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Abstract

A transmission line consisting of vertical conductors buried in the
ground is evaluated from the viewpoint of reproducing part of the electro-
magnetic field distribution fram a large distributed source at the ground
surface (e.g., the nuclear EMP). When cambined with the appropriate
electronagne‘tlc energy sources, this is a poss:.b.u.e EMP simulation technique
for use with bum.ed structures.
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over the extent of the site)

wWhan PJnCidering the vulnerability of a 1
ticn to the nuclear electromegnetic pulse (m
51mula~1ny this pulse; i.e., a means of artif
fields with a temporal and spatial variation (ov
similar tc that expected from the EMP.

e buried structure
electrically) by a
permeag L_ty, u, a permlttlv1ty, e, and a conductivizy, .~ In general the
fields in this ground will then be propagating &t 2 velcoity significantly
slower than c, the speed of light in vacuum. Howsver. Zlelds will eppear
over the alr—ground interface at close to ¢ eithsr Sesczuss outside the
L”le;“ scurce region we have an electromagnetic wave propagating over the
interfzce or because inside the nuclear source regicn whers the air con-
ductivity can be high (even comparaole to the b-ugr" The field sources
move over _he interface at some significant frecticn <f <. Thus, in the
grourd, the fields will propagate very nearly oerpercicular to the ground

surfacc, l.e, in the negative z direction.

Ccn51dmr the geometry of figure 1 in which we rave som
to be tested. We assume the ground to be characterizec (e

!

Tnere are certain limitaticns to this mocel. Ip-s ome Cases we may
have To limit the horizontal extent (2a or 25} cf cur consideration to
distances smaller than those over which the field abﬁvo the surface changes
Slrﬁ*_ﬁbantlj (such as the gamma-ray mean ;“eﬁ sath ¢f around 200 meters),
or we may have to limit our frequencies of interest to those for which tne
skin cdepth in the ground is also smaller th_n such distances. Keeping
these possible limitations in mind we shall take as cw mecel for the

. field distribution in the ground one based cn a wave prepagating in the
negative z direction.

Definn the x axis as the direction of the magnetic field and the y axis
as the cirection of the electric field for this wave sropagating into the
ground. Let us then place conductors (plates or rods) perpendicular to
the y axis {or parallel to the x, z plane). These conductors, being per-
pendicular to the electric field, do not disturb this wave assumed
proragating in the negative z directicon.

Consider a parallel plate siructure, or mare ractically two parallel
grlhs of conducting rods or stakes, each grid of w1it. Z2a, separated by
a distance, 2b, and of depth, £, as illustrated in ‘ighre . If we drive
this structure from the top as a trensmission line, then near the axis of
the transmission line (ignoring the presence of a buried structure being
tested) we will have a fairly uniform field pattern for a given z, similar
to the EMP.4 However, there are other limitaticns to consider.

[k

There are in general fringing fields, near tne wor and tottom of the
transmission line, which Iimit our model in these regicns unless we
compensate for these disterticns. For our calculations we assume that
the length, £, is much larger than either norizcntal dimension, 2a or
2b. Associated with the horizontal dimensicns we alsc have transit
time limitations, i.e., it takes a certain time for a signal from the
generator to distribute over the horizontal dimensicns of the transmission

2
1. Raticnalized m.k.s. units are used throaghout.
2. for a discussion of this kind of field tattern ses SSN XXI, Impedances

and Field Distributions for Para;lel P.;LE Transmissicn Line Slmulators,
by this author.
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line. Our calculations will apply only for signals with characteristic
times much longer than such transit times over the ground surface. This
problem of simulating these higher frequencies over the ground surface is
planned to be considered in future notes. We must also insure that the
conductors forming the transmission line make good electrical contact with
the ground so that the TEM propagation mode in this lossy medium is not
significantly distorted, altering our desired field distributien.

If the transmission line in the lossy ground were infinitely long,
then a signal from the generator would propagate along the transmission
line in a manner similar to the propagation of the EMP into the ground.
However, the trensmissicn line cannot practically be infinitely long. In
general it would seem difficult to terminate a finite length of this
transmission line in its characteristic impedance since for the case of
o>>we, and u and ¢ lndependent of the radian frequency, w, the character-
istic impedance varies asﬂ/_-. In addition, it may be difficult in some
cases to have access to the bottom of the transmission line to connect
any kind of terminator. In this case, it will probably be necessary to
leave the bottom of the transmission line unterminated as 1nd1cated in

figure 1.

Since we limit our concern to the case of o>>we in the ground then
an unterminated (or open circuited) transmission line will not be that
bad for reproducing a desired field distribution in the ground. There
are no sharp reflection or resonance characteristics as in an open-circuited,
non-~lossy transmission line. For skin depths in the ground much smaller
than the length of the transmission line, the reflection from the bottom
attenuates rapidly on the way up, becoming insignificant and the finite-
length, unterminated transmission line behaves as one of infinite length.
For skin depths much larger than ¢ the transmission line impedance
behaves as lumped circuit elements. Likewise, the fields assume a
certain distribution with depth which differs from the field distribution
for such depths on an infinite length transmission line. In this note
we calculate the approximate variation of these fields with depth,

frequency, and time.

Consider the variation of the impedance of the open-circuited
transmission line with frequency (or skin depth) in a very lossy (o>>uwe)
soil as well as the variation of the fields with depth, frequency, and
time. We alsc consider the variation of the same quantities on a short-
circuited transmission line, which represents one of the simpler termina-
tions (shorting conductors across the bottom of the transmission line)
which we might consider attemptlng. In each of these cases we campare
the results to those obtained on the infinite length transmission line
which represents the "ideal" case we are trying to approximate. With
such a comparison we can see for a given observation depth, -z, (relative
to the length, f) how significantly the magnetic field and electric field
(or current density) are distorted relative to their "ideal" values.

For convenience the permeability and conductivity of the ground are
assumed independent of both frequency and location and both impedances
and fields are presented in normalized form, the fields being normalized
to a unity magnetic field at the surface, z = 0. Based on these calcula-
tions we can choose the depth of the transmission line for an EMP simula-
tion test on & given buried structure.
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There is another important limitaticn of this technique in that the
structure under test may be quite extensive, particularly if we consider
electrical connections (cable runs) to and from the structure which may
of necessity extend beyond the area covered by the buried transmission
line. In such cases, the structure itself may strongly influence the
field distribution in the ground. To scme extent we may be able to
partially compensate for this perturbation by altering the cross section
of the transmission line to more closely match the field pattern (arcund
the structure) we might expect from the EMP. However, in the case of
some complex sites it may be very difficult to estimate the effect of such
perturbations and we may have to rely on measurements of the field dis-
tribution at various positions in the transmission line during the test
to determine how closely we have approximated the field distribution

expected from the EMP.

We do not consider the actual time variation of the fields which
might be produced by various electrical energy sources when attached to
this type of transmission-line simulator. We hope to discuss such
problems in future notes.

II. Impedance of the Buried Transmission-lLine Simulator

Considering first the impedance of this transmission line in the
ground, we have a wave impedance

Sy /2
33541 (1)

where the laplace transform variable, s, can be replaced by jw for a'
frequency analysis. This can be related to the impedance of an
infinitely long transmission line, ZL s by a geometric factor, fg, as

Z =

L

Z, =£f2Z
g (2)

We also have electromagnetic yaves on the -ransmission line (for single
frequencies) of the form eJWtZ %% yhere tre propagation censtant, k, is

kK = [-su(o+se)]t’? (3)

We have presumed that the electrical parameters of the ground do not
vary over the extent of the transmission line.

For the case of o>>we for all frequencies of interest (for this note)
we have the simpler expressions

sull/2
Z ;—) (4)
and
k = (-sua)l/2 ’ ' (5)

In the frequency damain we can use some parameters, such as the skin
depth, 8, which is
L2
§ = T (6)



and thus

cauyL/2 _ 147 )
Z = (]%) = -5—0'1 (7)
and
k= (a2 = L (8)

Carrying this one step further define a normalized skin depth, §&',
as )

g ()

where 2 is the depth of the transmission line.
The impedance of the infinite or ideal transmission line is now

. g 1M '
Z, = £, %55 (10)

-]

or in normalized form for comparison with the cother cases

Qo . 1# '
= 4 = = (11)
g -]
On the open-circuited transmission line we have a positive voltage
reflection and a negative current reflecticn at the bottom of the
transmission line giving an impedance, Z, > as
-j2k¢ o
7. =z EE
Ly Ly 1-o~32K2 (12)

or in normalized form

1+7
. 2
dc 1+ 1+e” < §
f L §' - 4_17
g o 1725

On the short-circuited transmission line we have a negative voltage
reflection and a positive current reflection at the bottom of the

transmissicn line giving an impedance, Z, 5 as
s

-jZ2kg
l-e ]
2, =2 e (14)
LS Lm l+e.3 ZkQ
or in normalized form _21_}"1_
2o . 1t] l-e )
T4, % T T+ (15
g S l+e-2T‘



These normalized impedances (equations (11), (13), and (15)) are plotted
against &' in figures 2 through 5, considering their magnitudes, phases,
real parts, and imaginary parts in that order. From these graphs we
can see that for frequencies such that the skin depth is less than the
depth of the transmission the impedances all look abcut the same, i.e.,
the finite length has little influence and the impedances behave as if
the transmission line were infinitely long. However, for frequencies
such that the skin depth is greater than the depth of the transmissicn
line, the results are quite different from cne another. Thus, let us
consider the asymptotic forms of the impedances of these finite-length
transmission lines for large §&'.

For the open-circuited transmissicn line we have from equation (13)

20 L 1t 1+
£ ZLO' =5t coth “ﬁ,‘) | (16)

Expanding this for large &', we have

Qg 1+3 §' 1+9
=4 -5t | oy ot
g o
=1+ %67 (17)
For large §' we can then write this impedance as
. 1, s wul
ZLo'fng *+ ] 3] (18)
or let '
ZLo * Ry * Julg (19)
where
- 1
R * fgfo (20)
and
- 8
Ly = T3 73 (21)

Thus, for low frequencies (§'>>1) we can represent the impedance of the
transmissicn line, with an open-circuited termination, as the series
combination of a resistance and an inductance: :

For the short-circuited transmission line we have from equation (15)

gfi 7, = lg—?— tanh (3-:;-?'—) (22)
g s
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Expanding for large 6', we have

o, L |1 @)’
-~ - ‘ " LIS ]
fg LS §' s 36'3
= jaet e e (23)
Alternatively we can expand equation (22) as
fo, . o1 |8, 1 -1
£ %L, &' 1+3 3" T
g s
. 6'2 1 - )
= =] 5 + 3 (24
For large &' we can then write this impedance as
7. = r._______l' + Lo - | (23)
Ly ]wfguﬂ 3fg
or let L
T 1 1
LS 3wL RS
where -
L = fguﬂ (27}
and
~ 3
R (28)

Thus for low frequencies (§'>>1) we can represent the impedance of
the short-circuited transmission line as the parallel combination of

an inductance and a resistance.

For the higher frequencies (§'<<1l) then the finite length of the
transmission line has little effect. However, for the lower frequencies
(6'>>1) the manner of terminating the finite~length transmission line
has a 31gn1f1cant effect, allowing us to characterize the impedance
(for simple termlnatlcns) as a combination of lumped elements. These
results will be important for combining the transmission line with
electromagnetic energy sources and calculating field levels, wave-
forms, etc.

III. Fields in the Frequency Domain.

Now consider the field distributions on the transmission line in
the frequency domain. For convenience we normalize all field distri-
butions to the magnetic field at the top of the transmission line
(z = 0). We also compare the field distributions for the finite-
length transmission lines to those for the infinite-~length trens-
mission lines so that we can see over what range of positions and

12



frequencies the fields reproduce the "ideal" case, The calculations assume

that the pertinent electrical parameters of the ground do not vary signi-
ficantly over the extent of the transmission line and also that g>>wefor

all frequencies of interest.

Using the normallzed parameters defined in the previous sectlon,
define also a normalized depth, z', as
z

1 “ (29)

z! =z -

where z' now varies between zero and cne for the finite-length transmission
line. The normalized magnetic field, h(z'), is related to the magnetic

field, H(z'), by

n(z') = K22 | (30)

Similarly, we normalize (to the magnetic field) the electric field,
e(z'), or better a normalized current density, j(z'), which are related

by

j(z") = ce(z') (31)
and (in dimensionless form)
g3¢0) = %-"-ZL h(0) (32)
z i

As with the impedance, Z,, these three quantities are subscripted to
indicate which of the transmission-line configurations is being con-
sidered.

For the infinite~length tran§maﬁglon line we have no reflections and
thus just a wave of the form eJ . Suppressing eJ¥T in all solutions
we then have for the normalized magnetic field

: . N :
n(z') = e = o (IIE (33)

and for the normalized current density
!
NN fy = 1t -(L)Er
23 (2" = 2 z, |n(z") = —gi-e 3 (o)

On the open-circuited transmission line the magnetic field (and
current cn the conductors) has a negative one.reflection at the bottom

giving a normalized magnetic field

=2 ;ii (1-z")
e 8

. p o
by s S = @TIAE) L uhE 1 e (35)
o) . 13
-jk24 ~2e
l-e 1 -~-ce I

13



This is graphed and compared with the normalized magnetic field on the
infinite-length transmission line in figures 6 through 9. In figure 6
we have the magnitudes of h, and h_ plotted vs. z' for specific §'
showing the distribution of magnetic field with depth. Figure 7 shows
the relative phase of hg and h_ . In figures 8 and ¢ we plot the magni-
tudes and relative phase against 6" for specific z'. For small &' then
h_and h_are about the same for all z' except near z'=l. However, for
lgrge §'%the two field distributions are comparable only near the top of
the transmission line. Whereas, for large é¢', h_ tends to a uniform )
distribution with depth, hg tends to a linear decrease with depth becoming
zero at the bottom. Based on these calculations we can decide the
relative depths of the open~circuited transmission line and an observa-
tion point (or depth of an object to undergo EMP simulation) for a
desired approximation of the magnetic field characteristics relative

to those of the "ideal" case.

The current density (or electric field) on the open-circuited trans-
mission line has a plus one reflection’ at the bottom giving (from equa-
tions (13) and (32))

jkz . =3k(20+2)
4 (z) = St g, (36)
1+ o-dk2 g o
or .
: ' 22 (1.1
- L -3 1+ 74D
05 ") = Zle ! r (37)
° ° 1- e-2}%;

This is graphed and compared with the normalized current density on the
infinite transmission line (equation (34)) in figures 10 through 13.

As with the magnetic field, j_ and j, are nearly the same for small

§'. However, for large &', 3° tends to cne while j, tends to zero for
all z'. Thus, for large §' the current density and electric field do

not have the same ratio to the magnetic field as on the infinite-length
transmission line. If this field ratio is important for an EMP simulation
test then we may have to either use a more sophisticated termination for
the transmission line or make { large encugh so that §' is always less than
cne.

On the short-circuited transmission line the magnetic field (and the
current on the conductors) has a plus one reflection at the bottem giving
a normalized magnetic field

L ke, -ik(28+2) 2! 1
Bz = o Tee ¢ o (TDF 1y "25rH(0-2")

1+ KA YR
l+e &

(38)

Figures 14 through 17 compare this with h, . As with h , for small &',
hg and h are about the same for all z' except near z'Zl. For large
8 'both hg and h_ tend to one. However, for intermediate &' (around

14



FIGURE 6 NORMALIZED MAGNITUDE OF MAGNETIC FIELD VS. DEPTH
FOR OPEN-ClRCUlTEDlSTRANSMISSION LINE
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FIGURE 8 NORMALIZED MAGNITUDE OF MAGNETIC FIELD VS. SKIN
DEPTH FOR OPEN-CIRlC7UlTED TRANSMISSION LINE
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FIGURE 10 NORMALIZED MAGNITUDE OF CURRENT DENSITY VS.
DEPTH FOR OPEN -%RCUITED TRANSMISSION LINE



FIGURE I1. PHASE CHANGE OF CURRENT DENSITY VS. DEPTH
FOR OPEN -CIRClzlolTED TRANSMISSION LINE
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FIGURE 15 PHASE CHANGE OF MAGNETIC FIELD VS DEPTH
FOR SHORT-CIZFiCUITED TRANSMISSION LINE
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unity) the two normalized fields diverge saomewhat except near z '=0. Thus,
considering the magnetic field distribution the short-circuited transmission

line seems somewhat better than the open-circuited transmission line,
although practically the former may be somewhat more difficult to construct.

The current density (or electric field) on the short-circuited trans-
mission line has a negative cne reflection at the bottom giving (fram
equations (15) and (32))

05 (z1) = 3KZ _ mik(A4z) oo
° IR L (39)
1-e™ g s
or .
. . ! _2_1. (l_zl)
' 1+ -(1+#D% 1-e°%
Wiglz) = e 5 : (40)
° ° Pyia)
l+e 2 §'

This is compared with j_ in figures 18 through 21, Agaln js and j_
are about the same for small ', except near z'=l where jg iS zero.
However, for large 8', jg falls much faster than j_. Ebr large §'
the short-circuited transmission line (as well as the open-c1rculted
transmission line) does not have the same ratio of current density to
magnetic field as does the infinite-length transmission line.

Thus, for small &' both finite-length transmission lines approximate
the "ideal" field distribution characteristics, except near z'=z1l.
However, for large §' the electric and magnetic fields are not in the
desired ratio (in either case). Also for large §' the field distribution
with depth varies, in. some cases, from the "ideal" distribution. However,
if we make { sufficiently deeper than depths of interest for EMP simula-
tion, the last problem can be alleviated.

IV. Fields in the Time Domain

Next consider the field distributions on the transmission line in the
time domain. For convenience we assume a unit step magnetic field at the
top of the transmLSSLOn line, or using the Laplace transform notation we

have
h(0) = -i- (u1)

As before, we use subscripts to denote which type of transmission line is
being considered. Besides assuming that o>>we for frequencies (or times)
of interest and that the electrical parameters, u and ¢, do not signifi-
cantly vary over the extent of the transmission line, we also assume that
these latter parameters are independent of frequency (for frequencies of
interest).

Keeping the normalized parameters in mind define a characteristic time,
, for dlffu51on of fields on the flnlte~length transmission line as:

- ucQ
tg T (u2)

%

27



3.0

FIGURE 18. NORMALIZED MAGNITUDE OF CURRENT DENSITY VS DEPTH
FOR SHORT—CIRCUITED TRANSMISSION LINE
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and also define a normalized time, -r? , as
t
T, = = (u#3)
t
%
Then on the infinite-length transmission line we have for the magnetic
field

h (z') =:i'— e]kz (4l

or from equation (5)

h (z') = %’-e'swz=l e-zuStﬂ 2! (45)

]

In the time domain we then have3
t t
h _(z') = erfc (z' t—g = erfc| —2— (u8)

T
£
For the current density we have from equation (4)

23,.(z") = {oZh (2") = LVsuo b (z'2. . . 47)
and from equation (45)
1/2 ) t _ .
93 (2" = 2(%‘3-) SIS 2 o g /2 2 VsY 2 (48)
In the time domain we have
2
5, \v2 25 , Lz’
23.(z") = 2(—5) e = e T (49)
" .\F{?

For the open-circuited transmission line we can modify the results of
equation (35) to obtain the magnetic field distribution as

1 ejkz —o—Jk(20+2)

h (2') = = - (50)
o Sy - e—ij,Q
or e -
-2°st,z' __-27/st, (2-2")
h(z') =2 &R = "4 (51)

1 - e HVEY

Expanding the denominator in an'ipfinite series we have

3. For the Laplace Transforms and function definitions see AMS 55,
Handbook of Mathematical Functions, National Bureau of Standards, 1964.
For convenience the same symbol is used for both a function and its
Laplace transform but which use is intended in a particular case should

be apparent.
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H - .,‘_, =l = -
h(z') =2 [e_z stz LemAVsTy (22 )}z o Vs, (52)
n=0
or -
ho(z') - %._ Z [6-2(2'4-211) \/sty _e-2(-z’+2(n+l)) VSt!] (53)
n=0

Inverting the transform term by term we have in the time domain

-]

il (z'+2n)Vt, [(-z'+2(n+ 1)V,
L {erfc (__\___/____2_) -erfc \ ‘QW (54)
t

') =
ho(z ) < ‘\[_*E. '}
or ©
e = ) | erre (B2 werec | 21200 | (55)
n=0 % b "4

This is plotted in figure 22 and compared with h_. For t, small ccmpared
to one the two distributions are about the same (except near z'=1) but
for 1, large compared to one ho decreases with increasing z', becoming
zero at z'sl, This is the samé characteristic noted for large §" in

the previous section.

The current densitw on the open—-c:.rcu:.ted transmission for the assumed
unit step magnetic fiz.d can be obtained by modifying the results of

equation (36) as . .
l_-(’Qc ejkz +e‘]k(2£ +z) } /Q(#/2 e-f@ z'+e_ VS'C’?(Z—Z')
S

2 (z') = ) - =
° S\fg Lol 1+ eI . L et
-e %
(58)
or
tj_ /2 e-ZVsth' ra~ UstQ(Z-z')
2 H ~
gjo(Z ) =2 = N ar (57)
] - e—q- St{Z

Expanding tHe denominator -
o t, 1172 1 ' )
,Qjc(z’) - Z(SJ_) [ ZVStf z. +e—2\/s‘c2 (2-2 )]Z e-'-!-I‘?fS—'tg (58)

n=0

or
/2 < .
23 (2" = 2(&_) Z [ -2(z'+2n) Vsty +e -2(-z'+2(n+l))’\/st }(59)
n=0
Coenverting to the t:.me domain ”
1/2 ' _ (=z'+2(n+l))°t
g5,z = 2|12 [ ~(z'+2n) %%, +2n) 2 v 2 9 } -
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(61)

or (z'+2n) _ (-z’+2(n+l))2}
0j (2" = [ + e 4

7T

TT n=0

This is plotted in figure 23 and compared with j_ Again for small = 7 the
two distributions are about the same (except near z'=1). However, (as noted
for large §') for large Ty ] tends to one while j_ ° tends to zero.

On the short-circuited transmission line the magnetic field distribution
is (medifying equation (38))

ejkz+ e—jk(ZQ +2)

. 1
n (z') = = — (62)
s S 14 e-jk/.z
or - g/-s_t_z' -2\/st,(2-2z")
gy L e 2t : (63)
s 5 14 e-u'\{stg
Expanding the denominator
Lm‘v stg (64)

hs(z') ._.%-_ e-2 st z' e -2'\/st (2-2') Y( SR
n=0

or
h (z') = & Z (-1)™ [ -2(z'+2n)7Ys t 4 o~2(-z'+2(n+1)) VStp}(GS)
n=0 -

Converting to the time demain

h(z') =y (—l)‘n'[erfc [V |, e (22 Ve, Jm)
" n=0 : VT k VT

Y

or
z'+2n
h (z') = Z (-1)% [erfc V"‘ erfc -z *+2(n+l) H (67)

Vv

This is plotted in figure 24 and compared with h_. For small Ty the
two distributions are about the same (except near z' =1), but for large
T, (as for large ¢'), h, approaches one faster than h_. .

n=40

The corresponding current density on the short-circuited transmission
line is (modifying equation (39))
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. 1
gtz =51 %

g

go ejkz _e-jk(Qﬂ'*‘Z): Q(E)l/z e-2 \/stgz'_e_z Vst‘e(Z—z')
“s 1 - Ik2R g 1+ e-“‘\/g?g

(68)

or
: tQ 1/2 st z' o2 \{stQ(Z z')
,Q.js(z')= 2(-5—-)
. 1+ e—uvstg
Expanding the dencminatot

(639)

Qj (z’)~

or
1/2
Z( l)n‘: ~2(z* +2n)“\f-t 2( z+2(n+l))'\/ 't'gl
1)

23 (z") 2(
(
Converting to thettﬁﬁdeZEin ) (z'+2n)2ff _ (-z’+2(n+l))2'tf
0= 2(%) 5 (® {e Tt " T }cm
n=0 -
or 2 ' 2
- (z'+2n) (-z'+2(n+l))
_ o _ L2427 - Azzrentii)g (73)
Q.JSCZ‘)- - Z (-1)" [e T -a R }
Vit n=o B

This is plotted in figure 25 and compared with j . For small 1, the two
distributions are about the same (except near z'=1), but for lag*g ]
(as for large &' ), j approaches zero much faster than Je

Thus, in the cases considered, the fm:.te—length transmission line
reasonably approximates the "ideal" case for times smaller than
However, for times longer than the field distributions change s:.gm.—
ficantly. If we confine our region of interest to near the top of the
transmission line the field distributions will approximate the "ideal"
case. However, the relationship between the electric and magnetic fields
will still be different but in some cases this may not be important.

V. Illustration of Field Distortion by Buried Structure

As discussed in the introduction, one of the limitations on the
calculation of the field distributions is the presence of the buried
structure undergoing EMP simulation. The field distribution near the
buried structure, given a uniform field distribution at distances from
the structure large compared to its horizontal dimensions, can be
illustrated by an example. Consider the buried structure to be a
long conducting circular cylinder of unit radius whose axis is the
z axis. This case is illustrated in figure 26 for x and y both
positive and is given by the conformal transformation

w=z+lz'- ’ (74)

where
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X + Jy (75)

N
1]

and
w=u+ jv (76)

The electric field lines are lines of constant u and the magnetic field
lines are lines of constant v where

usgyx+ X2 (77)
x“+y
and
VEy - s (78)
Xty

In the approximation that the waves in the ground are propagating in the
negative z direction this transformation would represent the field dis-
tribution herizontally.

For this special case in which we have a TEM wave propagating into .
the ground, even in the presence of a field-disturbing structure, we
can include it in our transmission-line simulation technique. For example,
as in the case illustrated in figure 26, instead of placing two parallel
rows of conductors into the ground (as in figure 1), we might place each
of these rows along magnetic field lines on each side of the structure.
Thus, when we drive these conductors as a transmission line we approxi-
mate the altered field distribution in the vicinity of the buried
structure. However, if this buried structure does not maintain the same
cross section for the full length of the transmission line or at least
to the depth to which significant fields (relative to the fields at the
surface) extend, then this technique of matching the distorted field
structure will be somewhat inaccurate. Likewise, if significant fields
penetrate the buried structure (relative to fields external to the
structure) and if this peretration is frequency dependent (for frequencies
of interest) then the field distribution near the structure is frequency
dependent and our transmission line cannot match this for all frequencies.

In those cases where we cannot match the field distributicn cleose
to the buried structure with our transmission line, we can try to move
it away from the immediate vicinity of the structure into regions
where the buried structure does not significantly distort the field.
Figure 26 can give us scome idea of how far that might be so that we
can choose the width, 2a, and spacing, 2b, of cur transmission line
sufficiently large. Hewever, if the buried structure has a large = .
horizental extent or has such things as long cables attached to it, the
above criterion on transmissicn-line dimensions may be difficult to
meet, requiring a more detailed consideration of the specific case.
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VI. Summary

Within certain restrictions, then, the buried transmission line can be
used for EMP simulation on buried structures. For frequencies such that
the skin depth is less than the length of the transmission lines, the
field distributicn approximates the anticipated EMP field distribution -
with frequency and depth. For skin depths larger than the length of the
transmission line the field distribution is scmewhat distorted, but if
we confine ocur area of interest to near the top of the transmission line
this difficulty is overcome. However, in this latter case, the electric
and magnetic fields do not have the desired relationship to one another,
which may or may not be important in a given case. There are various
ways we can try to terminate the finite-length transmission line to try
to optimize its characteristics but in many cases the open-circuited
transmission line may be the most practical.

There are some other restrictions on the validity of our calculations
of the field distributions on the finite-length transmission line. For
example, there are fringing fields at both ends of the transmission line.
At the top of the transmission line it is desirable (and in many cases
necessary) to distribute the connecting conductors from the generator to
the buried transmission line in such a manner as to maintain the desired
field distribution (as calculated) on the transmission line (especially
near the top). It may be difficult to alter the fringing fields at the
bottom of the transmission line but this may not be a sericus problem in
many cases. We have neglected transit times associated with distributing
fields over the surface of the ground. We have assumed that the electrical
parameters of the soil are independent of position and frequency over the
ranges of interest for our calculations but these are only assumptions for
convenience which may not necessarily apply to all real cases of interest.
Also, the buried structure undergoing EMP simulation will affect the field
distribution. If the structure, including the conductors (such as cables)
attached to it, is extensive it may be difficult to adequately simulate
the EMP field distribution on the structure. However, such cases need
individual consideration.

We would like to thank Mp. Robert Mercer who programmed the computer
s olutions for the plots contained in this note.
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