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ABSTRACT

In order to predict the increase in the capacitance of a space
system when inserted in a system-generated electromagnetic pulse
(SGEMP) simulator, it is useful to have information concerning the jsolated
capacitance of the space system. This note attempts to provide pertinent
data which may be used in obtaining preliminary values for thelisolated
capacitance of the often irregularly shaped space system. Theﬁiso]ated
capacitances and equivalent radii of perfectly conducting par;11elo—
pipeds is calculated using the method of moments, and this data is
presehted and compared graphically with the capafitances of certain
bounding geometries to indicate their validity. "It was related by
- Kirchhoff, that shortly before'his death Dirichlet solved the problem
of the distribution of electricity on a rectangular parallelopiped.

If so, the solution has been lost.'[ 1]
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INTRODUCTION

In discussing the simulation of system generated EMP in exoatmospheric
conditions, one important aspect is the electrical effect of the vacuum
chamber utilized as a necessary part of the simulator. The capacitance
to the chamber walls, cavity resonances, and reflection of higher fre-
quencies from the cavity wall are some of the electromagnetic interactions
of the space system with the test chamber which must be considered [27].

This note addresses itself to the problem of the system capacitance.

In free space far from any other objects the space system has a certain
capacitance to infinity. The simulator chamber inherently increases

this capacitance thereby changing the low frequency characteristics

of the space system. The first step towards obtaining a value for this
capacitance between the space system and the test chamber is to have a
knowledge of the capacitance of the space system to infinity. In this

note, the isolated free space capacitance of perfectly conducting rectangular
parallelopipeds is determined and appropriate equivalent radii are presented
in graphical form. It is believed that this data would provide useful
estimates of the isolated capacitance of the actual space systems to be

tested.

Rectangular Plate: Formulation and Numerical Results

A charged rectangular conducting plate is shown in Figure 1. A
cartesian coordinate system is shown centered on the plate, which has
dimensions of 2a x 2b. Let p(x',y') represent the surface charge density
on the plate, assumed to have zero thickness. Following the same
general procedures as did Harrington [3] for the charged conducting

square, the isolated capacitance of this rectangular plate is
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Charged Rectangular Conducting Plate.
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Through the method ¢f moments, divide the rectangular plate into N squave

subsectioné, As represent the charge density by
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% is the potential at the center of As due to a uniform charge density

of unit amplitude over bs . Thus,
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In order to evaluate 2 treat the non-diagonal terms as those which

na
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(2], such that
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Reitan and Higgins [4) applied numerical techniques to the charged
plate many years ago. Figure 2 illustrates the excellent agreement

between this moment method formulation and their crude "sub-areas" approach.

Rectangular Parallelopiped: Formulation

Consider the rectangular parallelopiped, or box, composed of six
individual plates as shown in Figure 3. Let p(s') be the surface charge

. density on the box, such that the electrostatic potential at any point
)

in space is
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Figure 2. Normalized Capacitance of Rectangular Conducting Plate.
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Figure 3. Charged Rectangular Conducting Parallelopiped.



¢(X,Y,Z) = . %T%Bl ds' s (]3)
S

where

R = \/;""')2 b gy )2+ (2-2)

After placing the field point on the surface of the box, the boundary

condition can be expressed as .

2b [2a (1) 2a [2c
/ [ y,z)dydZ / f e___(T_),Y_)_ dx'dy"
4ﬂe R 4ne
2b Zc 2b [ 2a
’Z ) dx'dz' + ____%Lj__).dy dz "
ﬂe R

2a f[2c (5 2b f2c (6) 1
* dx'dy' + '__‘ATB dx'dz',
0 0 4ﬂ€0 0 0

where superscripts refer to one of the six particular plates comprising

the box and
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The isolated capacitance is
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where n represents the subsection and j the particular plate. The charge

density is expanded as

where N(j)

is the number of square zones on rectangular plate j. Substitute

this into equation (14) and satisfy the equation at the midpoints of each

zone. The matrix representation can be put into the form of
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Note that ££EQ) is the potential at the center of As_ on plate p due

to a uniform charge density of unit amplitude over hs, on plate g. As
before, subsections were chosen to be squares, Harrington's approximations
in the evaluation of zégq) were used, and full advantage was taken of the
resultihg symmetry of the eauations. It was found that the isolated
capacitance of the rectangular parallelopiped could be expressed simply
as

C = 8l g ) [géﬁ”] ! (23)

mn
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Figure 4. Capacitance of a Conducting Cube of Unit Sides.
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and 2w is the length of a subsection side. With the total number of
subsections on the box equal to N, this matrix is N x N, as opposed to

one in which symmetry was not utilized, which would be 2N x 2N.

Rectangular Parallelopiped - Numerical Results

The only numerical results available for comparison are those of
Reitan and Higgins [1] and then only for the cube. Figure 4 illustrates

the convergence of data for this special case of the cube as the number

of subareas increases. Both solutions approach a value of approximately
73pf, but the moment method formulation gives much better results for a

small number of subsections.

In a previous note [5], Shumpert defined an equivalent radius as

= C _
req-' 4ueo ' (25)

Also, the note advanced the supposition that the isolated capacitances of
the inscribed and circumscribed ellipsoids could be considered as

approximate bounds on the capacitance of more complex shaped bodies.
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Figure 5 presents these bounds, the moment method results, as well as a

surface area approximation established by Polya and Szego [ 6], which is

L

S 2
C = 41reo yives , (26)

where S is the total surface area of the solid. The surface arca approxi-
mation gives reasonable results for a box whose dir~nsions are comparabie
to a cube, but as the parallelopiped approaches di .:nsions coﬁparab1e to
a wire, this approximation breaks down. The inscribed ellipsoid yields
a better approximation to the moment method solution than an average of
the two ellipsoidal curves would give.

Figures 6 and 7 depict the normalized equivalent radius of the
fectangu]ar parallelopiped versus its dimensions. Note that the degenerate
cases--infinitely thin needle, rectangular plate, and the cube--appear

as boundary Tines or points on these general plots.
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Conclusions

The isolated capacitance of complex objects is a problem of interest.
Approximations of and bounds for these isolated capacitances can be
approached from many fronts. Inscribed and circumscribed ellipsoids
yield bounds for many complex shaped objects. Perhaps, the rectangular
parallelopiped could be used as a "building block" in order to arrive at

estimations for the isolated capacitance of more complex bodies.
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