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ABSTRACT

Although many electromagnetic problems can be treated

satisfactorily by means of a, static or steady-state approx-

imation, there are an increasing number of problems in which

the transient behavior is of par?mount importance. A con-

tinuing need exists to handle these problems efficiently and

in such a way that a wide ra,nge of responses to differing

inputs may be considered or that the desired response may be

synthesized. The purpose of this work is to show how the

singularity expansion method (SEM) may be used to significantly

simplify the calculation and synthesis of the response of a

transmitting loop antenna excited by an electromagnetic pulse.

Paralleling the well -krlown description of lumped circuits

in terms of their poles and zeros, a compact representation

of the loop antenna in terms, ,KI!@Q’$of its poles and zeros i
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The resulting time domain description of the loop response is

simply a sum of terms involving the residues, the excitation,

and the exponentially damped sinusoids whose complex fre-

quencies are the pole frequencies. These poles or natura~

frequencies are t’he frequencies at which radiation from a

scatterer or antenna can take place without an applied

excitation.

One objective of this research is to investigate the

possible use of the singularity expansion method to synthe-

size radiated time domain waveforms by uniformly loading a

loop antenna. In particular, one wishes to choose the load-

ing so as to realize some desired pole-zero configuration on

the structure. It is shown that the effect of the loading

can be interpreted as introducing a feedback loop into a

block diagram representation of the impedance transfer f’urlc-

tion. This observation permits one to use the root-locus

techniques well-known in the area of feedback control theory

to predict certain features of the pole trajectories as the

loading is continuously varied, Furthermore, the pole posi-

tions for a given impedance loading can be found with the aid

of contour plots of the magnitude and phase of the impedance

transfer function.

Combining the use of,the above techniques for the anal-

ysis of loading together with the singularity expansion repre-
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sentation, we extend to electromagnetic problems a capability

to possibly synthesize the desired response when the input

or excitation waveform is given.
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CHAPTER I

INTRODUCTION

Although there are many electromagnetic problems

which can be treated satisfactorily by means of a static

or steady-state approximation, there are an increasing

number of problems in which the transient behavior is of

paramount importance. These problems are usually diffi-

cult because they pose t-he problem of solving the fietd

equations as functions of both time and space.

A few electromagnetic scattering and radiation prob=

lems can be analytically solved directly in the time

domain . However, for most problems a direct time domain

solution generally must be obtained by numerical methods.

These methods are, at best, tedious to apply and are

often plagued by stability problems.

A commonly more fruitful approach to obtaining

transient field solutions is to first transform the time

out of the field equations. Most engineers are familiar

with this transform technique. In this method the time

dependence is transformed out of the field equations by

either a Fourier or Laplace transform. The transformed

equations are functions of space, with frequency appear-

ing merely as a parameter of the problem. The problem

.
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is then solved in the frequency domain either analyti-

cally or numerically using, for example, a moment method

technique. Once this steady-state solution of a problem

has been obtained, it is then relatively simple to obtain

the more general solution representing the response of

the object to an impressed field varying arbitrarily with

time. This is done by Fourier inversion of the spectrum

of the solution quantity weighted by the spectrum of the

excitation.

For solutions obtained either by time harmonic anal-

ysis coupled with Fourier inversion or by direct time

domain techniques, a change in the spatial or temporal

behavior of the excitation requires that considerable

effort be spent in recalculating the response of the

structure. One is lead to ask whether or not the long-

established description of lumped circuits in terms of

their poles and zeros might also be used to provide a

more compact representation of electromagnetic field

problems. In the case of electrical networks, specifying

the finite number of pole and zero frequencies of a net-

work quantity (impedance, transfer function, etc.) com-

pletely determines the quantity at all frequencies.

Furthermore, the time domain response of a linear circuit

excited by an arbitrary waveform may be determined from

13



o
knowledge of the location of these pole singularities of

the response function in the complex frequency plane, as

well as their corresponding residues. The resulting time

domain description of the circuit. respofise is simply a

sum of terms involving the residues, the excitation, and

the exponentially damped sinusoids whose complex fre-

quencies are the pole frequencies.

The techniques of circuit theory are based on the

assumptions that path lengths in the circuit are neglible

and that all electric and magnetic fields are essentially

confined to the circuit elements. Field theory, on the

other hand, must deal with fluxes in two or three space

dimensions. Given that circuit theory actually has its

foundations in field theory, one might suspect that cir-

cuit theory techniques should have ana?ogs in the field

theory.

That the pole-zero techniques of lumped circuit

theory can indeed be extended to electromagnetic scatter-

ing was recognized by C. E. !3aum [1] who formalized the

singularity expansion method (SEM) as applied to general

scattering problems. In his approach a conducting

scatterer is described in terms of an integral equation

for the induced surface current density. The inverse of

the integral operator is then expanded in terms of its

14



poles and their operator-valued residues. The circuit

equivalent of this approach is the expansion of the

inverse of the impedance matrix of an n-port network into

a partial fraction representation in terms of the poles

of the network and their matrix-valued residues. Thus in

SEM, field theory is no longer considered to be something

apart from circuit and transmission line theories, but

rather as extensions of these concepts. Quantities which

must be known for the expansion of the scattering operator

(i. e., the inverse of the integral operator relating

induced currents to scattered fields) in terms of its

singularities are the natural frequencies, modes, and

coupling coefficients.

The natural frequencies are the frequencies at which

radiation from a scatterer or antenna can take place with-

out an applied excitation, In other words, the natural

frequencies are the poles of the structure. Me see immedi-

ately that the poles must be either in the left half of

the s plane or on the imaginary axis in order to exclude

fields which grow exponentially with time. Poles on the

imaginary axis, however, correspond to undamped sinusoids

which therefore cannot lose energy by radiation. Hence,

poles on the imaginary axis of the s plane must corre-

spond to interior cavity resonances which do not radiate

15



exterior fields. The usual sinusoidal steady-state

resonant frequencies of the structure are approximately

the imaginary parts of the complex pole frequencies.

For certain response quantities, it is possible for pole-

zero cancellation to occur. In these cases, the natural

frequencies do not appear explicitly in the response

functions of the antenna,

At each pole frequency there is an associated modal

current distribution. Generally speaking, as a complex

excitation frequency approaches a natural resonance fre-

quency, the current distribution approaches that of the

modal current distribution associated with the pole. One

is familiar with this behavior in, say, dipole antennas

where at resonance the current distribution is approxi-

mately a sinusoidal standing wave with the number of nodes

appropriate to the electrical length of the antenna, The

amplitude of the current depends on the difference in the

pole and excitation frequencies as well as on a coupling

coefficient which relates the excitation to the proportion

of a given mode which is excited.

The objective of this research is to investigate the

possible use of the singularity expansion method to

synthesize radiated time domain waveforms by uniformly

loading a loop antenna. In particular, we wish to choose

.
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the loading so as to realize some desired pole-zero con-

figuration”on ‘the s~ructure-. Since synthesis design is

usually carried out in practice by iterated analyses, we

approach the synthesis problem by first building up an

array of tools for analysis. These include a rather

extensive set of tables for the poles and residues of

unloaded loops, The data in these tables permit one to

calculate either the time domain or the frequency domain

response of a loop over a large frequency range for an

arbitrary excitation, A product expansion representation

of the loop “transfer admittance” function is then

derived which permits the rapid calculation of magnitude

and phase contours for the transfer admittance. Plots

of these contours, in turn, yield information on the

shifting of poles that is possible by impedance loading.

Adding further insight into the problem of determining

the pole shifts are extensions of the root locus tech-

niques commonly used in control theory. The extensions

permit the techniques to be used in the present problem

in which there are a countably infinite number of poles.

With the combined use of the above techniques, some

progress is made toward the development of an approach to

the synthesis problem. As in circuit theory, the synthesis

procedure may begin with either of two different starting

17



points. In the first, the synthesis problem is considered

solved when the transfer function relating the response

quantity to the excitation has specified poles and possibly

specified residues. In the case of the loaded loop, this

becomes a problem of requiring the loading impedance

function to interpolate the unloaded loop transfer imped-

ance function at the pole frequencies. If the residues

are left unspecified, it is also possible to determine

whether or not the synthesized loading function is positive

real .

The other starting point sets out to solve a more

difficult but more practical problem. Here one is given

the time domain response and excitation waveforms and

asked to synthesize the loading function required to

approximately achieve the desired time domain response.

In this case, the poles of the resulting structure may

not even be needed, depending on the synthesis algorithm.

It is emphasized that the electromagnetic synthesis prob-

lem has an additional complication which does not have an

analog in lumped circuit synthesis. This is, of course,

the time delay associated with the geometry of the struc-

ture. This problem is beyond the scope of this work and

it is anticipated that further development along these

lines will require some approximation of an infinite



number of poles by time delay factors in the transfer

function.

19



CHAPTER 11

SINGULARITY EXPANSION METHOD ANALYSIS

OF THE UNLOADED LOOP

.
There exists a continuing need to handle electro-

magnetic transient problems efficiently and in such a way

that a wide range of responses to differing inputs may be

considered or that the desired response may be synthesized.

The purpose of this discussion is to show how the singu-

larity expansion method (SEhl) may be used to significantly

simplify the calculation and synthesis of the response

of a transmitting ~oop antenna excited by an electromag-

netic pulse. The frequency domain response of a loop has

been extensively treated in the literature [2], [3], [4],

and good summaries of these treatments, with some exten-

sions, are given by King and Harrison [5] and King [6].

In the following, we merely summarize the theory of

Mu [4] as given by King and Harrison [51. Referral is

made to the latter for details of the derivations, and

their notation is generally followed. We have appropri-

ately extended the theory of Mu [4] into the complex fre-

quency or, equivalently, the Laplace transform domain.

Although these results may be obtained merely by the

substitution s = jw in 14ufs equations, we present below

20



the derivation for reference purposes.

The usual method ot approaching the problem is to

write an integral equation for the current induced in the

loop which involves the driving voltage waveform. Because

of the rotational symrnetr,y of the 100p, Fourier analysis

of both the excitation and the current permits us to

derive a “transfer impedance” relating these Fourier

components. The modal transfer impedance is just the

ratio of the corresponding Fourier components of excita-

tion (voltage) and current. These transfer impedances

contain both the frequency and geometrical dependence

of the loop.

2.1 Summary of Wu’s Theory for an Unloaded Loop

Extended to Complex Frequencies

In the following, the derivation of the solution for

the current on a conducting loop antenna is summarized

following closely the presentation of King and Harrison

[5]. As shown in Figure 1, the center of the loop coin-

cides with the origin of a cylindrical coordinate svstem

denoted p, 0, and z, with the plane of the IOOD lying in

the plane z = O. The radius of the loop b is assumed

much larger than the wire radills a. Furth~rmore, the

value of a is small compared with the wavelength, i.e.,

a2 << 1)2, ]ka12 << 1 (2.1)

21
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Figure 1, Schematic of loop antenna
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The value of 1($’) is obt<iinecl from an integral equation

obtained by invoking the boundary conditions. The appro-

priate boundary condition is that the tangential electric

field must vanish at the surface of the loop. The value

of the electric field impressed across a delta gap

generator located at $ = O is V:(s). If the structure is

impedance loaded, the sum of the voltage drops across the

impedance must also be included. For a uniformly loaded

structure this is easily accomplished, since the voltage

drop per unit length (i.e,,, the electric field) is merely

proportional to the current at the same point. Consider-

ing only the unloaded case here, we have

V:(s) d(+]
E+(s) = -

(

1 3Q=-

)
+sA, p=b

b - ‘—p 3$ $

(2.2)

on the surface of the wire at $, where the scalar and

vector potentials at the element d! = bd$ are ~iven by

(2.3)

Denoting the speed of light by c, the kernel is defined by

23
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where

r=

and

‘lT

f
~-s/c r

W(+ -W)=~ CIY

o
(2.5)

~4b2 Sin’ ((j - 4)’)/2 i- A’ (2.6)

A ~ ~~ s~~ (y/2) (2.7)

In (2.4) and (205) the $ component of the surface density

current J ($) is assumed to be uriiforrn around the wire.
4

1(+) is the total current,

1((/))= 2ma Jo($) (2.8)

where, because of (2,1), the y-directed component of

surface current JY is assumed to be negligible. Note that

the voltage excitation is given by

T

J
bEO(s) do = V:(S) (2.9)

-n

By the equation of continuity,

and it follows from (2.10) and (2.3) that

(2.10)

●
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Integrating Equation (2.11) by parts,

“IT

aY ---1 a2-—= J 1($’) M(t - +’) do’ (2.12)
a+ 4nEsb 2Q2

-T

and substituting (2.12) and (2.4) into (2.2), one obtains

jno ‘-r

V:(s) (!+))= — J K(o - ~’) 1($’) d$’ (2.13)
4?T

-T

where a new kernel K($ - $’) is defined as

[

K($-$ ’)=-j ~cos(+-$’)-~~
1

W($ - (j)’)
c sb 3+2

(2.14)

W(($ - 0’), defined by (2. !5), may be expanded in a Fourier

series

w($) - (j)’)= ~ Km(s) e-jm( $-$’)
..m

(2.15)

The Km may be evaluated in terms of W(+ - $’), yielding

‘n

KJS) = J--J W($ - c+’)ejn($-$’) d$ = K-n(s)
2T -’JT

(2.16)

Using the results of (2.15) and rewriting (2.14), a

simple expression is obtained for K(+ - ~’) where

25



o
(2.17)

and

an(s) = ~ (Kn+l (s) + Kn.l (s))- ~ Kn(s} = a-n(s)
2C Sb

(2.18)

If we let 6 = @ - $’ and A = 2a sin (’+/2), the determina-

tion of the an depends upon the evaluation of the coeffi-

cients in Equation (2.16)S which, with the definition

R(e) = r/b, may be rewritten in the form

As shown by Mu, Equation (2.19} may be approximately

written in terms of integrals of Anger-Weber functions

for unrestricted n, as

●

bE .
.1 QO(X) dX + j

1]
JO(X) dX (2.20)

20 0

26



.Tf [’~(510(?)+‘,1

_K-n(s) = Kn(s) = ~

c.

J[J.”
1

Q2n(x) + jJ2n(X) dX
20

where < = -j2sb/c and 10 and Ii. are modified Bessel

functions of the first and second kind, respectively, and

y is Euler’s constant. The constant Cn is defined as

Cn = in 4n + y - 2 ‘i’
1 (2.21)

m=O (2m + 1)

Using the above results, (2.13) reduces to

jno co
V;(s)mo= -- X’(s)’e 1

-jn($-$’) 1($1) d+’
n-m

-Tr (2.22)

Expanding the above current in a Fourier series, one has

(2.23)

where the In(s) coefficients are given by

IT

In(s) = ~ J 1($’) ejn$’ d$l (2.24)
21T

-’IT

Combining the results of (2.22) and (2.24), we obtain

27
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This is a Fourier series with the coefficients (j~o/2)

an(s) In(s). The coefficients are obtained by using the

properties of the delta function,

(2,26)

Finally,

(2.27)

where the coefficient -j/[noTan(s)] of v:(s) may be

~dentified as the transfer admittance of the n‘h Fourier

component of current. In the following we repeatedly

refer to this quantity as the “transfer function” or

transfer admittance. Its reciprocal is called the

“transfer impedance. ”
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2.2 Expansion of the Transfer Admittance in Terms

of Its Singularities

To calculate the current, or equivalently, the trans-

fer impedance of a loop antenna, we have had to solve the

corresponding field problem--that is, we have solved

Maxwell ‘s equations subject; to the boundary conditions at

the surface-of the antenna. ~aving thus obtained the

transfer admittance for the loop antenna, we next study

its properties to determine the corresponding basic

properties of the loop antenna. However, some of the most

important general properties of the antenna transfer

admittance may be obtained from much more basic considera-

tions. These properties are common to all dynamical

systems --mechanical and acclustical as well as electrical

systems, and they are independent of the particular form

of the equations as long as these equations are linear.

Such properties were considered by Brune [7] with

special reference to electric networks, but these results

are easily extended to all linear dynamical systems

including systems with an infinite number of degrees of

freedom.

The natural oscillaticln constants of any passive

physical system, that is, a system without concealed

sources of power, must lie either in the left half of
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the complex s plane or on the fmaginary axis; otherwise,

the real part of the complex frequencies of oscillation

would be positive, arid the oscillations would grow in

amplitude without any contribution of power by the system.

An antenna in free space loses power by radiation,

whether its termina!s are short circuited or left floating;

hence, the poles of ics transfer admittance are in the

left half of the s plane. The only exception is the poirit

at the origin, Tl~s point corresponds to a static field.

Recognizing ~=at tF:. solutions of electromagnetic

problems are anal~.ic f’-{;tions of the complex frequency

s except at these =Iclc ‘-nq,~larities [co~p~ex natural

frequencies of Osc’llz:. cj is the basis of the singularity

(?Xpat2SiOtI methGd ; Et- !n:roc!uced b~ Baum [1]. By

expanding the tra~s?er F , ittance in a partial fraction

series, one needs jfily ~=ie poles and their residues to

coniplete~y determine t~ltitransfer function either in the

time or the frequency ~cmaln,

One of the advantages of the singularity expansion

method as compared to other more conventional methods is

that it provides a means of characterizing the electro-

magnetic properties of a body with a discrete set of

complex numbers together with a set Gf modal current

distributions. These quantities are uniquely determined
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by the body itself and do not depend, for example, on the .

driving source. Once these quantities are known, a wide

variety of antenna problems can be solved without having

tore-solve the boundary value problem. The singularity

expansion method is therefore useful for two reasons:

(1) it provides physical insight into the problem and

(2) it reduces an electromagnetic problem to the minimum

number of quantities necessary to completely represent

it.

The analytic property of l/an(s) with respect to s

allows the use of various theorems of complex variables

in obtaining information about its properties. The basic

idea involved in this technique is to expand the transfer

function of l/an(s) in terms of its singularities in the

complex frequency plane. Such singularities can take

various forms such as poles, branch points (and associated

branch cuts), essential singularities, and singularities

at infinity. For a restricted class of objects, which

includes the loop antenna, these s-plane singularities are

limited to poles and possible singularities at infinity.

Once one has found the complex natural frequencies

of oscillation and their corresponding current distribu-

tions, it then remains only to determine to what extent

each modal current is excited by a given Fourier component
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of the input waveform. For the loop antenna the excita-

tion of each modal current is proportional to the product

of the residue of the transfer admittance and the Laplace

transform of the corresponding Fourier component of the

excitation. To determine the natural frequencies of the

loop, it is necessary to find the poles sni of the trans-

fer admittance factor I/an(s).

To do this, one observes in (2.18) and (2.20) that

an(s) is analytic for all s for n = 0, and for all s

except s =Owhenn #O. This implies that I/an(s) is

analytic for all s except possibly for poles at the zeros

of an(s). Therefore, since an(s) vanishes at these zeros,

say Snis In(Sni) may be nonzero with ‘n(Sni] = 0~ i.e.,

no excitation is required at the natural frequencies in

order to have a current. Thus, at the pole frequencies,

we have source free solutions of the integral equation.

Umashankar [8] has shown that

1
‘ z ‘ni

an(s) i S - Sni

(2.28)

i.e., the transfer admittance can be written entirely as

a residue series involving its poles sni and residues Rni.

This is the desired expansion of the transfer admittance

in terms of its singularities.

●
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By our definition o-f the pole frequencies, we have

lir
an(sni~= s+Snj an(s) = O (2.29)

and the corresponding residues Rni are given by

Rni ‘i” ~= [d%]-’i= S+sni
an(s)

S = Snj

From (2.30) the Rni can be written as

where

dan

()
a’ sni = —
n ds

Ss =
ni

(2.30)

(2.31)

(2.32)

Using (2.28) in (2.27), wi? may write the n ‘h Fourier

component of the current as

The equivalent expression in the time domain is

in(t) =
(
~ R~i esnit

)
* v:(t)

i
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where

and R~i and sni must appear in complex conjugate pairs in

order for the time domain response to be real. The star

in (2.34) denotes convolution.

Expression (2.34) implies that poles must be in the

left half plane to avoid an exponentially increasing

current as a function of time. This is explained phys-

ically by the fact that source free currents must even-

tually radiate away all their energy; hence

in(t) t+ti~,n # O , io(t) -constant (2.36)

Making use of (2.23) and 2.27),

[

-j V~(s) ~
= •2~cosn$ 1 (2.37)

nom so(s) i an(s)

.

Expanding an(s) in its partial fraction representation, we

have finally
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-j V~(s)
1($) =

[

5 ‘“i
qoTT i=l S - Soi

L

( R
+2f cos n+ ~ ni

)]

(2.38)

n=l i=l S - Sni

Equation (2.38) is for the case of an antenna excited at

4 = O by a delta gap. In the more general case, the

excitation can be represented by an arbitrary incident
.

field E~nc($, s). Fourier expansion of E~nc(@,s) allows

the derivation to proceed as for the case of an antenna

and the result is

2T

R~i ejn+

J
E~nc(@’, s) e-jn$’bd$’

1(($,s) = E
o

n,i s - Snj

(2.39)

The terms ejn$ are called by Baum [1] the modal current
.

distributions, and the terms e-Jn@’ are the coupling

vectors. The quantity

21T

Vn(s) =
I

E~nc(@’, s) e-jn$’ bd$,

o

(2.40)

is called the coupling coefficient and indicates how much

of each mode the incident field excites. The sni are the
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poles or complex natural resonant frequencies.

If V: is equal to unit. for frequencies s = jw

in (2.37), then I(@zjw) is the current response due to a

unit voltage source in the real frequency domain. Hence

I((l,jw) is the input admittance and l/I(O,jw) is the input

impedance of the antenna. Hence, if a particular pote

is close to the imaginary axis, the impedance at real

frequencies in the vicinity of this zero is small, and

we have the phenomenon known as resonance. If several

poles are near the imaginary axis, the impedance will

fluctuate between small and large values as the frequency

passes these points. As the poles recede from the imagi-

nary axis, the fluctuations become less pronounced, and

the “resonance curves” become flatter.

An equivalent circuit can be developed representing

the field equations of Maxwell for an electromagnetic

field containing conductors and bound charges. Both

transient and sinusoidal field phenomena may thus be

studied by numerical and analytical circuit methods;

such a circuit model applies, of courses to radiation

from a loop antenna [91. The circuit models can in

principle be developed for all curvilinear-orthogonal

reference frames to allow the solution, to any desired

degree of accuracy, of any two-or three-dimensional
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problem. The models correspond to the approximation of a

transmis.sjon. line _in o_ne dimension by a cascaded series of

sections containing ordinary lumped circuit elements R, L,

C, and G’s. Since the field equations of Maxwell may thus

be represented by a stationary network (within any desired

degree of accuracy), it ma,y be stated that [9]:

Any theorem, formula, concept, or law that
is valid for stationary networks (such as reci-
procity theorems, Thevenin ’s theorem, concepts
of dualism, reduction formulas, generalization
postulants:, _==-o._ --etc ) can be translated into a corr-
esponding theorem, formula, concept, or law
relating to the electromagnetic field.

As the number of elements in the circuit increases,

the number of poles also increases. As a consequence of

the above circuit model of Maxwell’s equations, contin-

uous structures, including all of free space, are limits

of networks with an increasingly larger number of

increasingly smaller meshes. The number of their zeros

and poles will be infinite. (In fact, this must be true

of any physical circuit since all physical circuits are

continuous and cannot be wholly disassociated from the

surrounding space.)

Thus, there are an infinite number of complex

resonant frequencies whose locations are in the left half

of the complex frequency plane, and which occur in complex

conjugate pairs, as a consequence of the above theorem.
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In order to generate a real-time-domain response, poles of

the transfer impedance function must appear in complex

conjugate pairs and their residues must be in complex

conjugate pairs for poles not on the negative real axis.

It is then recognized that the transient response

of an object can be viewed as a superposition of a series

of damped sinusoidal oscillations at the so-called natural

frequencies of the object. It has been observed in many

electromagnetic pulse (EMF’) scattering and interaction

problems that the time dependence of various quantities,

such as the current induced on an object in an EMP simu-

lator, seems to be described by only a few of these

exponentially damped sittusoida~ oscillations[l].

2.3 Numerical Techniques and Results

The expression for an(s), (2.18) to (2.21), involves

~ntegrals of Anger-Neber functions of complex arguments.

These functions have been computed using an extension

to complex arguments of the methods described in ~10].

A parametric study of the roots of an(s) as a function

of the ratio b/a has been carried out using a numerical

search procedure. The roots, of course, satisfy the

requirement that they should appear only in the left half

of the s plane and in complex conjugate pairs.

The so-called Muller’s Method has been used to
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numerically determine the roots of an(s). In this method

three values of an(s) are computed from three estimates

of the root, say at Sn z, Sn ,, and Sn. Using these

values, a quadratic interpolation formula [11] is used
.

to approximate an(s) in the vicinity of the given points.

The root of the quadratic nearest the best estimate, say

sn, is designated Sn+l and the procedure is repeated using

sn-1’ Sn, sn+l until \Sn+l - Sn\/lsnl is less than a

preassigned number. For more details, the reader is

referred to reference [11],

Approximate pole locations to initialize the proced-

ure are not necessary, though in practice having good

initial estimates of pole locations will considerably

reduce the number of iterations required to find the

various roots. This searching procedure is in general

found to be quite efficient, but it has been found to be

rather difficult to find all of the poles in certain

regions when good initial estimates are unavailable.

One method which has been employed to overcome this

difficulty is to actually plot magnitude contours of the

function in the complex s plane. The regions near zeros

of an(s) show up clearly on the contour plot and provide

more accurate initializing data for Muller’s Method.

Furthermore, the contour plots themselves are useful in

determining the poles of the loaded structure, as we shall
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see in Chapter III.

The residue for I/an(s) may be easily calculated by

the residue theorem using a circular contour about the

pole as shown in Figure 2.

By the residue theorem, we have

1 dsR =~ —
ni 2mj Cni an(s)

In Figure 2, let

(2.41)

(2.42)

and substituting (2.42) into (2.41), we have

‘nv & j(ni* (2.43}

For a numerical approximation, we may divide the contour,

cni into m equal subdivisions and apply the simple rectan-

gular rule for integration:

m

z

ej 2(n-l)m/m (2m/m}
R E
ni=~

—

[ 1

(2.44)
“ 2(n-l)n/m

n=l an(s) Sni + ceJ

Thus the residue at the pole sni for an(s) is
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Figure 2. Contour in s-plane for calculating residues

.
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m
& x

~j 2(n-l)m/m
R
ni=~

[ I
[2.45)

n=l an(s) si + ce j 2(n-l)m/m

In equation (2.28) an important feature is that the func-

tion I/an(s) may be represented by its poles and residues

with no additional entire function required, as shown by

Umashankar [8].

Several checks were made to determine the rate of

convergence of (2.45). The value of E was varied from

10-1 to 10-5 while simultaneously the value of m was

varied from 3 to 24. It was found that for the combina-

tion of E = 10-3 and m = 3, accurate answers with a

relative error of the order of 10-7 were obtained. A

large number of these pole locations s = ~ni and corre-

sponding residues Rni have been calculated and tabulated

for a wide range of the loop parameter ~ = 21n(2nb/a).

These results permit one to use (2,34) to calculate time

domain loop currents for arbitrary excitation without

resorting to the comparatively inefficient process of

Fourier transformation.

By direct calculation we find in the complex fre-

quency plane an infinite number of complex resonant

frequencies whose locations suggest three separate cate-

gories of resonant frequency or pole types for each mode
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number n:

IYE!Q
There is a single pole very near the s = jw axis at

approximately w = n. This pole gives the principal con-

tribution to the time domain response of the loop at late

times and the imaginary part of the pole location corre-

sponds closely to the resonant frequency of the loop for

jn$an excitation of the form e .

Type II

There are n+l of these poles (including conjugate

pairs) which lie roughly on the left-hand side of an

ellipse centered at s = O and with a semimajor axis some-

what larger than n.

Type III

There is a layer of poles lying almost parallel to

the s = jw axis. The layer contains an infinite number

of poles and they are spaced approximately Aw = me/b

units apart, where b is the loop radius.

As with thin cylindrical wires, increasing the wire

radius has the effect of shifting the Type I poles near

the jo axis away from the axis, or equivalently, increas-

ing the damping constants of those modes in the time

domain [12]. Types II and III poles located further

away from the imaginary axis, however, move away from the
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imaginary axis as the radius approaches zero.

Pole and residue data for the three loop sizes

Q= 2Ln2~b/a = 10, 15, and 20 are presented in Figures 3

through 8 and Tables 1 through 8 for modes n = O through

20. For a particular mode, Type 11 poles fall on an

elliptically shaped curve with n + 1 poles (including

conjugate pairs). There will be one more pole (Type 1)

at approximately u = n. Displayed in Figures 4, 6, and 8,

corresponding to 0 = 10, 15, and 20, respectively, are

the layers of Type 111 poles parallel to the s = jw axis.

These poles are shown for each mode O through 20 for

values of wb/c = O to wb/c = 30.

The residue corresponding to each of the poles

plotted in Figures 3 through 8 are tabulated in Tables 1

through 8. These are tabulated in three columns for the

three loop sizes Q = 10, 15, and 20. The first number in

each column represents the real value of the residue, and

the second is its imaginary value. The index is a unique

four-digit number that identifies a particular pole. The

first two digits are the mode number for modes O through

20. The last two digits can be grouped into three differ-

ent categories corresponding to the three different types

of poles. A double zero (00) in the last two digits of

the index corresponds to the single Type I pole very near
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Table 1. Residues of the Poles for Pole Indices 0000 to 0801

v-l
I--J

~

~Inde;

0000
0001
0100
0101
0200
0201
0202?
0300
0301
0302
0400
0401
0402
0403
0500
0501
0502
0503
0600
0601
0602
0603
0604
0700
0701
0702
0703
0704
0800
0801

Q= 10.0

Real

9.6815E-01
-2.9470E-01
5.9642E-01

-2.2305E-01
6.8334E-01

-2.2568E-01
-1.1205E-01
7e4769E-01

-2.3759E-01
-8.5631E-02
7.9708E-01

-2.4677E-01
-7.2780E-02
-6.8024E-02
8e3480E-01

-2.5137E-01
-6.3657E-02
-6.0045E-02
8.6287E-01

-2e5121E-01
-5.6169E-02
-5.4423E-02
-5.4773E-02
8.8293E-01

-2.4673E-01
-4.9577E-02
-4e9716E-02
-5.ll16E-02
8.9649E-01

-2.3867E-01

Imaginary

0.0
0.0
2.2783E-01

-2.5019E-01
2.8602E*01

-2.5470E-01
0.0
3.4247E-01

-2.7773E-01
3.4770E-02
3.9755E-01

-3.0735E-01
5.3439E-02
0.0
4.5073E-01

-3.3948E-01
6.6648E-02
A.7067E-02
5.0120E-01

-3e7187E-01
7.7061E-02
2.8663E-02
0.0
5.4817E-01

-4.0299E-01
8.5709E-02
3.7647E-02
1.1338E-02
5.9105E-O1

-4.3179E-01

$-2= 15.0

Real

S.4716E-01
-i.5274E-01
3.1394E-01

-1.1240E-01
3*3907E-01

-1.0174E-01
-5.9709E-02
3.5724E-01

-1.O1O5E-O1
-4.3284E-02
3e7184E-01

-le0231E-01
-3.6693E-02
-3.0160E-02
3.8424E-01

-Io0415E-01
-3*2820E-02
-2.5133E-02
3.9512E-01

-1.0617E-01
-3.0156E-02
-202211E-02
-2.0890E-02
4.0489E-01

-le0823E-01
~2e8158E-02
-200204E-02
-I08461E-02

4e1378E-01
-1C1028E-O1

Imaginary

0.0 “
000
5.2905E=-02

-8.2087E-02
5.5632E-02

-6.6389E-02
000
5.8464E-02

-5.9250E-02
le2467E-02
6.1174E-02

-5.5331E-02
1.8668E-02
0.0
6.3744E-02

-5e2955E-02
2.2656E-02
5.5337E-03
6.6188E-02

-5e1445E-02
2.5580E-02
8.8515E-03
000
6e8522E-02

-5.0473E-02
2e7889E-02
1.1163E-02
3e1974E-03
7.0761E-02

-4.9858E-02

c? = 20.0

Real

3.8119E-01
-1.005AE-01
2.1011E-o1

-7.2183E-02
2.2112E-01

-6.1741E-02
-4.0706E-G2
2.2872E-01

-5.9145E-02
-2.9036E-02,
2.3465E-01~

-5.8299E-02
-2.4528E-02
-1.9486E-@2,
2.3954E-oli

-5.8080E-02
-2.1974E-02:
-1.5958E-02
2.4375E-01

-5.8140E-02
-2.0272E-02’
-103978E-02
-1.2924E-02
2.4746E-f)l

____l

-5.8339E-02
-109033E-02
-1.265f3E-02
-1.1248E-02
205078E-01

-5.8613E-02

Imaginary

000
0.0
202899E-02

-4e5932E-02
2,2788E-02

-3.5420E-02
000
203055E-02

-300076E-02
6.8028E-03
2.3413E-02

-2.6869E-02
1,0300E-02
0.0
2.3794E-02

-204713E-02
lo2496E-02
3e1224E-03
2e4174E-02

-203156E-02
1.4057E-02
4.9584E-03
0.0
204546E-02

-2s1976E-02
1*5254E-02
6a2035E-03
lo7734E-03
2.4906E-02

-2e1048E-02



Table 2. Residues of the Poles for Pole Indices 0802 to 1205

u-l
NJ

Pole
0= 10.0 I Q= 15.0 2= 20.0

Index Real Imaginary Real Imaginary Real Imaginary

oeo2 “4.355flE-02 9.3095E-O? -2.65”74E-(12 2.9EI05E-oz -1.8079E-02 1.621EW-G2
0803 -4.5440E-02 4.5068E-w02 *1.13696E=-02 1.2fJ21E-l?2 -1.1691E-fJ2 7.1242E-03~
0604 -4.7987E-02 2.0048E-02 -le680iE-02 5.3S96E-03 -1.0136E-02 2.9433E-03
0805 -4.8913E-Q2 O*O -1.6347E-02 0.0 -Q.7ti31Ev03 0.0
0900 9.0495E-01 6.2952E-G1 4.2199E-01 7.2918E-02 2.5380E-01 2.%?55E-02’
0901 -2.2795E-01 -4.5768Ew01 *A.1229E-01 -4.9494E-w02 -5.8928E-02 -2.0301E-02~
0902 -3.7949E-02 9.9501E-02 -2!.5271E-02 3.1467E-02 -lo7313E-n2 1.7023E-02
0903 -4.1392E-02 5.1407E-02 -1.7497E-02 1.4336E-Ot? -1.0942E-02 7.8455E-03:
0904 -4.5033E-02 2.7Z42E-02 -1.5556E-o? 6.9643E-(J3 -q*3~33Ea.03 3.7889C-03,
0905 -4.6974E-02 8.671OE-O3 --1.4YllE-G2 2.1226E-03 -e.7854E-03 1*1504E-03
1000 9.0956E-01 6.6353E-01 4Q2963E-01 7.50tllE-CJ.2 2~565tlE-ill 2.5591E-02,
iool -2.i544E-01 -4*8039E-01 -la1425E-oi ‘4.9313E-02 -5.9264E=-02 -l*9686E-Gi?
1002 -3.2666E-02 1.0511E-01 -i?*k168E-oi? Be2a89E-(j2 -1.6ti82E-02 1.7713E-021
1003 -3.741j3E-02 5.6920E’-O2 -1.6508E-02 1.5521E-02 -1.0337E-n2 8.4338E-IJ3
1004 -4.2114E-02 3.3414E-02 -~.4566E-(_)2 8e~~99E-OS -$).6924E-03 4.4386E-03~
1005 -4.5036E-02 1.5851E-02 -I03836E=-02 3.6725E-03 -8.0726E-03 1.9697E-(J3’
AO06 -4.6033E-(12 O*O ‘~b~b36~-~2 O*(I
1100

-7.WIZ4E-03 0.0
9.l141E-01 6.9323E-01 4.3679E-01 7.7021E-OZ 2.5915E-fii 2.5$I17E-fi2

11OA -2.0193E-01 -409993E-01 ‘lQ~~].~~-o~ -4.9270E-02 -5.9612E-02 -le9171E-02
1102 -2.7663E-02 1*IO04E”-01 -203213E-02 3.4178E-02 -],.6149E-02 1.8315E-02
1103 -3.3671E-02 6.1760E-(,12 -1.5668E-02 1.6542E-OZ -9.8347E-03 8.9283E-f13
1104 -3.9172E-02 3.8819E-G2 -i.3748E-02 9.2715E-03 -8.1824E-03 4.9599E-03
1105 -4.2998Ew02 2.2055E-02 -1.2983E-02 4.8778E-03 -7.5199E-G3 2*5$11E-03
1106 -4.4970E-02 7.2036E-03 UV1.261WE-(12 1.532?E-03 -7.2612fE-03 8.li28E-04
1200 9.1136E-01 7.1895E-01 4.4355E-01 7*8983E*02 2a6155E-nl 2.6231E-02
1201 ‘1.8809E-01 -5.1649E-01 -1.1802E-01 -4.9333E-02 -5.9964E-1)2 -1.8735E-02
1202 -2.2915E-02 1.1439E-01 -2.2374E-02 3.534hE-02 -l@5692E-i12 1.t1850E-02
1203 -2.9945E-02 6.6028E-02 -].4941E-02 1.7440E-52 -9*4(lE14E-1)3 9.3536E-(13
1204 -3.6190E-02 4.36QOE-02 -103053E-o2 1.0156E-02 -7,7580E-03 5.3918E-03
1205 -4.0E121E-02 2.7539E-ii2 -1.2278E-C12 5.8574E-03 -7*0730E-03 3.0839E-03

●
,
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Table 3. Residues of the Poles for Pole Indices 1206 to 1601

Pole
a= 10.0 !2= 15.0 Q = 20.0

4
Index Real Iniaginary Real Imaginary Real Imaginary

1206 -4.3708E-02 1*3477E-02 --1.1929E-02 2.7126E-03 -6.7647E-03 1.421OE-O3
1207 -4.4695E-02 0.0 -1.1827E-02 0.0 -606741E-r)3 0.0
1300 9.1OO9E-O1 7.4107E-O1 4,4996E-01 8.0894E-02
1301 -lo7439E-01

2.6380E-01 2.6536E-02
-5.3035E-ol ‘101983E-o1 -4m9480E-Oi! -6.0317E-02 -1.8361E-02

1302 -1.8404E-02 lo1823E-01 -2,1625E-02 3.6417E-02 -1.5293E-02 1.9331E-fj2
1303 -2*6304E-02 6.9796E-02 -le4299E-02 l*8244E-Oi? -9.0402E-03 9.7259E-03
1304 -3.3169E-02 4.7i346E-02 -le2450E-OZ 1.0924E-02 -7.3969E-fi3 5,7586E-03
1305 -3.8496E-02 3s2440E-G2 -1*1678E-02 6.6800E-G3 -6.7008E-03 3.4880E-031
1306 -4e2219E-02 1*9082E-02 -IQ1306E-02 3.6627E-03 -6.3634E-03 1.9005E-031
13!)7 -4.4153E-02 6m3224E-G3 -lel148E-02 1.1710E-03 -6.2205E-03 6.0569E-04
1400 9.0811E-01 706003E-01 4e5607E-01 8e2758E-02 2e6592E-nl 2.6831E-02
i401 -ie61ZoE-01 -5.4iq6E-Oi -1.2i59E-ol -4e9694E-0~ ‘6.0667E-fi2 -1.8037E-021
1402 -le4123E-02 1.2162E-01 -2.0949E-02 3.7407E-02 -1.4942E-(!2 1.9768E-021
1403 -2.2754E-02 7.3119E-02 -lQ3726E-02 1.8973E-02 -8.7179E-03 1.0057E-02
1404 -3.0123E-02 5o1618E-02 ‘101918E-O2 1.1605E-02 -7.0843E-03 6.0763E-03~
1405 -3.6033E-02 3,6839E-02 -ioll!58E-02 7.3881E-03 -6.3838E-03 3.8280E-03
k406 -4~~497E-02 2.4153E-02 -1.0776E-02 4e4540E-03 -6.0292E-03 2e2907E-03;
1407 -4e3320E-02 le2033E-02 -1.0588E-02 2.1075E-O3 -5.8542E-03 1.0791E-03
1408 -4.4291E-02 0.0 -1oO53IE-=O2 0.0 -5.8008E-03 0.0
1500 9.0577E-01 7e7623E-01 4c6190E-01 8.4580E-02 2.6793E-01 2c7117E-02
1501 -1.4875E-01 -5.5134E-01 -ls2331E-01 -4.9962E-02 ‘6.I014E-02 -1.7755E-02
1502 -1.0065E-02 le2460E-01 -2e0333E-02 3*8330E-02 -104630E-G2 2.0168E-02
1503 -1.9305E-02 7,6043E-02 -le3209E-02 le9642E-02 -8.4323E-G3 1.0354E-G2
1504 -2.7070E-02 5e4960E-02 -le1442E-02 le2216E-02 -608099E-03 6.3558E-03
1505 -3e3453E-02 4,0785E-02 -le0698E-02 8aO097E-03 -6.109OE-O3 4.1200E-03
1506 -3e8!553E-02 2.8761E-02 -la0315E-02 5.1300E-03 -5.7444E-03 2,6167E-03
1507 -4.2189E-02 1.7267E-02 -1oO1I1E-O2 2.8824E-03 -5.5491E-03 lo4622E-03
1508 -4*4097E-02 5e7722E-G3 -IoO021E-02 9.3144E-04 -5.4624E-G3 4.7123E-04
1600 9.0331E-01 7.9006E-01 4e6748E-01 8*6363E-02 2.6984E-01 2.7395E-02
i601 -1.3716E-01 -505911E-01 -1.2498E-01 -5.0275E-02 -6.1356E-G2 -le7508E-02



Table 4. Residues of the Poles for Pole Indices 1602 to 1900

w
J=

9

Pole
Inde)

m
1603
1604
16n5
1606
1607
1608
1609
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1900

!2= 10.0

Real

-6.2230E-03
-1.5966E-02
-2.4032E-02
-3.0780E-Oi?
-3.6407E-02’
-4.0764E-02
-4.3559E-02
-4.4525E-02

9.0092E-01
-1.2652E-01
-2.5935E-03
-1.2746E-02
‘2.1028E-O2
*2.8044E-02
==3.4090E-02
-3.9066E-02
-4.2673E-02
-4.4584E-02

8.9867E-01
‘1.1684E--O1

8.2954E-04
-9.6537E-03
*A.8079E-02
-2.5274E-02
-3.1633E-02
-3.7118E-02
-4.1451E-02
-4.4260E-02
-4.5237E-02

8.9665E-01

Imaginary

1.Z’723E-01
7.8609E-02
5.7912E-t12
4.4314E-@2
3.2946E-02
Z?.Z!090E-02
1.l133E-02
0.0
8.0186E-01

-5.6545E-01
1.2955E-fil
8.0850E-02
6.0504E-02
4.7453E-02
3.~732E-f)2

2.6531E-02
1.6145E-02
5.4302E-03
801194E-01

-5.7061E-01
1.3157E-01
8.2800E-02
6.2767E-QZ
5.0226E-02
4.0135E-02
3e0604E-fJ2
2.0831E-02
1.0S84E-02
O*O
8.2055E-111

Q= 15.0

Real

w1.9768E-02
-1.2737E-02
-i.1012E-02
-1.0287E-02
-9.9084E-03
-9.6972E-03
-9.5875E-03
-9.5533E-03
4.7286E-C)l

-1.2662E-01
*1.9245E=-02
-1.2304E-02
-1.0620E-02
-9.914SE-03
-ij*544~~w03
-903313E-03
-9.2109E-O3
-9.1559E-03
4.71303E-01

-1.2821E-01
-1.8758E-02
-1.1903E-02
-L.0Z!59E-02
-9.5746E-03
-9e2143E-03
-9.(I034E*03
-8.8779E-03
-8.8104E-Q3
-8.7890E-03
4.8302E-01

●
*

Imaginary

3.9195E-02
2e0259E~02
1,2772E-02
8.5639E-03
5,7195E-03
305405E-03
1.6982E-03
0.0
8,8111E-02
-5a0626E-02
4.0011E-02
2.0835E-02
1,3282E-02
9,0643E-03
6*2418E-03
4.ll13E-03
2e3465E-03
7m6368E-04
8e9826E-02

●5QIO08E-02
4.0783E-f)2
2*1374E-02
lo3754E-02
9,!3211E-03
6,7109E-O3
4,6146E-03
2e9062E-03
le4068E-03
0.0
9s1511E-02

Q= 9n o I

Real

-1.4350E-02
-8.17f)9E-03
-6.5664E-=03
w5.8675E-03
-5.4974E-03
-5.2892E-f13
-5.1806E-03
-5.146F!E-03
2.7166E-01

-6.1693E-02
-1.40~6E-02
-7.9466E-03
-6.34EilE-03
-5.6529E-03
-5ei?801E-03
-5.0636E-03
-4.9406E-03
-4.8842E-03
2i)7341E-01

-6.2024E--O2
-1.3865E-02
-7.7375E-03
-6.1508E-03
-5*4602E-03
-5.0868E-03
-4,8651E-03
-4,7322E-03
-4.6605E-03
-4.6378E-03
2.750F!E-01

7
k“.!,

Imaginary

2.053”7E-02
100624E*o2
6,6048E-03
4,3749E-03
Z’.8948E-fl3
1.7804E-03
8.5077E-f14
0.0
2.7665E-02

-1.7290E-02
2.0880E-02
1.0871E-02
b.82Q2E-n3
4.6005E-03
3.1361E-03
2*0506E-03
1.1648E-C!3
3.7821E-04
2.7929E-P2
w1.7097E-02
2.1200E-02
1.A098E-02
7.0331E-03
4.807!5E-03
3.34R6E-@3
2.2840E-03
1.4303E-03
6.9011E-04
0.0
2.81f36E-02
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Table 5. Residues of the Poles for Pole Indices 1901 to 0038

t

Pole
Inde)

1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
,2000
2001
~2002
i2003
2004
‘2005
2006
i2007
2008
;2009
~2010
2011
0031
0032
‘0033
0034
0035
0036
0037
f1038

$-l= ?0,0

Real

-I*O81OE-O1
4e0521E-03

-6,6944E-03
-1.5201E-02
-i?.2499E-02
-2.9073E-02
-3.4956E-02
-3.991OE-O2
-4.3552E-02
-4.5494E-02
8.9486E-01

-1.0027E-01
7.0805E-03

-3.8722E-03
-I.241OE-O2
-1.9743E-02
-2.6443E-02
-3.2617E-02
-3.8080E-02
-4.2465E-02
-4.5337E-02
-4.6340E-02
8.2815E-02
7e5120E-02
6.7087E-02
5.9855E-02
5.3293E-02
4.7375E-02
4.2101E-02
3.7452E-02

Imaginary

-5.7480E-01
A.3335E-01
8.4487E-02
6.4729E-02
5.2658E-02
4.3170E-02
3.43]3E-02
2.5195E-02
1.5482E-02
5.2313E-03
8.i!790E-(jl

-5.7820E-01
1.3489E-01
8.5940E-02
6.6419E-02
5.4772E-02
4.5853E-02
3.7659E-02
2.9226E-62
2.0117E-02
1.0c?a6E-02
0.0

-1.3988E-01
-7.4634E-ci2
-4.6155E-02
-2.9319E-02
-1.8238E-G2
-1.0622E-02
-5.2913E-03
-1.5370E-03

Real

-1.2977E-01
-1.8302E-02
-1.1529E-02
-9.9245E-03
-9.2619E-03
-8.9130E-03
-8.7064E-03
-8.5794E-03
-8.5048E-03
-8.4701E-G3
4.t9785E-01

-1.3130E-01
-~.7a74E-02
-1.1180E-02
-9.6133E-03
-8.9721E-03
-8.6355E-03
-8.4349E-03
-8.3090E-03
-8.2309E-03
-8.1879E-03
-8.1741E-03
9.9561E-G3
1.4131E-02
1.3484E-02
1.2575E-02
1.1780E-02
lel120E-02
le057iE-02
1.O11OE-O2

15.0

Imaginary

-5.1416E-02
4.]517E-oi?
2.1881E-02
le4194E-02
9.9415E-03
7.1369E-03
5.0645E-03
3a3’977E-03
1.9601E-03
6,4108E-04
9,3167E-02

-5,1848E-02
4,2216E-02
202362E-02
1.4607E-02
le0332E-02
7e5273E-03
5,4714E-03
3.8354E-03
2e4443E-03
1.1909E-03
0.0

-8.9579E-02
-5e2785E-02
-3.8494E-02
-3e0702k-02
-2,5729E-02
-2,2246E-02
-lc9652E-02
-1.7634E-02

!2= 20.0

Real

-6.2350E-02
-1.3654E-02
-7.5464E-f)3
-5.9713E-03
-5.2u59E-i)3
-4.9132E-@3
-4.6884E-03
-4.5488E-fi3
-4e4664E-n3
-4.4279E-03
2,7669E-01

-6.2669E-02
-1.3459E-02
-7.3708E-03
-5.8070E-G3
-501271E-03
-4.7559E-03
-4.5296E-03
-4.3855E-03
-4.2955E-~!3
-4.2457E-03
-4.2298E-03
-4.2350E-03
2.7842E-03
3,5937E-03
3.5961E-(z3
3.4365E-03
3.2503E-03
3.0722E-93
2.9107E-O3

Imaginary

-le6925E-(i2
2.1500E-G2
1.131OE-G2
7.2199E-ii3
4.9850E-03
3.5378E-03
2.4884E-03
1.6588E-C3
9.5296E-04
3.I105E-O4
2-8436E-tJ2

-1.6771E-02
2.1783E-02
1.1507E-Oi?
7.3923E-G3
5.1513E-03
3.7080E-03
2.6698E-03
1.8583E-03
1.1784E-G3
5.7248E-04
0.0

-6.0370E-02
-3.5035E-02
-2.5179E-02
-1.9868E-02
=-1.6522E-G2
-lo4208E-02
-1.2506E-02
-1.1198E-02



Table 6. Residues of the Poles for Pol@ Indices ~039 to 0436.

W
m

o

Pole
Index

C’5T
0131
oi32
0133
0134
0135
0136
0137
0138
0231
0232
0233
0234
0235
0236
0237
0238
0331
0332
0333
0334
0335
0336
0337
0431
0432
0433
0434
0435
0436

!2= 10.0

Real

3.3736E-02
8.1333E-02
7.1975E-02
6.3909E-02
5.6814E-02
5.0469E-02
4.4814E-02
3.9819E-02
3.5455E-02
8.1152E-02
7.0030E-02
6.1505E-O?
5.4339E-02
4.8102E-O2
4.2640E-f32
3.7872E-02
3.3855E-02
8.1522E-02
6.8627E-02
5.9556E-02
5.2261E-02
4.6087E-02
4.0779E-02
3.6201E-02
8.2030E-02
6.7504E-02
5.7908E-02
5.0479E-02
4*4350E-OZ
3.9172E-02

Imaginary

l*0506E-03
-ln0730E-01
-6.0344E-02
-3.7634E-G2
-2*3673E-G2
‘le4340E-02
-70&$75E-03
-3.3646E-03
-1.74S5E-04
-9e3077E-02
-5.1664E-02
-3.1785E-02’
-1.9592E-02
-1,1463E-02
-5.8585E-03
-1.9402E-03
7.4036E-04

-8.4337E-02
-4,558t+E-02
-2.7463E-G2
-1,6506E-02
-9.2698E-03
-4.3128Ew03
-8e8434E-04
-7e8092E-02
-4a0992E-02
-2,4123E-02
*1.4101E-O2
-7.5591E-03
-3+l130E-03

15.0

Real

9.6986E--O3
1.2415E-02
1.3909E-M02
1.307W0-02
1.2206E-02
1.1468E-02
1.0859E-02
le0350E-02
9.9221E-03
le2577E-02
le364bER-02
le2785E-02
Is1942E-02
1.1239E-02
I-0661E-02
leO179E-02
9.8279E-03
I02595E-02
1.3467E-02
1025B4E-O2
A.1752E-02
1.I069E-02
I*0509E-02
1.0044E-02
I02648E-Q2
103363E-O2
1.2449E-02
1.1617E-02
1oO942E-O2
la0392E-02

Imaginary

-1,5993E-0%
-7.0875E--O2
-4e5625E-02
-3m4600E-02
-2,8219E-02
-2.3990E-02
-2.0951E-02
-le@644E-02
-lebti23E-OZ
-b*3606E-02
-4.1733E-02
-3s2125E-02
-2.6487E-02
=-2V2700E-02
-l*9947E-02
-le7838E**02
-1.6189Eo02
-5*9743E-02
-3.9274E-02
-3*0404E-02
-2,5204E-02
-201702E-02
-1*9144E-02
-1*7175E-02
-5.7364E-02
-3*7577EwOZ
-2*9133E-02
-2.4213E-02
‘2e0903E-02
-lmfi484E-Oi?

Q“=

Real

2.7846E-03
-4.9828E-04
3.2179E-03
3.6058E-03
3.5220E-03
3.3469E-03
3.1636E-03
2.9932E-03
2.8406E-03
t3.37i?4E-oS
3.2650E-03
3e5476E-rJ3
3.4415E-03
3.2660E-03
3.0886E-03
2.9254E-(;3
2.7796E-03
2.1185E-04
3.2321E-03
3.4796E-03
3.3682E-fi3
3.1960E-03
3.0243E-03
2.8670E-03
2.3376E-fi4
3.1843E-03
3.4169E-03
3.3046E-f)3
3.1361E-03
2.9693E-(j3

20.0

Imaqinar,y
m

-1.0159E-02
-4.7243E-02
-3.0038E-02
-i2.2502E-02
-1.8186E-02
-i.5360E-02
-1.3354E-02
-1.1850E-02
-1.0678E-02
-4.1919E-G2
-2.7288E-OZ
-2.0792E-02
-1.7011E-02
-1.4499E-02
-1.2694E-02
-1.1327E-02
-1.02!58E-02
-3.9019E-02
-2.5536E-02
-1.9600E-02
-1.6142E-02
-1.3835E--O2
-1.2168E-02
-1.0900E-02
-3.7193E-02
-2.4317E-(12
-1.8718E-02
-1.S470E-02
-1.3304E-02
-1.1738E-02

@

I



e

LPoleIndex
0437
053A
0532
0533
0534
0535
0536
0631
0632
0633
0634
0635
0636

u-l 0731
0732
0733
0734
0735
0736
0831
0832
0833
0834
0835
0931
0932
0933
0934
*0935

Table 7. Residues of the Poles for Pole Indices 0437 to 0935

Q= 10.0

Real
3.4751E-02
8.2516E-02
6.6539E-02
5.6474E-02
4.8926E-02
4.2837E-02
3.7771E-02
8.2922E-02
6.5674E-02
5.5204E-Oi?
4.7557E-02
4.:!50e5-e2
3.6507E-G2
8.323]E-02
6.4878E-02
5.4064E-02
4.6341E-02
4.0329E-02
3.5746E-02
8.3446E-02
6.4136E-02
5.3034E-02
4.5251E-02
3.92alE-02
8.3575E-02
6.3439E-02
5.2095E-02
4.4271E-02
3e8348E-02

Imaginary
-105451E-O4
-7.3258E-02
-3.7363E-G2
-2.1466E-02
-1.2188E-o?
-6.2031E-03
-2.1722E-03
-6.9338E-02
-3.4414E-G2
-1.931OE-O2
-1.0b42E-02
-5.i;56E-03
-1.4A37E-G3
-6.6066E-02
-3.197iE-02
-1.7536E-02
-9.3799E-G3
-4.2358E-03
-9.1274E-G4
-6e3284E-02
-2.9920E-02
-1.6060E-02
-8.3398E-03
-3.5204E-03
-6.0889E-02
-2.8180E-02
-1.4823E-02
-7.4774E-03
-2.8843E-03

Q= 15.0

Real
9.9332E-03
A.2747E-02
1.3315E-02
1.2363E-02
1.1522E-02
1.0848E-02
I*0302E-02
1.2882E-02
1.3307E-02
i.2313E-02
AQ1457E-02
i.O’778E-02
1.0234E-02
1.3043E-02
1.3329E-02
1.2290E-02
101415E-02
1.0729E-02
1.0217E-02
I03222E-02
1.3373E-02
102287E-O2
1oI391E-O2
1oO695E-O2
1.3415E-02
1.3434E-02
1.2299E-02
io1381E-02
1.0676E-02

Imaginary

-1.6608E-02
-5.5771E-02
-3.6336E-02
--2.815!5E-02
-2.3422E-02
-2,0249E-02
-1.7932E-02
-5.4642E-02
-3.5389E-02
-2.7379E-02
-2,2775E-G2
-109701E-O2
‘1.7462E-02
-5.3812E-02
-3a4645E-02
-2.6746E-02
-2e2236E-02
-lo9235E-02
-lo7020E-02
-5.3185E-G2
-3,4045E-02
-2,6221E-02
-2.1778E-G2
-1.8833E-02
-5.2701E-02
-3.3552E-02
-2.5777E-02
-2.1384E-02
-1.8484E-02

L?= 20.0

Real

2.8234E-03
2.2764E-04
3.1385E-F3
3.3626E-’3
3.250!5E-03
3.0850E-i)3
2.9218E-iT3
2.1594E-04
3.0990E-03
3.3167E-fi3
3.2046E-03
3.0413E-03
2.8808E-03
2.0568E-04
3.0664E-03
3.2782E-03
3.1657E-(j3
3.0038E-03
2.8598E-03
1.9896E-04
3.0401E-03
3.2463E-rj3
3.1327E-03
2.9716E-03
109617E-04
3.0193E-(?3
3.2197E-n3
3.1047E-o3
2.9441E-(j3

Imaginary

-1.0545E-02
-3.5’3+2E-02
-2.3420E-02
-1.8039E-02
-1.4935E-G2
-1.2871E-02
-1.1379E-02
-3.5035E-02
-2.2732E-02
-1.7498E-02
-1.4499E-G2
-1.251OE-O2
-1.1076E-O2
-3.4351E-02
-2.2187E-02
-1.7058E-02
-1.4135E-02
-1.2205E-02
-1.0811E-02
-3.3821E-02
-2.1746E-G2
-1.6693E-02
-1.4828E-G2
-1.1942E-02
-3.3400E-02
-2.1383E-G2
-1.6385E-02
-1.3565E-02
-1.i713E-02



Table 8. Residues of the Poles for Pole Indices 1031 to 2031

Ln
m

Pole
Index

ti?ir
1032
1033
1o34
1131
1132
1133
1134
1231
1232
1233
1234
1331
1332
1333
1431
1432
1433
1531
1532
1533
1631
1632
1731
1732
1831
1832
1931

EEL

s-l = 10.0

Real I Ima~inar.y
$.3629E-021 -5.8808E-02
6.2779E-02 -2.6694E-02
5.1236E-02 -1.3779E-02
4.3383E-02 -6.7584E-03
8.3619E-02 -5.6990E-02
6.2154E-02 -2.5418E-02
5.0447E-02 -A.2894E-02
4.2575E-02 -6.1552E-03
8.3555E-02 -5.5393E-02
6.1560E-02 -2.4317E-02
4.9719E-02 -1.Z142E-Oi?
4.18i6E-02 -5.6757E-03
8.3447E-02 -5.39f16E-02
6.0996E-02 -2.3363E-02
4.9046E-02 -1.1500E-oi?
8.3301E-02 -5.2743E-02
6.0458E-02 -i?.2536E-02
4.8421E-02 -1.0951E-02
8.3124E-02 -5.1642E-02
5.9946E-02 -2.1816E-02
4.7840E-02 -1.0479E-02
6.2923E-02 -5.0667E-02
509457E-02 -2.L190E-02
8.27Q1E-02 -4.9801E-02
5.8990E-02 -2.0645E-02
8.2463E-02 -4.9032E-02
5.8544E-02 -2.0169E-02
8.2212E-02 -4.8349E-02
8.1950E-0+4 .7743E-02

o= 15.0

Real

1*3616E-02
1035O6E-O2
102324E-O2
la1383E-02
1*3823E-02
1.3589E-02
i.235aE-02
101393E-o2
1s4034E-02
1*3678E-02
1s2400E-02
1oI411E-O2
104248E-O2
I03773E-02
la2448E-02
1*4463E-02
103873E-O2
142!502E-02
le4679E-02
103975E-O2
1*2559E-02
l,4894E-02
1*4080E-02
1*5108E-O2
104187E-O2
le5322E-02
104295E-O2
lm5534E-02
1*5744E-02

Imaginary

-5.2323E-02
‘3.3141E-02
‘2.53’37E-02
-2.1041E-O2
-5.2023E-02
-3.2793E-02
-2m5069E-02
-2.(3740E-02
‘501784E-02
-3.2496E-02
-2.4781E-02
‘2.0475E-02
‘5.1592E-Oi?
-3.2239E-02
-Z.45i?8E-02
-5.1438E-02
-3.2016E-02
-2.4302E-02
-5.1,314E-02
-3.1820E-02
-2.4101E-02
-5.1214E=-02
‘3.1647E-(i2
-5.1135E-02
‘3Q1493E-02
-5.1073E-02
-3.]356E-02
‘5.1024E-02
-5.0986E-02

20.0

Real

1.9706E-04
3eO033E-f13
3.1977E-fi3
3.0808E-03
2.0122E-04
2.9913E-03
3.1796E-03
3.0605E-03
2.0820E-04
2.9826E-03
3.1648E-fi3
3.0427E-03
2.A760E-04
2.9768E-03
3.1528E-03
2.2905E-04
2.9734E-03
3.1432E-03
2.4224E-04
2.9721E-03
3.1357E-03
2.5690E-04
2.9726E-03
2.7201E-04
2.9746E-03
2.8978E-04
2.9779E-03
3.0764E-04
3.2627Ew04

Imaginary

-3.3061E-02
-2*1078E-o2!
-1.6122E-02
-1,3337E-02
-3.2784E-G2
-2,0820E-02
-1.5895E-G2
-1.3138E-02
-3*2555E-02
-2.0598E-02
-lo5698E-02
-1.2962E-02
-3.2364E-02
-2a0407E-02
-1*5524E-02
-3.2205E-02
-2e0240E-02
-1,5370E-02
-3.2070E-02
-200094E-02
-1,5234E-02
-3.1956E-02
-1,9965E-02
-3.1860E-02
-1.9851E-c12
-3,1778E-02
-1.9749E-02
-3a1709E-02
-301650E-02

o
* .



the wb/c axis at approximately w = n. Type II poles,

which vary in number according to the mode number n, have

indices, the la”st “two digil;s of which range from 01 to as

high as 11.

For example, for Q = 10 mode 20 (Figure 3), the

index number 2000 represents the pole at (-1.08, 19.96);

2001 represents the pole at (-1.77, 21.82); 2002 the pole

at (-5.70, 16.90); and finally, 2011 the pole at (-13.66,

0.0). For a given mode, an increasing number in the last

two index digits moves along the elliptical arc from near

the tib/c axis toward the negative real axis in a counter-

clockwise manner. These first two types of poles have

been plotted in Figures 3, 5, and 7. The third category

of poles, Type III, contains an infinite number of poles

lying almost parallel to the oh/c axis. Only the poles

such that tib/c < 30 are tabulated. Again, the first two

digits of the index number represent the mode number;

however, here the last two digits all begin with 3,

denoting poles of the third type. These range from 31

up to as high as 39. For example, for o = 10 mode O

(Figure 4), the index number 0031 represents a pole at

(-0.89, 3.76); 0032 represents a pole at (-0.93, 7.05);

and 0039 a pole at (-1.15, 29.46). Poles in this layer

are numbered sequentially beginning with the pole having
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the smallest imaginary part and proceeding away from the

a axis. These Type III poles are plotted in Figures 4, 6,

and 8.

Umashankar [8] notes that asymptotically for Type III

poles there are only two sets of roots, one set for even

modes and another set for odd modes. The convergence to

these two sets of values for the lower orders can be

readily seen in- Figures 4, 6, and 8, where for increasing

values of s along the tib/c axis all Type 111 poles con-

verge, regardless of mode, to one distinct set of values

for even modes and one for odd modes. In Tables 1 through

8 it can be seen that for relatively large values of s

the residues follow the same pattern. For large s all

even modes tend to the same residues regardless of mode;

similarly for all odd modes.

These tables of pairs of complex numbers representing

the poles and residues of the admittance transfer function

are uniquely determined by the loop geometry, independent

of excitation. They provide, through the partial fraction

expansion of the admittance transfer functions, a means of

accurately characterizing the electromagnetic properties

of loop antennas for three relatively different sized

antennas through mode 20. The representation of the time

domain response in terms of the poles sni and residues Rni

4
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yields time domain results which t.urnpare well with the

Fourier transfo}m Of frequency domain data. However, a

comparison in the frequency domain of the integral repre-

sentation and the partial fraction representation of the

transfer admittance funcl;ion at the same frequency indi-

cates that the latter representation does not appear to

converge to the correct result. This is illustrated in

Figure 9 where the partial fraction and integral repre-

sentation of l/ao(jw) are compared. One notes the

apparently constant offset in the imaginary part, which

should be zero at o = O. Since a constant would repre-

sent an additional entire function added to the-partial

fraction expansion, this problem was studied in some

detail.

An obvious possible source of error would be that

the sni and Rni were not being computed to sufficient

accuracy. The early results were computed using standard

precision arithmetic on the CDC 6600 with 14 significant

digits of accuracy. The Anger-Weber function calculation

was evaluated by using an alternating series expansion.

To check for roundoff errors, the entire routine was

rewritten for double precision which carries 28 signifi-

cant digits. The new routine was checked against the

original, but the troublesome imaginary value at the origin
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remained virtlially unchanged.

One result of the conversion tc double precision was

the extension of the ranqe of the argument for which the

Anger-Weber function could be accurately calculated. This

permitted poles Sni and residues Rni to be calculated in

the region Iwb/cl < 30.0 in the s plane. Usino the result—

of [8], the asymptotic forwula was also used to compute

sni and Rni for values near ub/c = 39.0. In the reaions

where the two calculations could be compared, some small

differences were noted between the accurate value of sni

and Rni calculated using the series expansion method and

that computed using the asymptotic formula. It is cer-

tainly true, then, that for values of sni and Pni in the

range of ~b/c from 30 up to possibly several hundred,

small errors are introduced by the asymptotic formula.

Ats= O, the partial fraction series becomes

I/an(o) ~ _ ~ Rni/sni
i

(2.46)

where the series must sum to zero to have the correct

value. It is easily seen that errors in the poles and

residues will give l/an(s) the wrong behavior near s = 0.

Furthermore, dividing the partial fraction series into

those terms whose poles and residues are computed from
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the series representation of the Anger-Weber function and

those computed from the asymptotic formula, we have

R
I/an(s) = x

ni

i s -s

‘)

s .b
ni

~ 30
K“: ‘-

+
R
ni (2.47)

.
S - Sni

()
sn;b

Im — > 30
c

The last series for the range of s = jw, considered in

Figure 9, can be approximately replaced by

R
ni (2.48)

i s

()

s t-ii

Im~>30
c

since s is small compared to Sni. Errors in these terms

would explain the constant offset shown in Figure 9. Add-

ing further weight to this argument is the fact that

similar plots of I/an(s) for other values of n In the

same range of s show the same nearly constant offset, the

value of the constant being independent of n. This is not

surprising, however, when one recalls that the asymptotic

64



formula predicts the same set of poles and residues for

all even n and another set for all odd n.

In order to alleviat~ the convergence difficulty in

the s domain, an infinite product representation was used.

The product represents-tior{”has-the advantage that both

the poles and zeros of the function are automatically

included in the representation. A further advantage of

this formulation is that the residues Rni are not required.

These expansions for l/an(s) are derived in Appendix A

and are given by (2.49) and (2.50):

1 jsb=

[(

(2.49)
an(s) n2c Kn(o) ~ i -

i=l
S/Si) e(slsi)]

for n # O where the,si are singularities of the n
th mode

and Kn is evaluated at s C?quals zero;

7 jc— =
so(s)

[(sb K1(0) ; 1 - )()]S/Si e
S/Si

i=l

(2.50)

when n = O or where si are the singularities of mode zero

and KI is evaluated at s equals zero.
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Another calculation of ~/so(s) usin9 (2.50) appears

in Figure 9. The offset in the imaginary part is com-

pletely eliminated. By reformualting the problem, the

constant offset has disappeared, and the agreement of the

series and product representations tend to validate the

accuracy of the calculated Sni. It is therefore concluded

that the poor convergence of (2.28) in the frequency

domain is due to small deviations in the computed location

Of the Sni and values of Rni for tib/c > 30.0 in the s

plane.

The product expansion provides a rapid and accurate

means of calculating the values of I/an(s) in the complex

frequency plane, whereas the Laplace inverse of the

partial fraction expansion is useful and accurate in the

time domain. These two representations provide the

necessary tools to accomplish all required calculations

for the loop antenna accurately and quickly.

One further question remains concerning the poles

sni for the unloaded 100p. It has been pointed out that

the third category of poles, i.e., the ones paralleling

the imaginary axis in the s plane, do not correspond to

similar poles of either dipoles or spheres. Some specu-

lation has been wade that these poles are due to the thin

wire approximations used to derive the transfer functions
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an(s). One should keep in mind, however, that such struc-

tures as dipoles, spheres, and prolate spheroids are

topologically identical in that one structure can be

continuously deformed into another and that as such, there

must be a one-to-one correspondence of their poles. This

correspondence is determined by noting which poles merge

into those of a sphere, say, as an object is continuously

deformed into a sphere. The loop, however is not topo-

logically equivalent to a sphere, however, because a

sphere without handles can never be deformed into a looD

and its poles do not necessarily correspond to those of

a sphere. To test this hypothesis, a method of moments

solution for the n = O mode current induced in a toroidal

antenna of Q = 10 was implemented. The mathematical

derivation of the integral equation together with the

numerical considerations are contained in Appendix 6.

Basically, the loop is treated as a conducting toroid

divided up into a large number of curvilinear patches.

The wire circumference was divided into 24 segments with

the current assumed to be uniform in each segment. Since

in Mu’s solution the function l/so(s) is proportional to

the total current for a uniformly excited wire, in the

moment solution the current density on the wire was

integrated to find the total current under the condition
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of uniform excitation of the entire wire surface. The

total current found this way corresponds to I/a O(s) and

the contour plots of the current should yield the true

poles of the loop (within moment method approximations).

It was found that in order to generate the required

values for filling the matrix, more computer time was

required than expected. Consequently, it was necessary

to employ a minimum number of points in the contour

generation scheme in order to keep the required computer

time within reasonable limits. The resulting transfer

admittance for mode 0, Q = 10 is shown in Figure 10. Iie

will show in Chapter 111 that by comparing phase and

magnitude values near the imaginary axis for the method

of moments and the product expansion (Figure 11), one
.

finds nearly the same pole structure. The poles soi of

Type 111 are not only present, but are in approximately

the same location as predicted. However, a set of zeros

in the total current lies interspersed with the poles in

a zigzag fashion running parallel to the imaginary axis.

This set of zeros in the total current is caused by

surface currents which flow in opposite directions on the

inside and outside of the wire such that the total current

is zero. In addition to the zeros, there is also a second

layer of pole-zero pairs which parallels the first. blhile
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Figure 10. Impedance transfer function obtained by method
of moments for n = O, 0 = 10.0
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this layer has such large damping constants that it has

negligible contribution in the time and frequency domain,

its appearance is interesting, nevertheless.

The matrix determinant, of course, would not have

the zeros, but in order to plot the determinant, the

density of points calculated would have had to be increased

by 10 to 100 times. This is because the appearance of

the zeros of the determinant were found to be extremely

localized in the s plane.

No attempt was made to generalize the moment method

program to investigate the Type 111 poles for modes

other than n = 0, but it is expected that they, too, do

indeed exist.
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CHAPTER III

ANALYSIS OF THE UNIFORMLY LOADED LOOP ANTENNA

The analysis of an unloaded Ioop”antenna has been

presented in the previous chapter using the singularity

expansion method. In the present chapter, the effects of

uniformly loading a conducting loop are considered. From

the point of view of the singularity expansion method,

the loading merely shifts the location of the poles of

the structure. It is shown that contour plots of the

transfer impedance defined in Chapter II may be used to

find the shifted pole positions and to determine what

shifts are possible. Furthermore, it is shown that the

effect of the loading can be interpreted as introducing

a feedback loop into a block diagram representation of

the impedance transfer function. This observation permits

one to use the root-locus techniques well-known in the

area of feedback controls to predict certain features of

the pole trajectories as the loading is continuously varied.

Finally, representative time domain calculations for the

step response of a linear antenna are given for various

values of purely resistive loading.
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3.1 Derivation of the Admittance Transfer Function for

the Loaded Loop

Consider uniformly loading the loop with an impedance

ZL(S) total impedance around the loop Or ZL(s)/2nb

impedance per unit length. The boundary condition on the

loop is that the tangential electric field equal the

product of the total current and the impedance per unit

length. Thus the integral equation (2..2) is replaced by

Expanding Q, A@, and 1($) as in section 2.1, we have

which can be written as

a form which parallels {2.25). Hence corresponding to

(2.27), we now have
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v:(s)
In(s) = =J”-—–----– (3.4)

n-m an(s) - jZL(s)/nb~

so that the admittance transfer function for the loaded

loop is

-j 1.— -— (3.5)
T-ITan(s) - jZL(s)/~bn

This transfer function has poles at frequencies s = s~i

such that

()an S~i = jZL(S~i
)
/nbq (3.6)

or equivalently,

( )1‘;i “ ()‘L ‘ii /nbn (3.7)

__Arg~~(s~i)] :: Arg~L(s~i)]+’OO ‘3*8)

where the prime distinguishes quantities defined for the

loaded loop from those defined for the unloaded loop.

The argument given by Umashankar [8] for the expansion

of the admittance transfer function applies here also

and results in the partial fraction expansion
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The residues R~i in (3.9) above are easily found to be

where

R;i = —–—- 1

.3’()ns;i - jZ/(S~i
)
/nb~

(3.10)

(3.12)

The form of the partial fraction expansion in (3.9) above

is identical to (2.28) but with primed quantities replacing

unprimed quantities. Hence the discussion cf the time and

frequency domain current response in Chapter 11 applies to

the loaded loop as well.

3.2 Use of Contour Plots to Represent Poles of the

Loaded Loop

Equations (3.7) and (3.8) indicate that contour plots

of the magnitude and phase of an(s) in the complex frequency

plane would simultaneously be plots of the magnitude and

I
I

o
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phase (shifted by 90°) of the normalized impedance loading

required at each point in the complex frequency domain in

order to have a pole there. Using the product expansion

formulas (2.49) and (2 .50),, and including all poles in the

range

h(snib,c) ~ 200 (3.13)

magnitude and phase contours of the an(s) are plotted in

Figures 11 through 21. These figures are for modes n = O

through n = 20 for $2 = 10.().

The magnitude lines m = constant in the figures deter-

mine the contours of constant magnitude of an and the

normalized impedance loading according to

ZL(S)
m= ~ in an(s) =+ln (3.14)

nbq

The phase @ in degrees is given for ZL(S) and is related

to the phase of an(s) by

+= ar+is”)]‘=arg[an(s)l -’00
(3.15)

A number of observations concerning the contour plots

are appropriate. One notes, for instance, that only so(s)

has a pole at s = O; for all other an(s), s = O is the only
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Figure 17. Phase and magnitude contour plot for
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zero of the transfer impedance. Furthermore, one notes

that at each point on the contour plot, we simply read off

the magnitude and phase the impedance should have in order

to have a pole at that point. This fact is very important

and is exploited in the next chapter in synthesizing the

loop response by choosing the pole locations. When the

loading function ZL(S) is given (i.e., in the analYsis

problem), some additional effort is required to graphically

find the pole locations. What is needed is a separate

contour plot of ZL(S) using the same complex frequencY~

magnitude and phase scales. Then by overlaying the two

plots, loci of common magnitudes and phases can be drawn.

Their intersection will be the pole positions for the given

loading function ZL(S). ~Jote that this would have to be

done for every mode, n = (), 1, 2, . . ., because the load-

ing affects all poles.

One notes that it is possible to shift poles into the

right half plane, but this could only be done with active

loading. However, generally speaking, Figures 11 through

21 indicate that the heavier the loading (that is, the

larger the magnitude of Z1-(s)) the larger the damping

constant becomes for the shifted pole. One should recall,

however, that in Figure 1(I in Chapter 11, which was com-

puted using moment methods with no thin wire assumptions,
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one finds in actuality a layer of zeros just beyond the

first layer of poles for mode n = O and that hea~v load.

ing shifts the poles toward these zeros rather than toward

infinity. A similar situation will probably exist for

higher order modes.

Finally, it is noted that the lines where the phase

is zero on each plot correspond to purely resistive load-

ing and that ~f the resistance is frequency independents

then the poles will all be on the same magnitude contour.

Further, note that the Type I pole (at s = 0) and th=

Type II pole (on the negative real axis) for mode n = O

approach each other with increased resistive loading,

form a double pole on the negative real axis for a certain

critical resistance, and then split into a complex con-

jugate pair with increased loading. The dominant Type I

pole for mode n = 1 approaches the negative real axis

with increased resistive loading, forms a double pole

there with its conjugate pair, and then the two poles

split apart and move away from each other along the nega-

tive real axis. These are the only two cases for which

dominant (Type 1) poles combine with other poles to form

a double pole. At either of these loading conditions,

one may call the antenna “critically damped.” The trajec-

tories of the dominant poles for modes n = O to n = 7

with resistive loading only are shown in Fi~ure 22.
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Figure 22. Trajectories of the primary poles of the loop
antenna as a function of impedance loading
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3.3 Feedback Interpretation of Impedance Loading and

Root Locus Methods

The relation between the excitation and the Fourier

components of current for the unloaded loop,

v:(s)
+.@) = fl

Ilm an(s)
(3.16)

may be represented in block diaaram form as in Figure 23.

The corresponding relation for the loaded loop is

v:(s)
In(s) ‘ ~

~m an(s) - jZL(s)/nbn
(3.17)

r .

‘k’:vw’’(s)‘3”18)
which can be represented in the block diaaram of Figure 2fl.

One sees that the effect of the loading is to add a feed-

back loop into the unloaded loop transfer function which

shifts the poles of the original unloaded system. This

interpretation of loading as adding a feedback path permits

cne to use the techniques of control system theory [13]

to analyze, for example, the effect of feedback on the pole

●
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Figure 23, Block system diagram representation of the
transfer function of the unloaded loop

v:(s)+ 8—
t [isl~’’”s) ‘

-J

Figure 24. Block system diagram representation of the
transfer function of the loaded loop
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locations and their movement as the feedback (loading)

changes. Me discuss in the following the use of the root

locus technique of control theory [14] as applied to the

loaded loop.

In order to apply the root 10CI.IS techniques, it is

convenient to think of attaining a certain given uniform

loading ZL(S) by loading the loop with a uniform impedance

KZL(S) where the real Ccjnstant K is varied from K = O

(corresponding to an unloaded loop) to K = 1 (corresponding

to loaded with the desired loading). To consider infinite

loading, we merely let K tend to infinity. Thus the loop

transfer function for a given loading KZL(S) is

In(s) =

[
(jn~an(s))’1v:(s) (3.19)

ZL(S)
+K—

b

The poles of the system are now those frequencies s = s~i

such that

(jn~an(s))+ ~ ZL(s)/b = O (3.20)

Ghausi and Kelly [141 have generalized the root locus

techniques of control theory to handle characteristic

equatiGns of the form

Fl (s) + K Fz(s) = O (3.21)



for distributed parameter systems where Fl(s) and/or Fz(s)

can be written in an infinite product expansion. If one of

the factors Fl(s) or Fz(s) cannot be written as an infinite

product, then it must be a rational function. Equation

(3.20) is of the form (3.21) and since an(s) is expandable

in an infinite product expansion, we only require

that ZL(S) be a rational function (i.e., ZL(S) as a “lumped

circuit”) or have an infinite product expansion (ZL(S) in

a distributed parameter system). The root locus rules

given by Ghausi and Kelly as modified to apply to the

present problem_ of a loaded loop are given below [15].

START AND TERMINATIOY

The loci start (K = 0) at the zeros of an(s) and

terminate (K = ~) on the zeros of ZL(S) as K varies from

zero to i.n.fi.n=!ty,=. _. _

NUMBER OF LOCI

Since an(s) is a transcendental function, there are an

infinite number of loci.

SYMMETRY

The loci are symmetrical about the real axis.

LOCI O!i REAL AXIS

The loci include thos~ sections of the real axis that

lie to the left of an odd number of zeros of an(s) and

ZL(S) for K positive and to the left of an even number of
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the zeros of the two functions for K negative.

When a portion of the real axis between two successive

zeros of an(s) or two successive zeros of ZL(S) is part of

the root locus, there will be a particular va

which there will

axis. This root

BREAKAMAY POItiT

exist a second-order root on

is known as the breakaway po

The points at which the loci break away

axis are found as solutions of the equation

an(s)z((s) = a~(s)ZL(s)

ANGLES OF ARRIVAL AND DEPARTURE

ue of K for

the real

nt.

rom the real

(3.22)

If Sni is a simple zero of an(s), the angle of depar-

ture of the locus from sni is given by

‘L(sni)
$d=~+arga

()A ‘ni

(3.23)

If Sj is a simple zero of ZL(S), the angle of arrival of

the IOCUS at sj is given by

a
@a = z + arg ()n ‘j

2
()‘; ‘j

(3.24)
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INTERSECTIONS !41TH IMAGINARY AXIS

ForK > 0, the intersections of the loci with the

imaginary axis occur at those values Uc for which

[1arg m= -IT/2+ ‘~nn n = 0,1,2, . . .(3.25)

()

h.—
an jwc

and for K< O, the corresponding values of UC are found

from

[1()ZL juc
arg

()

= ~/2 + 2nn n = O, 1, 2, . . .(3.26)—
an ju

c

ASYMPTOTIC BEHAVIOR

As K becomes infinite, the loci may become very

complicated. In order to study the loci, we equate both

real and imaginary parts of (3.20) to zero:

[1-T-IIT Im an(s) + ~ Re
[1
ZL(S) = o

b

[ 1
TIITRe an(s) + ~ Im [zL(s)] = o

b

(3.27)

(3.28)

Elimination of K between these two equations defines the

root loci. Thus, we obtain for the loci the expression

u“=--

[1 [1

(3.29)
Im ZL(S) Re ZL(s)
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When Equation (3.29) is used, care should be exercised

reqarding the sign of IX that has been eliminated. As written,

the equation defines the loci for both nositive and neqative

values oflio

3.4 Step Response of a Resistively Loaded Loop

Figure 25 shows the step response loop current com-

puted by taking the Laplace inverse of (2.33) at + = 120°

for a resistively loaded loop with ZL = RL = 600, 1800

and 5400 ohms. Figure 26 shows the pulse resuonse at

the same location with ZL = RL = 600 and 1800 ohms for a

pulse width equal to 0.75 ct/mb. Noncausal oscillations

can be seen in the time interval near t = O before the

first signal arrives at the observation point. The fre-

quency of the noncausal oscillations corresponds to the

Type I pole of the first Fourier mode not included in the

current representation, as ex~ected. The various discon-

tinuities in the response come from the first current

pulse which arrives at the observation point, the current

which travels around the longer path from the source to the

observation point, the second trip around the looD, and so

on. Note that for this loop, Q = 15.0, the value of

‘L
= 5400 corresponds to a “critically damped” loop.
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CHAPTER IV

SYNTHESIS OF THE RESPONSE OF A LOOP ANTENNA

In the previous chapter, various techniques of analysls

have been developed and analytical formulations governing

the electromagnetic behavior of loop antennas have been

derived. These techniques and results are, of course,

essential in determining the response of a loop antenna for

a given excitation and specified impedance loading. In

the following, we demonstrate that some of the results can

also be used to change the resonant frequencies such that

for a proper excitation (or input), a desired response

(i.e., currentor radiated field) might be obtained. Thus

we obtain, using the singularity expansion representation,

a means of extending to an electromagnetic problem a capa-

bility that is well-developed in network theory--the ability

to synthesize the desired response when the input or

excitation waveform is given.

In this chapter the analytic properties of the

admittance transfer functions discussed in the previous

chapter are employed to formulate the synthesis problem.

Some of the considerations and problems involved in ele-

mentary time-domain synthesis will be illustrated by using

these fundamental synthesis techniques on some simple
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example problems.

4.1 Formulation of the Synthesis Problem

Suppose that one is given the voltage transform at the

9ap9 V~(S), and one wishes to find some response quantity

such as the current at some point on the looR or the field

at some point in space. Then for each Fourier component

of the current, there will be a transfer function Tn(s)

relating that Fourier component to its contribution to the

response at the observation point. The total observed

response Y(s) is then just the sum

Y(s) = ~ Tn(s) In(S)
n =-m

For example, if the current at a point @ is desired, Tn(s)

= ejn$
9 whereas for a field point, the transfer functions

Tn(s) can be obtained from Appendix C. Using (3.4) for

the current, we obtain

Tn(s) V:(S)
Y(s) = + : (4.2)

qom n=-m an(s) - jZL(s)/mbn

If we assume that the input V:(s) is given and hence fixed

and that Tn(s) depends only on the response quantity we

wish to observe, the desired response may be obtained only

by manipulating the admittance transfer function by

.

J
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impedance loading. we may do this as in classical network

theory by prescribing both the poles and the residues of

the admittance transfer function. The relationship between

the loading function and the poles and residues has already

been described in the previous chapter. Namely, from (3.6)!,

the condition for a- pole ‘at “s= s~i is

() ()ZL s~i = -jnb~an s~i (4.3)

and from (3.10) the condition on the residue requires that

(4.4)

where R~i is the desired residue of the shifted pole. Thus

the synthesis problem is that of requiring interpolation

conditions on ZL(S) and its derivative at the desired pole

positions. If the residue is not of particular interest,

then the condition on the derivative can be relaxed.

One notes that this is not the usual condition

required of the admittance transfer function in the cir-

cuit theory context. There, the-poles and residues (or

zeros) of the desired function are those of the response

function. In the_ problem posed by (4.3) and (4.4), on

the other hand, the poles and zeros of the function to be
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synthesized, ZL(S), will not be those of the response

function.

4.2 Construction of the Impedance Loading Function

We initially begin with the simplifying assump-

tion that the impedance loading function is to be synthes-

ized using only linear lumped circuit elements and devices,

since we are uniformly loading the loop, we may, for example,

use many electrically small lumped circuits in series with

and uniformly spaced around the loop so as to approximate

continuous uniform loading. !iith the lumped circuit

requirement, ZL(S) must be either a polynomial in s or

a rational function; that is, a ratio of two polynomials
●

in s. Since a polynomial is simpler, we consider it first.

Suppose we have N poles we wish to synthesize so that

the condition on ZL(S) is of the form

()‘Lsn = ‘Ln’ n = 19 2’ “ “ “ $ N
(4.5)

where we assume that in the sequence of poles Sl, S2$ . . .,

‘N “
If any pole is complex, its complex conjugate counter-

part is included in the sequence. The polynomial of

lowest order satisfying the interpolation condition (4.5)

is constructed using the Lagrange polynomials [16]

(4.6)
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o
where

fn(s)
Ln =

()
fn Sn

and where

fn(S) i~jl (S - Si)

i+n

(4.7)

(4.8)

Thus ZL(S) will be a polynomial of degree N - 1.

If, in addition to the pole locations, one specifies

the residues, we have, according to (4.4), additional

constraints on the derivatives of the loading function:

()“’zi ‘n ‘Zi.n’ n = 1’ 2’ “ “ ● ‘N
(4.9)

The problem of interpolating both a function and its

first derivative at a set of points is solved by the

Hermite or osculating polynomials [15]

ZL(S) = $ un(s) ‘Ln + nfl‘n(s) ‘in (4.10)
n=l =

where the functions Un(s) and Vn(s) are polynomials

having properties similar to those of the Lagrange inter-

polation functions Ln(s) of (4.7) and defined by
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~n(s) = ~ - ,L~(sn)(s - ,n)]~n~s~]’

Vn(d = (S - Sn)[Lnb)]2 (4.11)

In this case ZL(S) will be of degree 2N - 1.

If the degree of the polynomial representing ZL(S)

is greater than one, it is not possible to synthesize

ZL(s) using only passive circuit elements. Since in many

applications it may not be economically or technical~y

feasible to use active devices, we examine some further

conditions on ZL(S) which restrict it to be a “positive-

real” function of s.

The driving-point admittance or impedance functions

of passive networks (that is, networks consisting only of

lumped resistors, capacitors, and inductors) are positive-

real functions. That is, our impedance loading function

must be a positive-real function to be physically realiz-

able as a driving-point impedance. A number of analytical

properties of a positive-real function can be derived

from its definition. The most basic and signifi-

cant ones are summarized in Table 9 for convenience. ~

Note that (4} in Table 9 restricts the degree of the

polynomial that can be used to represent ZL(S) to no

●
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Table 9. Properties of Positive Real Functions

e’

1. For lumped networks, the driving-point immittance (admittance or impedance)

func,tion W(s) is rational.
II

2. The coefficients of the numerator and denominator polynomials in W(s) =

P(s)/Q(s) are real and positive. As a consequence of this,

a. Complex poles and zeros of W(s) occur in conjugate pairs.

b. W(s) is real when s is real.
II

c. The scale factor W(0) = ao/bo is real and positive.

3. The poles and zeros of W(s) have nonpositive real parts.

P
4. The degrees of the numerator and denominator polynomials in W(s) differ at

G

most by unity.

5. Poles of W(s) on the jw axis must be simple with real positive residue.

6. The exponent of the lowest power of s in the numerator and denominator

polynomial of W(s) can differ at most by unity.

7. At real frequencies (s = jw) the real part of W(s) is an even function of w

and the imaginary part is an odd function of w.



greater than first degree. However, ZL(S) may be a

rational function of s,

~ sP+ a ~P”l + . . . + a
ZL(S] = ~= p-l

Q(s) o (4.12)
bqsq+bsq-l+. ..+bo

q-1

where p+q +2= N if ZL(S) is required only to satisfy

(4.3} andp+q +2= 2N if it also satisfies (4.4). In

either case, If ZL(S) is to be positive-real, lp - ql < 1.

The coefficients ao, al, . . . , ap and bo, bl, , . . , bq

may be found by substituting (4.12) into (4.3) and (4.4)

and solving the resulting system of linear equations for

the coefficients,

A necessary condition on the values ZLn that can be

interpolated by positive-real functions has been devised

by Youla and Saito [17] based on energy considerations.

The condition is that the “Nevalinna-Pick” N x N Hermitian

matrix (the asterisk denotes complex conjugate),

must be nonnegative definite, that is,

(4.13)

XTAX > (J (4.14)
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o
for all vectors x. They further show that this condition

is sufficient if the Sn a~e distinct and in the right half

plane, i.e. ,Resn>O, n= 1,2, . . . ,N. This would

imply, however, that the loop transfer admittance function

contains active sources, which is impossible. Unfortunately,

necessary and sufficient conditions for the existence of a

positive real interpolating function, both with and without

the derivative condition, do not appear to be available at

this time. The development of a criterion for the loading

function to exist and to be positive real is a challenging

problem for further research.

4.3 Time Domain Synthesis Applied to the Design of a

Pulse Simulator

One application of loaded loop antennas designed to

radiate a specified waveform is in the simulation of the

electromagnetic pulse (EMP) generated by a high-altitude

nuclear detonation. The ?)ulse shape required can be

approximated as the difference of two damped exponential

functions, one having a very short time constant which

determines the rise time of the pulse and another having

a long time constant which determines the rate of decay

of the pulse. A“typical EMP waveform [18] can be expressed

as

E [= E. eat - eet 1 (4.15)
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where

Clx-2.o x 106

13= -2.6 x 108

The value of E. is a constant, and for the purpose of

calculations has been set to unity.

First, we wish to specify the generator output V:.

For the pulse generators in common use, it has been found

that generator output can be accurately represented by a

step function with a finite rise time. The generator

rise time and that of the waveform to be synthesized are

chosen to have the same rise time so that in the Laplace

domain

v:(s) {
=&l 1

}
-eBt = ‘6

S(s-fi)
(4.16)

where 6 = -2.6 X 108.

In the far field there exist only two components of

electric field, E* and E@ (cf. Figure 27). The area of

primary interest for obtaining the desired transient wave-

form is near the axis of the loop within a cone angle of

about 30° from the axis. The ranges of angles e considered

are therefore
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and

0:0<30°

150” : 0 ~ 180° (4.17)

On the loop axis only the n = 1 mode contributes to the

currents and for the narrow range of angles considered,

one may make the simplifying assumption that the field

components are coupled to only the n = 1 Fourier mode of

current on the loop. That is, we assume that other modes

of current on the loop do not contribute significantly to

the far fields radiated on and near the axis of the loop

antenna.

We wish to find the electric and magnetic fields

generated by a prescribed source function (generator) and

the resulting induced currents on the loop. These field

components are easily obtained with the help of

magnetic vector potential, which is (cf. Figure

2Tr
‘o

J

e-jkR
i=— (2ma) 3(+’) ~ bd($’

47r o

the

27)

(4.18)

The complete solution for the field components is obtained

by using vector differential operators with (4.1~). An

expansion for the vector potential in spherical harmonics

is derived in Appendix C for an arbitrary observation

point in space. This solution is in no way restricted,
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and near as well as far fields can be obtained. However,

for the case being considered, considerable simplification

is possible with no loss in generality if one considers

observation points to be in the far field.

The electric field components in the far field are

given in [5] for several modes, and specifically for

mode n = 1,

~~(-jsb/c sin e)-4m Qs _
Ee=— cos 0 sin @

al - jZL/rbn -jsb/c sin 6

(4.19)

-4IT Qs
‘$ = ~1

J; (-jsb/c sin e) cos $ (4.20)
- jZL/~brl

where

-jV~pb esr/c
Q=–—— (4.21)

41r2no r

For the range of (3 near the loop axis at 0 = O, (4.19) ancl

(4.20) reduce to

+jsb sin $
“: sr/c

Eo. =
e

2’Trc al - jZL/nbn r (4.2?)

v:
+jsb cos @_ ~sr/c

E@ =
21TC al - jZL/nbn r (4.23)
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For convenience we will set o = 0, factor out the time

sr/cdelay e , and drop all other unnecessary constants,

exhibiting only the remaining dependence of E* on s:

jsv:(s)

‘e a (4.24)
al(s) - jZL(s)/~bn

Equation (4.24) shows that the radiated field is propor-

tional to the time derivative of the current. For mode

n = 1, the partial fraction expansion of the admittance

transfer function is

1 =x -Qi-
al - jZL/rbn i s - s;

Substituting (4.25) into (4.24), we have

R;
E6 = js v~(s) ~ —

is-s!
1

(4.25)

(4.26)

where the s{ correspond only to mode n = 1. Thus, it is

seen that the effect of space is to differentiate the

current since the far field transform is just proportional

to the current transform multiplied by s.

The functional relationship between the above quan-

tities is described below:
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Admittance Space
output Generator

= Transfer x Transfer x Function
Function Function

Using the results”of (4.26)-and (4.16),”
-. — — .-

()a z —R~ -B
‘e i s - s; (s - (3)

(4.27)

-$ —+ ~*!1=

al(~)-jZL(f3)mbn (s-6) i s - s;

(4.29)

when the impedance loading function is restricted to

be of the one- or two-element kind, considerable simplifi-

cation results in the synthesis. In the following, atten-

tion is focused on uniformly distributed resistive and RC

networks. This choice_ is made. for simplicity and because

Pesistive and RC networks are frequently encountered in

high-frequency circuits. Since the complexities involved

in general RLC synthesis are much greater, we limit

ourselves to a few basic, simple, and useful techniques.
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The radiated fields of the unloaded loop antenna do

not appear similar to those of an EMP waveform due to the

marked oscillations in time. One way to modify the radi-

ated fields is to add resistive loading along the structure

So as to reduce the effects which cause the oscillations.

If the structure is resistively loaded so that ZL(S) =

‘L ‘ then as the loading is increased the poles in the

first layer (see Figure 12) move generally in the -ah/c

direction, indicating that their contributions in time

attenuate more rapidly. The behavior of the unloaded

Type I pole for mode n = 1, located where wb/c N 1 close

to the wb/c axis, deserves special attention. As the

loading is increased, this pole moves on a curved arc

down to the -oh/c axis, at which point a double pole is

formed with its conjugate pole, As the loading is

further increased, this double pole splits, one pole

moving to -~, and the other toward zero along the oh/c

axis. This behavior is completely analogous to that

observed as the resistance is increased in a series

resonant RLC circuit. At the point where the double pole

first is formed, we refer to the loaded antenna as being

critically damped.
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o
In the following, we examine several possible approaches

toward the synthesis of a double exponential waveform (4.15).

The problem might be considered as representative of the

general synthesis problem. In particular, we encounter cer-

tain limitations and considerations which should be common

to any synthesis problem involving the loop antenna.

The approach taken here is to force the Type I pole to

be the synthesized pole. Since it will have a long damping

constant and since the loading generally forces the other

poles to have shorter damping constants this pole should

dominate the late time response. With the observation point

along the loop axis, we consider only the n = 1 mode and

observe it in the far field. Finally we restrict our con-

sideration to simple loading functions involving only resistors

and capacitors.

We begin by attempting to specify both the pole and its

residue. In (4.1-5) the values of the residues are equal, and

the requirement exists to specify only one remaining pole in

the sum (4.29) which we call s;. Let s; be equal to the

coefficient u in (4,15), i.e., the pulse decay constant,

‘i =
-2.0 x 106. The remaining task then is to equate resi-

dues. From (4.29) this requirement is met if we let

I
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where the impedance loading function ZL(B)iS to be determined.

Note that for the required zero of the transfer imped-

ance function, it is also true that

a~(s;)- jZL(s;)/~bn = ~ .

Solving equation (4.30) for Z,(B) we obtain

ZL(B) = jnbn

(4.31)

(4.32)

where R’
1

is the value of the residue of the admittance trans-

fer function. If we specify a series RC network, then

ZL(S) = R + &

From the residue condition,

Substitut

R+

t 1
‘1 =

ai(s;) ‘~
Cs,

(4.33)

(4.34)

ng (4.34) into (4.32) and equating to (4.33)

[( )
1

1 = jwbq ?t’(s’) - L ((3 - S{) - al(~) (4.35)
m 11 CSi2
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.Similarly, substituting (4,33) into (4,31) yields

4’ ‘-+)=al(si) (4.36)

Thus we have two equations with two u“nknowns, which can be

solved for R and C.

Solving the system of equations (4.35) and (4,36) gives

and

R = -jmbnal(si) - ~
Cs;

(4.37)

(4.38)

The solution expressed by (4,37) and (4.38) is theoretically

correct; in practice it is not realizable with passive ele-

ments since the denominator of C is negative, whereas the

numerator is positive. Thus specifying both the pole and its

residue yields an unphysical solution.

One sees that the requirement that the residues be equal

arises from (4.15) because the response at t = O should be

zero. Since the short time constant exponential is provided

by the source and the longer time constant comes from the
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antenna “ringing down, ” and the waveform shape during the

transition between the rise and decay is not critical, one

should be able to obtain roughly the desired response with-

out specifying the residue of the Pole. Accordingly, three

additional cases were selected where the pole location was

specified to yield a decay constant equal to the value of m

s~ecified in (4.15). The first case used a nurely resistive

load of 4944Q; in the second case, 30009 and 66Bf capac-

itance were used; and, in the third case, a 1000Q resis-

tance and 399uf capacitance were used. These combinations

were chosen by requiring ZL(S;) = 4944 + .jO which puts the

pole at the desired position. The time domain response for

each case is plotted in Figure 28. In the figure, the shape

in each case is almost identical, as expected. However,

the deca,y time is much shorter than the desired value. To

see that this effect is independent of both the generator

excitation pulse shape and the loadinci, the step function

response was computed and is shown in Figure 29. The simi-

larity of the resnonse in each case leads one to the con-

clusion that it is a zero of the loop transfer admittance

at s = O which causes the difficulty. Recall that the

unloaded loop transfer impedance

s = O which translates to a zero

both the loaded and the unloaded

zero tends to cancel the synthes”

function has a pole at

in the IOOD admittance for

case. This transmission

zed pole at s = s’
1
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Figure 28. Radiated far field waveform for a
modified step input for various
values of impedance loading.
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Figure 29. Radiated far field waveform for a
step input for various values of
impedance loading.
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which is close to the origin resulting in a very decreased

late time response,

This zero arises, of course, from the combined ef-

fect of the remaining poles of the loop which have been

unconstrained. Hence, their effect in the late time re-

sponse is not negligible a: was originally assumed.

Since al(s) has a pole at s = o then for low fre-

quencies the loop transfer impedance is capacitive. Since

the unloaded loop is passive, this equivalent circuit ele-

ment must be positive. In order for loading to be chosen

so as to cancel the pole of al(s) (i.e., the zero of the

admittance transfer function), ZL(S) would have to cancel

the low frequency behavior of an(s), which would reauire a

non-physical negative capacitance. Hence, it is not

possible to cancel the zero in the admittance transfer

function by using passive loading.

To test the validity of this explanation for the

poor late time behavior, a numerical experiment was con-

ducted to determine if it was possible to eliminate

the. zero. .in...theadmitta=nce= transfe.rfunct ion. Accord-

ingly the generator output waveform was modified to the

time integral of the original excitation, which intro-

duced another factor of 1/s in the transform domain so

as to cancel the zero in the transfer admittance at s = 0.
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This, of course, introduces a ramp in the time domain

output “of the generator but fulfills our requirement

for an additional pole in the denominator of (4.27),

The resulting time domain response is plotted in Figure 30.

The similarity of the late time response to the desired

double exponential confirmed the conclusion that the zero

in the admittance transfer function caused the previous

difficulty in achieving good late time response. The

integration, however, further degrades the early time

response.

Since good early time response was obtained with a

generator frequency dependence given by

v:(s) = -6
s(s-f3) (4.39)

while good late time domain behavior was obtained with

the frequency dependence

v:(s) = -B
s%+) (4.40)

one might speculate that perhaps a good overall approxi-

mation to the desired response might be obtained by the

excitation
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Figure 30. Radiated far field waveform for a
modified ramp input for various
values of impedance loading.
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Ve(s) = 4s.tLl
o S2(S-B) (4.41)

which has the desired hjgh frequency (early time) behavior

of (4.39) and the desired low frequency (late time) be-

havior of (4.40). That this is indeed the case is seen

by noting that the response of (4.41) is obtained by super-

position of the responses due to (4.39) (Figure 28) and

(4.40) (Figure 30). However, this approach (i.e., modify-

ing the generator waveform to produce the desired response)

runs counter to the objective of synthesizing the desired

response by loading the loop. , It appears, then, that

although we may be able to synthesize the pole pattern of

the loop for a finite number of the poles, we may require

a more elaborate treatment to guarantee that the position-

ing of a finite number of the poles by impedance loading

does indeed lead to the desired time domain waveform.

The complexities introduced by the infinite number

of poles and the apparent late time differentiation of

the decaying waveform due to a zero in the admittance trans-

fer function pose a unique and difficult set of constraints.

This is a problem outside the scope of this study but

offers interesting possibilities for future research.
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CHAPTER V

CONCLUS1ONS

The objective of this research has been to develop some

fundamental techniques for the analysis and synthesis of the

response of a loaded loop antenna. In the past, the time do-

main response for such a problem would be determined either

by time harmonic analysis coupled with Fourier inversion,

or by direct time domain solution. With the addition of im-

pedance loading, considerable effort would then be spent re-

calculating the entire response of the loop antenna without

making use of any of the information about the response of

the unloaded antenna. Use of the singularity expansion method

(SEM), however, permits one to systematically examine the

effects of loading using the solution for the unloaded loop

antenna.

The observation that the solutions of electromagnetic.._—

problems are analytic functions of the complex frequency s

except at singularities forms the basis of the SEM and per-

mits one to use the many powerful theorems of complex varia-

bles to more efficiently represent the solution. The result-

ing time domain response representation is a superposition

of damped exponential whose complex frequencies correspond

to s-plane poles of the admittance transfer function. These
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poles are determined from the impedance loading and the un-

loaded admittance transfer function. Thus , the advantage

of the singularity expansion technique is that one can sepa-

rate and characterize basic attributes of the structure only

once, and the time domain response for various loadings and

excitations can then be easily determined from the structure’s

characteristic behavior.

In Chapter 111, it is shown that s-plane contour plots

of the magnitude and phase of the unloaded impedance transfer

function of the loop permit one to readily determine the tra-

jectories of the poles as loading is added to the structure.

Furthermore, the observation that the loading can be inter-

preted as adding a feedback path to the admittance transfer

function permits one to use the root locus techniques of

control systems to further aid in the determination of the

pole movements with increased loading. Since we are dealing

with an antenna that is a distributed parameter system, the

conventional root locus technique was generalized so as to

be applicable to a system with a countably infinite number

of singularities. The generalized root-locus technique pro-

vides a valuable tool for studying the effect of varying the

impedance loading over a wide range.

The synthesis of time domain waveforms by impedance

loading has been considered in Chapter IV. It was found that
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the required condition on the impedance loading to locate

a pole at any point in the complex s-plane is that it inter-

polate the impedance transfer function at the desired pole

frequency. If the residue at the pole is also to be speci-

fied, the derivative of the impedance function also satisfies

an interpolator constraint. These conditions may be satis-

fied by Lagrange or Hermite interpolating polynomials, res-

pectively. However, if one is restricted to passive loading,

the loading function must be a rational function of s. A

necessary condition on the interpolation constraints is given

for the realization of passive loading. A sufficiency con-

dition for realization with passive elements is apparently

lacking at this time however. Some simple attempts in Chap-

ter IV to synthesize a radig_ted waveform consisting of the

sum of two exponential functions were only partially success-

ful. The difficulties seemed to arise from attempting to

control an infinite number c)f poles by loading and from the

presence of zeros in the output response due to the admittance

transfer function and the free space transfer function.

In summary, this research was directed towards simpli-

fying the understanding of impedance loaded loop antennas

using the singularity expansion solution technique, On the

basis of the results of this study, several recommendations

concerning future research are suggested. Further study
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is needed to determine what constraints exist on the

realizability of passive loads. Also needed is an approx-

imate theory for treating the infinite number of poles

of Type 111. Possibly a transmission line model would

enable one to factor these poles out of the admittance

transfer function enabling one to work with a few poles in

partial fraction form, the rest being absorbed into a

transcendental function representing the transmission line

approximation. Hopefully, such an approach might lead to

a better understanding of the constraints on the realizabil-

ity of time domain waveforms imposed by the structure.

Another approach to synthesis might involve optimization

techniques to choose the loading so as to minimize the error

between the desired response and that actually obtained from

the antenna. Here the shifted poles would not be specified

but would enter the calculations only as a means to compute

the time domain response. Finally, an interesting area

for future research is in developing efficient ways to han-

dle non-uniform and point loading. In the case of the loop,

such loading unfortunately couples all the modes together.
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APPENI)IX A

DERIVATION OF THE INFINITE PRODUCT

REPRESENTATION

Weierstrass ’ Theorem for infinite products [19] requires

derivatives with respect to s. In the following, it is rota-

tionally convenient to use both the wavenumber k = -js/c and

the Laplace transform variable s simultaneously. Thus, for

example,

clan(s) = dan

ds dk

Except for n = O, an(s) has a po”

dk -j dan
= (A-1)

~=dk

eats = O which we wish to

eliminate. Hence we consider the intermediate function

fn(s) = sari(s), n =+_l, 12, . . . (A-2)

which has only zeros in the finite complex plane and hence is

an entire function.

We now consider the logarithmic derivative

f;(s) _ an(s) + sa~(s)
.

fn(s) sari(s) (A-3)

which is mesomorphic. If this function is bounded on a set

of contours Cn enclosing the poles, then an infinite product
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representation exists [20],

Recall that

a
=kb ~ + ~

2-- [ 1
$ Kn

n n+l n-l -

where the Kn are defined as

and

The function Fn(z) is defined as

22

Fn(z) = ~
J[

Jn(z) - j$ln(z] dz

o

and the constant Cn is

Cn = in 4n +Y-2n~
~=o (2:+1)

(A-4)

(A-5)

(A-6)

(A-7)

In (A-6), 1{0 and 10 are modified Bessel functions, y is

Euler’s constant, and z = ~.

(A-8)

The function in (A-7) Fn(z) ~an also be written in inteoral

form as [21]

22 Tr

Fn(z) = :
“J J

e
-j (Z sine-ne)dedz

00

(A-9)

●

Next we derive a recursion formula for the derivative of
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Fn (z). From (A-9), we have

F,-I(z) - Fn+, (z) =~&~~ [:j[z sinf3 - (n-, ),]

00

-,j(z sin8-(n+l)6
1
do dz (A-1O)

-e

2Z n
&

= 21T ff
o -o

2Z IT

-j(z sin6-n8)
e [j’- ~~df)dz

-j(z sin6-n6)
e sinOd@dz

2Z IT

1
f[ J

d
-j(z sinO-nf3)

tioe 1dO dZ
=5

o

.j_

‘T

[

“2Z “- “-” “

[

-j(z sinO-ne)
e 1de

o

2Z

Z=o

‘(’r

J_
Jr

-j(z sine- n(l) jn6
“n e -e 1 d%

OL -1

(A-II)

(A-12)

(A-13)

(A-14)

(A-l!;)

Integrating the second term yields finally
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d+-
rk’n

Differentiating (A-9) with respect to z, we have

IT

F’(z) = ~
J

-j(z sin~-nfl)
e de

II T
o

(A-16)

(A-17)

which upon comparison with (A-16) yields the desired recussion

formula,

Fn-l(z) - ‘rl+l(z~ = ‘; fz~ + ‘-:;l)n (A-18)

Using the Fundamental Theorem of Calculus with (A-7) we can

alternatively write

F
n-/z)

-F
n+~z)

= Qn(z) + jJn(z) +

m
~n

(A-19)
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o
We may now return to (A-3) which we write as

f;(s)

q=-T

a~(s)

TmT

1
—
s

+
(A-20)

Differentiating (A-4) with respect to s we have

K’
n-11[[

Kn+l
+ Kn-11

kb
-2-

+ R+l +

n2
+—

k2b

K,

n
1

Kn
(A-21;1

where

.[

K:-l(s )=-b F’ (kb)
2n-1-2

(kb)1(A-22)
K;+,(s) + F’

2n-2

+

[

F
Zn+l

-b (kb) F
2n+3

(kb) + F
2n-3

(kb)

(A -23 )(kb)F
2n-1
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where (A-18) has been used in (A-23).

Using the asymptotic expansion obtained by Umashankar [8],

Iim

[ 1

K’ (s) + K’ (s) = b -j(2kb - ~/4)
kb+m n+~ n-l 2$X e

[e,(w)”-j(?P’)n
‘+e’j(w);ce

(A-24)

so that finally, we have

● ✿
lirn

[ 1

2,j(-l)Pb
;+l(s) + K’ (s) . –—_

-j(2kb-~/4)

kb~& K
n-l F“e (A-25)

From (A-6), we have

K’(s) = -b F ‘ (kb)
n 2n

=

[
-b F

12n-/kb) - ‘2n+l ‘kb)

(A-26)

(A-27)

From [8], for large-values of kb,
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r

-j b (-1)” -j(21cb - m/4)=

~e

(A-28)

(A-29)

Therefore a;(s) can be directly evaluated from (A-21) for large

kb as

,1[
“+1

lim fib -2 In kb + (-1)
“+m a;(s) = c ~ ‘- ~

~

1[

r

-j(2kb - IT/4) .!$_!2 2,j(-l)n b e-j(’kb - ‘/4~
e

‘2- 1

[
n’ __-ln kb + (--1)”

1-

-j(2kb - 7T/4)

+ k“ ?T

1
‘~x e

“2

[

-j(-l)nQ ‘ -j(2kb - IT/4)

‘- II
(A-30)
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Keeping only the dominant terms in (A-30), we have

L

1

-j(2kb - Tr/4)
e

Therefore (A-3) reduces to

Tim f;(s) = 1

‘b+m fn(s) jkc

{
(A-32)

This function is bounded in both the left and right s-plane

as s+~ and also on a circular contour which passes between

the poles of fn(s) which are the zeros of an(s).

Thus, the product expansion of fn(s) is given by ~20j

1 1
f~(wfn(o! s

S/ Sn j

fn(s) = fn(0)e ~ (l-S/Sni)e
i (A-33)

136

(A-31)

●

,

.



where

f;(o) Iim 1-

[(

j~

)

k2b2
= kb+() ~

fn(o)
~ ~ (kb) Kn+l + Kn-l + ~

n2b Kn - n2K~
kb(K,

+ K’
n+l )n-1 +

lim=
kb+()

k2b2

(
K~+1 + K

)
-n2K

2 n-1 n

-1

(A-34)

1+ (‘~mKn-n2K1
C kb n

)

1

~ K:(o)
jck (A-35)=

c Kn(0)
‘172Kn

However, from (A-6),

[ ‘(%) ’o(~)“n]Kn(0) = l/IT K

and

(A-36)

K; (0) = -b F~n(0)
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= -b
[

‘2!M
1

(o) - F2n+1 (o) = o (A-38}

Finally, we have that

-jn2c
fn(o) = ‘T Kn(0) =

“~~c [%(~) 10 (@+ ‘.1

(A-39)

so that combining (A-33) - (A-39), we have

fn(s) = sari(s) =
-’~~c[Ko(~) ‘0)+ c.]

w-+)“’snin‘ 0‘A-’”’
Thus, the infinite product representation for an(s) is

(A-41)

Turning to the representation of so(s), we note that

so(s) has a zero at s = O, so we consider the function
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fo(s) =
so(s)

s

The logarithmic derivative is

f; sa~(s) - sao(s)

fi= sao(s) –

a~(sj 1
= -_

so(s) s

From (A-4), we note that

so(s) = kb K,

where

‘1= “n[KO) 10(0+ ’11- ‘,(kb)

Differentiating (A-45), we have

a;(s) = -$
‘[

b K, + kb K;
1

(A-42)

(A-43’)

(A-44:)

(A-45:1

(A-46)

(A-47)

where



~1 = -b F;(kb)
1

= -b
[ 1

Fl(kb) - F3(kb)

(A-48)

(A-49)

The asymptotic formulas from 18], yield

lim

[

- in (kb)
1

so(s) = kb
-j(2kb-m/4)

kb+m T - 2~T e 1

(A-50)

-I(b

i

-j(2kb-m/4)
= in (kb) - ~ # e

IT

(A-51)

and for the derivative

. [(a~(s) = + ~ -III kb- -j(’2kb-n/4)

2+
e

TT nkb )

.

.
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[

-1
-~~2 - -j(2kb-n/4)

24= e

(

j Tr/2 +3T/2
e -e

)1.] (A- 52)

.Li

[
-b in kb + -j(2kb-m/4)

c
?ti

e (2jkb-1)IT 1

(A-53)

On keeping only only the dominant terms, we have

Iim
kb+.co

a:(s) s -jb
[

-In kb.—
c

“ + jm “(2kb-”’4)1

(A-54,)

Therefore

1

Iim a~(s) -.jb
-In kb

r

-j(2kb-n/4
kbw — = T

so(s)
+j M e

T IT

[[

kb

1
-’In kb.—

d

-j(2kb-m/4)

lT- mkb e
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This function is bounded on a circle of radius R attached at

the origin and passing between poles in the asymptotic layer.

f;(s)
Hence — is bounded on a sequence of such circles R , en-

fo(s) P

closing p po?es. We now need the value of

f;(o) = tim

(

a;(s)

fo(o)
S+o

~-: )

From (A-55), we have

f&(o) Iim

[

‘$ (bKl + kb K\) . J_

~= ‘+0
kb K1 jkc

But

Kl(o) .I,+o(ql.(:) +,]

(A-56)

(A-57)

(A-58)

(A-59)

and

142



Ki(0) =
[ 1

-b Fl(o) - F3(o) = O

so that

f;(o) = o

fo(o)

and we have finally,

fo(s)
= ‘J”w -a ‘“”i

where the produce is

Since

lim
fo(o) = kb+o

(A-60)

(A-61)

(A-62)

over all the zeros of an(s) except s=O.

so(s) lim kbK1
=

jkc
kb+-~ —

jkc

10($+,11

(A-63)

(A-64)

(A-65)
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aO (s)

[

-jb ~{—=
s cm o ~)‘.(;)+C,]{(I.l_)e’”o,

(A-66)

IrIsummary, the infinite product representations are

. ()
&T= ,(3J-V (A-67)

n2Kn(o)q

and

where

[ O(F)10(%)+Cn]Kn(0) = I/m Ii

(A-68)

(A-69)
.
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APPENDIX B

CALCULATION OF THE NATURAL FREQUENCIES i3Y THE METHOD

OF MOMENTS FOR THE n = O MODE

The method of moments solution for mode = O requires

only a J
@

component of surface current which is @ independ-,

ent. By symmetry, there exists only a @ component of

magnetic vector potential which is also $ independent. The

scattered electric field is given by

-s=lE —.(k2+VV*)~
-.-.jmpoc

Because of the $ independence, the @ component of the

scattered electric field is

k2 A
‘$ = jwpc 4

where the magnetic vector potential is qiven by

cos $’ e -jkR

R

(B-1)

(B-2)

p’d$’ad~’

(B-3)

and where
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o
R2 = IF - i{]’ = 2a2(l - sin $ sin $’ - cos ~ cos ~’ cos $’)

+ 2b2(l - Cos $’)

+ 2ab(l - Cos ql’](cos + + Cos +’) (B-4)

and

P’ =b+acos j)’

The coordinates $’, y, and V’ are defined in Figure 1.

Since the fields are @ independent, @ has been set equal to

zero in (B-3) and (B-4). The singularity occurring in

(B-3) when ~ = $’ and $’ = O (i.e., R = O) is difficult to

handle in a numerical solution. Accordingly, we extract

the singular part of the integrand analytically in the

following.

Considering the integration on $’ first, we write

the distance from the source point to the field point as

R = (B - c Cos 4’)1’2 (B-5)

where

B = 2a2 - 2a2 sin $ sin @’ + 2b2 + 2ab(cos ~ + cos $’)

o

c= 2a2 cos ~ cos $’ + 2b2 + 2ab(cos ~ + COS @’] (B-6)
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.— _..
that (B-3) becomesso

‘$
‘o=_ I JO(@’)(b + a cos II’) a
2U ~

u

I
‘TT

J
e-jk(B-C cos $’)1’2

Cos +’ (B-7)

o (B - c Cos $’)1’2

Consider the integral in the brackets. We isolate the

singularity by adding and subtracting a term having the

same singularity as the integrand but which is integrable;

‘rr

f

Cos (($’)
o

~-jk(B - c Cos 0’)1’2 1d+’

(B - c Cos $’)1’2

T

J [
-jk(B-C cos +’)1’2 - ,

= Cos ($’) ~

1

d+’

o (B - c Cos 0’)1’2

IT

+ J
COS ($’) d$’ (B-8)

o (!3 - c Cos $’)1’2

The first integral on the right-hand side is nonsingular
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and is hence amenable to numerical integration. The second

integral, which we now proceed to evaluate, contains the

singularity.

With the substitution cos $’ = (2cos2 4’/2 - 1) and

the change of variables $’ = m - 2<, the second integral

becomes

‘m

J Cos $’ d+’

o(B- C Cos $’ )1/2

i’r/2
2 p 1 - m sinz g) + (m/2 - 1) dE=

(B + C) ’/2 Jo -m/2 (1 - m sin2 <)
1/2 -

-4 E(m) - 2(1 - Z/m) K(m)= (B-9)

m(B + C)l’2 (B + C) ’/2

where m = 2C/R+C and ~(m) and E(m) are elliptic integrals

of the first and second kind, respectively ~22]. Thus,

with (B-8) and (R-9), (B-7) becomes

2T

1[
T

J
-jk(!3-C cos $’)1/2 - ~

Cos $’ e 1d$’

o (B - c Cos 0’)
1/2
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4E(m) - 2(1 - (B-1O)

m(B + C) I’* (B + C)l/2

The term involving ~(m) is still singular since as y

approaches $’, m tends to unity. Using (B-6), we rewrite

m to exhibit its dependence on jJ’ explicitly;

13+ Ecosy’
m= (5-11)

F + G cos ~’ - H sin y’

where

D= 4b2 + 4ab cos ~

E= 4a2 cos y + 4ab

F = 2az + 4b2 + 4ab ccs +

G= 2a2 cos $ + 4ab

H = 2a2 sin ~

The singular integral of interest is

27r
PO—

1
JO(4’)(b + a cos V’) a

2n ~

(B-12)

-2(1 - 2/m)] K(m) d$’

(B -I- c)l/2 I
(B-13)
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The order of the singularity may be determined by evalu-

ating the limit of the terms in the integrand as v

approaches V’ or, equivalently, as m approaches 1. Thus

we have

!’inl (B + ~)1/2 = Z(b + a cos y)
$.+$’

= ln(16) - In
[

2a2-2a2 cos~cos$’ - 2a2 sinosin!’

F + G cos ~’ - H sin $’ 1

1= ln(16) - In 2a2 ‘1 - C*S ‘0 - “

‘] I (B-14)
F + G cos ~’ - H sin $’

from (B-11) and (B-12). Expanding cos (y - 4’) in a power

series and keeping only the dominant sinqular term from

(B-14), we have

K(m) z -2 In (1$ - 4’1) (B-15)

.

0

Hence,
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-.

lim ‘o
4’+$ ~

J@(~’)(b + a Cos ~’) (-za)(~ - 2/m) K(m)

(B + C)’/’

(B-16)

We now consider dividing the cross section of the loop into

N subsections of angular extent

(B-17)

and define midpoints and end points of each interval as

$“ = (n - 1) A$
—.

$*- = (n -3/2) A~n=l ,2,,.., N

(B-18)

The current is expanded in pulse functions

Jo(v) = 5 In Pn(4)
n=l

(B-19)

where
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“1

t, I/)n. <?$:$n+

Pn($) =

0, otherwise (B-2(I)

and substituted into the vector potential. Since by (B-2),

vector potential is proportional to the electric field, at

a natural resonant frequency, the vector potential due to

the current along the surface is zero. If this condition

is enforced at the points $P, p = 1, 2, . . . , N, a matrix

results whose determinant is zero at the pole frequency.

That is,

det \Z(s)~ = O (B-21)

when s is a natural resonant frequency. The matrix Z(s)

is defined by

$n+
‘n

~oa

J [J ~,-jk(B-C cos $’)1’2
z=— ~(+~)
pn Cos $’ - do ‘

2i’r o (B - c Cos $1’)*/2
n- 1
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IT

H
~-jk(B-C cos $’)1’2 - ,

W(*’) Cos +’

1

d(~’

o (5 - c Cos 0’)1’2

- 4W(~’) E(m)

m(B + C)l’2

- 2kl(lj’)(1 - 2/m) K(m)

(B -I-@/2

1
+21n (1*P -

1

+’1) dv’

-z’+:-’) *=VP, ‘=n
(B-22)

where W(~’) = b + a cos $’ in the above expressions. Note

that the singular term (B-16) has been extracted from the

integrand and its integral is added outside the integral in

(B-22) for p = n.

The Fourier expansion of the voltage across a uniform

gap is

153



Using (B-22), we can write a function dependence for the

total current where

It is pointed out that the total current is equal to the

sum of individual current. That is,

o
(R-25)

where ~ = -UV/mVo and the sum is the quantity plotted in

Chapter 11, Figure 10.
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APPENDIX C

DERIVATION OF THE NEAR FIELD EXPRESSIONS

The electromagnetic field of a circular loop antenna

with a current distributic)n given by (2.37)

-jV~(s)
I($) =

?lOll

1
+ 2 5 Cos ‘o

so(s) 1 an(s)
(c-1)

may be determined from the vector potential for any

arbitrary point.

The element of vector’ potential d~ at a point ro, 0,

$ or X, Y, Z, Figure 27, has two components

dA,x = -dA sin $’

dAy = dA COS $’ (c-2)

These may be expressed as

e-jkR
dAx = ~ 1(+’] —sin O’ bd$’

R

‘o -jkR
dAy = — 1($’) ~ COS $’ bd+’

41T R

We may write

1(~’) = ~ In e-jn$’

n

(c-3)

(c-4)
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where comparing with (C-l), we have

v:(s)
In = -j

noma~n l(s)

Furthermore, noting that

(C-5)

~-jkR
-jkh~2)(kR)— = (C-6)

R

where h$2) is the spherical Hankel function of order

zero, second kind, we may employ the addition theorem E233

to write

~ (2t+l) h\2)(kro~ Jk(kb) Pk(cos g), r. > b
1=0

(C-7)

The Legendre functions can further be expanded as [23]

Pk(cos 5) = i Em ‘k-m)! Py(cos e)
m-O (I+m}!

P~(cos 0’) cos m(+-$’) (C-8)

o
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.

where cm =lform=Cand[ =.2 form J0. This may ‘R’

also be written as

Pf,(cos g) ‘ ~ .MJLIYpl”l(cos ~)
fn=-f (l+] m/)! “

p~ml(cos e’) ~-jrn( +-$’) (C-9)

Hence, for r. > b’, we have

-E.
dAx = — ~ I e-jn$’(-,jk)

4Tr n n

S (2!+1) h2 kr
!=0

,( ~) Jl(kb)

PL(cos L) sin O’ bd$’, r. > b

(c-lo)

Substituting (C-9) intc (C-1O), we may rearrange the order

of the summation to obtain

dAx = U ~ In e-jn$’(-jk)
4Tr n
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l~l(cos 0’)plml(cos e) Pg
%

Let the inner summation be represented by an indexed term

lm+cos e’)PJml(cos 6) Pt

so that the vector potential can be written as

uok
dAx = — ~1[

1
~ ~-j$’ (n-l) -e-j@’ (n+l)

8iT n

~ ~ ~“jm($-$’)bd+l
m

m=.03

(C-12)

(C-13)

Integrating over all @’ and using the orthogonality of the

function exp(jm~’), we obtain finally,

pokb
Ax=— ~1[ nenle -j(n-l)@ - ~ e-j(n+l)f$

4
n+l 1

(C-14)
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Similarly, Ay is found to be

Pokb
A=— ~1[- ~Cnle

-j(n-l)@ + ~ e-j(n+l)$
Y 4j n

n+l 1

(C-15)

If the vector potentials are required for r. < b, then Cm

in (c-12) is replaced by

Iml(cos e’)plml(cos e) PR
!/ (C-16)

This completes the derivation of the rectangular com-

ponentsof vector potential, It is pointed out that the

vector potential equations (c-14) and (C-15) are valid for

near and far fields. The electric and magnetic field

quantities may be derived from

5’ Vxi

E=
[

.j~ ~ + Lvv . ~
k2 1

for periodic time dependence where k = w/c.

transform domain, we have simply s = jkc.

(C-17)

(C-18)

In the Laplace
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