms of an fntegral equation
for the induced surface current density. The inverse of

the integral operator is then expanded in terms of its
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poles and their operator-valued residues. The circuit
equivalent of thisrgbbfoach fs the expansion of the
inverse of the impedance matrix of an n-port network into
a partial fraction representation in terms of the poles
of the network and their matrix-valued residues. Thus in
SEM, field theory is no longer considered to be something
apart from circuit and transmission line theories, but
rather as extensions of these concepts. Quantities which
must be known for the expansion of the scattering operator
(i.e., the inverse of the integral operator relating
induced currents to scattered fields) in terms of its
singularities are the natural frequencies, modes, and
coupling coefficients.

The natural frequencies are the frequencies at which
radiation from a scatterer or antenna can take place with-
out an applied excitation., In other words, the natural
frequencies are the poles of the structure. We see immedi-
ately that the poles must be either in the left half of
the s plane or on the imaginary axis in order to exclude
fields which grow exponentially with time. Poles on the
imaginary axis, however, correspond to undamped sinusoids
which therefore cannot lose energy by radiation. Hence,
poles on the imaginary axis of the s plane must corre-

spond to interior cavity resonances which do not radiate
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exterior fields. The usual sinﬁsoidal steady-state
resonant frequencies of the structure are approximately
the imaginary parts of the complex pole freguencies.

For certain response quantities, it is possible for pole-
zero cancellation to occur. In these cases, the natural
frequencies do not appear explicitly in the response
functions of the antenna.

At each pole frequency there is an associated modal
current distribution. Generally speaking, as a complex
excitation frequency approaches a natural resonance fre-
quency, the current distribution approaches that of the
modal current distribution associated with the pole. One
is familiar with this behavior in, say, dipole antennas
where at resonance the current distribution is approxi-
mately a sinusoidal standing wave with the number of nodes
appropriate to the electrical length of the antenna. The
amplitude of the current depends on the difference in the
pole and excitation frequencies as well as on a coupling
coefficient which relates the excitation to the proportiocn
of a given mode which is excited.

The objective of this research is to investigate the
possible use of the singularity expansion method to
synthesize radiated time domain waveforms by uniformly

loading & loop antenna. In particular, we wish to choose
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the loading so as to realize some desired pole-zero con-
figuration on the structure. Since synthesis design is
usually carried out in practice by iterated analyses, we
approach the synthesis problem by first building up an
array of tools for analysis. These include a rather
extensive set of tables for the poles and residues of
unloaded Toops. The data in these tables permit one to
calculate either the time domain or the frequency domain
response of a loop over a large frequency range for an
arbitrary excitation. A product expansion representation
of the loop "transfer admittance" function is then

derived which permits the rapid calculation of magnitude

and phase contours for the transfer admittance. Plots
of these contours, in turn, yield information on the

shifting of poles that is possible by impedance loading.

Adding further insight into the problem of determining

the pole shifts are extensions of the root locus tech-

niques commonly used in control theory. The extensions

permit the techniques to be used in the present problem

in which there are a countably infinite number of poles.
With the combined use of the above techniques, some

progress is made toward the development of an approach to

the synthesis problem. As in circuit theory, the synthesis

procedure may begin with either of two different starting

17



points. In the first, the synthesis prob]em is considered
solved when the transfer function relating the response
quantity to the excitation has specified poles and possibly
specified residues. In the case of the loaded loop, this
becomes a problem of requiring the loading impedance
function to interpolate the unloaded loop transfer imped-
ance function at the pote frequencies. If the residues

are left unspecified, it is also possible to determine
whether or not the synthesized loading function is positive
real.

The other starting point sets out to solve a more
difficult but more practical problem. Here one is given
the time domain response and excitation waveforms and
asked to synthesize the loading function required to
approximately achieve the desired time domain response.

In this case, the poles of the resulting structure may
not even be needed, depending on the synthesis algorithm.
It is emphasized that the electromagnetic synthesis prob-
lem has an additional complication which does not have an
analog in Tumped circuit synthesis. This is, of course,
the time delay associated with the geometry of the struc-
ture. This problem is beyond the scope of this work and
it is anticipated that further development along these

lines will require some approximation of an infinite

18



number of poles by time delay factors in the transfer

function.
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CHAPTER II
SINGULARITY EXPANSION METHOD ANALYSIS
OF THE UNLOADED LOOP

Theré exists a continuing need to handle electro-
magnetic transient problems efficiently and in such a way
that a wide range of responses to differing inputs may be
considered or that the desired response may be synthesized.
The purpose of this discussion is to show how the singu-
larity expansion method (SEM) may be used to significantly
simplify the calculation and synthesis of the response
of a transmitting loop antenna excited by an electromag-
netic pulse. The frequency domain response of a loop has
been extensively treated in the literature [2], [3]1, [4],
and good summaries of these treatments, with some exten-
sions, are given by King and Harrison [5] and King [6].

In the following, we merely summarize the theory of
Wu [4] as given by King and Harrison [5]. Referral is
made to the latter for details of the derivations, and
their notation is generally followed. We have appropri-
ately extended the theory of Wu [4] into the complex fre-
quency or, equivalently, the Laplace transform domain.
ATthough these results may be obtained merely by the

substitution s = jw in Wu's equations, we present below

20



tne derivation for reference purposes.

The usual method ot approaching the problem is to
write an integral equation for the current induced in the
loop which involves the driving voltage waveform. Because
of the rotational symmefry of the loop, Fourier analysis
of both the excitation and the current permits us to
derive a "transfer impedance" relating these Fourier
components. The modal transfer impedance is just the
ratio of the corresponding Fourier components of excita-
tion (voltage) and current. These transfer impedances
contain both the frequency and geometrical dependences
of the Tloop.

2.1 Summary of Wu's Theory for an Unloaded Loop

Extended to Complex Frequencies

In the following, the derivation of the solution for
the current on a conducting loop antenna is summarized
following closely the presentation of King and Harrison
[57. As shown in Figure 1, the center of the loop coin-
cides with the origin of a cylindrical coordinate system
denoted p, ¢, and z, with the plane of the loop lying in
the plane z = 0. The radius of the loon b is assumed
much laraer than the wire radins a. Furthermore, the

value of a is small compared with the wavelength, i.e.,

a? << b?, |ka|? << 1 (2.1)

21
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Schematic of loop antenna
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The value of I(¢') is obtained from an integral equation
obtained by invoking the boundary conditions. The appro-
priate boundéfyicondition is thét thé téngent1a1 electric
field must vanish at the surface of the loop. The value
of the electric field impressed across a delta gap
generator located at ¢ = 0 is Vﬁ(s). If the structure is
impedance loaded, the sum of the voltage drops across the
impedance must also be included. For a uniformly loaded
structure this is easily accomplished, since the voltage
drop per unit length (i.e., the electric field) is merely
proportional to the current at the same point. Consider-

ing only the unloaded case here, we have

vE(s)s
E¢(S) s - _.QM)_ = - (l.a_g + 5A¢), p =b
b p 30 (2.2)

on the surface of the wire at ¢, where the scalar and

vector potentials at the element d& = bd¢ are given by

M
o = f q(¢') W(e - ¢') do' (2.3)

™

1
dre

m

Ay = U j 1(¢') Hp - ') cos (s - o') do' (2.4)

4m o

Denoting the speed of light by ¢, the kernel is defined by

23



T _s/cr
W(o - ¢') = 9_..f e " gy (2.5)
2T r

-T

where

r o~ Vab? sin? (¢ - ¢')/2 + A2 (2.6)

and

A= 2a sin (¥/2) (2.7)
In (2.4) and (2.5) the ¢ component of the surface density
current J¢(¢) is assumed to be uniform around the wire.

I{¢) is the total current,

I(¢) = 2ma J¢(¢) (2.8)

where, because of (2.1), the ¥-directed component of
surface current dy is assumed to be negligible. Note that
the voltage excitation is given by

m

_[ bE(s) do = VE(s) (2.9)

i

By the equation of continuity,

(1) dI(e') 4 ¢q(4') = 0 (2.10)
b do'

and it follows from (2.10) and (2.3) that

m

3¢ _ 1 j‘ 3I(¢') 2 (s - 6') do' (2.11)
1

3¢  Amesh 3¢ 3¢

24



o kil

L

3 . -1 3 I(s') (¢ - ¢') do' (2.12)
3¢ dresb 36?

=T

and substituting (2.12) and (2.4) into (2.2), one obtains

e In, ’ . :

HOUORE JA K(s - 6') 1(6") d¢'  (2.13)
™

=T

where a new kernel K(¢ ~ ¢') is defined as
2

K(¢ - ¢') = -] [EE cos (¢ -~ ¢') - & é——] W(op - ¢')
c sb 3¢%
(2.14)

W(o - ¢'), defined by (2.5), may be expanded in a Fourier

series

W(o - 87) = 3 Ky(s) enim(e-e’) (2.15)

The K may be evaluated in terms of W(e - ¢'), yielding

-n

Ko(s) = L J (o - ¢') edn(9=0") 4o ok (s)
(2.16)

Using the results of (2.15) and rewriting (2.14), a

simple expression is obtained for K(¢ - ¢') where
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oo

K(o - 6) = 3 a,(s) edn(e-¢7) (2.17)

and
L% . .2
ap(s) = _iig (Kn+1(5} ¥ r<n—1(s))° J:bc Kp(s) = a_p(s)
(2.18)

If we Jet 86 = ¢ -~ ¢' and A = 2a sin (¥/2), the determina-

tion of the a, depends upon the evaluation of the coeffi-

cients in Equation (2.16), which, with the definition

R(6) = r/b, may be rewritten in the form

w T

jne _-sb/c R(s8)
K (s) = . dy & & de
n 42 . . R(6)

(2.19)

As shown by Wu, Equation (2.19) may be approximately
written in terms of integrals of Anger-Weber functions
for unrestricted n, as

1, 8b
K (s} = = 1n =
° m

a

N

£ )
- f 2 (X) dX + ] J;JO(X) x| (2.20)
(s} 0

26



¥y

N

f [QZn(X) + jJZn(X)] dx
0

where &£ = -j2sb/c and I0 and KO are modified Bessel
functions of the first and second kind, respectively, and

vy is Euler's constant. The constant Cn is defined as

n-1
Cn=1n4n+y-22——1— (2.21)
m=0 (2m + 1)
Using the above results, (2.13) reduces to
Jn © T ( )
e -0 ~ -in(¢-9¢' ; '
()6(6)==2 & a,(s) f e 1(6') d¢
-m (2.22)

Expanding the above current in a Fourier series, one has

1,(6) = S 1, (s) enin (2.23)

where the In(s) coefficients are given by

T

,(s) = [ 1(6") eI dg' (2.24)

2
-T

Combining the results of (2.22) and (2.24), we obtain



jng & iy
Ve(s)e(e) = -23 2 a,(s) I(s) e e (2.25)

This is a Fourier series with the coefficients (jnO/Z)
an(s) In(s). The coefficients are obtained by using the

properties of the delta function,

- Tr e
g2 (8)1,(5) 4 [ g stor e - Lols)
5 20 - 2m
(2.26)
Finally,
-jvg(s)
I(s) = ——— (2.27)
noﬂan(s)

where the coefficient -j/[n ma (s)] of Vi(s) may be
identified as the transfer admittance of the nth Fourier
component of current. In the following we repeatedly
refer to this quantity as the "transfer function" or
transfer admittance. Its reciprocal is called the

“transfer impedance."
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2.2 Expaﬁgfﬁh éfrtﬁe Trénﬁfé;rAdmittance in Terms

of Its Singularities

To calculate the current, or equivalently, the trans-
fer impedance of a loop antenna, we have had to solve the
corresponding field problem--that is, we have solved
Maxwell's equations subject to the boundary conditions at
the surface of the antenna. Having thus obtained the
transfer admittance for the loop antenna, we next study
its properties to determine the corresponding basic
properties of the loop antenna. However, some of the most
important general properties of the antenna transfer
admittance may be obtained from much more basic considera-
tions. These properties are common to all dynamical
systems--mechanical and acoustical as well as electrical
systems, and they are independent of the particular form
of the equations as long as these equations are linear.

Such properties were considered by Brune [7] with
special reference to electric networké, but these results
are easily extended to all linear dynamical systems
including systems with an infinite number of degrees of
freedom. |

The natural oscillation constants of any passive
physical system, that is, a system without concealed

sources of power, must 1ie either in the left half of

29



the complex s plane or on the imaginary axis; otherwise,
the real part of the complex frequencies of oscillation
would be positive, and the oscillations would grow in
amplitude without any contribution of power by the system.
An antenna in free space loses power by radiation,
whether its terminals are short circuited or left floating;
hence, the poles ot its transfer admittance are in the
left half of the < plane. The only exception is the point
at the origin. Thkis point corresponds to a static fieid.
Recognizing r-at tk- s0lutions of electromagnetic
problems are anal::ic fu-cztions of the complex frequency

s except at these nole <-naularities {complex natural .

frequencies of osc*1lz.:.=; is the basis of the singularity
expansion method f-kF: introduced by Baum [1]. By
expanding the trarsfer - wittance in a partial fraction
series, one needs znly tne poles and their residues to
completely determine the transfer function either in the
time or the frequency cocmain.

One of the advantages of the singularity expansion
method as compared to other more conventional methods is
that it provides a means of characterizing the electro-
magnetic properties of a body with a discrete set of
complex numbers together with a set of modal current

distributions. These quantities are uniquely determined

30



by the body itself and do not depend, for example, on the
driving source. Once these quantities are known, a wide
variety of antenna problems can be solved without having
tore-solve the boundary value problem. The singularity
expansion method is therefore useful for two reasons:

(1) it provides physical insight into the problem and

(2) it reduces an electromagnetics problem to the minimum
number of quantities necessary to completely represent
it.

The analytic property of 1/an(s) with respect to s
allows the use of various theorems of complex variables
in obtaining information about its properties. The basic
idea involved in this technique is to expand the transfer
function of 1/an(s) in terms of its singularities in the
complex frequency plane. Such singularities can take
various forms such as poles, branch points (and associated
branch cuts), essential singularities, and singularities
at infinity. For a restricted class bf objects, which
includes the loop antenna, these s-plane singularities are
Timited to poles and possible singu]aritiesvat infinity.

Once one has found the complex natural frequencies
of oscillation and their corresponding current distribu-
tions, it then remains only to determine to what extent

each modal current is excited by a given Fourier component
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of the input waveform, For the loop antenna the excita-
tion of each modal current is proportional to the product
of the residue of the transfer admittance and the Laplace
transform of the corresponding Fourier component of the

excitation. To determine the natural frequencies of the

loop, it is necessary to find the poles Sni

j of the trans-

fer admittance factor l/an(s).
To do this, one observes in (2.18) and (2.20) that

an(s) is analytic for alil s for n = 0, and for all s

except s = 0 when n # 0. This implies that 1/an(s) is
analytic for all s except possibly for poles at the zeros
of an(s). Therefore, since an(s) vanishes at these zeros,
I

say s } may be nonzero with Vn(sni) = 0, i.e.,

ni? n(sni’

no excitation is required at the natural frequencies in
order to have a current. Thus, at the pole frequencies,
we have source free solutions of the integral equation,
Umashankar [8] has shown that

R

1. 3 —nt (2.28)
an(s) T 5 = sy

i.e., the transfer admittance can be written entirely as
a residue series involving its poles Spi and residues Rni'
This is the desired expansion of the transfer admittance

in terms of its singularities,
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By our definition of the pole frequencies, we have

liw (s)

) = = 0 (2.29)
ni s—»sn~i n

and the corresponding residues Rﬁi are given by

Rys = Sllm (S - Sni) - [dan]-li (2.30)

ni an(s)

From (2.30) the Ryj can be written as

Ro; = 1/ar'n.<sn‘1.> (2.31)
where
da
1 - n
an (Sni> = —E; (2.32)
S = 5 .
ni

Using (2.28) in (2.27), we may write the nth Fourier

component of the current as

1 ~ Rni e
I,(s) = >, — Vo(s) (2.33)
jnon i s -5

ni

The equivalent expression in the time domain is

X s .t
i (t) = <; Ry e n1 )* vg(t) (2.34)
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where

R', = 1 R . (2.35)

ni ingm ni

and Rﬁi and s ; must appear in complex conjugate pairs in
order for the time domain response to be real. The star
in (2.34) denotes convolution.

Expression (2.34) implies that poles must be in the
left half plane to avoid an exponentially increasing
current as a function of time. This is explained phys-
ically by the fact that source free currents must even-

tually radiate away all their energy; hence

in(t) Q:;O, n 0, io(t) %;fvconstant (2.36)

o0

Making use of (2.23}) and 2.27),

1(s) = % 1,(s)73"¢

: €
i a,(s) ioap(s)

Expanding an(s) in its partial fraction representation, we

have finally
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-
. =3Vi(s) o R _.
I(¢) = —2— | 2 o1
NoT i=1 s - Soi
© o R .
s 2 3 cos no 2: ni (2.38)
n=1 i=] s - Sni ‘

Equation (2.38) is for the case of an antenna excited at
¢ = 0 by a delta gap. In the more general case, the

excitation can be represented by an arbitrary incident
inc
¢

the derivation to proceed as for the case of an antenna

field E;nc(¢,s). Fourier expansion of E (d,5) allows

and the result is

R!. e3n¢

1'nc 1 -jn(b' 1
ni E s ¢',s) e bd¢

2T
0

ni

(2.39)

The terms ejn¢ are called by Baum [1] the modal current
] '
distributions, and the terms e 3% ape the coupling

vectors. The quantity

2m
v, (s) =f E;)nc(qb',s‘) SOLEAYTY (2.40)
0

is called the coupling coefficient and indicates how much

of each mode the incident field excites. The Spi are the
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poles or complex natural resonant frequencies.

If Vg is equal to unit for frequencies s = jw
in (2.37), then I(¢,jw) is the current response due to a
unit voltage source in the real frequency domain. Hence
I{0,jw) is the input admittance and 1/I(0,jw) is the input
impedance of the antenna. Hence, if a particular pole
is close to the imaginary axis, the impedance at real
frequencies in the vicinity of this zero is small, and
we have the phenomenon known as resonance. If several
poles are near the imaginary axis, the impedance will
fluctuate between small and large values as the freguency

passes these points. As the poles recede from the imagi-

nary axis, the fluctuations become less pronounced, and
the "resonance curves" become flatter.

An equivalent circuit can be'deve1oped representing
the field equations of Maxwell for an electromagnetic
field containing conductors and bound charges. Both
transient and sinusoidal field phenomena may thus be
studied by numerical and analytical circuit methods;
such a circuit model applies, of course, to radiation
from a loop antenna [9]. The circuit models can in
principle be developed for all curvilinear-orthogonal
reference frames to allow fhe solution, to any desired

degree of accuracy, of any two- or three-dimensional
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problem. The models correspond to the approximation of a
transmission 1line in one dimension by éicascaded series of
sections containing ordinary lumped circuit elements R, L,
C, and G's, Since the field equations of Maxwell may thus
be represented by a stationary network (within any desired
degree of accuracy), it may be stated that [9]:

Any theorem, formula, concept, or law that

is valid for stationary networks (such as reci-

procity theorems, Thevenin's theorem, concepts

of dualism, reduction formulas, generalization

postulates, etc.) can be translated into a core-

sponding theorem, formula, concept, or law

relating to the electromagnetic field.

As the number of elements in the circuit increases,
the number of poles also increases. As a consequence of
the above circuit model of Maxwell's equations, contin-
uous structures, including all of free space, are limits
of networks with an increasingly larger number of
increasingly smaller meshes. The number of their zeros
and poles will be infinite. (In fact, this must be true
of any physical circuit since all physica1 circuits are
continuouéﬂand Céhnbt Ee wholly disassociated from the
surrounding space.)

Thus, there are an infinjte number of complex
resonant frequencies whose locations are in the left half

of the complex frequency plane, and which occur in complex

conjugate pairs, as a consequence of the above theorem.
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In order to generate a real-time-domain response, poles of
the transfer impedance function must appear in complex
conjugate pairs and their residues must be in complex
conjugate pairs for poles notvon the negative real axis.
It is then recognized that the transient response
of an object can be viewed as a superposition of a series
of damped sinusoidal oscillations at the so-called natural
frequencies of the object. It has been observed in many
electromagnetic pulse (EMP) scattering and interaction
problems that the time dependence of various quantities,
such as the current induced on an object in an EMP simu-
lator, seems to be described by only a few of these
exponentially damped sinusoidal oscillations[1].
2.3 Numerical Techniques and Results
The expression for an(s), (2.18) to (2.21), involves
integrals of Anger-Weber functions of complex arguments.
These functions have been computed using an extension
to complex arguments of the methods described in [10].
A parametric study of the roots of a,(s) as a function
of the ratio b/a has been carried out using a numerical
search procedure. The roots, of course, satisfy the
requirement that they should appear only in the left half
of the s plane and in complex conjugate pairs.

The so-called Muller's Method has been used to
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numerically determine the roots of a (s). 1In this method
three values of an(s) are computed from three estimates
of the root, say at s _,, s 4, and s . Using these
values, a quadratic interpolation formula [11] is used

to approximate an(s) in the vicinity of the given points.
The root of the quadratic nearest the best estimate, say

s., is designated s and the procedure is repeated using

n n+1

S S , S until |s syl/1s,| is less than a

n+1 n+1

preassigned number. For more details, the reader is

n-1* “n?
referred to reference [11].

Approximate pole locations to initialize the proced-
ure are not necéssarylfthough in practice having good
initial estimates of pole locations will considerably
reduce the number of iterations required to find the
various roots. This searching procedure is in general
found to be quite efficient, but it has been found to be
rather difficult to find all of the poles in certain
regions when good initial estimates are unavailable.

One method which has been employed to overcome this
difficulty is to actually plot magnitude contours of the
function in the complex s plane. The regions near zeros
of an(s) show up clearly on the contour plot and provide
more accurate initializing data for Muller's Method.
Furthermore, the contour plots themselves are useful in

determining the poles of the loaded structure, as we shall
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see in Chapter III.

The residue for 1/an(s) may be easily calculated by
the residue theorem using a circular contour about the
pole as shown in Figure 2.

By the residue theorem, we have

Ryp = ~l_§ ds (2.41)
2w Cnf an(s)
In Figure 2, let
s - Si = eej¢, s = Si + eeJ¢
ds = jeed? do (2.42)

and substituting (2.42) into (2.41), we have

. Jo
Rys = —— é Jeer” d¢ .¢ (2.43)
2w Cnian(s)(sni + ged )

For a numerical approximation, we may divide the contour,

C into m equal subdivisions and apply the simple rectan-

ni

gular rule for integration:

ej 2(n=1)71/m (27/m)

: (2.44)
e)[ogy + et 2077

m
NE——
Rni" 2 2:
n=1 a

Thus the residue at the pole S for an(s) is

ho



Figure 2. Contour in s~plane for calculating residues
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m .
j 2(n-1)w/m
Rpi = = 20 : : (2.45)
m n=1 an(s)[g_i + eeJ Z(H-T)w/m]

In equation (2.28) an fmportant féature is that the func-
tion 1/an(s) may be represented by its poles and residues
with no additional entire function required, as shown by
Umashankar [8].

Several checks were made to determine the rate of
convergence of (2.45). The value of ¢ was varied from
10"t to 10-° while simultaneously the value of m was
varied from 3 to 24, It was found that for the combina-
tion of ¢ = 1073 and m = 3, accurate answers with a
relative error of the order of 1077 were obtained. A
large number of these pole locations s = Sni and corre-
sponding residues Rni have been calculated and tabulated
for a wide range of the loop parameter Q = 22n(2nb/a).
These results permit one to use (2.34) to calculate time
domain Toop currents for arbitrary excitation without
resorting to the comparatively inefficient process of
Fourier transformation.

By direct calculation we find in the complex fre-
quency plane an infinite number of complex resonant

frequencies whose locations suggest three separate cate-

gories of resonant frequency or pole types for each mode
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number n:
Type 1

There is a single pole very near the s = jw axis at
approximately w = n. This pole gives the principal con-
tribution to the time domain response of the loop at late
times and the imaginary part of the pole location corre-
sponds closely to the resonant frequency of the loop for
an excitation of the form ejn¢.

Type 11

There are n+l1 of these poles (including conjugate
pairs) which lie roughly on the left-hand side of an
ellipse centered at s = 0 and with a semimajor axis some-
what larger than n,

Type III

There is a layer of poles lying almost parallel to
the s = jw axis. The layer contains an infinite number
of poles and they are spaced approximately Aw = mc/b
units apart, where b is the lcop radius.

As with thin cylindrical wires, increasing the wire
radius has the effect of shifting the Type I poles near
the jw axis away from the axjs, or equivalently, increas-
ing the damping constants of fhose modes in the time
domain [12]. Types II and III poles located further

away from the imaginary axis, however, move away from the
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imaginary axis as the radius approaches zero.

Pole and residue data for the three Toop sizes
Q = 24n2wb/a = 10, 15, and 20 are presented in Figures 3
through 8 and Tables 1 through 8 for modes n = 0 through
20. For d particular mode, Type II poles fall on an
elliptically shaped curve with n + 1 poles (including

conjugate pairs)f There will be one more pole (Type I)

at approximately w n. Displayed in Figures 4, 6, and 8,

corresponding to f 10, 15, and 20, respectively, are
the layers of Type III poles parailel to the s = jw axis.
These poles are shown for each mode 0 through 20 for
values of wb/c = 0 to wb/c = 30.

The residue corresponding to each of the poles
plotted in Figures 3 through 8 are tabulated in Tables 1
through 8. These are tabulated in three columns for the
three loop sizes @ = 10, 15, and 20. The first number in
each column represents the real value of the residue, and
the second is its imaginary value. The index is a unique
four-digit number that identifies a particular pole. The
first two digits are the mode number for modes 0 through
20. The tlast two digits can be grouped into three differ-
ent categories corresponding to the three different types

of poles. A double zero (00) in the last two digits of

the index corresponds to the single Type I pole very near
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Table 1 Residues of the Poles for Pole Indices 0000 to 0801
p £ = 10.0 £ = 15.0 Q = 20.0
ole

Index Real Imaginary Real Imaginary Real Imaginary
0000 9,6815E-01] 0.0 Se4716E-01]| 0.0 3.8119E~-01] 0.0
'looo01 =2.9470E-01| 0.0 -1.5274E-01] 0.0 -1.,0051E-01]| 0,0

0100 5.9642E-01| 2.2783E-01 3¢1394E-01] 5.2905E-02 2.1011E-01] 2.,2899E-02
0101 =2+2305E-01|-2.5019E-01 -1.1240€E-01|-8,2087E-02 -7.2183E-02| =4,5932E-02
10200 6.8334E-01] 2.8602E~-01 3.3907E-01| 5.5632E-02 2.2112E=01| 2.,2788E-¢2
10201 ~2.2568E-01|-2.5470E-01 -1.0174E-0G1|-6,6389E-02 -6,1741E-(G2|-3,5420E-G2
10202 -1.120%5E-01| 0.0 =5.9709€E-02] 0.0 -4,07T06E-G2] 0.0

0300 Te4769E-01| 3.4247E-01 3e5724E-01] S.8464E-02 2.2872E-01] 2.3055E-02
0301 «2,3759E-01]|-2.7773E-01 -1.0105€-01|-5.,9250E-02 -5.9145E-02|-3,0076E-02
'l0302 -8,5631E-02| 3.4770E-02 =443284E-02]| 1.246TE-02 =2.9036E-02| 6.8028E-03
0400 7.9708E-01]| 3.975SE-01 3.7184E-01] 6,1174E-02 2¢3465E-01] 2.3413E-02
0401 «2.467T7E-01]1=-3.0735E~-01 «1.0231E-01|-5,5331E-0C¢ =G ,B8299E-02]| =2.6869E-02
‘10402 =T7.2780E-02] S.3439E-02 «3,6693E-02]| 1.8668E-02 -2.,4528E-n2| 1.0300E~02
0403 -6.8024E-02] 0.0 -3.0160E-02] 0.0 -1.,9486E-02] 0.0

0500 8.3480E-01| 4.5073E-01 3e8424E~0]1| 6,3744E-02 2¢3954E=-01]| 2.3794E~-02
0501 «2¢5137E-01|-3.,3948E~01 =1.0415E~011-5,2955E~02 =-5.,8080E-02|=-2.4713E-02
0502 =6,365TE-02| 6.,6648E~-02 =3.2820E~-02] 2.2656E=-02 =2s1974E=-02]| 1.2496E-02
0503 «6,0045€E-02| 1.7067E-02 -2e¢5133E-02| 5.5337E-03 =1.5958E-02| 3.1224E-03
{10600 8.6287E-01| S5.0120E-01 3¢9512E~01| 6.,6188E-02 2.4375E=-nl| 2.4174E-02
0601 -2.,5121E-01|-3,7187E-0} ~1e0617E~01|~5,1445E-02 -5.8140E-02]-2.3156E~-02
0602 ~5,6169E-02] 7.7061E-02 =3.01596E=-02]| 2.5580E-02 «2.,0272E=-02]| 1.4057E~02
0603 =5.,4423E-02| 2.8663E-02 «2.2211E-02| 8.,8515E-03 =]1,3978E=-02]| 4.,9584E-03
0604 =5,4773E~-02| 0.0 =2.0890E-02| 0.0 -1,2924E-02| 0.0

0700 B.8293E~01| S.4817€E-01 4,0489E-01]| 6,8522E~-02 2.4T46E=-n)]| 2.4546E-02
0701 =2¢46T73E-01|=-4.0299E~-01 -1.0823E-01|-5,0473E-02 =5,8339E~-02| =2.,1976E~-02
0702 =4,9577€E=-02| 8.5709E-02 ~2.8158E-02| 2.7889E-02 -1.,9033E=-02| 1.5254E=02
0703 =4,9716E=-02| 3.7647E-02 ~2.0204E-02] 1,1163E-02 =1,2658E=02| 6.,203S5E-03
0704 -5,1116E-02| 1.1338E-02 =1e8461E~02) 3.,1974E-03 -1.124BE-02] 1.7734E-03
0800 B8.9649E-01| S.9105E~-01 4413786-01] 7.0761E-02 2.,5078E-01| 2.4906E-02
0801 ~243867E=01|=4,3179E-01 -1.,1028E~01|-4,9858E=02 -5,8613E-02|=-2,1048E-02
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Table 2. Residues of the Poles for Pole Indices 0802 to 1205

PoTe Q 10.0 2 = 15.0 0 = 20.0

Index Real Imaginary Real Imaginary Real Imaginary
08072 -4 4,35S8E-02]| 9.3095E-07 =265 T4E=~G2| 2.9B0%E~02 ~1,8079E=-02]| 1.6218E~32
0803 -4 ,5440E~-02] 4.5068E~-02 ~1.8696E-02]| l.2921E=-D2 =1.1691E-02| 7,1242E~03
0804 -4, 1987€E~-02| 2.0048E~-02 ~1e6801E~-02] 5,3596E-023 -1,0136E-02 2.9433E-03
0805 ~4,8913E-02] 0.0 ~1.6347E~02] 0.0 -Q,7T631E-03| 0.0

0900 3,0095E-0)]| 6.2952E~01] He2)99E~-01| 7T.2918E~02 2.9380E~n1] 2.5255E-02
0901 ~2,2795E=-01|~4.5768E~01 ~161229€~0G1|~4,94B4E-02 ~5,8928E~02|~2.,0301E~-02
0902 ~3,7949E~-02]| 9.9501c-02 24527 E=-02 3.14676=-02 ~1,72313E~02( 1.7023E-02
0903 ~44,1392E-02| S.1407E-0Q2 ~1eT4QTE=-Q2| le4336E-02 ~160942E-02| T.8455E~03
0904 ~4,5033E~02| 2.7242E~02 ~1e5556E-072| 6.9643E~03 -G,3233E~03] 3.7889E-03
0505 =4,69T4E~02| 8.,6710E~023 14911 E~02]| 24.1226E~-03 ~B, T854E~03] 1.1504E~03
1000 9,0956E-0]1| 6.6353E-01 4e2963E~01] 7.5001E-02 2.56S8E-01] 2.5591E-02
1001 ~2e1544E~01|=4,8039E~01 =1s 1429E~01 |=4,9313E-02 =5 ,9264FE~02]~1.9686E~02
1002 ~3,2666E~02] 1.0511E~-01} ~Ceal6B8E~02| 3,2889E~02 ~1,6682E-n2] 1.7713E~02
1003 ~3,7483E-02| 5.6920E~02 ~1e650BE~021 1,5521E-02 ~1,0337E=-n2] B.4338E-Dn23]
1004 ~4,2114E~-02| 3.3414E-02 ~1e4566E~02] B.2299E-03 ~8,6924E-03] 4,4386E-03
1005 -44,5036E-02] 1.5851E-02 ~1.3836E-02] 3.6725E~023 -8,0726E-03] 1.9697E~-03
1006 ~4,6033E~02]| 0.0 ~)e3636E~02| 0.0 ~T.9024E=-031 0.0

1100 9. 1141E~01]| 6.9323E~01 443679€E~-01] 7,7021E~02 2+5918E-n)| 2.5917E-02
11¢1 =2.0193E~01|=4.9993E~01 ~121616E~-01|~4,9270E~02 -5,9612E=-02|=1.9171E-C2
1102 =2.7663E-02]| 1.1004E£~01 ~2e¢3213E~02] 3.,4178E~02 -1.6149E~02| 1.8315E~-02
1103 =~3.3671E~02| 6.,1760E~02 ~1e5668E-02]| 1.6542E~02 ~9,834TE=3| 8.9283E~03
1104 ~3,9172E-02| 3.8819E~G2 =123748E=-02] Y.2715%E-03 =8,1824E=023) 4.9599E~03
1105 =4,2998E~02] 2.205%E-07 ~142983E=02] 4.87786~03 ~7.9199E~33] 2.5911E-02
1106 ~4,4970E~-02| 7.2036E~03 ~le26B4E~-02| 145327E~03 ~7.2612E~-03] B8.112BE~04
1200 9.1136E-01]| 7.1895E-01 4+4355E~01] 7.8983E-02 2.6155F-n]1| 2.6231E-02
1201 ~1.880GE~01|-5.1649E~01 ~1e1802E-01|~4.9333E-02 -5,9964E-32|~1.8735E~-02
1202 =2.2915E-02| 1.1439E-01 ~2:2374E-02] 3,5346E-02 ~1,5692E~021 1.8850E~-02
1203 =~2.9945E~02| 6.602BE-02 =1e094lE~-02] 1.7440E-02 ~9,4084E~n3! 9.3536E~-03
1204 =3,6190E~02| 49.3600E~02 =13053E-02] 1.0156E~02 -7.7580E~03] 5.3918t-03
1205 ~4o0B2lE-02| 2.7539E~02 ~142278E~02| 5.,8574E-~03 ~7.,07306E-03] 3.0839E-0(3
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Table 3. Residues of the Poles for Pole Indices 1206 to 1601

Pole Q= 10.0 Q= 15.0 Q = 20.0

Index Real Imaginary Real Imaginary Real Imaginary
1206 =44,3708E-02]| 1.3477E-02 =1.1929E=-02| 2.7126E-03 -6,7647E-03] 1.4210E-03
1207 -4,4695E-02]| 0.0 -1.1827e=-02]| 0.0 -6.,6741E-03] 0.0

1300 9.100GE-01]| 7.4107€E-01 444996E~-01 | 8,0894E-02 2,6380E-01| 2.6536E=-02
1301 -1.7439E-01]|-5.3035E-01 =1.1983E-01 |-4.9480E-02 -6,0317E-02|~-1.8361E-02
1302 -1.8404E~-02] 1.1823E-01 =2 1625E-02] 3.6417E-02 -1.5293E-02| 1.9331E-62
1303 =2.6304E-02]| 6.,9796E~02 =16479%E-02] 1.8244E-02 =Q.,0402E-03] 9.7259E-03
1304 ~3.3169E-02| 4.7846E-02 -1.2450E-02] 1.0924E-02 -7.3969E~-03| 5.7586E-03
1305 =3.,8496E-02| 3.2440E~-C2 -1.1678E=-02]| 6.6800E-G3 - T00BE~-(3] 3.4880E-03
1306 -44,2219E=-02] 1.9082E-02 =-1.1306E-02| 3.6627TE~03 -6,3634E-03] 1.9005E-03
1397 =4,4153E-02| 6.3224E-G3 =1e1148E-032] 1,1710E-03 -6,2205E-03| 6.,056GE-04
1400 9,0811E-01] 7.6003E-01 4.5607E-01| B,2758E-02 2.6592E=-n1| 2.6831E-02
1401 =1.6120E~01|~-5.41R6E-01 =1e2159E=01 |=4.9694E-0D2 -6,0667TE-(2|~1.8037E-02
1402 =1.4123E-02| 1.2162E-01 -2.0949E=-02| 3.7407E-G2 =1.4942E-02] 1.9768E-02
1403 =2.2754E-02| 7.3119E=02 =-1.3726E-02| 1.8973E-02 -8.7179E-03| 1.0057E-02
1404 =-3.0123E-02]| 5.1618E-02 -1.1918E-02| 1.1605E-02 ~7.0843E-03| 6.0763E-03
1405 =3,6033E-02| 3.6839E-02 -1.1158E-02| 7.3881E-03 -6.3838E-03| 3.8280E-03
1406 =4,0497E-02]| 2.4153E-02 -1.0776E-02| 4.4540E-03 =6,0292E-03| 2.2907E-03
1407 -4,3320E-02| 1.2033E-02 -1.0588E-02| 2.1075E-03 -5.8542E-63| 1.0791E-03
1408 -4.4291E-02| 0.0 -1.0531E-02] 0.0 -5.8008E-03| 0.0

1500 9.,0STTE-01| 7.7623E~-01 446190E-01| 8,4580E-02 2.6793E-01| 2.7117E~02
1501 ~1.4875E=-01]|-5.5134E-01 =1.2331E-01|-4.9962E=0¢ -6,1014E-02|-1.7755E=-02
1502 ~1.0065E=-02| 1.2460E-01 -240333E-02] 3.,8330E-02 -1.4630E-02| 2.0168E-02
1503 -1.9305E-02| 7.6043E-02 =-1.3209E=-02] 1.9642E-02 -B8,4323E-063] 1.0354E-G2
1504 =2.7070E-02| S.4960E-02 =1e1442E-02]| 1.2216E-02 -6.,8099E-03| 6.3558E-03
1505 =3.,3453E-02| 4.0785E-02 -1.0698E-062| 8.0097E~03 -6.,1090E-03| 4.1200E-03
1506 =3.8553E-02] 2.8761E-G2 -1.0315E-02| 5.1300E-03 =S5, T444E-03] 2.6167E-03
1507 =44,2189E-02| 1.7267E-02 -1.0111E-02] 2.8824E~-03 -5,5491E-03| l.4622E-03
1508 =4 44097E-02]| S.7722E-CG3 -1.0021E-02| 9.3144E-04 -5.,4624E-063| 4.7123E-04
1600 9,0331E-01] 7.9006E-01 446748BE-01| 8,6363E-02 2.6984E-01| 2.7395E-02
1601 =13716E-01]-5.5911E-01 =1.2498E-01|-5,0275E-02 -6,1356E~-02| -1.7508BE-02
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Table 4. Residues of the Poles for Pole Indices 1602 to 1900

Pole ¢ = 10.0 ¢ = 15.0 Q 20.9

Index Real Imaginary Real Imaginary Real Imaginary
1602 ~6,2230E~03]| 1.2723E-01 ~1.9768E-02| 3.9195E-02 =1.4350E~02| 2.0537E~02
1603 ~1.5966E~02] 7.8609E~02 =1.2737E=-02| 2.0259F=02 ~8.1769E~03| 1.0624E-02
1604 =2.4032E=-02| S5.7912E=-02 -1.1012E-02| 1.,2772E~02 ~6e5604E=03 ] 6.6048E~03
1605 ~3,078B0E=-02]| 4.4314E-02 -1.,0287€-02] B8,5639E-03 =5.8675E~03| 4.3749E~03
1606 =3,6407E~02| 3.2946E-02 ~9,9084E~03]| S5,719%E~03 ~5,4974E~03]| 2.8948E~03
1607 ~44,0764E-Q2| 2.2090E-02 ~9.6972E-03{ 3,5405E~03 =5.2892E~03| 1.7804E~03
1608 ~443559-02] 1.1133E~02 ~9,5875E-03| 1.,6982E-03 -5.1806E=-03| 8.5077E-04
1609 -4.4525&:-02 000 "9.5533E"03 0.0 "501‘068E"03 0.0

1700 9.0092€6-01] 8.0186E-01) 4,72B6E~D1| 8.8111E-02 2.71/6E~-01] 2.7665E-02
1701 =1,2652E~01]|~-5,6545E-01 =1.2662E=01]-5.0626E~02 -6.1693E-02]|~1.7290E=-02
1702 =2¢5935E~-03] 1.29559E=-01 ~1e49245€-02]| 4.0011E=02 =1,4096E=-02]| 2.0880FE~-02
1703 =~1.2746E-02| 8.08B50E~02 -1+2304E-02| 2.,0835E~02 =7.9466E~03] 1.0871E~02
1704 ~2.1028E-02| 6.0504E~02 ~1.0620E~-02]| 1.3282E~02 ~6+34B1E~03( 6.8292E-n3
1705 ~2.B044E~02]| 44.T453E-02 ~9.9145%5E~03] 9,0643E-03 ~5.6529E~03 | 4.6005E-03
1706 =3.4090E-02] 3.6732E-02 -9,5441F-031 A,24)8E-02 =5.2801E~03] 3,1361E-03
1707 ~3.9066E-02] 2.6531E-02 ~9.3313E~03| 4,1113€=-03 -5.0636E-03| 2.0506E~-03
1708 =4,2673E-02| l.6145E-0n2 ~3,2109E-03| 2,3465E~-03 ~4,9406E-03| 1.1648E-03
1709 ~4,4584E-02| S5.4302E-03 ~9.1559E~03] 7.636BE~04 =4 4,8842E-03| 3.7821E-04
1800 8.,9867E-01| 8.1194E=-01 4,7803E-01| B.9826E-02 2.7341E-01| 247929E-02
1801 ~1.1684E=-01|~S.7061E-01 ~1.2821E-0]|~5.,1008E~-02 =66 2024E=02 |=1.7097E-02
1802 8,295%4E~-04| 1.3157€E~01 ~1.8798E-02| 4.,0783E=-02 =1.3845E=-02| 2+1200E-02
1803 =3,6537E=-03| B.2800E-02 ~141903€E~-02]| 2.1374E-02 =7.7375E-03] 1.1098E-02
1804 =1,8079€-02| 6.2767E~02 ~1e0259E~02{ 1.3754E-02 ~6.1508E-03] 7.0331E-03
1805 ~2¢527T4E~Q2]| 5.0226E-02 ~9,5746E-03| 9,5211€-03 =5.,4602E~-03] 4.80725E~03
1806 ~3.,1633E-02| 4.0135E~02 ~93,2143E-03]| 6.,7109€=03 ~5.,0868E-03| 3.3486E-03
1807 =~3.7118E=-02| 3.0604E~02 =9.0034E~03] 4,6146F-03 -4 ,8651E-03| 2.2840E~03
1808 ~44,1451E-02] 2.0831E~02 ~B84.8779E~-023] 2.9062E-023 -4,7322E-03| 1.4303E~-03
1809 ~4,4260E~02]| 1.0584E=02 ~8.8104E~03] 1.,4068E-03 =4 ,6605E-03]| 6.9011E=04
1810 -4,5237E-02]| 0.0 -8.7890E=03}| 0,0 =4,6378E~03| 0.0

1900 Bs9665E-01| 8.2055E-~01 448302E~01| 9.1511E~02 2.7508E~01]| 2.8186E~(Q2
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Table 5. Residues of the Poles for Pole Indices 1901 to 0038
p Q= 10.0 Q = 15.0 Q = 20.0
ole

Index Real Imaginary Real Imaginary Real Imaginary
1501 -1.0810E-01|-5.7480E-01 =1e2977E=01|=-5.1416E=02 -6,2350E-02]|-1.6925E=-G2
1502 4,0521E-03]| 1.3335E-01 ~1.8302E-02]| 4.1517E-02 =1,3654E-02] 2.1500E=-0G2
1903 =6.6944E-03]| B.4487E-02 -1.1529E~-02| 2.1881E-02 -7.5464E=-03| 1,1310€E-G2
1904 ~1e5201E-02]| 6.4729E-02 =949245E-03] 1.4194E-02 ~5.9713E-03| 7.2199E-G3
1905 =2¢2490E-02]| 5.2658E-02 -9.2619E-03] 9.9415E-03 =5.2859E=-03| 4.,95850E-03
1906 -2¢9073E-02]| 4.3170E-02 -849130E-03] 7.1369E-03 -4,9132E-03} 3.5378E-03
1907 =3.,4956E-02] 3.4313E-02 =B84 7064E-03] S5.,0645E-03 -4 ,6884FE-03| 2.4884E-03
1903 =3.9910E-02]| 2.5195E-02 “«“BeST94E=-03] 3,3977E-03 -4,5488E-03] 1.,6588E-(3
1909 =443552E=-02]| 1.5482E-02 -Be5048E-03] 1.9601E-03 =4 ,4664E-n3| 9,.5296E-064
1910 =445494E-02] 5.2313E-0G3 -8.4701E-063]| 6.,4108E-04 =-4,4279E-03| 3.1105E-04
2000 8.9486E-011 B.2790E-01 4.8785E-01] 9.3167E~02 2.7669E=-011 2.8436E-02
2001 -1.0027E-01{-5.7820E-01 -1.,3130E-01|~-5,1848€E-(2 -6,2669E-02|-1.6771E-02
2002 7.0805£=-03| 1.3489E-0G1 =-1.7874E-02| 4.2216E-072 =-1,3459E-02| 2.1783E=02
2003 =3.8722E-03] B8.5940E-02 =1.1180E-02]| 2.2362E-02 =7.3708E-03]| 1.1507E-02
2004 =1.2410E-02]| 6.6419E-02 ~9.6133E-03] 1.4607E-02 -5.8070E-03|] 7.3923tE-03
2005 =1.9743E-02]| S.4772E-02 -8.,9721E-03| 1.,0332E-02 -5.1271E-03| 5.1513E-03
2006 =2.6443E-02| 4.5853E-02 =846355E-063| 7.5273E-03 -4 ,7559E-n3| 3.7080E-03
2007 =3.2617€E-02] 3.7659E-02 -864349E-03] S.4714E-03 -4,5296E-03| 2.6698E-G3
2008 -3.8080E-02| 2.9226E~-G2 ~8,3090E-03] 3.8354E-03 -4 ,3855E-03] 1.8583E-6G3
2009 -4,2465E-02] 2.0117E-02 -8+42309E~-03| 2.4443E-03 =44,2955E-73| l.1784E-G3
2010 -4¢5337E-02]| 1.0286E-02 -861879E=-03| 1.1909E-03 =4,245T7E-03| S.7248E-04
2011 ~4,6340E-02] 0.0 -B841741E-03]| 0.0 -4,2298E-03] 0.0

0031 8.2815E-02]-1.3988E-01 9.9561E-G3|-8,9579E~02 -4 ,2350E-n3]|-6.0370E~-02
0032 7.5120E-02]| -7.4634E-G2 1.4131E-02|=5.,2785E-02 2.7842E-03|-3.5035E-02
0033 6. 708B7E-02]|-4.6155E-02 1.3484E-02]|=-3.8494E«02 3.5937E-n3|-2.5179%E-02
0034 5.9855E-02]|=2.9319E-02 1e2575€E-02|-3,0702E-02 3.5961E-73]|~-1.,9868E-02
0035 5¢3293E-02|-1.8238BE-G2 1.1780E-02|=2.5729E~02 3.,4365E-03|-1.,6522E-02
0036 44,7375E-02|-1.0622E-02 1e1120E=-02]|=2,2246E=02 3.2503E-03|-1.,4208E-02
0037 442101E-02]|~5.2913E-03 140571E=-02|-1.9652E-02 3,0722E=-03|-1.2506E-02
0038 3.7452E-02|-1.5370E-03 1.0110E-02|-1.,7634E~-02 2.91076E-03[(~1.,1198E-02
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Table 6

Residues of the Poles for Pole Indices 0039 to 0436.

Pole Q=10.0 Q = 15.0 Q = 20.0

Index Real Imaginary Real Imaginary Real Imaginary
0039 3.3736E-02| 1.0506E-03 9.6986E-03|-1,5993E-02 2.7846E-03]-1.0159€E~02
0131 B841333E-02|-1.0730E-01 1e2415E-02|-7.0875E-02 =4,9828E~n4|=-4.7243E~G2
0132 T«1975E-02|=6.0344E-02 1« 3909E~02|~-4,5625E-02 3.2179E~03|~3,0038E~02
0133 6¢3909E-02 | =3.7634E=~(2 163079E=-02]-3,4600£-02 3.6058E-03(~2.2502E~02
0134 5.6814E~02|~2.3073E~-G2 1.2206E-02|~2.,8219E~02 3.5220E~03|-1.8186E~-02
0135 5.0469E-02|-1.4340E-02 1e1468E-02|=-2.39S0E~02 363469E-03]~1.5360E~-02
0136 4,4814E-02|-7.8875E-03 1.0859E~(G2|-2,0951E~02 3.1636E-03|~1,3354E~02
0137 3,9819E-02|~3+3646E~-03 1,0350E-02|-1,8644E~02 2,9932E-03(~-1.1850E~02
0138 3.5455E-02]|-1.7655E~-04 9.9221E-03|-1.,6823E~0¢2 2.8406E-0n3|-1,0678E~02
0231 B8e1152E-02]|-9.3077E~02 1.2577E-G2|-6,3606E~02 8,3704E-05]|~4.,1519E~G2
0232 7.0030E-02|=5.1664E-02 e3646E~-021-4,1733E-02 3.,2650E-03]|-2,7288E-02
0233 6.1505€-02|-3.,1785E~-02 12785E-02|~3,2125€E~02 3.5476E-03[{-2.0792€-02
0234 5.4339E-02]|~1.9592E~02 1.1942E-02]|-2,6487E=02 3.4415E-03|=1.7011E~02
0235 4,8l02E-02|-1.1463E-02 161239E~02]|-2.,2700E-02 3,2660E-03|-1.,4499E-02
0236 4.2640E-02|-5,8585E~03 1.0661E-02]|~1.9947E~02 3.,0886E-03|~1.2694E-02
0237 3.7872E~02|-1.9402E~-03 1s0179€E-02]-1.7838E£~02 2.9254E~-03|~1,1327E~02
0238 3.38S5E-02] 7.4036E~04 FeB279E-03]|~1.6189E-02 2.7796E-n3|-1.,0258E=-02
0331 Be1522E-02|~844337E~02 1e2595E~02|=5.9743E~02 2.1186E~34|-3.,9019E~02
0332 6.8627E~02|=4.95584E-02 163467E-02|-3,92745-02 3.,2321E=03|~2,5536E~02
0333 5.9956E-02 (-2, 7463E~(2 1e2584E~02|~3,0404E-02 3,4796E~03|=1,9600E~02
0334 5¢2261E-(G2]~-1,6506E~02 161752E-02|-2.5204E-02 3,3682E~03|=1.6142E-02
0335 4,6087E-02]|~9.2698E-03 1¢1069E-02|-2.,1702E-0¢ 3,1960E-03)~1,3835E-02
0336 4.0779E~02|~4.3128E-03 1¢0509E-02|-1.9144E-02 3.,0243E=-03|~1.2168E-02
0337 3.6201E~02|~B8.8434E-04 1.0044E-02|=-1,7175E-02 2.8670E~03|~1.0900E-02
0431 Be2030E~02|~7.8092E~02 142648BE~-02|=5,T364E~02 2.3376E~04]~-3,7193E-02
0432 6e7S04E-02|=4.0992E-02 1¢3363E~02}-3.,7577€-02 3.,1843E-03]~2.4317€E-02
0433 Se7908E~02|~2.4123E~02 1.2449E~02|=2.9133E-02 3.4169E~033|~-1.8718E-02
0434 S.0479E~-02|~1.4101E~02 1.1617E-02}~2.,4213E~02 3,3046E-03| ~1.5470E~02
0435 4,4350E-02|-7.5591E~03 1¢0942E-02]|~2.0903E-02 3.1361E-03|-1,3304E~02
0436 3.9172E-02|~3.1130E-03 1.0392E-02]~1.,8484E~02 2,9693E-03|-1.1738E=-02
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Table 7 Residues of the Poles for Pole Indices 0437 to 0935

Pole 2 =10.0 2 = 15.0 Q 20.0

Index Real Imaginary Real Imaginary Real Imaginary
0437 3.4751E-02|-1.5451E-04 9.93326-03|-1.6608E-02 2.8234E-03|-1.,0545E=-02
0531 8.2516E-02|-7.3258E-02 1.2747TE-G2|=5.,5771E-0¢ 2e2T64E-4|=3,5G42E~-02
0532 6,6533E-02|=-3.7363E~-0G2 1.3315E-02]|-3.6336E-02 3.1385E~-03|=-2.3420E-02
0533 S5664T4E-02|=2.1466E-072 1e2363E-02]|=-2.8155E~(G2 3.3626E-23]-1.,8039E-062
0534 44,8926E-02|=-1.2188E=-02 1e1522E-02|=2.3422E-07¢ 3.25056-03|~1.4935E-¢2
0535 4,2837E~02]-6.,2031€E-03 1¢0848E-02]|-2.0249E-02 3.0850E-03|-1.2871E=-02
0536 3.777T1E-Q02|=2.1722E-03 le0302E-02]|-1.7932E=02 2.9218E-03|=-1.1379E~-02
0631 He2922E~02|-6.9338E-02 1.2882E-02|-5.4642E-02 2.1594E~-04|-3.5035€E-02
0632 6656T4E-02 |-3.4414E-02 1.3307E-02]|~3.5389E-0¢ 3.0990E~03|~2.2732E=02
0633 S¢5204E-02|-149310E-02 1¢2313E=-02|-2.7379E-02 3.3167E-63|-1.7498E=-02
0634 4,T557E~-02|-1.00642E-02 16 1457E=-02|~2.2775E-0G<¢ 3.2046E-031-1.4493E~062
06135 4 ,15080-021~5,1156E-03 10778E-02|-1.9701E-0¢ 3.04136-03|-1.2510E-02
0636 3.6507E-G2|-144137E-0G3 1e0234E~02|-1.7462E-02 2.880BE-03|-1.1076E-02
0731 Be3231E-02 |=6.6066E~-02 1.3043E-062]|-5.3812E-02 2.,0568E-04|-3.4351t-02
0732 6.,4878E-02]|~-3.1971E-¢G2 143329E-02|-3.4645E-02 3.0664E~-03|-2.2187E-02
0733 S5.4064E-02]|-1.7536E-02 1.2290E-02|-2.6746E-02 3.,2782E-03|~1.7058E-02
0734 4,6341E-02|=9.3799E~-063 1¢1415E=-02]|-2.,2236E-02 3.1657E-63(-1.4135€E-02
0735 4,0329E-02|-4.2358E-03 1.0729E-02]|-1.9235E-02 3.0038E-03|-1.2205E-02
0736 3.5746E-02|-9.1274E~G4 1.0217E-02]-1,7020E-02 2.8598E-03|-1.0811E-02
0831 B8.3446E-02|=6.3284E~-02 13222E-02]|~-5.3185E-G2 1.9896E-04|-3,3821E-02
0832 6.4136E-02|=2.9920E-02 1.3373E-02|-3.4045E-02 3,0401E-03|-2.1746E-G2
0833 5.3034E-02|-1.6060E-02 1¢2287E=-02|~2.,6221E-02 3.2463E-03|-1.6693E-02
0834 4,5251E~02|-8.3398E-03 1.1391E-02|=-2,1778E-G2 3.1327e~-03|-1,3828E-¢G2
0835 3.9281E~02|=-3.5204E-03 1.0695€-02]|-1.8833E-02 2.9716E=-03|-1.15%42E-02
0931 B.3575E-02|-6.0889E-02 163415E=-02]|=-5,2701E-02 1.9617E-04|-3,3400E-02
0932 6.3433E-02|-2.8180E-02 1.3434E-02]|~-3.35526~02 3.0193t-03|=-2.1383E=-¢2
0933 5.2095E-02 |~1.4823E-02 162299E-02]|=2,5777E~02 3.2197E-n3|-1.6385E~02
0934 4,427T1E-02|~T7.4774E-03 1«138lE-02]|-2.1384E-02 3.1047E-03|-1,3565E~02
0935 3.83486-02|-2.8843E-03 1.0676E-02]|-1,8484E-G2 2.9441E-03]|-1,1713E-02
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Table 8. Residues of the Poles for Pole Indices 1031 to 2031

Pole 9) 10.0 Q= 15.0 Q = 20.0

Index Real Imaginary Real Imaginary Real Imaginary

1031 843629E-02|~-5.8808E~-02 1.3616E-02]|=5,2323E~02 1.9706E~04|=3.3061E-02
1032 6.2779E-02|~2.6694E~-0Q2 13506E-02|=-3.3141E~02 3.0033E-n31-2.1078E=-02
1033 5.1236E~-02|-1,3779E=-02 12324E-02|=2,5397€E~02 3.1977E-03|-1.6122E-(02
1034 4.3383E~02]|~-6.,7584E-03 1.1383E-02|-2.1041€E-02 3,0808E-03|~1,3337E~02
1131 Be3619E~-02|=-5.6990E-02 163823E-02|~5.,2023E-02 2.0122E~04|=-3.2784E-02
1132 6e2154E-02|-2.5418E~-02 163589E=02|=3.2793E-02 2.9913E~03|~2.0820E~02
1133 5.0447E-02|=1.2894E~-02 1.2358E~-02|-2.5065E~02 3.1796E-03|~1.5895E-02
1134 4,2575€-02|-6,1552E~03 161393E-02]|~-2.,0740E~-02 3.,06056-03|-1.,3138E~02
1231 Be3555E~02|=~5.5393E=-02 104034E-02|=5.1784E-0¢ 2.0820F=04|~3.2555E=-062
1232 6.1560E~02|~2.4317E~02 1.3678E=02|=3,2496E=02 2.9826FE-03|=-2.,0598E~02
1233 449719E=-02|=-1.2142E=-02 le2400E-02|~2.4781E-02 3.1648E-03|~1,5698E-02
1234 441816E-02|-5.6757E-03 1,1411E-02|~2.,0475E~02 3.,04276-03|~1.2962E=-02
1331 Be344TE~02|=5.3986E=-02 164248E~02|=5,1592E~02 2 1T60E~064|=3,2364E-02
1332 6,0996E~02|=2,3363E-02 163773E~02|~3.,2239E=02 2.9768E~03|~2.0407E-02
1333 4¢9046E~02|~1.1500E~0Q2 1e2448E=02|~2,4528E-02 3.1528E~03|~-1.5524E~02
1431 863301E-02|~5.2743E-02 le4463C-02|=5,1438E~02 2.2905E~04|=-3.,2205E-02
1432 6.0458E~02|~-2.2536E~02 143B73E-02|=3.2016E=02 2.9734E-03]|~-2.0240E-02
1433 448421€-02|-1.0951E~02 1.2502E~02] =2.4302E~02 3.1432E-03|~-1.5370E=-02
1531 Be3124E~02| =54 1642E-02 1e64679E-02| =5.1314E-02 2 4224E-04]|=3.2070E=02
1532 5.9946E-02]|-2.1816E-~02 163975E~02| =3, 1820602 2e9721E-03]|=2,0094E~02
1533 447840E-02|=-1.0479E~-02 1.2559E-02]|~2.4101E~02 3.1357E€-03]=1.5234E~02
1631 842923E-02| ~5.0667€E-02 1,4894E~02|~5.,1214E~02 2.5690FE=-04|=3.1956E~(G2
1632 5.9457€-02|~2.1190E-02 1.4080E-02] ~3.1647E-G2 2.9726E-03|=1.,9965E=02
1731 8.2701E~02|~4.9801E~02 1.5108E~02|-5.,1135E~02 2.7281E-04)1-3,1860E~02
1732 Se8990E-02]| -2.0645E-02 1e418B7E~02[ ~3,1493E~02 2.9746E~n3|~1.9851E~02
1831 Be2463E-02|~4.9032E-02 1.5322E~02|-5.1073E~02 2.8978E-04|=3.1778E~02
1832 5.8544E-02|-2.0169E=-02 14295E~02| ~3,1356E~02 2e9T79E=03|~1.9749E~02
1931 Be2212E-02| -4.8349E-02 165534E~02|=5,1024E-02 3.0764E=-04]|~-3,1709E~02
2031 8¢1950E-02|-4.7743E~-02 1e5744E=02]| ~5.0986E-02 3.,2627E=-04;=-3.,1650E=-02
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the wb/c ég%s é£ apﬁroxiﬁéﬁéfy wﬂ= n.r Type II poles,
which vaFyiinrnGHBé;iéEEordﬁhd to the mode number n, have
indices, the last two digits of which range from 01 to as
high as 11.

- For example, for 9 = 10 mode 20 (Figure 3), the

index number 2000 represents the pole at (-1.08, 19.96);

2001 represents the pole at (-1.77, 21.82); 2002 the pole
at (-5.70, 16.90); and finally, 2011 the pole at (-13.66,
0.0). For a given mode, an increasing number in the last
two index digits moves along the elliptical arc from near
the wb/c axis toward the negative real axis in a counter-
clockwise manner. These first two types of poles have
been plotted in Figures 3, 5, and 7. The third category
of poTes,rType IT1, contains an infinite number of poles
lying almost parallel to the wb/c axis. Only the poles
such that wb/c < 30 are tabulated. Again, the first two
digits of the index number represent the mode number;
however, here the last two digits all begin with 3,
denoting poles of the third type. These range from 31

up to as high as 39. Fﬁr exémp]e, for @ = 10 mode O
(Figure 4), the index number 0031 representé a pole at
(-0.89, 3.76); 0032 represent§ a pole at (-0.93, 7.05);
and 0039 a pole at (-1.15, 29.46). Poles in this Tlayer

are numbered sequentially beginning with the pole having
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the smallest imaginary part and proceeding away from the
c axis. These Type III poles are plotted in Figures 4, 6,
and 8.

Umashankar [8] notes that asymptotically for Type III
poles there are only two sets of roots, one set for even
modes and another set for odd modes. The converdence to
these two sets of values for the lower orders can be
readily seen in Figures 4, 6, and 8, where for increasing
values of s along the wb/c axis all Type III poles con-
verge, regardless of mode, to one distinct set of values
for even modes and one for odd modes. In Tables 1 through
8 it can be seen that for relatively large values of s
the residues follow the same pattern. For large s all
even modes tend to the same residues regardless of mode;
similarly for all odd modes.

These tables of pairs of complex numbers representing
the poles and residues of the admittance transfer function
are uniquely determined by the loop geometry, independent
of excitation. They provide, through the partial fraction
expansion of the admittance transfer functions, a means of
accurately characterizing the electromagnetic properties
of Toop antennas for three relatively different sized
antennas through mode 20. The representation of the time

domain response in terms of the poles Sni and residues Rni
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yields time domain results which compare well with the
Fourier transform of frequency domain data. However, a
comparison in the frequency domain of the intearal repre-
sentation and the partial fraction representation of the
transfer admittance function at the same frequency indi-
cates that the latter representation does not appeaf to
converge to the correct result. This is illustrated in
Figure 9 where the partial fraction and integral repre-
sentation of 1/ao(jw) are compared. One notes the
apparently constant offset in the imaginary part, which
should be zero at w = 0. Since a constant would repre-
sent an additional entire function added to the“partia1
fraction expansion, this problem was studied in some
detail. -

An obvious poséib]e source of error would be that

the s and Rni were not being computed to sufficient

ni
accuracy. The early results were computed using standard
precision arithmetic on the CDC 6600 with 14 significant
digits of accuracy. The Anger-Weber function calculation
was evaluated by using an alternating series expansion.
To check for roundoff errors, the entire routine was

rewritten for double precision which carries 28 signifi-

cant digits. The new routine was checked against the

original, but the troublescme imaginary value at the origin
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remained virtually unchanged.

Cne result of the conversion tc double precision was
the extensicn of the range of the argument for which the
Anger-Weber function could be accurately calculated. This

permitted poles Sni

j and residues Rni to be calculated in

the region |wb/c| < 30.0 in the s plane. Usina the result
of [8], the asymptotic forwula was also used to compute

S and Rni for values near «b/c = 30.0. In the reaions

ni
where the two calculations could be compared, some small
differences were noted between the accurate value of Sni
and Rni calculated using the series expansion method and
that computed using the asymptotic formula. It is cer-

tainly true, then, that for values of S i and pni in the
range of wb/c from 30 up to possibly several hundred,

small errors are introduced by the asymptotic formula.

At s 0, the partial fraction series becomes

ni’/Sni (2.46)

1/a,(0) = - 2. R
' 1

where the series must sum to zero to have the correct
value. It is easily seen that’errors in the poles and
residues will give 1/an(s) the wrong behavior near s = 0.
Furthermore, dividing the partial fraction series into

those terms whose poles and residues are computed from
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the series representation of the Anger-Weber function and

those computed from the asymptotic formula, we have

]/an(s) = Z _n.l...__
i S - S.y
s .b
I (”‘ )<_ 30
< /-
Rni
+ 2. —nt (2.47)
i S - §

The Tast series for the rantge of s = Jjw, considered in

Figure 9, can be approximately replaced by

)» i (2.48)

ni
S .b
Im( ni )> 30
C

since s is small compared to Sni- Errors in these terms

would explain the constant offset shown in Figure 9. Add-
ing further weight to this argument is the fact that
similar plots of 1/an(s) for other values of n in the

same range of s show the same nearly constant offset, the
value of the constant being independent of n. This is not

surprising, however, when one recalls that the asymptotic
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formula predicts the same set of poles and residues for
all eveh ﬁVéﬁq;éﬁ6¥ﬁérh§ét;fqr;aij odﬁrn;

In order to alleviate the convergence difficulty in
the s domain, an infinite product representation was used.
The product representation has the advantage that both
the poles and zeros of the function are automatically
included in the representation. A further advantage of
this formulation is that the residues Rni are not required.

These expansions for 1/an(s) are derived in Appendix A

and are given by (2.49) and (2.50):

1 . Jsb : (2.49)
ay(s) n?c Kplo) TI [0 - s/si) e(s/shq
=1
for n # 0 where the s; are singularities of the nth mode
and Kn is evaluated at s equals zero;
1. S Jc (2.50)
aO(S) sb Ki(o) T [(1 - s/si) e(s/si>]
i=1

when n = 0 or where s; are the singularities of mode zero

and K; is evaluated at s equals zero.
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Another calcuiation of T/ao(s) using (2.50) appears
in Figure 9. The offset in the imaginary part is com-
pletely eliminated. éy reformualting the problem, the
constant offset has disappeared, and the agreement of the
series and product representations tend to validate the
accuracy of the calculated Sni- It is therefore cancluded
that the poor convergence of (2.28) in the frequency
domain is due to small deviations in the computed location
of the s . and values of R,; for wb/¢c > 30.0 in the s
plane.

The product expansion provides a rapid and accurate
means of calculating the values of 1/an(s) in the complex
frequency plane, whereas the Laplace inverse of the
partial fraction expansion is useful and accurate in the
time domain. These two representations provide the
necessary tools to accomplish all required calculations
for the l1oop antenna accurately and quickly.

One further question remains concerning the poles

s for the unloaded loop. It has been pointed out that

ni
the third category of poles, i.e., the ones paraileling

the imaginary axis in the s plane, do not correspond to
similar poles of either dipoles or spheres. Some specu-
lation has been made that these poles are due to the thin

wire approximations used to derive the transfer functions
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an(s). One should keep in mind, however, that such struc-
tures as dipoles, spheres, and prolate spheroids are
topologically identical in that one structure can be
continuously deformed into another and that as such, there
must be a one-to-one correspondence of their poles. This

correspondence is determined by noting which poles merge

into those of a sphere, say, as an object is continuously

deformedw%ntbﬂa sphere. The ioop, however is not topo-
logically equivalent to a sphere, however, because a
sphere without handles can never be deformed into a loop
and its poles do nqt necessari]y ;orrespond to those of

a sphere. To test this hypothesis, a method of moments
solution for the n = C mode current induced in a toroidal
antenna of Q@ = 10 was implemented. The mathematical
derivation of the integré] equation together with the
numerical considerations are contained in Appendix B.
Basically, the loop is treated as a conducting toroid
divided:up jntqaa ]a[ggfnumber of curvi]inear patches.
The wire circumference was divided into 24 seaments with
the current assumed to be uniform in each seament. Since
in Wu's solution the fuhctionv1/ao(s) is proportional to
the total current for a uniformly excited wire, in the
moment solution the current density on the wire was

integrated to find the total current under the condition
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of uniform excitation of the entire wire surface. The
total current found this way corresponds to 1/a0(s) and
the contour plots of the current should yield the true
poles of the loop (within moment method approximations).

It was found that in order to generate the required
values for filling the matrix, more computer time was
required than expected. Consequently, it was necessary
to employ a miniﬁum number of points in the contour
generation scheme in order to keep the required computer
time within reasonable l1imits. The resulting transfer
admittance for mode 0, @ = 10 is shown in Figure 10. We
will show in Chapter III that by comparing phase and
magnitude values near the imaginary axis for the method
of moments and the product expansion (Figure 11), one

finds nearly the same pole structure. The poles s of

01
Type III are not only present, but are in approximately
the same location as predicted. However, a set of zeros
in the total current lies interspersed with the poles in

a zigzag fashion running parallel to the imaginary axis.
This set of zeros in the total current is caused by
surface currents which flow in opposite directions on the
inside and outside of the wire such that the total current

is zero. In addition to the zeros, there is also a second

Tayer of pole-zero pairs which parallels the first. While
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Figure 10. Impedance transfer function obtained by method
of moments for n =0, @ = 10.0
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this layer has such large damping constants that it has
negligible contribution in the time and frequency domain,
its appearance is interesting, nevertheless,

The matrix determiﬁant, of course, would not have
the zeros, but in order to plot the determinant, the
density of points calculated would have had to be increased
by 10 to 100 times. This is because the appearance of
the zeros of the determinant were found to be extremely
localized in the s plane.

No attempt was made to generalize the moment method
program to investigate the Type IIIl poles for modes
other than n = 0, but it is expected that they, too, do

indeed exist.
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CHAPTER III

ANALYSIS OF THE UNIFORMLY LOADED LOOP ANTENNA

The analysis of an unloaded loop antenna has been
presented in the previous chapter using the singularity
expansion method. In the present chapter, the effects of
uniformly loading a conducting loop are considered. From
the point of view of the sinagularity expansion method,
the loading merely shifts the location of the poles of
the structure. It is shown that contour plots of the
transferrfmpédance defined in Chapter II may be used to
find the shifted pole positions and to determine what
shifts are possible. Furthermore, it is shown that the
effect of the loading can be interpreted as introducing
a feedback loop into a block diagram representation of
the impedance transfer function. This observation permits
one to use the root-locus techniques well-known in the
area of feedback controls tc predict.certain features of
the pole trajectories as the loading is continuously varied.
Finally, representative time domain calculations for the
step response of a linear antenna are given for various

values of purely resistive loadina.
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3.1 Derivation of the Admittance Transfer Function for
the Loaded Loop
Consider uniformly loading the loop with an impedance
ZL(s) total impedance afound the loop or ZL(S)/Zﬂb
impedance per unit length. The boundary condition on the
loop is that the tangential electric field equal the
product of the total current and the impedance per unit

1ength; Thus the integral equation (2.2) is replaced by

Z (s)i(e) v 6(9)
132, sp ) vt = 2 (3.1)
o 3¢ ¢ 27h b
Expanding ¢, A¢, and I(¢) as in section 2.1, we have
. w0 . z (S) .
4L ¥ a1, gmdne , L o1, e IN¢ =Vis(e) (3.2)
2 n=w 2tb n
which can be written as
.o JZ, 7 .
I P =] 1, eI = v8s(s) (3.3)
2 n=>0| = 7bn ©

a form which paraliels (2.25). Hence corresponding to

(2.27), we now have
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. Ve (s)
I (s) = 2L __o? (3.4)
nm an(S) - 3z (s)/wbn

so that the admittance transfer function for the loaded

Toop is )

-J 1
nm a,(s) - jz;(s)/mwbn

This transfer function has poles at frequencies s = s'.

such that

*'an<sﬁi) = jZL(sAi)/ﬂbn (3.6)

or equivalently,

| an (sn1) b ‘ZL(Sﬁf)

VArg an(sai)

- = S e e o

/mbn (3.7)

= Arg[ZL(séi)] + 90° (3.8)

where the prime distinguishes quantities defined for the
loaded Toop from those defined for the unloaded loop.
The argument given by Umashankar [8] for the expansion
of the admittance transfer function applies here also

and results in the partial fraction expansion

73



R'.
! = Y A (3.9)
i

ap(s) - Jz, (s)/mb S - Spj

The residues Rai in (3.9) above are easily found to be

. }
R!. (séi) - jZL(sai)/an (3.10)

where

vy Vo d
an(sni)— S a (s) . (3.11
ds S=S .4
dfsr Y= 4o
ZL(Sni) " ZL(s) . (3.12)
ni

The form of the partial fraction expansion in (3.9) above
is identical to (2.28) but with primed quantities replacing
unprimed quantities. Hence the discussion of the time and
frequency domain current response in Chapter [I applies to
the loaded Toop as well.
3.2 Use of Contour Piots to Represent Poles of the

Loaded Loop

Equations (3.7) and (3.8) indicate that contour plots

of the magnitude and phase of an(s) in the complex frequency

plane would simultaneously be plots of the magnitude and

Th



phase (shifted by 90°) of the normalized impedance loading
required at each point in the complex frequency domain in
order to have a pole there. Using the product expansion
formulas (2.49) and (2.50), and including all poles in the

range

; ‘Im(sm.b/{:)‘ <200 (3.13)

magnitude and phase contours of the an(s) are plotted in
Figures 1fttﬁfbu§h12fi'f7ﬁé§é f{gQgés'are for modes n = 0
through n = 20 for Q = 10.0.

The magnitude lines m = constant in the fidcures deter-
mine the contours of constant maanitude of a, and the

normalized impedance loading according to

(3.14)

3
n
3 joo

n ‘a (s)‘ =
‘ n mhn

The phase ¢ in degrees is ¢iven for ZL(S) and is related

to the phase of an(s) by

7”§7= arg[?L(s)] =arg[an(s)] - 90° (3.15)

A number of observations concerning the contour plots
are appropriate. One notes, for instance, that only ao(s)

has a pole at s = 0; for all other an(s), s = 0 is the only
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zero of the transfer impedance. Furthermore, one notes
that at each point on the contour plot, we simply read off
the magnitude and phase the impedance should have in order
to have a pole at that point. This fact is very important
and is exploited in the next chapter in synthesizing the
Toop response by choosing the pole locations. When the
loading function ZL(s) is given (i.e., in the analysis
problem), some additional effort is required to graphically
find the pole locations. What is needed is a separate
contour plot of ZL(s) using the same complex frequency,
magnitude and phase scales. Then by overlaying the two
plots, Toci of common magnitudes and phases can be drawn.
Their intersection will be the pole positions for the given
Toading function ZL(s). Note that this would have to be
done for every mode, n =40, 1, 2, . . ., because the load-
ing affects all poles.

One nctes that it is possible to shift poles into the
right half plane, but this could only be done with active
loading. However, generally speaking, Figures 11 through
21 indicate that the heavier the loading (that is, the
larger the magnitude of ZL(s)) the larger the damping
constant becomes for the shifted pole. One should recall,
however, that in Figure 10 in Chapter II, which was com=-

puted using moment methods with no thin wire assumptions,



one finds in actuality a layer of zeros just beyond the
first layer of poles for mode n = 0 and that heavy load-
ing shifts the poles toward these zeros rather than toward
infinity. A similar situation will probably exist for
higher order modes.

Finally, it is noted that the lines where the phase
is zero on each plot correspond to purely resistive load-
ing and that if the resistance is frequency independent,
then the poles will all be on the same magnitude contour.
Further, note that the Type I pole {at s = 0) and the
Type Il pole (on the negative real axis) for mode n = 0
approach each other with increased resistive lToading,
form a double pole on the neagative real axis for a certain
critical resistance, and then split into a complex con-
Jugate pair with increased loading. The dominant Type I
pole for mode n = 1 approaches the negative real axis
with increased resistive loading, forms a double pole
there with its conjugate pair, and then the two poles
split apart and move away from each other alonc the nega-
tive real axis. These are the only two cases for which
dominant (Type I) poles combine with other poles to form
a double pole. At either of these loading conditions,
one may call the antenna "critically damped." The trajec-
tories of the dominant poles for modes n =0 ton = 7

with resistive loading only are shown in Fiqure 22.
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Figure 22 Tréjéc;tc;riéé of the primary poles of the loop
antenna as a function of impedance loading

89



3.3 Feedback Interpretation of Impedance Loading and
Root Locus Methods
The relation between the excitation and the Fourier

components of current for the unloaded loop,

. e
I(s) = = o!*) (3.16)
nm o a,(s)

may be represented in block diaaram form as in Figure 23.

The corresponding relation for the loaded loop is

Ve (s)

1}
(7Y

(3.17)

|

I.(s)

o}
=3

an(s) - jZL(s)/wbn

1
(nﬂan(S)) , Z, (s)
- b

which can be represented in the block diaaram of Figure 24,

vi(s) (3.18)

One sees that the effect of the 16ading is to add a feed-
back loop into the unloaded loop transfer function which
shifts the poles of the original unloaded system. This
interpretation of loading as adding a feedback path permits
cne to use the techniques of control system theory [13]

to analyze, for exampie, the effect of feedback on the pole
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=
1’#0 n (S)

Ve (s) —— .10

Figure 23. réTbck sYSféﬁ diagram representation of the
transfer function of the unloaded loop

gl "j a
Vo (5)—. ® n'an(s) In (3)

-2 (s)

Figure 24. Bibék sysfém Hiagram rébresentation of the
transfer function of the loaded loop
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locations and their movement as the feedback (loading)
changes. We discuss in the following the use of the root
locus technique of control theory [14] as apnlied to the
loaded loop.

In order to apply the root locus techniques, it is
convenient to think of attaining a certain given uniform
Toading ZL(s) by loading the loop with a uniform impedance
KZL(s) where the real constant K is varied from K = 0
(corresponding to an unloaded loop) to K = 1 (corresponding
to loaded with the desired loading). To consider infinite
loading, we merely let K tend to infinity. Thus the loop

transfer function for a given loading KZL(s) is

_ 1
I, (s) = vg(s) (3.19)

(jmran(s)) + K ZLES)

The poles of the system are now those frequencies s = Sﬁi

such that
(inma,(s)) + K z,(s)/b = 0 (3.20)

Ghausi and Kelly [14] have generalized the root locus
techniques of control theory to handle characteristic

equations of the form

Fi(s} + K F,(s) =0 (3.21)
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for distributed parameter systems where F,(s) and/or F,(s)
can be written in an infinite product expansion. If one of
the factors F,(s) or F,(s) cannot be written as an infinite
product, then it must be a rational function. Equation
(3.20) is of the form (3.21) and since an(s) is expandable
in an infinite product expansion, we only require

that ZL(s) be a rational function (i.e., ZL(s) as a "lumped
circuit") or have an infinite product expansion (ZL(s) in

a distributed parameter system). The root locus rules
given by Ghausiand Kelly as modified to apply to the
present prob]meof a loaded loop are given below [ 15].

START AND TERMINATION

The loci start (K = 0) at the zeros of an(s) and
terminate (K = «) on the zeros of ZL(s) as K varies from
zero to imﬁimjty%, .

NUMBER OF LOCI

Since an(s) is a trancendental function, there are an

infinite number of loci.

SYMMETRY

The loci are symmetrical about the real axis.

LOCI ON REAL AXIS

The loci include those sections of the real axis that
lie to the left of an odd number of zeros of an(s) and

ZL(s) for K positive and to the left of an even number of



the zeros of the two functions for K negative.

when a bortion of the real axis between two successive
zeros of an(s) or two successive zeros of ZL(s) is part of
the root locus, there will be a particular value of K for
which there will exist a second-order root on the real
axis. This root is known as the breakaway point.

BREAKAWAY POINT

The points at which the loci break away from the real

axis are found as solutions of the equation

an(s)Zi(s) = aé(s)ZL(s) (3.22)

ANGLES OF ARRIVAL AND DEPARTURE

If is a simple zero of an(s), the angle of depar-

Sni

ture of the locus from Sni is given by

(3.23)

If sj is a simple zero of ZL(s), the angle of arrival of

the locus at S is given by

[

a S
6. = 3T 4+ arg —-—l (3.24)

a 2 i

=13
——
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INTERSECTIONS WITH IMAGINARY AXIS

For K > 0, the intersections of the loci with the

imaginary axis occur at those values W for which

and for K < 0, the corresponding va]ﬁéé of w. are found

from

ASYMPTOTIC BEHAVIOR

As K becomes infinite, the loci may become very
complicated. In order to study the loci, we equate both

real and imaginary parts of (3.20) to zero:

-nT Im[an(s)} + % Re [ZL(S)} = 0 (3.27)
- Re|ia>n(s)} + —'b-‘ Im [zL(s)} =0 (3.28)

Elimination of K between these two equations defines the

root loci. Thus, we obtain for the loci the expression
Rela_(s) Imla_(s)
n = - n (3.29)

Im[ZL(s)] ne[zL(s)]
[ |



When Equation (3.29) is used, care should be exercised

regarding the sign of K that has been eliminated. As written,

the equation defines the loci for both nositive and neqgative
values of K.
3.4 Step Response of a Resistively Loaded Loop

Figure 25 shows the step response loop current com-
puted by taking the Laplace inverse of (2.33) at ¢ = 120°
for a resistively loaded loop with ZL = RL = 600, 1800
and 5400 ohms. Figure 26 shows the pulse response at
the same location with ZL = RL = 600 and 1800 ohms for a
pulse width equal to 0.75 ct/wb. Noncausal osciliations
can be seen in the time interval near t = 0 before the
first signal arrives at the observation point. The fre-
quency of the noncausal oscillations corresponds to the
Type I pole of the first Fourier mode not included in the
current representation, as expected. The various discon-
tinuities in the response come from the first current
nulse which arrives at the observation point, the current

which travels around the lonaer path from the socurce to the

observation point, the second trip around the loop, and so

i

on. Note that for this loopn, Q 15.0, the value of

RL = 5400 corresponds to a "critically damped" loop.
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CHAPTER IV
SYNTHESIS OF THE RESPONSE OF A LOOP ANTENMA

In the previous chapter, various techniques of analysis
have been developed and analytical formulations governing
the electromagnetic behavior of loop antennas have been
derived. These techniques and results are, of course,
essential in determining the response of a loop antenna for
a given excitation and specified impedance loading. In
the following, we demonstrate that some of the results can
also be used to change the resonant frequencies such that
for a proper excitation (or input), a desired response
(i.e., current or radiated field) might be obtained. Thus
we obtain, using the singularity expansion representation,

a means of extendihgfto an e1ec£}omagnetic problem a capa-
bility that is well-developed in network theory--the ability
to synthesize the desired response when the input or
excitation waveform is given.

In th{s chabter the analytic properties of the
admittance transfer functions discussed in the previous
chapter are employed to formulate the synthesis problem.
Some of the considerations and problems involved in ele-
mentary time-domain synthesis will be illustrated by using

these fundamental synthesis techniques on some simple
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example problems.
4,17 Formulation of the Synthesis Problem

Suppose that one is given the voltage transform at the
gap, Vg(s), and one wishes tc find some response quantity
such as the current at some point on the loop or the field
at some point in space. Then for each Fourier component
of the current, there will be a transfer function Tn(s)
relating that Fourier component to its contribution to the
response at the observation point. The total observed

response Y(s) is then just the sum

Y(s) = ﬁé Tn(s) In(s) (4.1)

n=-ew

For example, if the current at a point ¢ is desired, Tn(s)
= ejn¢, whereas for a field point, the transfer functions
Tn(s) can be obtained from Appendix C. Using (3.4) for

the current, we obtain

e
Y(s) - i ZOE Tn(s) Vo(s)
Nt n=-= a (s) - JZ,(s)/wbn

(4.2)

If we assume that the input Vi(s) is given and hence fixed
and that Tn(s) depends only on the response quantity we
wish to observe, the desired response may be obtained only

by manipulating the admittance transfer function by
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impedance loading. We may do this as in classical network
theory by prescribing both the poles and the residues of

the admittance transfer function. The relationship between
the Toading function and the poles and residues has already
been described in the previous chapter. Namely, from (3.6},

the condition fbf’a’BBWé'éff”§f'sai is

zL(s;”.) = -jﬂbnan(sr'li) '(4.3)

and from (3.70) the condition on the residue requires that

2{ (spi) = -dmbn [a;l(s;ﬁ) - EL] (4.4)
ni
where Rﬁi is the desired residue of the shifted pole. Thus
the synthesis problem is that of requiring interpolation
conditionsroﬁmil(s) and its derivative at the desired pole
positions. If the residue is not of particular interest,
then the condition on the derivative can be relaxed.

One notes that this is not the usual condition
required of the admittance transfer function in the cir-
cuit theory context. There, the poles and residues (or
zeros) of the desired function are those of the response
function. In the problem posed by (4.3) and (4.4), on

the other hand,rthe poles and zeros of the function to be
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synthesized, ZL(s), will not be those of the response
function.
4.2 Construction of the Impedance Loading Function
We initially begin with the simplifying assump-
tion that the impedance loading function is to be synthe-
sized using only linear tumped circuit elements and devices.
Since we are uniformly Toading the loop, we may, for example,
use many electrically small lumped circuits in series with
and uniformly spaced around the loop so as to approximate
continuous uniform loading. With the Tumped circuit
requirement, ZL(s) must be either a polynomial in s or
a8 rational function; that is, a ratio of two polynomials
in s. Since a polynomial is simpler, we consider it first.
Suppose we have N poles we wish to synthesize so that

the condition on ZL(s) is of the form
ZL(Sn) =Z,,,n=1,2,...,N (4.5)

where we assume that in the sequence of poles S;, Sss « + .+
Sy - If any pole is complex, its complex conjugate counter-
part is included in the sequence. The polynomial of

Towest order satisfying the interpolation condition (4.5)

is constructed using the Lagrange polynomials [16]

N
Z,(s) = 2:1 Ly(s) 7y, (4.6)
n = .
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where
L = fnts) (4.7)
" (e
and where
fls) T (s - sg) (4.8)
i¥n

Thus ZL(s) will be a polynomial of degree N - T,
If, in addition to the pole locations, one specifies
the residues, we have, according to (4.4), additional

constraints on the derivatives of the loading function:

Z[.<sn> N ZLn’ n=1,2, . .. 4N (4.9)

The problem of interpolating both a function and its
first derivativg at a set of points is solved by the

Hermite or osculating polynomials [15]

N N
ZL(s) = 2; Un(s) A Z; Vn(s) Zin (4.10)
n=1 n=1
where the functions Un(s) and Vn(s) are polynomials

having propertiegrsiijgr“pq ;hqserofithe Lagrange inter-

polation functions Ln(s) of (4.7) and defined by
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2

U, (s)

[1 - 2Lr‘,<sn)(s - Sn)] [Ln(s)]
(s - sn)[Ln(s)]2 (4.11)

In this case ZL(S) will be of degree 2N - 1.

V,(s)

If the degree of the polynomial representing ZL(S)
is greater than one, it is not possible to synthesize
ZL(s) using only passive circuit elements. Since in many
applications it may not be economically or technically
feasible to use active devices, we examine some further
conditions on ZL(s) which restrict it to be a "positive-
real" function of s.

The driving-point admittance or impedance functions
of passive networks (that is, networks consisting only of
Tumped resistors, capacitors, and inductors) are positive-
real functions. That is, our impedance loading function
must be a positive-real function to be physically realiz-
able as a driving-point impedance. A number of analytical
properties of a positive-real function can be derived
from its definition. The most basic and signifi-
cant ones are summarized in Table 9 for convenience.

Note that (4) in Table 9 restricts the degree of the

polynomial that can be used to represent ZL(s) to no
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Table 9. Properties of Positive Real Functions
For lumped networks, the driving-point immittance (admittance or impedance)
function W(s) is rational.
The coefficients of the numerator and denominator po]ynomia]g in W(s) =
P(s)/Q(s) are real and positive. As a consequence of this,
a. Complex poles and zeros of W(s) occur in conjugate pairs.
b. W(s) is real when s is real.
c. The scale factor W(0) = ao/b0 is real and positive.
The poles and zeros of W(s) have nonpositive real parts.
The degrees of the numerator and denominator polynomials in W(s) differ at
most by unity.
Poles of W(s) on the jw axis must be simple with real positive residue.
The exponent of the lowest power of s in the numerator and denominator
polynomial of W(s) can differ at most by unity.
At real frequencies (s = jw) the real part of W(s) is an even function of w

and the imaginary part is an odd function of w.




greater than first degree. However, ZL(s) may be a

rational function of s,

P p-1
Z (s) = Pls) . 2pS * 2p.1s i F %
bqsq + b st + . L L+ b,

!

where p + q + 2 N if ZL(s) is required only to satisfy
(4.3) and p + g + 2 = 2N if it also satisfies (4.4). 1In
either case, if ZL(s) is to be positive-real, |p - q] < 1.
The coefficients Ags A1y o . . ap and bo, by, . . . 4 b
may be found by substituting (4.12) into (4.3) and (4.4)

q

and solving the resuliting system of linear equations for
the coefficients.

A necessary condition on the values ZLn that can be
interpolated by positive-real functions has been devised
by Youla and Saito [17] based on energy considerations.
The condition is that the “Nevalinna-Pick” N x N Hermitian

matrix (the asterisk denotes complex conjugate),

I* + 7.
A = [A..] =1l 3 (4.13)
1J ¥+ s

must be nonnegative definite, that is,

xVAX > 0 (4.14)
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for all vectors x. They further show that this condition

is sufficient if the s, are distinct and in the right half

plane, i.e.,Re s, >0, n =1, 2, . . . , N. This would

imply, however, that the Toop transfer admittance function
contains active sources, which s 1mpossib1e.. Unfortunately,
necessary and sufficient conditions for the existence of a
positive real interpolating function, both with and without
the derivative condition, do not appear to be available at
this time. The development of a criterion for the loading
function to exist and to be positive real is a chalilenging
problem for further research.
4,3 Time Domain Synthesis Applied to the Design of a

Pulse Simulator

One application of 1oaded Toop antennas designed to
radiate a specified waveform is in the simulation of the
electromagnetic pulse (EMP) generated by a high-altitude
nuclear detonatipn. VThe pu]se shape required can be
approximated as the difference of two damped exponential
functions, one having a very short time constant which
determines the rise time of the pulse and another having
a long time constant which determines the rate of decay
of thé’Bu1se. A’typfba1 EMP waveform [18] can be expressed

as

E = Eo[eat - eet} (4.15)



where
a ~ -2.0 x 10°
B~ -2.6 x 10°

The value of E0 is a constant, and for the purpose of
calculations has been set to unity.

First, we wish to specify the generator output Vi.
For the pulse generaters in common use, it has been found
that generator output can be accurately represented by a
step function with a finite rise time. The generator
rise time and that of the waveform to be synthesized are
chosen to have the same rise time so that in the Laplace

domain

Ve(s) =£{1 - eBt} = B (4.16)
s(s-8)
where B = -2.6 x 108,
In the far field there exist only two components of
and E, (cf. Figure 27). The area of

S ¢
primary interest for obtaining the desired transient wave-

electric field, E

form is near the axis of the loop within a cone angle of

about 30° from the axis. The ranges of angles 6 considered

are therefore
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Figure 27. Vector potential at an arbitrary point
due to current element I(4') bde'
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0 <8 < 30°
and
150° < 6 < 180° (4.17)

On the loop axis only the n 1 mode contributes to the
currents and for the narrow range of angles considered,
one may make the simplifying assumption that the field
compoﬁents are couplied to only the n = 1 Fourier mode of
current on the loop. That is, we assume that other modes
of current on the loop do not contribute significantly to
the far fields radiated on and near the axis of the Toop
antenna.

We wish to find the electric and magnetic fields
generated by a prescribed source function {generator) and
the resulting induced currents on the loop. These field
components are easily obtained with the help of the
magnetic vector potential, which is (cf. Figure 27)

2 - .
- u - -JkR
A= -0 -[ (27a) 3(4') &
4 5 R

bde" (4.18)

The complete solution for the field components is obtained
by using vector differential operators with (4.18). An
expansion for the vector potential in spherical harmonics
is derived in Appendix C for an arbitrary observation

point in space. This solution is in no way restricted,
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and near as well as far fields can be obtained.

However,

for the case being considered, considerable simplification

is possible with no loss in generality if one considers

observation points to be in the far field.

The electric field components in the far field are

given in [5] for several modes, and specifically for

J1 (-jsb/c sin 8) cos ¢

mode n = 1,
/ - 3
. 41 Qs Ji{-jsb/c sin 8)
® ay - jz/mbn  -jsb/c sin ©
- 1
" Ecb - 4m Qs
a; - JZL/”ITbn
where
. €
Q'g"Jvoub esr/c
4'rr2n0 r
For the range of 6 near the loop axis at ©
(4.20) reduce to
e
£ = +jsb sin ¢ Vo esr/c
& 2mnce a, - jZL/ﬂbn r
e
Vv
e = +jsb cos ¢ Y esr/c
8 2mce a; - jZL/ﬂbn r
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(4.19)

(4.20)

(4.21)

19) and

(4.23)



For convenience we will set ¢ = 0, factor out the time

sr/c

delay e s and drop all other unnecessary constants,

exhibiting only the remaining dependence of Ee on s:
e
Isv (s)

Eg = (4.24)
ai(s) - jZL(S)/ﬂbﬂ

Equation (4.24) shows that the radiated field is propor-
tional to the time derivative of the current. For mode
n = 1, the partial fraction expansion of the admittance

transfer function is

1 -z —1— (4.25)
:

Substituting (4.25) into (4.24), we have
e R
Eg = §s V8(s) 22 —— (4.26)
) : ,
i s - s.;
i
where the s% correspond only to mode n = 1. Thus, it is
seen that the effect of space is to differentiate the
current since the far field transform is just proportional
to the current transform multiplied by s.

The functional relationship between the above quan-

tities is described below:
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Admittance Space

Generator
Qutput = Transfer x Transfer x .
Function Function Function
Using the results of (4.26) and (4.16),
R
Ep = o [——) —E— (4.27)
i s - s! (s - B)

1

- T RS L R 8) Ly
(s - 8) S - sS4
- -8 1, T -8R/ (s} - 8
¢ a:1(8)-3z, (8)wbn (s-8) i s - s)
(4.29)

When the impedance loading function is restricted to
be of the one- or two-element kind, considerable simplifi-
cation results in the synthesis. 1In the following, atten-
tion is focused on uniformly distrjbuted resistive and RC
networks. This choice is made for simplicity and because
resistive and RC networks are frequently encountered in
high-frequency circuits. Since the complexities involved

in general RLC synthesis are much greater, we limit

ourselves to a few basic, simple, and useful techniques.
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The radiated fields of the unloaded loop antenna do
not appear similar to those of an EMP waveform due to the
marked oscillations in time. One way to modify the radi-
ated fields is to add resistive loading along the structure
so as to reduce the effects which cause the oscillations.

If the structure is resistively loaded so that ZL(S) =
RL’ then as the locading is increased the poles in the
first layer (see Figure 12) move generally in the -ob/c
direction, indicating that their contributions in time
attenuate more rapidly. The behavior of the unloaded
Type I pole for mode n = 1, located where wb/c =~ 1 close
to the wb/c axis, deserves special attention. As the
loading is increased, this pole moves on a curved arc
down to the -ob/c axis, at which point a double pole is
formed with its conjugate pole. As the locading is
further increased, this double pole splits, one pole
moving to -«, and the other toward zero along the ob/c
axis. This behavior is completely analogous to that
observed as the resistance is increased in a series
resonant RLC circuit. At the point where the double pole
first is formed, we refer to the loaded antenna as being

critically damped.
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In the following, we examine several possible approaches
toward the synthesis of a double exponential waveform (4.15).
The problem might be considered as representative of the
general synthesis problem. In particular, we encounter cer-
tain limitations and considerations which should be common
to any synthesis problem involving the Toop antenna.

The approach taken here is to force the Type I pole to
be the synthesized pole. Since it will have a long damping
constant and since the loading generally forces the other
poles to have shorter dqmpjngrcqqstantsrthis pole should
dominate £he {éfertiﬁe response. MWith the observation point
along the Toop axis, we consider only the n = 1 mode and
observe it in the far field. Finally we restrict our con-
sideration to simple loading functions involving only resistors
and capacitors.

We begin by attempting to specify both the pole and its
residue. In (4.15) the values of the residues are equal, and
the requirement exists to specify only one remaining pole in
the sum (4.29) which we call si.
coefficient a in (4.15), i.e., the pulse decay constant,

si = -2.0 x 106. The remaining task then is to equate resi-

Let s; be equal to the

dues. From (4.29) this requirement is met if we let

— 7 = - (4.30)



where the impedance loading function ZL(B)is to be determined.
Note that for the required zero of the transfer imped-

ance function, it is also true that
al(sl)- jZL(s})/wbn =0 . (4.31)
Solving equation (4.30) for ZL(B) we obtain

_ (B - s1)
Z,(8) = Jjmbn TR a,(8) (4.32)

where Ri is the value of the residue of the admittance trans-

fer function. If we specify a series RC network, then

ZL(S) = R + — (4.33)

R. = L (4.34)
a-i(S-i) - — .7
Cs]

Substituting (4.34) into (4.32) and equating to (4.33)

R + C1—B = jmbn (a]'(si) - ﬁ)(e - sy) - a (8} (4.35)
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Similarly, substituting (4.33) into (4.31) yields

W_E];F(R + —(}-S_i>= a_,(s.i) (4.36)

Thus we have two equations withtwo unknowns, which can be

solved for R and C.

Solving the system of equations (4.35) and (4.36) gives

1, B _ 2
B T s
¢ = — 1 (4.37)
jmbn [ (8 - sy)a'(sy) + al(sy) - a(8)]
and
= - I
R Jwbna1(si) & (4.38)

The solution expressed by (4.37) and (4.38) is theoretically
correct; in practice it is not realizable with passive ele-
ments since the denominator of C is negative, whereas the
numerator is positive. Thus specifying both the pole and its
residue yields an unphysical solution.

One sees that the requirement that the residues be equal
arises from (4.15) because the response at t = 0 should be
zero. Since the short time constant exponential is provided

by the source and the longer time constant comes from the

@
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antenna "ringing down," and the waveform shape during the
transition between the rise and decay is not critical, one
should be able to obtain roughly the desired response with-
out specifying the residue of the pole. Accordingly, three
additional cases were selected where the pole location was
specified to yield a decay constant equal to the value of o
specified in (4.15). The first case used a nurely resistive
locad of 4944 @, in the second case, 30002 and 66 uf capac-
itance were used; and, in the third case, a 1000Q resis-
tance and 399 uf capacitance were used. These combinations
were chosen by requiring ZL(Si) = 4944 + j0 which puts the
pole at the desired position. The time domain response for
each case is plotted in Figure 28. 1In the figure, the shape
in each case is almost identical, as expected. However,

the decay time is much shorter than the desired value. To
see that this effect is independent of both the generator

excitation pulse shape and the loading, the step function

response was computed and is shown in Fiqure 29. The simi-
larity of the resnonse in each case leads one to the con-
clusion that it is a zero of the loop transfer admittance
at s = 0 which causes the difficulty. Recall that the
unloaded loop transfer impedance function has a pole at

s = 0 which transiates to a zero in the loop admittance for
both the loaded and the unloaded case. This transmission

zero tends to cancel the synthesized pole at s = si
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which is close to the ofigin resulting in a very decreased
late time response.

This zero arises, of course, from the combined ef-
fect of the remaining poles of the loop which have been
unconstrained. Hence, their effect in the late time re-
sponse is not negligible as was originally assumed.

Since a1(s) has a pole at s = g then for Tow fre-
quencies the loop transfer impedance is capacitive. Since
the unloaded loop is passive, this equivalent circuit ele-
ment must be positive. In order for loadina to be chosen
so as to cancel the pole of a1(s) (i.e., the zero of the
admittance transfer function), ZL(s) would have to cancel
the low frequency behavior of an(s), which would require a
non-physical negative capacitance. Hence, it is not
possible to cancel the zero in the admittance transfer
function by using passive loading.

To test the validity of this explanation for the
poor late time behavior, a numerical experiment was con-
ducted to determine if it was possible to eliminate
the zero in the admittance_ transfer function. Accord-
ingly thergenérator oQtpﬁtrwaveform was modified to the
time integral of the original excitation, which intro-
duced another factor of 1/s in the transform domain so

as to cancel the zero in the transfer admittance at s = 0.
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This, of course, introduces a ramp in the time domain
output of the generator but fulfills our requirement
for an additional pole in the denominator of (4.27).
The resulting time domain response is plotted in Figure 30.
The similarity of the late time response to the desired
double exponential confirmed the conclusion that the zero
in the admittance transfer function caused the previous
difficulty in achieving good late time response. The
integration, however, further degrades the early time
response.

Since good early time response was obtained with a
generator frequency dependence given by

e - -B
Vols) s(s-B) (4.39)

while good late time domain behavior was obtained with

the frequency dependence

e - -8
VO(S) sZ(s-8) (4.40)

one might speculate that perhaps a good overall approxi-
mation to the desired response might be obtained by the

excitation
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vE(s) = zB(s*1)
0 s2(s-8) (4.41)

which has the desired high frequency (early time) behavior
of (4.39) and the desired low frequency (late time) be-
hayior of (4.40). That this is indeed the case is seen
by noting that the response of (4.41) is obtained by super-
position of the responses due to (4.39) (Figure 28) and
(4.40) (Figure 30).' However, this approach (i.e., modify-
ing the generator waveform to produce the desired response)
runs counter to the objective of synthesizing the desired
response by loading the Toop.. It appears, then, that
although we may be able to synthesize the pole pattern of
the loop for a finite number of the poles, we may require
a more elaborate treatment to guarantee that the position-
ing of a finite number of the poles by impedance loading
does indeed lead to the desired time domain waveform.

The complexities introduced by the infinite number
of poles and the apparent late time differentiation of
the decaying waveform due to a zero in the admittance trans-
fer function pose a unique and difficult set of constraints.
This is a problem outside the scope of this study but

offers interesting possibiiities for future research.
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CHAPTER V
CONCLUSIONS

The objective of this research has been to develop some
fundamental techniques for the analysis and synthesis of the
response of a loaded loop antenna. In the past, the time do-
main response for such a problem would be determined either
by time harmonic analysis coupled with Fourier inversion,
or by direct time Gomain solution. With the addition of im-
pedance loading, considerab1e.éff0rt would then be spent re-
calculating the entire fesponse of the Toop antenna without
making use of any of the information about the response of
the unloaded antenna. Use of the singularity expansion method
(SEM), however, permits one to systematically examine the
effects of loading using the solution for the unloaded Toop
antenna. _

The observation that the solutions of electromagnetic
problems are analytic functions of the complex frequency s
except at singularities forms the basis of the SEM and per-
mits one to use the many powerful theorems of complex varia-
bles to more efficiently represent the solution. The result-
ing time domain response representation is a superposition
of damped exponentials whose complex frequencies correspond

to s-plane pd]es of the admittance transfer function. These

71725



poles are determined from the impedance loading and the un-
loaded admittance transfer function. Thus, the advantage

of the singularity expansion technique is that one can sepa-
rate and characterize basic attributes of the structure only
once, and the time domain response for various loadings and
excitations can then be easily determined from the structure's
characteristic behavior.

In Chapter TII, it is shown that s-plane contour plots
of the magnitude and phase of the unloaded impedance transfer
function of the Toop permit one to readily determine the tra-
Jectories of the poles as loading is added to the structure.
Furthermore, the observation that the loading can be inter-
preted as adding a feedback path to»the admittance transfer
function permits one to use the root locus techniques of
control systems to further aid in the determination of the
pole movements with increased loading. Since we are dealing
with an antenna that is a distributed parameter system, the
conventional root lTocus technique was generalized so as to
be applicable to a system with a countably infinite number
of singularities. The generalized root-locus technique pro-
vides a valuable tool for studying the effect of varying the
impedance locading over a wide range.

The synthesis of time domain waveforms by impedance

loading has been considered in Chapter IV. It was found that
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the required condition on the impédance loading to locate

a pole at any point in the complex s-plane is that it inter-
polate the impedance transfer function at the desired pole
frequency. If the residue at the pole is also to be speci-
fied, the derivative of the impedance function also satisfies
an interpolatory constraint. These conditions may be satis-
fied by Lagrange or Hermite interpolating polynomials, res-
pectively. However, if one is restricted to passive loading,
the Toading function must be a rational function of s. A
necessary condi%ion on the interpolation constraints is given
for the realization of passive loading. A sufficiency con-
dition for realization with passive elements is apparently
lacking at this time however,. Some simple attempts in Chap-
ter IV to synthesize a radiated waveform consisting of the
sum of two exponential functions were only partially success-
ful. The difficujties seemgq to arise from attempting to
control an infinite number of poles by loading and from the
presence of zeros in the output response due to the admittance
transfer function and the free space transfer function.

In summary, this research was directed towards simpli-
fying the understanding of impedance loaded loop antennas
using the singularity expansion solution technique, On the
basis of the results of this study, several recommendations

concerning future research are suggested. Further study
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is needed to determine what constraints exist on the
realizability of passive loads. Also needed is an approx-
imate theory for treating the infinite number of poles

of Type III. Possibly a transmission 1ine model would
enable one to factor these poles out of the admittance
transfer function enabling one to work with a few poles in
partial fraction form, the rest being absorbed into a
transcendental function representing the transmission line
approximation. Hopefﬁ]]y, such an approach might lead to

a better understanding of the constraints on the realizabil-
ity of time domain waveforms imposed by the structure.
Another approach to synthesis might involve optimization
techniques to choose the loading so as to minimize the error
between the desired response and that actually obtained from
the antenna. Here the shifted poles would not be specified
but would enter the calculations only as a means to compute
the time domain'response. Finally, an interesting area

for future research is in developing efficient ways to han-
dle non-uniform and point loading. In the case of the loop,

such loading unfortunately couples all the modes together.
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APPENDIX A
DERIVATION OF THE INFINITE PRODUCT
REPRESENTATION

Weierstrass' Theorem for infinite products [19] requires
derivatives with respect to s. In the following, it is nota-
tionally convenient to use both the wavenumber k = -js/c and
the Laplace transform variable s simultaneously. Thus, for

example,

dap(s) _ da, dk_-j da,

_ _n (A-1)
ds dk ds c dk

Except for n = 0, an(s) has a pole at s = 0 which we wish to

eliminate. Hence we consider the intermediate function
fn(s) = san(s), n = +1, 2, . . . (A-2)

which has only zeros in the finite complex plane and hence is
an entire function. 7 -

We now consider the logarithmic derivative

fl(s) ap(s) + sap(s)

f (s) sa_(s) (A-3)

which is meromorphic. If this function is bounded on a set

of contours C, enclosing the poles, then an infinite product
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representation exists [20].
Recall that
2

- kb . -
4 T 2 Fn+1 ¥ Kn-ﬂ kb "n (A-4)
where the Kn are defined as
21 8b
K0 = In = - Fo(kb) (A-5)

and

1[ o [na na
Kn = K_, = E[ho b ) I\ J*C,|-F, (kb) (A-6)

The function F (z) is defined as

2z
Fn(z = }f (z) - jﬂn(zﬂ dz (A-7)

0
and the constant Cn is

C =1n b, +vy-2 I
n n ggi (2m+1) (A-8)

In (A-6), K_and I are modified Bessel functions, y is

()
Euler's constant, and z = -Jbs,
c
The function in (A-7) F,(z) can also be written in integral
form as [21]
. 2z .1 )
= ‘Jl/r ./'e_J (z sing-ne)yq g, (A-9)
2w
0 0

Next we derive a recursion formula for the derivative of
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F (z). From (A-9), we have

zZ 7

~/“ [ -jlz sine - (n-1)8]
e

/

0

-r1
—
N
g
1\
-
—
N
g
1]
Nlu
3

-j{z sing-(n+1)e ]dedz
-e

" -j(z sine-n8 )| -J6 je
J/. e e - e do dz
0

i
-j(z sin6-nd)
f e singdedz
0

"' 22 m

] d -j(z sine-nv)
- ~/‘ HE'QL‘ e de | dz
)
-2z - - 2z
R -j(z sin6-no)
=7 e do
z=0
0
T
J -j(z sind- n8) jne
=T f [e -e :lde
0

Integrating the second term yields finally

@
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(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)



ul

J . .
- - = -j(z sin® -no)
Fn_1(z) Fn+1(z) n“/. . 46
0
n
1-(-1
+ nw (A-16)

Differentiating (A-9) with respect to z, we have

i
: -j(z sin6-nd}
F'(z) = & f e do (A-17)
n T
0
which upon comparison with (A-16) yields the desired recussion .
formula,

nm (A-18)

Using the Fundamental Theorem of Calculus with (A-7) we can

alternatively write

F o (z) - F 1(Z) = @ (z) + ja,(z) +

1-(-1)"

n (A-19)
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We may now return to (A-3) which we write as

Differentiating (A-4) with respect to s we have

. _.od E[ ] kb .
an(S) = G ) Kn+.| + Kn-1 +T n+] +
2 2
n
ML = K
k¢b kb "
where
tep(s) + K (s)=-b|F" (kb) + F'
n+1 n-1 2n+2 2n-2
= =b | F (kb) - F (kb) + F (kb)
2n+1 2n+3 2n-3
F (kb)
2n-1

Kn-]

(kb)

]

(A-20)

(A-21)

(A-22)

(A-23)



where (A-18) has been used in (A-23}).

Using the asymptotic éxpansion obtained by Umashankar [8],

_ b _j(2kb - w/4)

so that finally, we have

i 25(-1)"b  -j(2kb-7m/8)
we | K'Y {s) + K'Y (s)] = 7 —— e
kb n+l n-1 vV 7kb (A-25)

From (A-6), we have

K'(s) = -b F ' (kb) (A~26)
n 2n

= 5| F (kb) - F (kb
b [ 2n-1 ) 2n+1 ﬂ (A-27)

From [8], for large®values of kb,

134



Tim b .
. = -j(2kb - ©/4)
kb~ o [Kn(s)] 2\ kb e

€ -e (A-28)

C-ib (=1 -j(2kb - 7/4) (A-29)
kb ¢

H

Therefore aé(s) can be directly evaluated from (A-21) for large

kb as
' n+1l
i -3\b| -2 1n kb (-1)
1im . = ) -2 1n kb
" kb o an(s) = c (2 T \/ Xb
r . .
-3(2kb - w/a)| Kb { 25(-1)" b 3(2kb - /8)
¥ AN
: \} mkb
02 {:lﬁ kb, (-1)" e-J(Zkb - n/4) ]
kb | m 2 nkb
2 | _j(-1)"p -Jl2kb - m/8)
% \f( =2 (A-30)
kb kb

@
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Keeping only the dominant terms in (A-30)}, we have

1im ' . db In(kb) , 5(_1)N4| KB
Hin - ag(s) el I N4 D
-j(2kb - w/4)
e (A-31)
Therefore (A-3) reduces to
Tim fris) - 1
kKb>= ¢ (s) jke
n -i(2kb - w/8)
b - 1/#wlnkb + j(-1) Q %E e
+ -—
jc

(-1)“”‘) 5 -i(2kb - m/4)

kb

(A-32)

This function is bounded in both the left and right s-plane

as s»« and also on a circular contour which passes between

the poles of f, (s} which are the zeros of a,(s).

Thus, the product expansion of f (s) is given by [20]
FLC0)/F 0 O)]s

S/ S, s
fo(s) = f (0)e L (1-s/spde " (a-33)

136



where
f'(0) 1im 1 ilb k2p2
n - < 1% —_—
Fgy  kbeo{ T [2 (kb)< Kne1 + Kn 1> K
n
] ] 2 2 ]
( Kn+1 * Kn_D + ﬂ—% Kn = n Ky
. ’ 2,2 -1
k™b 2
2 (K”” ' K”‘1> - (A-34)
" ) -jfn2b 2 ., .
. lim 1 SHT— K, - n K ) j ¥ (0)
= (b0 —jck + c(kb n n B} _C— n (A-35)
2 Kn(0)

-n"Kp

However, from (A-6),

Kplo) = ””[Ko( na) Lo (D‘%) M ] (A-36)

ol

and

K, (0) = b F (0) (A-37)

0
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= -b [ Fonql0) - an+1(°)] =0 (A-38)

Finally, we have that

. 2 . 2
-jn C -jn-c . {na

so that combining (A-33) - (A-39), we have

s 2
dnc .- na a
fn(s) = San(s) = nh h()(—_b-) IO ( D—B—)'i- Cn

11 (1 - gif) eS/Sni ¢ 0 (A-40)

nl

Thus, the infinite product representation for a, (s) is

bs
1 im c

an:S: 2 na na s/spi
n [}<0('—5) Io( ~E')+ “h ]]}( ]—S/Sni) e N

(A-41)

4

Turning to the representation of ao(s), we note that

ao(s) has a zero at s = 0, so we consider the function
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o (A-22)

fé saé(s) - sao(s) |
fo ) sao(s) (R-43)
) ac')(Sf ]

ag(s) s (A-44)

From (A-4), we note that

() ag(s) = kb Ky (A-45)

where

Ky = 1/ﬂ[K6(%> I, (%) + C1] - F,(kb) (A-46)

Differentiating (A-45), we have

aj(s) = _%I:b Ky + kb Ki] (A-47)

where
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K = b Fy(kb) (A-48)

= -b[ Fi(kb) - Fs(kb)]

(A-49)
The asymptotic formulas from [8], yield
lim  a (s) = kb| =_In (kb) —1— 'j(ZRb-ﬁ/4)]
koo 7O m 2o kb ©
(A-50)
-kb 1 [ we - 3(2kb-m/4)
(A-5T1)
and for the derivative
=3 1 -j(2kb-m/8)
a'(s) = _% b( -1n kb _ . )
° ™ 2 wkb
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o[ —1_ -3(2kb-n/4)
kb Fke €
J m/2 +3m/2
e - e (A-52)
I b _j(2kb-m/4)
= ¢ [—b—“-‘ﬁJr e (2jkb-1)]
i 24 mkb

(A-53)
On keeping only only the dominant terms, we have

O _ [ -j(2kb-7r/4):|

kb»>w 0 <

(A-54)
Therefore

Tim ag(s) _ b -1n kb " -J(2kb—w/4)é

= + KD
kb ag(s) ™ J kil € ('
-

-Tn kb -j(2kb-m/4)
kb T - kb e

() (A-55 )
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This function is bounded on a circle of radius R attached at

the origin and passing between poles in the asymptotic layer.

fl(s)
9 is bounded on a sequence of such circles R_, en-

f (s) p

Hence

closing p poles. We now need the value of

fo(O) 570 ( aolsi ) ;) (A-56)

From (A-55), we have

fg(0) 1 Lok vk K L g
f(0) kb K, jke (A-57)
) —% Ky (0)
K (0) (A-58)
But

Ky(0) = 1/m ho(%) Iq<%) +Cy (A-59)

and
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Kito) = -b‘-F1(0) - F3(0)] = 0 (A-60)
SO tﬁat

folo) _ | (A-61)

fol0)

and we have finally,

S/S .
f(s)=Ff(0)m1 -3 01
ot ° 1'( s ) ) (A-62)

where the produce is over all the zeros of an(s) except s=0.

Since

f (o) = Lim ag(s)  1lim kbKy
0 kb>0 ke kb>0 "oy ¢ (A-63)
= -5 2% (0) (A-64)
I ™

T
= =i [ﬁj(%) 10(%) + 01] (A-65)

we have finally,
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(A-66)
In summary, the infinite product representations are
. f sb
] (%)
a,(s) 2 (o) ;.S s/spq " £ 0 (A-67)
n n UI.I! Sni e
and
1 . J
a (s) .
° sb 15\ s/sg;
—~ ] Ky (o) s .1 e
Cc 1 i 01
(A-68)
where

k (0) = 1/-rr[-1io(£‘5a-) 10(1‘5‘1) + cn] (A-69)
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APPENDIX B
CALCULATION OF THE NATURAL FREQUENCIES BY THE METHOD
OF MOMENTS FOR THE n = 0 MODE

The method of moments solution for mode = 0 requires

only a J, component of surface current which is ¢ independ-

¢
ent. By symmetry, there exists only a ¢ component of
magnetic vector potential which is also ¢ independent. The

scattered electric field is given by

ES = - 1 _ (k2 + 97 + ) & (B-1)
""Jmuoe

Because of the ¢ independence, the ¢ component of the

scattered electric field is

o= k2 (B-2)
6" Jope O

where the magnetic vector potential is qiven by

2T .

! "JkR
./’ Jgv') cos ¢ e o'd¢'ady'
o R

(B-3)

2m

A = __0.. f
¢ 4r
0

r

and where
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RZ = Jr = r']2 = 2a2(1 - sin ¥ sin ' - cos ¥ cos ¥' cos ¢')
+ 2b2(1 - cos ¢')
+ 2ab(1 - cos ¢'){cos ¢y + cos y') (B-4)
and
p' = b + a cos y'

The coordinates ¢', ¢, and p' are defined in Figure 1.
Sitnce the fields are ¢ independent, ¢ has been set equal to
zero in (B-3) and (B-4). The singularity occurring in
(B-3) when ¢ = ¢' and ¢' = 0 (i.e., R = 0) is difficult to .
handle in a numerical soiution. Accordingly, we extract
the singular part of the integrand analytically in the
following.
Considering the integration on ¢' first, we write

the distance from the source point to the field point as
R=(B - C cos ¢')1/2 (B-5)

where

B

2a? - 2a® sin ¢ sin ¢' + 2b% + 2ab(cos y + cos Y')

()
n

2a? cos P cos y' + 2b% + 2ab(cos y + cos y') (B-6)
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so that (B-3) becomes

2m
Mo
AL = — J (¢')(b + a cos y') a
¢ ™ ¢
0
m . vy 1/2
e—Jk(B-C cos ¢')

0[ cos ¢' de') dy' (B-7)
0 (B - C cos ¢')1/2

Consider the integral in the brackets. We isolate the
singularity by adding and subtracting a term having the

same singularity as the integrand but which is integrable;

" p -3k(B - C cos ¢')'/?
Jn cos (¢') | & do'
0 (B - C cos ¢')1/2

j -3k (B-C cos o') '/t |
o= f cos (¢') do
() (B - C cos ¢')1/2

™
+ .f cos (¢') de¢' (B-8)
o (B - C cos q>')1/2

The first integral on the right-hand side is nonsingular
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and is hence amenable to numerical integration. The second
integral, which we now proceed to evaluate, contains the
singularity.

With the substitution cos ¢' = (2cos? ¢'/2 - 1) and

the change of variables ¢' = m - 2g, the second integral
becomes
m
J‘ cos ¢' do'
o (B - C cos ¢‘)1/2
w/2
- 2 .f (1 - msin?2 g) + (m/2 - 1) de
(B + (:)1/2 () -m/2 (1 - m sin? 5)1/2
- 4 g(m) - 20 = 2/m) gy (B-9)
m(B + ¢)'/? (B + ¢)/?

where m = 2C/B+C and K(m) and E(m) are elliptic integrals
of the first and second kind, respectively [22]. Thus,
with (B-8) and (R-9), (B-7) becomes

y 2T
A¢ =2 J (¢p')(b + a cos ¥') a

2t ¢
0
n ; w1/ 2

. o-Jk(B-C cos ¢') -1

fcos o) do'
o )1/2

(B - C cos ¢'
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o T
4E(m) _2(1 - 2/m) K(m) {4
n(B + C)x/z (B + C)l/z

w 1

(B-10)

The term involving K(m) is still singular since as y

approaches ', m tends to unity. Using (B-6), we rewrite

m to exhibit its dependence on V' explicitly;

0D+ E cos y'

F +Gcos ' - H sin y'
where
D = 4b? + 4ab cos y

E = 4a? cos y + 4ab

-
i

2a? + 4b?% + 4ab cos
G = 2a? cos ¢ + 4dab
H = 2a% sin v
The singular integral of interest is

2T

e Jy (8 + ¢)'/?

149

Yo J. J¢(w')(b + a cos Y') a 201 - 2/m) K(m)

(B-11)

(B-12)

dy!

(B-13)



The order of the singularity may be determined by evalu-
ating the Timit of the terms in the integrand as ¢

approaches ¥' or, equivalently, as m approaches 1. Thus

we have
i 1/2 _
Jl$. (B + C) = 2(b + a cos )
and
Tim K(m) = In 16
m-1 1-m

In(16) - 1n [232-232 cosycosy' - 2a?’ Sinwsinw']
F+Gcos ¢' - H sin ¢’

2a? [1 - cos (v - v')]
F+ G cos p' - H sin ¢'

n(16) - 1n (8-14)

from {B-11) and (B-12). Expanding cos (v - ¢') in a power

series and keeping only the dominant singular term from

(B-14), we have
Km) = -2 (|v - v']) (B-15)

Hence,
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]}T b_ J (ll)')(b + a cos wl) (-2&)(] - 2/m) K(m) '
vy 2T ¢ (B + C)1/2
= U0 ' '
= 2 a3, (vt (-2 v - v ) (8-16)

2m

We now consider dividing the cross section of the loop into

N subsections of angular extent

Ay = 2m (B-17)
N

and define midpoints and end points of each interval as

Yy = (n = 1) Ay
Ut = (n - 1/2) My
Up- = (n - 3/2) &y n=1,2, ... ,4N
(B-18)
The current is expanded in pulse functions
N,
J,(v) = ééﬁ Iy Pp(w) (8-19)

where
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T, - < U< s

g, otherwise (B-20)

and substituted into the vector potential. Since by (B-2),
vector potential is proportional to the electric field, at
a8 natural resonant frequency, the vector potential due to
the current along the surface is zero. If this condition
is enforced at the points wp, p =1, 2, . . . , N, a matrix
results whose determinant is zero at the pole frequency.

That is,

det [Z(s)| =0 (B-21)

when s is a natural resonant frequency. The matrix Z(s)

is defined by

v+
wa ,-3k(B-C cos ¢")'/*
an = w]. W(yp') cos ¢' = dd'
2m
.

(B - C cos ¢')l/2

O~

p#n
¢=¢p,
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|

cos ¢

d
So” f W(p')
2

o~—3

where W(y') = b + a cos ¢' in
that the singular term (B-16)
integrand and its integral is
(B-22) for p = n.

The Fourier expansion of

gap is

-jk{B-C cos ¢')1/2
e - ] d(b|

(8 - C cos ¢')*/?

4W(y') E(m)
m(B + C)l/2

2W (") (1 - 2/m) K(m)

(B + C)1/2

-

2 1 (lv, - u{'!) dy"

(B-22)

the above expressions. Note
has been extracted from the

added outside the integral in

the voltage across a uniform
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1 (B-23)

Using (B-22), we can write a function dependence for the

total current where

K% 71 -y (B-24)
Jwue

It is pointed out that the total current is equal to the

sum of individual current. That is,

~ 1
E:In = (R-25)
a (s)
0
where = -uV/ﬂnO and the sum is the gquantity plotted in

Chapter II, Figure 10.
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APPENDIX C
DERIVATION OF THE NEAR FIELD EXPRESSIONS

The electromagnetic field of a circular loop antenna

with a current distribution given by (2.37)

.8
I1(¢) = Wolsd [ 1, 2 3, £os ng (c-1)

U ao(s) 1 an(s)

may be determined from the vector potential for any

arbitrary point.

The element of vectorwpotéhf{éﬁiaiiaf a point To» O
¢ or X, Y, Z, Figure 27, has two components
dAx = -dA sin ¢
dA, = dA cos ¢ (c-2)
These may be expressed as
-y - jkR
dA, = —2% 1(e'y & sin ¢' bdo'
41
Ho e':ij
dAy = — [(¢') =——— cos ¢' bdo' (C-3)
4T R
We may write
I(¢') = 2 1 e IN? (c-4)
n
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where comparing with (C-1), we have

Ve (s)
I, = - (c-5)
”o“ainl(s)

Furthermore, noting that

-jkR
9—%—- = -jkth)(kR) (c-6)

)

where héz is the spherical Hankel function of order

zero, second kind, we may employ the addition theorem [23]

to write

h2(kR) = égé (29+1) hgz)(kb) Jl(kro) P lcos £), r < b

- 2
;g% (22+1) hi )(kro) Jﬁ(kb) Pg(cos E)s ry > b

(c-7)

The Legendre functions can further be expanded as [23]

_ X (2-m)! _m
PQ(COS £) = mz-:o €m W PR(COS 6}

Pg(cos 6') cos m{o-¢')  (C-8)
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where €m = 1 for m = 0 and i = 2 for m > 0. This may

also be written as

- ? (o-]m)t olm|
P, (cos ¢) églo T P! (cos &)

Pém'(cos e') e-jﬂ‘((b-q‘)') (C-9)

Hence, for ro > b', we have

dA, = —2 T 1 et IO (g
n

Pg(cos £) sin ¢' bde', re > b

(¢-10)

Substituting (C-9) inte (C-10), we may rearranae the order

of the summation to obtain

-u . '
- 0 -Jnd :
dA, = — 3, I e (-ik)
4w n
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pI" (cos &) PIM(cos 60)

(6 ed® _gmd0'
ENLICEL )(e e )bd¢.

2]
(C-11)

Let the inner summation be represented by an indexed term

c, - il (zfn[h;(kro)] ), (ko) Gelm)l

M e=Tm (2+|m|)!
pi™ (cos 6) PI™ (cos ") (c-12)

so that the vector potential can be written as

dA = u_o__ 3 In[e‘jd)'(n-'[) _e_j¢=(n+'|)]
8r n

¥ oc, e dmleme g (C-13)
Integrating over all ¢' and using the orthogonality of the

function exp(jm¢')}, we obtain finally,

_ Hokb -3 (n-1 -3(n+1)
Ay = A ) In[?n-l € A Chev © ’

(C-14)
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Similarly, A, is found to be

y
_ Hokb -j(n-1)¢ -i(n+1)¢
A.y B 4J Zn: In Cn-'l € + Cn+'| €

(C-15)

If the vector potentials are required for r_ < b, then Cm

0
in (C-12) is replaced by

c = ¥ (22+1)[h§v(kb)] Jz(kr())-(z—"-m—l—)—!

" a=n| (2+m[)!

Piml(cos 8) Piml(cos 8') (C-16)

This completes the derivation of the rectangular com-
ponents of vector potential, It is pointed out that the
vector potential equations (C-14) and (C-15) are valid for
near and far fields. The electric and magnetic field

quantities may be derived from

v x A (C-17)

a1
n

I
[
m
]
.
>t

E -jw[ﬂ # 1 gy

] (c-18)
k2

for periodic time dependence where k = w/c. In the Laplace

transform domain, we have simply s jkc.

@
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