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' ~ Abstract
i xli)

A combinaticn of the techniques of stereographic projection amd conformal
mapping reduces the problem of calculating the TEM field distribution and

impedance of two conical plates to that of a simple geometry fcr which the

solution is known. Extensive tables and curves are given of the impedanca

of two conical plates for various cone angles and plate widths.
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I. INTRODUCTION

- The most common type of bounded wave simulators comnsists of two plates with
two conical sections and one cylindrical section. The conical sections are used
as wave launcher and terminator, whereas the cylindrical section serves as the
working volume in which test objects are placed. One such simulator is schemati-
cally illustrated in Fig. 1, which shows the top and side views of the future
ATLAS I simulator.

The present note is concerned with the calculation of impedance of two
conical plates. The TEM field distribution will be razported in a separate note.
In Section 1II the conical line is stereographically projected onto a cyliandrical

line of two circular arcs on two different circles. This cylindrical line iz

" further reduced, by the method of conformal mapping in Section III, to a simple

structure of which the impedance'ié kriown. Tables and curves of the impedance
are given for a variety of cone éngles and plate widths. When the conical angils
is small the deviation of the conical-plate impedance from the parallel-plate
impedance is worked out explicitly in Section IV. Miraculously the small-cone-
angle impedance formula works quite well even for moderately large comne angles
if the plates’ separation~to-width ratio is nct too smali. The impedance

deviation is plotted as well as tabulated as a function of this ratio.
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Figure 1. Top and side views of the ATLAS I simulator.




" II. METHOD OF STERECGRAPHIC PROJECTION

To analyze the TEM field distribution on two conical plates we employ the
rectangular and spherical coordinate systems (x,v,z) and (r,9,¢) as shown in
Fig. 2. 1In the (x,y,2} coordinates the equations for the surfaces of the conical

plates are given by

y=1b(1 + z/2)
Ix/y] < a/b | (L.a)

z+22 0
and, in the (r,6,¢) coordinates by

§ = +8
o

(1.b)
/2 + 9,2 ¢ 2 /2 - ¢,

where the "+" and "-" signs correspond, respectively, to the upper and lower

plates. The angles 60 and ¢° of the conical plates are determined by

0, = tan L (b/2)

-1 {1.¢)
¢°,= tan (a/b)

It is well known that the two conical plates as shown in Fig. 2 can
support a spherical TEM wave propagating along the radial direction. . The
r-dependence of the complex potential W of a TEM wave can be factored
out as [1] '

W(r,0,¢) = [U(8,9) + 1V(8,¢)]exp(ikr)/r (2)



£

Figure 2. Rectangular and spherical coordinate systems of two
conical plates.




‘. where U and V satisfy the two-dimensional Laplace equation on a spheriecal

surface

2
3_ 3_{U(6,9) 3 e,
sin 8 8 [sin ) 36 (V(6,¢)>]+ 3¢2 (V(B,d:)\) =0 (3)

The functions U and V are uniquely determined omce U (or V) is
specified on the curves that are the intersections of the conical plates given

by (1) and the spherical surface given by

2

=L or X +y2+(z+2)2=2,2

(4)°
The Laplace equation (3) on the unit sphersz can be transformed to the

ordinary two-dimensional Laplace equation in, say, the z =0 plane by the
method of stereographic projection through the following transformations [2}:

" , , x = 22 tan(8/2) cos &

y = 22 tan(8/2) sin ¢

by which (3) reduces to
2 2
3 Uz, W), 3 (Ux,y) ) 2
2 (v<x,y>)+ 2y (vcx,y>) 0 ®

The equation of the straight line connecting the point. (0,0,-2%) and the
point (xo,yo,zo) is given by

NIM

=Y ozt 22
o yo zo+22,

where the point (xo,yo,zo) is shown in Fig. 2 and lies on the curves given by

" the intersections of the conical plates (1) and the spherical surface (4).



Hence, the intersections when projected onto the z = 0 plane satisfy the

equations
X _y . __ 2%
b 4 y z 4+ 2% (7.3)
o o o
which give
2x
- o
x 1+ @ +z/9
' (7.b)
Zyo

y==1-!-(1+z0/9.)

We ar2 now in a position to find the equation that describes in the x,y-
plane the curvaes that are the stereographic projections ¢f the intersectiocns

between (1) and (4). To do this, we use {1.a), {4) and (7) to elimilnate

X 5, ¥ and 2z as follows:
¢

2 2
4(xo + yc)

2
x +y = ‘ 3
1+ Q-+ zo/2)]
2 2
851 - @+ 2 /04
1+ (1+ zo/z)jz
) 422 L 2(1 + zo/£)
1+ @+ zo,'z)
3 2y /b
= 2 Y o
4e l+l+(1+z°/2)]
2 . .
= 48°( F y/b) (8.&)'
with
x| = 242 (8.b)

L+ z2+1;2+a2 .

10



The curves governed by (8) are shown in Fig. 3.

The potential function V(x,y) and the stream function U(x,y) on the
projected z = 0 plene will be determined by specifying the value V on the
two circular arcs giveﬁ by (8). The characteristic impedance of the original
two conical plates (Fig. 2) can be obtained from that of the two curved
cylindrical plates (Fig. 3), since the two characteristic impedances are
identical. The latter will be determined by conformal mapping in the next
section. '

11
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Figure 3. Stereographic projection of two conical plates onto
two plates of circular arc.
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III. METHOD OF CONFORMAL MAPPING

In this section we will determine the characteristic impedance of two

curved cylindrical plates shown in Fig. 3. BSuccessive conformal transformations

'will be applied to map the geometry of Fig. 3 into a rectangle (Fig. 6) from

which the characteristic impedance is readily found.

First, we use the following hyperbolic'transfcrmation

z = 2% tanh(21/2) (2)

to map the whole complex z-plane into a region between two infinite parallel
strips of separation 27 in the complex zl—plane as shown in Fig. 4. Here,
z=3x+ 1y and zy =Xy + iyl . Under this transformation the two circular
arcs are transformed into two parallel strips of width 2 simh “(a/b sin 8,)
and separation 260 .

In the zl—plane we only need to consider the first quadrant because of
the symmetry of the configuration. Using the following Schwarz-Christoffel

transformation

t /E ' + (1-A1)

— dt' + B,
(1+'n t')/&l—t'z)(l—mt'z)

0

where l2m=2n=20,0s kl—Al)//;] <1, and A , B ,C, are constants,
one finds that the shaded quadrant of Fig. 4 is mapped into the upper half
t-plane of Fig. 5. This integral can be carried 6ut in terms of elliptic
integrals and elliptic functions, namely, '

z, = C,(u - A [M(nsulm) - /o f(m,n,u)]) + B, (10)

where t=sing =snu , m= sinza , and [3]

13
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Figure 4. The entire z-plane (Figure 3) is conformally mapped onto
the region between two strips in the zl—plane.
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u = F(p|m) | .
t . .

- j [a-t'?) @me' 2y e
o |

M(nsuim) = O(n;e\a)

= r (1—n£'2)'1{ (1—t'2) (1~mt' 2)}-;’dt !
0

f(m,n,u) = - 1 n 2 2(-n)(m-n) + (1 - n snzu)én + npm - 2m)
2/(1-n) (@-n) n(m-1)(1 - n sn”u)

+ 2ny (1-n)(m-n) cn udn u
n(m-1}{(1 - n snzu)

and snu, cnu, dn u are elliptic functions, and u and I are elliptic
integrals of the first kind and of the third kind.

In the transformation equation (10) there are five constants A1 s }31 s Cl s .

m and n . To determine them we require the mapping among the boundary points

(see Figs. 4 and 5) as shown in Table I. Here, K(m) is the complete elliptic

Table I. Mapping of boundary points.

z,-plane t-plane u-value
iT -1/v/m -K(m) + iK' (m)
16, | -1 =K (m)

16, + sirh l(a/b sin 8) ~(1-8,) /YR sn M (A,-1) /YA
10, 1 K@
0 1/v/a K(m) + iK' (m)

y @



‘. integral of the first kind. The third column of Table I gives the values of
u , where u = FQplm) s corresponding to the boundary points in the zl-plane
and t-plane. From (10) and the above table we find

¢, = ~/(In) (@-n)/ (4 7/n)

(11)
Bl = 160
and m, n, A1 satisfy the following three coupled equations:
R(m) - A TI(a;K(@) [m) = 0
1- ZBolﬂ = F(sin-an/mlm)/KOm) (12)
sinh™l(a/b ain 0,) = LERLE0) rp (o357 Ng/m) - A Nmsen~l8/m)] - G
A/n

where

1o v(l-nl(l-mﬁz) - vf(m-n) (l—le

2
(1-n) 1-m8%) + /(mn) (1-8%)

B = (1-4))//n

G =

The solution for the geometry shown in Fig. 5 is known [4,5]. Instead of
translating the known solution in terms of our notation, it is more expedient
to solve the problem anew. The Schwarz-Christoffel transformation required to

map the upper half t-plane (Fig. 5) to the interior of a rectangle (Fig. 6) is

t
dat!
w U+iV=C3j +B3

O Ja-e'?y@-me'?y (13)

" = C3u + Bs
17




Figure 6. The entire upper-half t-plane (Figure 5) is conformally
mapped onto a rectangle in the W-plane.

18



'. Table II shows the mapping among the boundary points. From (13) and Table II

Table 1I. Mapping of boundary points.

t-plane . W~plane u-value
-1//m 2 -0, -K(m) + 1iK'(m)
-1 ‘ 2 - Uo + iVo ' =K (m)
1 -Uo + :f.V0 K(m)
1/Vm -U K(m) + iX'(m)
-1//a 0 sn~ L (-1//8)
we find
" , C, = -1/R(m)
Vo = K'(m)/K(m)
UO =1 + F(sin-lm;lm)/K(m)
B3 = iK' (m)/K(m) - F(sin-lv'n/mlm)/x(m)
Thus, (13) gives
u = -WK(m) + iK'(m) ~ F(sin-lfn/m]xﬁ) ‘ - (14)

The geometric impedance factor fg is given by

£ AV

o

19



where AV 1is the normalized potential difference between two plates and AU ‘
is the change in the normalized stream function on one plate. For the rectangular

geometry shown in Fig. 6 we have AV = Vo = K'(m)/K(m) and AU = 2 . Hence,

-1 K'(m) ‘
fe ™2 X (15

It is easy to convince oneself that expression (15) is also the geometric
impedance factor for the original two conical plates. The characteristic
impedance can be obtained simply from

2 = ufe £
¢ & (16)

K'(m)

K{m)

=+ 1
24¢

where m 1is determined by (12).

For the special case where 60 = /2 , one can solve (12) analytically and .
get :

n=90

Al =] a7
m= azf(az+b2)

from which, together with (16), one can show that the same Zc value results as
that reported earlier in [6,7].

Before proceeding to the numerical tabulation and graphical presentation of
fg and zc let us point out that in the limit of small cone angles, the parameter
m used in this note will not reduce to the parameter m used in previous, reports,
such as [8] and [9'] . If one insists on using an m which reducés to the previous
m in the limiting case, one has to relabel the boundary points of Fig. 5. This

means that all the subsequent transformations will be different. Instead of

20 .




’

reworking the problem we suggest in Fig. 7 the necessary mapping that goes from
Fig. 4 to Fig. 5. This mapping is expected to give fg = K'(m)/K(m) , in which

the parameter m would reduce in the 1imiting case to the one previously used.

Fig. 8 is a plot of the geometric impedance factor fg versus &/b with
b/a as a parameter, whereas Fig. 9 displays fg versus b/a with 4/b as a
parameter. It is interesting to note that the two limiting curves (indicated
By /b = 0 and &/b = =) of Fig. 9 give a very good bound for all b/a values.
The limiting curve (&/b = 0) has been reported in [6] and the other limiting '

curve (/b = «) corresponds to the two-parallel-plate case.

In Table III are tabulated the m values resulting from numerically
solving (12). From these m wvalues fg and Zc are calculated according

to (15) and (16) and tabulated respectively in Tables IV and V.

21
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Figure 8. Geometric impedance factor fg of two conical plates versus 2/b .
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Figure 9. Geometric impedance factor fg of two conical plates versus b/a .
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25

Y 0,00 1.00} 1.50} 2.00}| 2.50| 3.00} 3.50 3.90 | 4.50 | 5.00 10.0?
b/a , |
.17 | .9720 | .9880 | .9936 | .9964 | .9978 | .9985 | .9989 | .9992 {.9994 |.9995 | .9998 l
.41 | .8561 .8974‘ .9170 | .9294 | .9371 | .9421 | .9455 | .9474 | .9495 | .9508 | .9551
.50 { .8000 | .8439 | .8653 | .8789 | .8875 | .8931 | .8969 | .8991 | .9014 |.9028 | .9076
.60 1.7353 {.7785 | .7996 | .8130 { .8215 | .8270 | .8306 | .8328 |.8350 |.8364 | .8411
.70 | .6711 | .7112 | .7305 |.7428 | .7504 | .7554 | .7586 | .7605 | .7626 |.7638 »76793
.80 {.6098 | .6454 | .6624 |.6730 | .6796 | .6838 | .6866 | .6882 | .6899 | .6910 06944'5
.90 | .5525 | .5834 {.5979 |.6069 i .6124 | .6159 | .6182 | .6195 | .6209 |.6218 | .56246 {
1.00 .5600 .5264 | .5386 |.5460 | .5505 | .5534 | .5553 | .5564 | .5575 | .5582 | .58605 |
1.20 |.4098 |.4286 |.4369 |[.4419 |.4450 -4469 | .4481 |.4488 |.4496 |.4500 |.4515
1.24 | .3941 | .4115 |.4193 |.4239 | .4267 | .4284 | .4296 |.4302 | .4309 | .4313 | .4327
1.40 }.3378 | .3510 |.3567 |.3601 | .362% | .3634 | .3642 |.3647 |.3652 | .3655 | .3665
1.60 |.2809 | .2902 |.2941 |.2965 | .2978 | .2987 |.2992 {.2996 |.2999 | .3001 | .3008
1.80 }.2359 | .2425 [.2453 | .2469 | .2478 | .2484 | .2488 | .2490 | .2493 | .2494 l2499
2.00 {.2000 | .2048 |.2068 {.2080 | .2086 |.2091 |.2093 |.2095 |.2096 | .2097 |.2101
2.50 | .1379 | .1403 |.1412 |.1417 | .1421 | .1422 | .1424 | .1424 | .1425 | . 1426 | 1427
3.00 {.1000 § .1012 }.1017 |.1020 {.1022 |.1023 |.1023 {.1024 |.1024 { .1024 |.1025
7.00 {.0200 | .0201 {.0201 {.0201 {.0201 |.0201 |.0201 |.0201 {.0201 { .0201 {.0201
Table III. Values of the parameter m .



9¢

/> 1 0:00*| 1.00 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 3.90 | 4.50 | 5.00| 10.0 |
b/a
.17 | .2481) .2186} .2008| ,1871 | .1769 | .1692| .1633} .1595| .1551| ,1522| .1403| .1351
.41 ) .3389 | .3144 | .3010| .2916 | .2853 | .2809 | .2778] .2760 | .2740) .2727| .2684| .2667
.50 | .3676 ) .3455| .3338| .3259 | .3207 | .3172} ".3148| .3133| .3118} .3109 -3076 | .3064
.60 | .3974| .3778 | .3678 | .3613 | .3571 | .3543 | .3524| .3513 | .3502| .3494| .3470] .3461
.70 | 4254 | .4080 %1 .3995} .3941 | .3907 | .3884{ .3870| .3861 | .3852 .3546 .3827| .3820
.80 | 4517 | .4364 | 4291 | .4246 | .4217 | .4199 | .4187 | .4180 | .4173| .4168| .4153) .4148
.90 | 4765 .4630 ] .4568 | .4529 | .4506 -.4491 L4481 L4475 | L4469 | L4465) 4453 4449
1.00 | .5000 | .4881 | .4827 | .4794 | 4774 | .4761 | .4753 | 4748 | 4743 .4740| 4730 .4726
1.20 | .5433 | .5339 | .5298 | .5274 | -.5259 | .5250 | .5244 | .5240 | .5237 | .5234) .5227! .5225
1.24 | 5515 | .5425| .5386| .5362 | .5349 | .5340 | .5334| .5331| .5328| .5326 .5319 .5317
1,40 | .5825 | .5749 | .5717| .5698 | .5687 | .5680 | .5675]| .5673 | .5670| .5668| .5663| .5661
1.60 | .6179 | .6118 | .6092| .6077 | .6068 | .6063 | .6059] .6057 .6055 .60547 .6050| .6048
1.80 .6503 «6452 | .6432| .6419 | .6412 | .6408 | .6405| .6404 | .6402| .6401| .63%7] .6396
2.00 | .6800 | .6758} .6741| .6731| .6725| .6721 | .6719| .6718 | .6716| .6715]| .6713| .6712
2.50 | .7449 | .7420 | .7409| .7402} .7399{ .7396 | .7395] .7394 | .7393| .7393| .7391}{ .7390
3.00 | .7994 | .7974 ) .7966} .7961 | .7958 | .7957 ) .7956| .7955 | .7955| .7954| .7953| .7953
7.00 |1.0623 |1.0619 {1.0617 | 1.0616 { 1.0616 | 1.0616 | 1,0615| 1.0615 | 1.0615 | 1.0615| 1.0615| 1.0615
* Two planar conical plates *% Twoc parallel plates
M'I.'able IV. Values of the g ‘c impedance facror fg .




LT

A -
bl 9.6*| 1.00] 1.50] 2.00 2.50,3.00 3.50| 3.90| 4.50| 5.00[ 10.0] =
b/a

.17 | 93.47 | 82.35 | 75.66 | 70.50| 66.64| 63.73] 61.51| 60.10 | 58.43| 57.34| 52.86| 50.90
41| 127.7 | 118.5 | 113.4 | 109.9| 107.5| 105.8| 104.7 | 104.0 | 103.2| 102.8| 101.1]| 100.4
.50 | 138.5 | 130.2 | 125.8 | 122.8| 120.8| 119.5| 118.6 | 118.1 | 117.5| 117.1| 115.9 | 115.4
.60 | 149.7 | 142.3 | 138.6 | 136.1| 134.5| 133.5| 132.8 | 132.4 | 131.9| 131.7 | 130.7 | 130.4
.70 | 160.3 | 153.7 | 150.5 | 148.5| 147.2| 146.3| 145.8 | 145.5 | 145.1| 144.9 | 144.2 | 143.9
.80 | 170.2 | 164.4 | 161.7 | 159.9| 158.9| 158.2| 157.7 | 157.5 | 157.2| 157.0 | 156.5 | 156.3
.90 | 179.5 | 174.4 | 172.1 | 170.6 | 169.7 | 169.2| 168.8 | 168.6 | 168.4 | 168.2 | 167.8 | 167.6
1.00 | 188.4 | 183.9 | 181.8 | 180.6 | 179.8 | 179.4| 179.1 | 178.9 | 178.7 | 178.6 | 178.2 | 178.0
1.20 | 206.7 | 201.1 | 199.6 | 198.7 | 198.1 | 197.8 | 197.5 | 197.4 | 197.3 | 197.2 | 196.9 | 196.8
1.24 | 207.8 | 204.4 | 202.9 | 202.0] 201.5] 201.2| 201.0| 200.8 | 200.7 | 200.6 | 200.4 | 200.3
1.40 | 219.4 | 216.6 | 215.4 | 214.7 | 214.2 | 214.0| 213.8| 213.7 | 213.6| 213.5| 213.3 | 213.3
1.60 | 232.8 | 230.5 | 229.5 | 229.0 | 228.6 | 228.4| 228.3 | 228.2 | 228.1| 228.1| 227.9 | 227.9
| 1.80 | 245.0 | 243.1 | 242.3 | 241.8 | 241.6 | 241.4 | 241.3 | 241.2 | 241.2 | 241.1 | 241.0 | 241.0
2.00 | 256.2 | 254.6 | 253.9 | 253.6 | 253.3 | 253.2 253.1| 253.1 | 253.0| 253.0 | 252.9 | 252.9
2.50 | 280.6 | 279.6 | 279.1 | 278.9 | 278.7 | 278.6 | 278.6 | 278.6 | 278.5 | 278.5 | 278.4 | 278.4
3.00 | 301.2 | 300.4 | 300.1 | 299.9 | 299.8 | 299.8 | 299.7 | 299.7 | 299.7 | 299.7 | 299.6 | 299.6
7.00 | 400.2 | 400.0 | 400.0 | 400.0 | 399.9 | 399.9| 399.9 | 399.9 | 399.9| 399.9 | 399.9 | 399.9

* Two planar conical plates

*k

Two parallel plates

Table V. Values of the characteristic impedance Zc of two conical plates.




IV. SMALL CONE ANGLES .

When 8 is exactly zero, (12) is simplified to

n=m

A, = (L-mX(@) /E)

ol

7" K(m)Z(sn "q|m) + g/m K(m) (18)

where

q® = [~ (1-4)) 21/ [n-n(1-4)) 2]

and E(m} 1is the complete elliptic integral of the second kind and Z(ulm)
is the Jacobi's Zeta function {3]. The solution of (18) together with (15)
will give the same geometric impedance factor as that of the parallel plates.

The truth of this statement>will be shown below for the two extreme cases whére
a/b << 1 and a/b > 1. .
For a/b << 1, (18) gives
m = (a/b)2

and from (15) we get

e X
fg =3 n{4b/a) (19.a)

For a/b >> 1, (18) gives

1-m = 16vb/ (ra) e-[1+a“/(2b)]

and from (15) we get

b b am, +=1 ‘
fg = a[1 + wa(z + &n 1;9] . (19.b)

The results (19.a) and (19.b) agree with those given in [9].
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If one wants to look into the effects of small cone angles for which
1> 60 >0, (12) is too complicated to be solved analytically. An

alternative approach will now be given. 1In the zl-plane shown in Fig. 4,

the charge distribution o(xl) on the upper plate can be obtained by solving

the integral equation

o
ﬂ—l' . \ ] ]
Vo . jG(BO,Go,xl,xl)c(xl)dxl
o

where a = sinh-l(a/b sin 90) » V_ 1is the potential on the upper plate located

0
at y; = eo , and G(yl,yi;xl,xi) is the Green's function that satisfies

2
VI6(y »¥y3% 5%7) = = 8(y;-¥;)8(xy-x])
G(iﬁ,yi;xl,xi) =0
Then fg is obtained from

o
- - 1] 1 t
JG(eo,eo,xlxl)c(xl)dxl
-a

£f = (20)

g a
! .
jc(xl)dxl

-a

In the small-cone-angle case, the {wo central plates of Fig. 4 become
very narrow and close to each other, and the conditions 9 << 7 and
sinh” (a/b sin © ) << 1 generally hold. With these conditions in mind
one obtains, after some straightforward manipulation,

( 1 (e, -x}) ) o2
G 6 0 03X %) 'Y= 5= &n +
1 47 433 + (xl"xi)z 12
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Then with the aid of (20) one has ' : ‘

- 2
£, = £ (8,/0) - 6 /127 (21)

where £ (9 /a) 1s the geometric. impedance factor for two parallel plates with
separation 260 and width 20 = 2 sinh (a/b sin 0 )

Under the condition a/b sin 6 o <% 1, (21) can be further approximated by

h
1

E (b/a + [b/a+ a/b]ei/e) - ei/lZTr

E (o/a) + acpeg (22)

n

with |
' 68, = (b/a + a/b)?;;(b/a) - 1/02m

where ?é is the derivative of ?g with respect to the argument. For the b/a .

values of interest, —f-g(b/a) can be found in [8] and, after some manipulation,
£ (b/a) can be calculated by using the "m" values obtained in [8]. The values
of fg and ch are listed in Table VI and plotted in Fig. 10. The approximate
equation (22) for small cone angles has been plotted in Fig. 8.
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Table VI: Values of f and &
g cp

b/a fg(b/a) scp
0.17 - 0.1334 0.6609 -
0.41 0.2654 0.1963
0.5 0.3064 0.1479
0.6 0.3461 0.1159
0.7 0.3820 0.0950
0.8 0.4148 0.0806
0.9 0.4449 0.0702
1.0 0.4726 0.0626
1.2 0.5225 0.0522
1.24 0.5306 0.0508
1.4 0.5661 0.0457
1.6 0.6048 0.0414
1.8 0.6396 0.0384
2.0 0.6712 0.0362
2.5 0.7390 0.0328
3.0 0.7953 0.0309
7.0 1.0610 0.0273
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Figure 10. Geometric impedance factor -f-g of two parallel plates and the
small-cone-angle correction coefficient ch .

= 2
£ =f_ + & (b/2
g = g p /)
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