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. . Abstract

Expressions for the transient radiated electri-c fields of a planar
array of sources are developed for elements having known field distribu-
tion, as well as time delay, located on an infinite, perfectly-coﬁducting,
ground plane. The analysis of such arrays is based on a Green's function
approach to the electric vector. potential problem. Planar arrays of two-
dimensional sources are analyzed in this manner using nﬁmerical compu-
tation of the appropriate superposition integrals and the related space-~
time Green's function. Plots of thé time history of the radiated far-fields
are presented for various configurations and observatién angles for

constant amplitude distributions on each array element.
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SECTION I
INTRODUCTION

The general approach to the simulation of a nuclear electromagnetic
pulse using a radiating system consisting of planar sources has recently
been considered from a qualitative point of viewglland methods of launch-
ing the required transient fields are currently under investigation. Such
planar arrays consist of aperture sources having tangential electric fields
which are excited in the appropriate time sequence and spacial distribution
to obtain a desired far-field distribution. Techniques for launching the
required waves for the simulation of an electromagnetic pulse have been
discussed in previous work on pulser arraysgz’3’4’5’6]

The purpose of this investigation is to analyze the transient radiated
fields of planar arrays of sources which might be used to simulate a
nuclear electromagnetic pulse (BMP). This work will not consider the problem
associated with the excitation of the planar sources, and, consequently, the
arrays studied will consist of sources with known aperture field distri-
bution and "time-delay' distribution.

The first phase of theinvestigation consists of the analysis of the
time-history of the far-fields of an array on N infinitely long slots in a
perfectly conducting infinite plane as shown in Figure 1. The analysis of
this array having known electric field distributions is based on a Green's
function approach to the problem. A two-dimensional space-time Green's
function for a single line of unit amplitude located on the plane is pre-
sented, and the actual time and amplitude distribution for each source is
incorporated in the solution for the far-fields through the use of appro-

priate superposition integrals and the Green's function. The related in-
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Figure 1. Planar array of two-dimensional slot sources.



vestigation of Sections II and III is based on the mumerical evaluation

of this mathematical formulation.



SECTION II

TRANSIENT RADIATED FIELDS FOR A SINGLE SLOT
IN AN INFINITE PLANE

In this section, the transient radiated fields of a single slot are
derived as a first step in the analysis of the array of planar slots in
an infinite, perfectly conducting, ground plane as shown in Figure 1.
Thus, the idealized problem consists of a known tangential electric field
distribution in the plane where y=0 which is outlined in Figure 2. For
simplicity, only the electric field component, Ex(x,t), is assumed over
the slot width d, and the tangential electric field is assumed to be
zero elsewhere on the plane as a result of the idealized conducting planes;
however, the analysis ofithe related z component or the combinations of
X and z components can be obtained in a similar manner. The two-dimensional
coordinate system used in the mathematical formulation is shown in Figure 3
where the required distance factors are defined for the assumed source and
field points. The medium is assumed to be that of free space, i.e. e= €0’
u=u0,o=0fmry>&

Because the tangential field distribution is known everywhere on the
y =0 plane, the analysis reduces to a problem of developing mathematical
expressions for the direct computation of the transient radiated fields.
One aﬁproach to this problem is to invoke the surface-equivalence theorem
to obtain equivalent surface currents from which the desired fields can
be computedg7] In this case, from Figures2 and 3, only a magnetic surface

current density exists,which is

M, = G, x &) (1)
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ground plane.
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where Ex is the assumed electric field distribution existing on the
infinite-length slot of the original problem and the e's are the unit
vectors in the space. The equivalent problem for y > 0 consists of an
electric conductor in the plane y = 0 (i.e.,zero fields for y < 0) with
a magnetic current density, Hs, residing on the surface as depicted in
Figure 4A. This equivalent problem can be formulated in temms of image
theory to obtain a solution for the original boundary value problem where

the total magnetic current density is
M= F{s §y) = M, 6(y)ez = 2Ee, 2)

Hence, the equivalent problem of a sheet or ribbon of magnetic current

as shown in Figure 4B can be used to analyze this two-dimensional problem.
An expression for the transient fields of the strip of magnetic current

can be derived in terms of electric vector potential from Maxwell's equa-

tions for time dependent fields. Thus, since the problem involves only a

source of magnetic current density, i.e.,J =10, p = 0, o ™ 0, Maxwell's

equations for this problem in free space become

VxH=eog—§ (3)
VxE= g B g )
v.H=0 | (5)
and v.E=0 (6)

where all field quantities are functions of both time and space. In this
homogeneous media, the electric field can be represented in terms of an

electric vector potential, f,as

12
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E=-vxT ™

because any divergenceless vector is the curl of some other vector. With
this vector potential representation, the magnetic field can be represented

in terms of ¥ and the gradient of a scalar as
Lpg-E_ g (8)

where on is the magnetic scalar potential. From the previous equations,

it can be shown that the vector potential must satisfy the wave equation
2 az?:' 2
vt - 5= -c Hss(y) )
st

where a Lorentz gauge

3¢
B (10)

veT+ T

o+

is assumed for ¢ = 1/ (uoeg)l/z

and ¥ = Ffs(x,z,t)a(y).

The far fields can be computed in terms of the electric vector po-
tential from the previous equations if equation (9) can be solved in terms
of the known magnetic current density. In this case, it is desirable to
reduce the potential wave equation with associated boundary conditions to
an integral expression which is more amenable to mumerical analysis. Such
an integral expression can be obtained through the application of the
Green's function method for the solution of differential equation.

The problem as shown in Figure 4 reduces to a two-dimensional problem

in free space where the solution is valid for y > 0, and equation (9} be-

comes a scalar wave equation,

14



2.2 ',
Cc nyfz - a—-t?- s -C MZ(X,Z,t)\’GC}’) 11)

because from equation (2) only a z component of M; exists. Since this
is a free space problem, the related space-time Green's function is the

principal solution of the general equation,

2

2 1 9 G '
Yx1yr Go G -z'-—g—'= -6(x'-x, y'-y, t-t) (12)
which has the solutioLS]
N
10, R>c(t-1)
GO(X,)’,th',)",T) = (13)

,Rec (t-1)
Tﬂc Z(tn)° R]W_l

fo;

R= [0+ o9 (19)

as defined for a general unit line-source in both space and time in Figure
SA. Special boundary conditions at infinity and causality requirements
dictate this solution where the variables of (11) have been interchanged to
insure proper function dependence in the integral solution of equation (11).
This Green's function is the characteristic two-dimensional solution for

the scalar wave equation caused by an infinite line source excited at t = t,

" Actually, since the line consists of many point sources which radiate

spherically, a response at some distance RO is first experienced at v = t
and 'subsequent response occurs for t's > t; thus, the response decays accord-

ing to equation (13) as shown in Figure S5B.

15
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Through the use of the appropriate Green's theorem and initial
conditions, a solution of the inhomogeneous wave equation (11) can be

expressed in terms of a superposition integral and this Green's Function

as

T poo poo
£,(x,y,t) = J J J Mz(x‘,y',r)GO(x,y,t|x',y',r)dx'dy'dr (15)
0 -2~
where the required free space boundary conditions and causality eliminate
all contour contributions and T exceeds any time t at which the solution
may be sought. Now, since the source exists only in the x-z plane (y=0),

i.e. Mz(x,y,f) = Mz(x,r) 8(y), then equation (15) becomes

T p=oe
gyt = || M6 066yt 0 e a6)
0 ~o

which is an integral formula for computing the electric vector potential
for planar two-dimensional sourcesof known electric field distribution
through the use of equation (2).

The time dependent or transient fields radiated in the far-field
of the two-dimensional, planar source can be expressed in terms of equa-

tion (16) with the aid of the expressions of equations (7) and (8). Thus,

T peo
= -V x EZJ J Mz(x',r) Go(x,y,tlx',O,'c)dx'd'r 17

0 e

and T oo
H= 10%? EZJ J M, (x',1) Go(x,y,tlx‘,o,r)dx‘d-r (18)

0 ~=

17



where the scalar potential component of the H-field equation is zero in
this two~dimensional problem. In the three-dimensional case, this term
can be dropped because it has a higher inverse power of distance than the
time derivative term, and, therefore, the scalar potential contribution
is smaller than the vector potential contribution to the field at large
distances. However, the scalar potential contribution could be expressed
in terms of the vector potential using the Lorentz condition of equation
(10) and, thereby, included in a complete three-dimensional formulation.
The field formulations of equations (17) and (18) are not readily solved

using numerical techniques in their existing forms, but for some simple
magnetic current density representations these expressions can be reduced
to forms with tractable mumerical solutions. One simplification which
greatly reduces the mmerical computation required is the use of a step-

function dependence in time such that
M, (x,7) =M (x) u(x) (19)

where other time dependences can be obtained from a superposition integral
based on the summation of step function responses.[g] For this case of
a planar array excited at t = 0 with a step function dependence, the field

expression becomes

w T
E=-vx 'é'z J M, (x*') J Gy dr|dx! (20)
- 0
and - T
9 -
H= v eZJ Mz(x'] J God'r dx!' (21)
.o 0

18



where the functional dependence of the Green's function has been dropped

for simplicity. In the present form, equations (20) and (21) re-

quire double integration to compute the field quantities which is usually
undesirable in numerical analysis; however, the integral in the dummy time
variable of the Green's function can be obtained in a closed form. From

equations (20) and (13), this integral becomes

c [t'R/C 1

G, = ’ (22)
1 72? | (2 (t-0)2-RE 2

and, if the change of variables n = t-1, dn = ~dt, and R/c = b are used,
then

o =1 [°_ -dn (23)

1 Zr Z . 2.172
t CTI -b )

Note that the upper limit of (23) is evaluated at T = t-R/c because Gy=0

for T > t-R/c. The unit step response, Gy, of an infinitely long line

of magnetic charge density can be obtained in a closed form using the
(101

b

indefinite integral form

J dx/ (c2-a2) 2 = on(er (x2-a2) 1 2

2 2
as Gl(x,y,t[x') = %; £n E hd /tR;gR/C) :[; t > R/c (24)

Finally, the field expressions of equatiors (20) and (21) can be
written in terms of the step response of the infinitely long line (equation
23) as

E=7x3, [ M) 60yl 25)

-

19



0= -EO%E-Eéj M, (x') G) (Y, t]x")ax! (26)

The individual field components can now be obtained in cylindrical

coordinates defined in Figure 3 as

N ! 27
= 1y % Ayt
E, J M, x') o d @n
N ! 28
Ep = “J MZ(X )mdx ( )
and 6,
HZ = ‘Eo r Mz(xt) —ﬁ'dx‘ (29)

where differentiation under the integral sign is valid in all cases be-
cause the limits and variable of integration are independent of the

differentiation variables. If the chain rule for differentiation of com-
posite functions is used, the partial derivatives of the integrands of equa-
tions (27) and (28) can be evaluated as

3G 3G
1
Kl(x,y,tx) T _ﬂ]i' -g%

L [tP-®/C) 31/ 24t%] [p-x"cosd] (30)
2 R?[t(t -(R/c ) 24l - (RIC)ZI

3G 3G
1.7 R
and KZCx,y,t,x‘) 555 = 53K " 3%

_ -ltel-wehY 2+t L sing G1)
20k [t (2 /) Y 2ot - /)]

20




where G1 and R are differentiable over the region t > R/c and R and o

are defined in the polar coordinates of Figure 3 as

1/2

R = [p sin% + (p coss ~x')%] (32)
and p =[x+ yH1/2 (33)
such that g;& = %O_St (34)
3R _ ox' sing
and SR (35)

Equations (27), (28), and (29) can how be expressed in simplified

terms as
E, = f M, (x") K, (x,y,t,x")dx! (36)
E, = r M, (XD K, (x,y,t,x" )dx' (37)
and H, = -r M, (x') K;(x,y,t,x")dx! (38)

-0

where K1 and K’Z are defined in equations (30) and (31) and

Ks(x,y,t,x') = aGl/zat "

0 1
7r - ®HT?

(39)

Equations (36), (37), and (38) are general expressions for the three
far-field components produced by a two-dimensional source of z-directed

magnetic current density for an assumed step function excitation in time.

A



These fleld components can be related to known x-directed electric field

distributions through the use of equation (2).

22



SECTION III

SINGLE- AND MJLTIPLE- ELEMENT ARRAYS OF SLOTS
WITH CONSTANT SOURCE DISTRIBUTION

SINGLE SLOTS

In this'investigation, slot sources of known constant electric
field distribution are of primary interest. Consequently, as a first
step in the solution of the related problem, the single slot with an

x-directed electric field distribution such that

Hz(x') = ZEO[u(x'+d/2) - u{x'-d/2)1 (40)

is analyzed. The transient field components for the single slot of
Figures 3 and 4B with constant source distribution are, from equations (36)

through (38) and (40),

E d/2
e =2=2 K, (x,y,t,x")dx’ (41)
¢ EO 1
-d/2
E d/2
= _P = - -
e B Zhj. Kz(x,y,t,x')dx’ (42)
-d/2
ZH d/z ‘
and h_ = Z = .27 K, (x,y,t,x")dx' (43)
yA EO 0 3
-d/?2

where each component has been normalized to an appropriate constant and ZO
is the characteristic impedance of free space.

The expressions of equations (41), (42), and (43) are of the super-
position or convolution type integral form which can readily be represented
in graphical form, as shown in Figure 6. In this case, these problems
consist of the convolution of a constant amplitude pulse function in space

(x') and the appropriate sharply peaked, kernel function. Integrable

23
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Figure 6. Graphical representation of the field integrals
for a single strip.

24 @



singularities of the kernel functions do appear in the spatial coordinate
x' for t=R/c where R is the distance between the field point and source
point. Thus, for a given point in space (x,y) and a time (t), the magni-
tude of the field is related to the total area underneath the curve de-
fined by the shaded section in Figure 6. For the general case (¢ > 0), a
solution which increases from zero to a maximum value followed by a mono-
tonically decreasing magnitude as a function of time can be obtained for
the e¢ and hz field components. However, the expressions for the e com-
ponent is a direct function of x' and sin ¢ (see equation 31), and this
component vanishes on the plane y = 0 (¢ = O,m). In addition, this
functional dependence can change the polarity of the integrand of equa-
tion (42) because x' is an odd function which leads to field expressions
for the epqomponent that are either positive or negative depending on
geometry of the problem. The magnitude of the time-history of the ep com-
ponent is similar to that of the e¢ and hz field components unless the
origin of the coordinate system lies within the slot. The single slot of
Figure 4B is symmetrically spaced about the center of the coordinate
system, and, as a result of the "oddness" of the integrand, the time-
history of the ep component has both positive and negative excursions.

The rise-time of each of the waveforms of these field components is
related to the "delay-time" between field contributions propagating from
the closest and furthest source points on the slot in relation to the field
point (See Figure 3 for geometrical configuration). This rise-time%*, tr,
can be defined as the time required for the field to increase from zero to
one-hundred percent of its maximum or peak value. For narrow slots, it is

a direct function of the width for e¢, ep (in all but the special cases),

*This rise-time definition is valid only for single slot element re-
sponses which increase monotonically as a function of time to some peak
value.

25



and hz as is anticipated from the 'turn on" points in the graphical represen-
tation of spatial convolution in Figure 6. For large distances, it can
be shown that the previously defined rise-time for these field components

can be expressed in nommalized form as
T = tr/(RO/C) = (d/RU)cos¢ (44}

where R==R0-dcos ¢, t_. is the total rise-time, R0 is the distance from the

T
center of the slot to the field point, and d is the total width of the
slot. Equation (44), though approximate, clearly indicates that the
normalized rise-time is a sensitive function of the angle ¢, particularly
around ¢ =7/2, and that the smallest rise times are obtained for broadside
propagation (¢ =w/2) and small width-to-distance ratios.

M approximate expression for late-time behavior of the e¢ component
of the radiated electromagnetic at large distances can be obtained directly
from the magnetic field, hz. In the far-field, i.e. d/RO<< 1, the electric
field is related to the magnetic field by the characteristic impedance

of free space; thus, from equatiors (39) and (43),

1 dx!
% T’v[ 2 2.1/2 “s
=d/2  [(ct)“-R"]

when t > R/c such that a response from each point on the slot is experienced

at the field point. Equation (45) can now be expressed as

d/2
.1 dx'
e¢'—"'ﬁ-

(46)
1/2
-d/2 f[a + bx' + cx'2]

which is integrable in a closed form, where from the geometry of the

single slot,

26
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This integral has a solution

dx' _ 1 . -1 -2cx-b
[a + bx' + cx'z] \/lc V b2-4ac

thus, an approximate expression for the electric field component in the

¢ direction is obtained in the form

cos¢+d/2R ) cos¢ d/ZR
-sin (49)

\/Cos ¢1+T \/cos ¢+T -1

where 9= t/(RO/c), and

A j

2 1/2
2 [1+(d/Ro)cos¢+(d/Ro) ] (50)

for late-time behavior. Of course, equation (49) is related to an exact
closed-form expression for hZ based on equation (45), i.e. e, = Z.h_; and

0z’
for ¢ =n/2, the equation (49) reduces to a form

(51)

where it can easily be seen that these components decay in time. Note
1/2
that for 0= [l+(d/1RO)2] in equation (51), which is at the peak of

the waveform,

eé = -1 (52)



for the special case when ¢=n/2. In addition, it is recognized that
equation (49) is quite general and can be employed to compute the complete
late-time behavior after the peak has occurred for both the hZ and ey
components for small slot-width-to-distance ratios.

A mmerical solution procedure for computing the time-history of
the field components of equations (41), (42), and (43) has been developed
and programmed for a digital computer. This procedure is a straightforward
application of mmerical integration using an open-ended Gauss quadrature
formula for the treatment of the singularities of the kernel functions.
The application of mmerical integration in time-domain problems dis-
cretizes the representation of theintegral, i.e., the total field is the
sum of weighted, time-shifted contributions from a finite set of points
on the slot because of the inherent time-delay between integration points.
As a result, care must be exercised to insure that the spatial variable
of integration is "sampled' at a sufficient mumber of points to obtain a
convergent integration, especially in the rise-time region. This problem
is pronounced for small observation time increments, and an insufficient
number of integration points results in an irregular waveform consisting of
a serrated shape during the eérly-time response of the function.

The time-history of the coamputed field components using this mumerical
procedufe is characterized in Figures 7 through 15 as a function of

normalized parameters

T = t/(RO/C) (53)

and ¢/(n/2) for three slot-width-to-distance ratios, d/RU,along with

approximate fields from equation (49). As can be seen, each e, and hz

¢
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field component exhibits a finite rise-time characteristic followed by a

decreasing magnitude as a function of time which rapidly approaches a .
limiting late-time behavior. Note that the peak of the functions occurs

later in time and that the peak value decreases for decreasing values of

¢/(n/2). This "spreading out" of the waveforms is a result of the time-

delay experienced by the propagated waves from the slot as a function of

angle which is related to the 'dispersion effect'" in the frequency domain.

The computed transient behavior of the fields of equation (41) can be used

to illustrate how the "spreading' or total rise-time of the waveform varies

as a function of observation angle for the e, component of the single slot

as shown in Figure 16. Again the curve emph:.sizes that the rise-time is
dependent on angle of observation and that it changes most rapidly near
broadside (4=v/2).
It is interesting to note that the numerical results of Figures 74,
8A, and 10A indicate that the time response of a single strip has a short, but ‘
finite rise-time for ¢/(n/2) = 1.0 (i.e.,broadside to the slot). This
apparent rise-time is a result of the mmerical convolution algorithm, and
it can be shown that the actual time response has zero rise-time in this
special case as inferred in Figure 16. From Figurel6, it is seen that the
early time response for ¢/(x/2) is determined for 1<ro< (i+(d/ ZRO)Z)I/ 2;
thus, equation (45) reduces to the form,

Ya
- dx'
e¢ - !} W(a-x' ) (54)

where a = (c:t:)2 - Rg and 0<a1/2< d/2. This integral can be evaluated as

Zldu

e, = -3

= -1 (55)

0/1:2- '
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if the change of variables, u=x'/Ya, is employed, and these results indicate .
that thenormalized ¢ component of the electric field isindependent of
time during this interval where va is finite, however small, and less
than d/2. Therefore, the time response for the special broadside case
has zero rise-time and a constant magnitude until responses from all
points on the slot have reached the observation point; then, the field
decays in a manner described by equation (51).

It can be seen from Figure 7B that the approximate expression for
the ¢-component of electric field (equation 49) is in error for ¢/(n/2)
= (0.75 at d/R0 = 1/5 while the hz component of Figure 8B, as calculated
with the approximate equation, is exact even for d/R0 = 1/5. If the slot

width-to-distance ratio is increased to 1/30, the e, components, calculated

¢
by both mmerical and approximate expressions, are almost identical as
shown in Figure 10B; and, if d/R0 = 1/300, it is difficult to disf.inguish .
between the two computations as can be observed in Figure 13B. For ¢/(n/2)=1,
it appears that the approximate equation is valid even at d/R0 = 1/5 (See
Figures7A, 10A, and 11A) and that the accuracy of the approximation is a
function of angular position as well as distance. The late-time behavior of the
hZ component is exact in all cases as is evident from the graphs shown
in Figures 8B, 11A, 14A, and 14B.
Thus, in summary, it has been shown with these results that the time-
history of the far-field components of the planar slot is a critical function
of both angular position and slot width-to-distance ratio. The e, and
h, components, which have the same basic shape, are distorted from the

peaked broadside response for angles less than ninety degrees in both
amplitude and shape.
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MULTI ELEMENT ARRAYS OF SLOTS

With the results already obtained for the single slot in this investi-
gation it is relatively easy to extend the theory, as well as the mmerical
procedure, to the array problem of Figure 1. Hence, if the surface
equivalence theorem is applied to the N-element planar array of slots of

Figure 17, then the composite magnetic current density can be expressed as
N
Msz,t) = ié?an')[u[x'-an-dn/Z)]—u[x'-an+dn/2)]]u(t-Tn) (56)

where En(x') is the electric field distribution on the nth slot, X, is
the distance to the center of the nth slot, T, is the "turn-on'" time, and
dn is the width of the nth slot. Through the use of the magnetic current
density of equation (56) and the theory developed in Section II, equations
(36), (37), and (38) can be used to obtain integral expressions for the

N-element slot array of the form (See Figure 17 for geometry)

N xn+d/2
E¢, = 22 J En(x‘)Kl[x,Y) (t-Tn) ,X']dX' (57)
n=ly La/2
n
N (x_+d/2
E = -2] | 7 E Ky, (tor )t ldx! (58)
n—lxn-d/z
and N xn+d/27
H, = -2} Ean')Ks[x,y,(t—rn),x']dx' (59)
n=1xn-d/Z

where causality requires that (t-rn)>R/c for each individual term of the
series expansion. The order of summation and integration has been inter-

changed in the formulation and the kernel expressionsare the same functions

a7
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defined in equations (30), (31), and (39) except that t is now replaced by
(t-rn). These equations still represent exact expressions for the fields
of this two-dimensional problem involving multiple slots.

Thus, as can be seen from these expressions, the array problem
simplifies to the summation of the transient responses of N single slots
with the appropriate time delay and position. Thé individual transient
response for each of these slots consists of a spatial-shifted convolution
integral of the type investigated for the single slot which can include a
time delay, T A graphical representation of theconvolution integrals for
the array is presented in Figure 18 for two times, T1 and T2’ as a function
of the spatial variable. As a result of the spatial distribution of the
field distribution, it is easily seen that the sum of the individual
integrals will consist of time?deiayed responses of each array element.
For a finite spacing between elements, the total response is not continu-
ous as a result of the zefb contribution between array elements; and,
consequently, théitﬁne-history of the slot array is characterized by a
"serrated" or sawtooth-type waveform, The shape of each serration of the
response is a direct function of the position of the array element in re-
lation to the observation point, and each separate contribution can be
characterized by both the rise-time and delay of the response of a single
element as a function of ¢n/(w/2). The time déiéy, ty between peaks of
the serrations is a function of the spacing between edges of the array

elements such that, from Figure 17,
Tsn = ts/CRO/c) = (Sn - (dn—dn_l)/Z)cos¢n_l/RO (60)

where Tg is the normalized time delay, S_ is the center-to-center spacing

n
of the nth and (n-l)th element. For an array of equally spaced, constant
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width elements the time delay between response peaks becomes

T = S cos¢ (61)

in the far-field where S is the normalized element spacing, SO/RO, and

SO is the actual element spacing. Thus, the slot array is completely
characterized by the response of the individual array element, the spacing
between elements)and the total number of the element which determines the
aperture size and, therefore, the region of maximum response.

The expression for the ¢-component of electric field of the N-element
array (equation 57) has been solved using the numerical procedure utilized
fof’ﬁbainvestigation of a single slot source. The results of this computer
analysis for a two and a three-element array of equally spaced, constant-
width elements are presented in Figures19 and 20, respectively, for
different element spacings. For $=1.0, i.e., all elements touching, the
responses, with symmetrical placement of the array, are simply the transi-
ent response of a single slot element of either twice or three times the
element source width for the appropriate array. This response consists of
a unit magnitude, single pulse with zero rise-time and a long 'fall-time"
characteristic of the single slot responses of Figures 7, 8, and 10 for
¢=n/2. For S$1, the time-history of the total array consists of the sum
of the time-delayed responses of each of the array elements. For the three-
element array, the response separates from the S=1 case into a waveform having
two peaks. One of these peaks is a response from the center slot and the
other results from the remaining two symmetrically spaced elements which
arrive at the same time. There is a striking difference between these
contributions because the response from the center element is not drastically

distorted because the time delay across this element is small and the time-

51



y7%:

d/Rgl/30

O | | |
.00O .002 1.004 .006

Figure 19. e s VS+ T for a 3-Element Broadside Array of Slot Sources for Different

Element Spacings.

2§




1.0

0.5

£5

—S,/d=1.0
—S./d=1.5

s /d=6.0

.00

Figure 20. e vs. t

.002 %

¢
Element Spacings (d/R0 = 1/30).

1.004 .LOO6

o for a 2-Element Broadside Array of Slot Sources for Different



delay for points on the off-center elements increases as a function of
position which results in deformation of the basic shape of the response. .
As shown in theother curves of Figure 19, the second peak is seen to decrease
in both magnitude and width and to occur at later times for increases in
element spacing. MNumerical results for the two-element array are similar

to that of the three element array without the first peak of the center
element, as would be expected. The transient responses of 5, 7, and 9-
element arrays of equally spaced, constant-width, slot sources is shown

in Figures 21, 22, and 23, respectively, for ¢(r/2) equal to 1 which

shows that the array response is indeed the sum of the time-delayed re-
sponse of each array element. In addition, the effects of changes in

element spacing and element widths in a 9-element array are dramatized in

Figures 24 and 25,
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SECTION IV
CONCLUSIONS

@)

This report presents general expressions for the transient radiated
electric and magnetic fields for a planar array of sources with elements
having known electric field distribution, as well as time delay, located
on an infinite, perfectly conducting plane. The analysis of such arrays
is based on the space-time Green's function approach to the electric vector
potential problem rather than the more common frequency domain approach
applied to related problans!ll]

Planar arrays of two-dimensional sources are analyzed using mumerical
computation of the appropriate superposition integrals in conjunction with
related Green's function for constant amplitude distribution over the in-
dividual apertures. Plots of the time history of the radiated far-fields,
as well as near fields, are presented for a single element and other array
configurations for the constant amplitude distribution. Results of the field ‘
amplitude variation as a fumction of observation angle are presented for the
single element. Note that the time history of an element is extremely sensitive
to observation angle because of the time delay induced by the change in distance
a given response must travel to reach the observation point.

The time history of the fields for these array elements is characteristic
of the two-dimensional wave equation solution where the history consists
of the response from the point on the element nearest the point of observation
followed by responses which arrive laterin time from points more distant on
the infinitely long aperture. It is evident from the responses of the multi-
element arrays that the total response of thé system is simply the linear

superposition of the response of each element appropriately delayed in time for
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the existing observation angle. In addition, from Figure 24, it can be
observed that the time response at large distances from a finite array
approaches the response of a single element for broadside observation because

time delay to each element approaches zero.
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