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Abstract

The higher-order TE and TM modes on two, parallel wide plates are
investigated. By means of Laplace transforms and the Wiener-Hopf technique
integral equations are obtained from which expressions for the transverse
propagation constants and the field distributions of the modes are derived in
the special case of wide plates. It is found that besides the.TEM mode, the
TE modes are the most important modes on the simulator. The propagation
constants and the field distributions of the lowest TE modes depend mainly on
the width of the plates and they are almost independent of the distance
separating the plate provided that this distance is small compared to the

plate's width.
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SECTION 1
INTRODUCTION

.

Bounded-wave simulators all use two parallel; finite-width plates as the
guiding structure for the simulated electromagnetic field, (see Fig. 1). The "y
electromagnetic field on a parallel-plate simulator can be decomposed into a
transverse electromagnetic (TEM) modé, higher~order transverse magnetic '(TM)
and transverse electric (TE) modes and,a part due to the gont;nuous spectrum.
The'properties of the TEM mode have been investigated eﬁhaustively'(réfs. 1, 2
3, 4, and 5), whereas the other ﬁarts of the field have been investigated only
in some limiting cases. When the widéh of the plates is small compgred to the
distance between the plates it is found in ref. 6 that the TE modes are more
attenuated as they propagate along the simulator than are the TM'mcdeé. The
field lines and the field distributions of the two lowest TM modes are also
investigated in ref. 6. To determine the relative importance of the TEM mode
contribution‘to the tot;l field, the time wvariation of the current induced on
two parallel wires by two step-function slice generators is studied in ref. 7. \
- It is found in this reference that the TEM mode constitutes the dominant part .
of the induced current provided one transit time between the wires has elapsed

after the passage of the wavefront.

In this report we will coﬁsider two parallel plates where the width of each
plate is much larger than the separating distance. In this case, the numerical
solution of the integral equations derived in ref. 6 becomes very time consuming
even on a fast computer. Therefore, based on Laplace-transform methods and the
theory of Wiener and Hopf alternative integral equations are derived. Although
both the‘intégral equations derived in ref. 6 and those of this report are exact,
those deri&ed in the reference are most usefu} for numerical treatment when the
distance separating the plates is compargble to or larger than their width, whereas
those derived in this report are most useful when the distance separating the

plates is comparable to or smaller than their width.

Integral equations for the transverse magnetic and transverse electric
fields are derived in section II. The Approach used in this report is based on
Laplace transform techniques and follows the one in refs. 8 and.9 except that .
the Jones version of the Wiener—-Hopf method (refs. 10 and 1ll1l) is invoked here.
Although there exist different ways of deriving integral equations in the Laplace
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method used here scems to be the most expeditious one. - ﬁ”]

The integral equations derived in Section II are then used in Section III
to obtain expressions for the transverse propagation constant in the special
case where the width-to-separation ratio of the plates is large. It is found
that in this case the TE modes have the smallest damping constaht. This fact
should be compared with thé fact that the TM modes have the smallest damping
constant when the plates are narrow. The field distributions of the lowest TE
modes are calculated in Section IV. Except close to the edges of the simulator,
the field distribution of the TE modes are almost uniform in the direction
perpendicular to the plates and varies almost sinusoidally in the transverse
direction parallel to the plates. It is also found that in a relatively large
region around the center of the simulator all field components can be expressed

in terms of an almost real function.

An approximate method of calculating the propagation constant on an open
waveguide is given by Weinstein[lé]. This method is based on the observation
that vwhen a waveguide mode on a semi~infinite parallel-plate waveguide, with
near cut—-off propagation constant reaches the open end of the waveguide it is »
reflected back with a reflection coefficient of absolute value close to unity. .
Weinstein's method is used in [24] to determine certain characteristics of the
higher-order modes on an open parallel-plate waveguide. It is also used in
[15,16] to find the resonance frequencies,on open resonators, e.g.; the Fabry-

. Perot resonator.

¢

Numerous investigations have been devoted to the classical problem of
scattering from an infinitely long strip or slit im a ground plane. Many of
"the techniques developed in solving this problem can in principle be used to
treat the two-plate problem. One possible approach is the Fox integral-equation
‘approach[l7] where the problem of pulse diffraction by a slit is reduced to a
set of Fredholm integral equations of the second kind which then are solved
iteratively. Similar approaches have also been applied to the strip and slot

[18,19] and Grinberg[zo’Zl]. It should alsc be mentioned that

problem by Millar
the transverse propagation constants of the leaky modes on a strip were calculated
in [22]. When solving this problem Fourier transform methods are used to derive

an integral equation which is then solved using the Fredholm determinant theory.
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II. Formulation of Integral Equations

Consider an open waveguide formed by two infinitely long, perfectly
conducting, parallel plates of finite width (Fig. 2). The width of each
plate is denoted by 2w and the distance separating the plates by 2h. A
coordinate system is introduced such that the z-axis coincides with the axis
of the waveéuide and the x-~y plane 'is the transverse plane of the waveguide
with the x-axis parallel to the plates (see Fig. 2).

It is well known that the electromagnetic field on any uniform waveguide
can be uniquely decomposed iInto two parts: one part with zero axial component
of the magnetic field (TM-field, E-waves) and the other part with zero axial
component of the electric field (TE~field, H~waves). Accordingly, in
this section a derivation is first given of an integral equation for the
transverse magnetic field and then a corresponding integral equation for the

transverse electric field is derived.

A. Transverse Magnetic Field

By taking the Laplace transform with respect to time (transform variable
s) and the spatial coordinate 2z (transform variable ) of the longitudinal

component of the electric field one gets the following differential equation

2 2

2o+ L% =0 )
2 2 z

ox 3y .

. 2 -
where E = Ez(x,y,c,s) and p2 = s5"¢ 2. ;2, c.f. the notation used in [§].
To solve (1) one uses Laplace transform methods to get the integral reﬁresenta—

tion of E _,
z

1 -~
E,(%,5,8,8) = 5~ JcEz(q,y,c,s)exp(qX)dq (2)

where the patﬁ of integration C is éymmetric with respect to the origin in
the complex g~plane. It will be discussed later how to choose C properly.
It should be mentioned that the two-sided Laplace transform integral for Ez
does not necessarily exist. Nevertheless, the representation (2) is still

23]

permissible provided that the path of integration C is proberly.chosen
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Figure 2. Two, finite-width, parallel plates.
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Inserting (2) into (1) leads to the following differential equation for ﬁz,

2
2 ; -~
[9——2- -p + qz]E = 0. (3)

z

Taking into account the outgoing wave condition for Ez at large values of

Iy[ and that ﬁz is continuous for y = *h one obtains the following

solution to (3),

ﬁz(q,h,a,S)eXP[~iK(y - hl, y>h
= | _ )=z sinfk(y+h)] = B sin[ k (y-h)]
Ez(q,Y,lI,S) = EZ(Q:hsc,S> sin[21<h] Ez(q’ h,z,s) sin[2;<h] ’ ‘Y‘ <h
(4)
E,(q,-h,z,s)expl ix(y + B)], . y < -h

where Kz = q2 - p2. The branch for «x in the complex gq-plane is so chosen that
Im{k} = 0 in that branch. It now remains to determine Ez(q,ih,c,s) from the
boundary conditions at y = th, namely that E_(x,th,z,s) =0 for [x| < w,

and that (3/3y) Ez(x,th,c,s) 'is continupus for [x[ > w. For that reason

one splits the unknown function Ez(q,y,g,s) in the following way:

E,(4,¥,5,8) = E _(q,y) + E_(q,y) + E;(q,y) (5)
such that
1 ! Ez(x,y,s,E), X < ~w
557 | E_(a,y)explax)dq =
‘c 0, X > ~w
1 o, X < W _
5 | E,(q,y)exp(qx)dq = (6)
art Jo * RE,(x,y,8,T), . x>w
1 0, [Xl > w
Crry J El(q,y)eXP(qX)dq =
c E,(x,y,8,8), [x[ < w.
9
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From these integrals it is immediately seen that E+(q,y) is a holomorphic
function of gq to the right of C, that E_(q,y) dis a holomorphic function
of q to the left of C, and that El(q,y) is an entire function of q.

By invoking the boundary condition that (a/ay)Ez is continuous at y = *h,

]x] > w one obtains the fpllowing two relationships,
E; (g,%ht) - Ei(q,ih—) = ~[i + cot(ZKh)][E+ﬁq,th) + E_(q,th) + El(q,th)]
+ « cse(2ch)[E, (q,50) + E_(q,5h) + E;(q,5h)] (7
where the primé denotes differentiation with respect to the second argument of

El(q,y). Addition and subtraction of these two equations result in tpe

following equations:

a(q) = K(a)e_(q)
(8)
i (@) = LB, (@
where
us(Q) = Ei(q,h—) - Ei(q,h+) + Ei(q,—h-) - Ei(q,~h+)
u, (@) =‘Ei(q,h~) - E;(q,ht) ~ Ej(q,~h~) + E;(q,-h)
Es(q) = E,(q,b) + E_(g,h) + E;(q;h) + E (q,~h) + E_(q,-h) + E,(q,-h)
éa(q) = E (q,h) + E_(q,h) + E,(q,h) - E (q,-h) - E_(q,-h) -~ E,(q,-h)
€
K(q) = «[4i + cot(2xh) - esc(2xh)] = ik sec(xh)exp(ikh)
L(q) = k[i + cat(2xh) + csc(2«xh)] = k csc(xh)exp(ikh).

Note that ﬁs and ﬁa are related to u_ and u, in [ 6] via

10
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u;(x) = 5%; Jcﬁs(q)exp(qX>dq

' - ‘ (10)

W () = g fcﬁa<q>exp<qx)dq

! and that ‘ﬁs(ﬁa) corresponds to the case where the longitudinal currents have
the same magnitude and the same (opposite) direction on the two plates. These
two different cases have been referred to as the symmetric and antisymmetric
cases, respectively.

[10,11]

The so-called Jones' version of the method of Wiener and Hopf

will now be used to solve the two equations in (8), i.e., find E+(q,ih) and
Ei(q,ih). Note that E](q,*h+) - E}(q,*h-) = O and that E,(q,%h) is
given by the incident field. The method starts out with splitting the "kernel

function” K(q) in the following way:

R(q) = K (q)/X_(q)
(11)

K (K _(-q) = -1

@

such that K+(q) is holomorphic to the right of the path of integration C
in (6) and K_(q) dis holomorphic to the left of C. By choosing C as shown

~

in Fig. 3 one can find an infinite product representation of K+(q) (y = 0.577...)

1.(qp) "exp] (ch/m) 1nl (qhe) /6] + (an/minl(x/2pm) =y + T} 1,y

K (q) = 2
+ i [(q+n2m+l)2h/(2m+1)n]exp[—th/(2m+l)n]

m=0

Before substituting (11) for K(q) into (8) it is noted that asymptotically

for large values of [q| one has

K+(q)'~ iv2(p + q) + O(q“1 1n q), [q[ + o ' to the right of C
and ’ (13)

K (q) ~ i/v2(p ~ q) + 0(':1—3/2 1n q), Ja] + » to the left of C.

"iL ’ 11
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Figure 3. The path of integration C in the inverse

Laplace transform integral.
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(. The boundary conditions on the i)late also imply that

W
El(q,ih) J Ez(x,ih,t,s)exp(—QX)dx
-

w L
= _[ E;nc(x,ih,c,s)exp(—qx)dx (14)
-w

. inc .. s h s
and since Ez is finite on the plates it is clear that

.El(q,ih)‘~'exp(qw), ]q] + o, Re{q} > O
| (15)
El(q,ih) ~ exp(~-qw), la| + =, Re{ql} < 0.
In view of (9) and (11) it is useful to rewrite (8) as
K_(q)exp(qw)u_(q) = K, (q)exp(qw)lx, (q) + x_(q) + x;(q)] (16)
where
x:(a) = E,(q,h) + E,(q,-h), x; (@) = E;(q,h) + E,(q,-h) (17)

" and xl(q) is solely determined by the incident field, (c.f. (9)). The term

K+(q)exp(gw)x+(q) in (16) is a holomorphic function to the right of € and
the remaining term, X(q) in (16) can be split into the sum of. two terms,
oue of these terms, X+(q), being holomorphic to the right of C and the
other term, X (q), being holomorphic to the left of C, thereby yielding

X(@) = K (@exp(awdlx_(@) + x, (@] = X (@) + X_(a) (18)

where

1 f K, (a")exp(q'w)lx_(g") + x; (aM)] i
c

() = - 57 q'-q
(19)

]

X_(q) = -1/%, (-q).

13




Thus, (8) can be rearranged as
K, (@exp(qn)i_(q) - X_(q) = K, (q)exp(qw)x, (q) + X, (q). (20)

By the standard argument each side of (20) is an entire function of q and
from the edge conditions it can be seen that each side tends to zero as q
tends to infinity in their respective half space of holomorphicity. Therefore,

each side is identically zero for all values or ¢, so that one gets

K+(q)eXp(QW)x+(g) = -X,(q). (21)

In this equation both x+(q) and X+(q) are unknown. To find the unknowns
x,(q) of (21) it is advantageous first to go back to (8) and rewrite that

equation in the following way:

K (@exp (o (@) - ¥, (@) = K (q)exp(~qu)x_(a) + ¥_(a) (22)

where Y+(q) and Y_(q) are the parts of Y(q) which are holomorphic to the
right and left of C, respectively, (c.f. (18)) and

Y (@ +Y (@) =¥(q) = K:l(q)exp(~qW)[x+(q) + xl(q)]- (23)

Again, by the standard argument in the Wiener-Hopf method and from the edge

conditions at x = *w one gets

K:l(—q)exp(qW)x_(—q) = -Y_(-q). (24)

Equations (21) and (24) have the same domain of analyticity, i.e., both sides
of these equations are holomorphic functions of q to the right of C. From
(18) and (23) it is also obvious that (21) and (24) form a set of two coupled
integral equations for x,(q). These two equations can be reduced to two

uncoupled integral equati;ns by adding and subtracting (21) and (24) to each

other thereby yielding

14
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. [ exp(-2q'wiEga) J [x ahx et JexpCa™
R (% (@ - 57 Jc (Q+OK (@9 % " 7m o (q'+Q)K_(q") 1
(25)
. . exp(-2q¢'w)xJ(¢") [x)(-a")~x; (a")]exp(-q'w)
K_(q)xs(q)‘+ e Jc (€'+K_(q") 4 = 5% JC (q'+q)K_(q") da’
vhere
%-(a) = [x,(@) + x_(~q)] exp(qw)
(26)

it

xo(@) = [x, (@) - x_(~9)]exp(qw).
The solutions i: and ig can be interpreted in the following way:
from the symmetry of the problem it is evident that Ez can be separated into

a symmetric part Ezs and an antisymmetric part Eza such that

1
E,.(xy,2,8) = 5 [E_(x,y,5,8) + E, (x,~y,%,5)]
(27)
1
Eza(X,y,C,S) = 'i' [EZ(X,Y,C’S) = Ez(x:"'YsCss)J .
Each one of these parts can be split into its even and odd parts such that
E® (%,5,2,8) = = [E,_(%,7,2,8) + E, (-x,,Z,5)]
zs ’y’ b 2 zs ’y’ b ’ZS ’y! b
(28)

1
Ezs(x,y,c,S) E'EEzs(x,y,c,S) - Ezs(—x,y,c,s)l

and similarly for Eza’ From (26), (27) and (28) one then sees that an inverse
Laplace transform integral of iz(q)exp(—qw) gives Ezs(x,h,;,s) and that an

inverse Laplace transform integral of ig(q)exp(—qw) gives E;S(x,h,c,s). Thus,

the solutions of (25) determine the even and odd parts of the symmetric,transverse

magnetic field.

In the next section a method of solving (25) will be discussed. However,
before doing so it is advantageous first to derive a set of integral equations
for the antisymmetric part of the TM field. Going back to the second equation

in (8) and foilowing the steps in deriving the integral equations (25) one

15




first splits L(q) such that
L(q) =L, (9)/L_(q)
(29)

L (@L_(-) = -1

and

iv2_exp{(xh/m)1nl (g+x) /p] + (qh/m)in[ (v/2ph) - y + 1]}

i [(q+K2m)h/mn]exp[~qh/mw]
m=1

‘L+(q) =

The functions L+(q) and L_(q) have properties similar to those of K+(q)
and K_(q), the asymptotic behavior being the same. Therefore, an analysis
similar to the one leading up to (25) results in the following set of integral

equations:

e 1 exp(—Zq'w)i:(q') ' 1 [kl(q') + >\1(‘(1'):]exP("‘l‘W) .
L+(q)xa(q) T 2ni fC (a'+q)L_(q") dq’ = 2wl JC (a'+q)L_(q") .
(30)
. 1 exp(~2q"W)%_ (q") ‘ 1 (2 ¢=a") - Ay (g ]expl~q'w)
L_(Ox_(q) + 57 Jc (@'+L_(q") da’ =73 fc (q"+9)L_(q") 4
where
%-(a) = [E (q,B) - E _(q,-h) + E_(-q,h) ~ E_(~q,h)]exp(qw)
iZ(q) = [E+(q,h) - E,(q,-h) - E_(-q,h) + E_(~q,-h)]exp(qw) (31)

RI(Q) = El(q,h) - El(_q,—h)-

The solutions of (30) determine all the properties of the antisymmetric part

of the transverse magnetic field.

B. Transverse Electric Fields

Having derived integral equations the solutions of which give the

transverse magnetic field it now remains to derive equations governing the

16




transverse electric field. As is well known the TE-field is uniquely determined

by the Hz component, which satisfies the differential equation off the plates,

2 2

3L——-+-3—— _ p? H = 0. (32)

2 2 z
9x oy -

Following the same approach as the one used for determining Ez one puts

1 -~
H (x,y,8,8) = 5% fcﬂz(q,y,c,s)GXP(qx}dq- (33)

The fact that ﬁz satisfies the-ordinary differential equation

2 .

& L %E =0 (34)
2 z

dy

together with the outgoing wave condition for ﬁz(q,y,c,s) as Iy[ + o and

(B/By)HZ being continuous at y = zh (since E_ is continuous at y = *h)

results in the following representation for Hzt

(ix) " F(q, By expl-ik(y - B, y > h
. -1 h -1 -
Hz(q,y,&c)== k “F(q,h) cgi[KéK;j)] + x "F(q,-h) E%?%E%%E?Zl ’ lyl <n
(35)
(ix) "I (q,-hyexplix(y + W], y < -h.

It is to be noted that F(q,*h) is proportional to ﬁx(q,ih,s,g). Splitting
ﬁz(q,y,s,g) and F(q,y) into three parts as has been done in (6),

H_(q,y,s,8) = H, (q,y) + B_(6,y) + H, (q,y)
g . (36}
F(q,y) = F,(q,y) + F_(q,y) + F1(q,)

and using the boundary condition that Hz(x,y,c,s) is continuous at y = *h

and |x| > w one gets

17




B, (q,#0H) - Hy(q,#he) =5k (4 + cot(2kW](E, (q,%h) + F_(q,%h) + F(q,0)] g
ot cse(2¢h)[F, (q,5h) + F_(q,7h) + F,(q,7h)]. (37) ‘

By adding and subtracting these two equations and noting that Fl(q,ih) =0

one obtains the following set of two equations:

-Trs(q) = P()f_(q)
(38)
v_(q) = Q(e)f_(q)
where
v (@) = -H,(q,bH) + H,(q,h-) - H,(q,-b+) + H,(q,~h-)
Ga(CI) = —Hl(q:h+) + Hl(q:h") + Hl(q,“h+) - Hl(qs—h")
£.(q@) = F(q,h) - F(q,-h)
£ (1) = F(q,h) + F(q,-h) . .
(39)
P(q) = K—l[i + co;(ZKh) + cse(2xh)] = L(q)/K2
Q(q) = K_l[i + cot(2xh) - csc(2¢kh)] = K(q)/mz.
It should be pointed out that Gs is related to v, in [6] via
2 1 ~
pv, () /su = 5¢ JCVS(Q)GXP(qX)dq (40)

and similarly for Ga and v_(x). Aiso, Gs (Ga) corresponds to the case
where the longitudinal currents have the same magnitude and the same (opposite)
direction on the two plates. From (35) and (39) it is also clear that GS (Ga)

gives rise to an electromagnetic field where Hz is an even (odd) function of

1 | o

Y.
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To find ;s and Ga the same approach will be followed as the one used

in determining the transverse magnetic field. For that reason, define the

quantities
$,(a) = F,(g,h) + F,(q,~h), ¢;(a) = Fy(a,h) + Fy(q,-h) (41)

and ¢l(q) is uniquely determined by the incident field since the boundary

conditions on the plates require that the x-component of the total field be

zero on the plates implying that

‘ w
= -1 - .
Fl(q:ih) = (Suo) J Ex(x:i’haﬁxs)eXP( qx)d}\
: -w
-1 Y inc
= ~(su) J E_ (x,%h,z,s)exp(-qx)dx. ' (42)
-w

Instead of deriving integral equations for ¢¥(q) it is advantageous to

introduce the even and odd parts of these two functions,

1

§:(q) [¢,.(@) = ¢_(-q)Texp(qw)

(43)

§Z(q) [¢,(a) + ¢_(-a)Iexp(qw) .

The function §:(q) (§Z(q)) corresponds to the case where the longitudinal
current distribution on each plate is an even (odd) function with respect to
the plate's center line. Following the Jones version of the Wiener-Hopf method

one obtains the following two uncoupled integral equations for §: and §z ’

N exp(-2¢"w)y:(q") [6,(q") + ¢, (-q")]exp(-q'w)
P ()3 (a)-~ s dq" = 1 1 dq"
+ g -~ 9q3 c (q'+q)P_(q') 4 = on C (Q'+Q)P_(Q') d
(44)

i exp(-2q'W)¥2(a") [6,(-4") - ¢,(a")]exp(-q'w)
P (©¥2(a) + ST dq' = == L 1 dq"
F Y@+ 5 | Tgr @y T g (@ +P_(q") d

19




where ' ‘

P, (@) = L,(q)/(q + p)

(45)

I

P_(q9) = (g - PIL_(q) .
The solution of (44) determines the even and odd parts of the symmetric part
of the transverse electric field.

It now remains to derive integral equations for the even and odd parts
of the antisymmetric part of the transverse electric field. This is done by

introducing the quantities

2@ = [, (a) - ¥_(q)Texp(qw)
(46)
yo@) = [¥, (@) + ¥_(a)Texp(qw)
where
¥, (@) = F,(q,h) - F,(q,~h) , (47)
and one immediately obtains the two integral equations .
1 NSe .y ' - !
0 (@5 (@) - < exp(-2q'w)y_(q") e o 1 [¥;@@") + ¥ (=q')]exp(~q'w) s
+ 37 T T [T @ @) Y T 2 (@ +)Q_(a") 1
(48)
e exp(-2¢'Wy (@) g Wy -a") - @)exp(g'w)
Gy, (@ + 57 Jc (q'+)Q_(q") da 'f 2mi Jc (q"+9)Q_(q") dq

where
Wl(Q) = Fl(q,h) - Fl(q’—h)

Q (@) =K, (@)/(q + p)

Q_(q) (@ - P)R_(q). (49)

To sum up this section, integral equations for the field scattered from

- .:
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two parallel plates of finite width have been derived. It was found that the
most natural decomposition of the field is to use (1) its transverse electric
and transverse magnetic parts (2) its symmetric and antisymmetric parts
(referring to the symmetry of the electromagnetic field in. the direction
perpendicular to the plates) and (3) its even and odd parts (referring to the
symmetry of the electromagnetic field in the transverse direction parallel

to the plates). In each one of these cases (which together combine to eight
different independent cases) a scalar integral eqpation of the second kind was
derived.

Altbough'fhe equations derived here are exact, they are most useful for
numerical treatment only when the width of the plates is large compared to the
plate separation. Therefore, they complement the integral equations derived
in a previous note. In the next section the integral equations derived in this

note will be used to find properties of the lowest-order TM modes and TE modes

for two wide plates.
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III. Transverse Propagation Constants of Modes on Two Wide Plates

The integral equations derived in the previous section will now be used
to calculate the transverse propagation constants of the TM and TE modes on two
wide parallel plates. These gquantities are of course determined from the non-

trivial solutions of the homogeneous equatioms (25), (30), (44), and (48).

A, Even, Symmetric TM Modes

The homogeneous integral equation for the even, symmetric TM field is

~€ | -
K+(q)xs(q) - dq' = 0 (50)

ot 28
1 exp (~2q WJxS(q )
2ni c

(q'+q)K_(q")

where q i1is "to the left” of C (c.f. Fig. 3). By changing the path of

integration to Cl one obtains

, f ex(-20"WE(q")
K (q)x (@) +K (q)eXP(ZqW)x (-q") - s IC e ACH) dq' = 0., (51)

AT

3

T~

Equation (50) holds for q 1lying to the left of C, whereas (51) holds for q ‘

lying to the right of C By comparing (50) and (51) one finds that iz(q)

1
has a branch cut at q = -p. Furthermore, the integrand tends to zero as
q' + » din the right half plane so that the path of integration in (50) can be

deformed to the right, resulting in the following expression:

© exp(—ZWKZm+l

' - -
(qhicy 1 2K (kg 0y) 2ni

dq' =0

YRS (ko ) exp (-2q" W)X (q")
K+(q)i§e)(q) + s 2mtl 1 f s
C

m=0 (q'+q)K_(q")

(52)

where

Ko =‘inﬂ[2h)2 + PZ,

the prime denotes differentiation and the path of integration C2 is shown in

Fig. 4. Since x( )(q) is a holomorphic function on C2’ (52) can be used to

formulate an 1ntegral equation for x( )(q) when q belongs to C2. Once

this solution is known (52) determlnes xs(q) for arbitrary complex values of

q.
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Figure 4. The paths of integration C, Cl’ and C
complex q'plane.
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In the general case, (52) must be "solved" using numerical techniques,

However, it can also be used to find an analytical expression for the transverse
propagation constant in some limiting cases. Consider the case where w/h >> lp[
so that each term of the sum in (52) is exponentially small. In this case the
entire sum is negligible. and one, thereﬁore, has the following approximate

integral equation:

e 1 exp(—Zq'w)i:(q')' :

2

which can be cast into the alternative form,
e © exP(—Zﬁ‘w)h:(E') A -
where
e _ ~e
Bo(E) = K(EYES(P + &)
M(E) = 2mi exp(2pw)K, (p + £)/k(E) .
and
K(E) = lim 1 - L S— (55)
O+ K (p+e+ie) K (p+ &~ ie)

i.e., k(&) is the discontinuity of K:l(q) across the branch cut.

For large values of |pw| the main contribution to the integral comes
from small values of §£'. By using a small argument approximatian of M(&)
one gets

o exp(-2E"w)h o (£")
e ’ S
nv2p/E exp(2pw)h_(&) - JO 5 T EF £

dg' = 0. (56)

The integral defines a function of £ which is analytic at & = 0 provided
that hz(E) satisfies certain requirements for large values of £ so that

the integral exists. For small values of £ one therefore has approximately
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o

e ~ L8
h (§) = h /g

resulting in the following equation

g JET aup(-2r!
A e - [ ARG e ] o

When [pw[ is not small ome has.
e 3/2 w/—r ' "
hs w(2p) exp(2pw) ~ | YE' exp(-2£'w)dE =0
0

For this equation to have a nontrivial solution, i.e., h: # 0, p must

satisfy the equation
16V7 (pw)3/2 exp(2pw) - 1 = 0.

For large values of [pwl this equation has the asymptotic solution

I N § 4 3 -1
ps’nw = (n’ 8)n1 % In(2567r n”) + 0(n ~ 1ln n)

In the general case (60) must be solved numerically and the results of the

(57

(58)

(59)

(60)

(61)

numerical calculations are shown in Fig. 5. It was found that the asymptotic

form (61) agrees within 10% with the exact solution of (60) except for the

lowest root (n = 1). The‘field distribution of this mode will be investigated

in the next section, showing that the field of this mode is very weak between

the plates.

B. 0dd, Symmetric TM Modes

For the odd, symmetric TM field one gets, with the same procedure as above

(o] ~ o}
hs(g) - hSJE

and ‘ -
| h:[?(Zp)B/Z exp(2pw) + J YEY exp(-ZE'w)dg'] =0
. 0o -
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Figure 5. The transverse propagation constants for the symmetric

T™ modes (p; n) and the symmetric TE modes (pg n) .
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which has nontrivial solutions when p satisfies the equation

-

16V (pw)3/2 exp(2pw) + 1 = 0 (64)

Again, the roots of this transcendental equation can be found using numerical

techniques (see Fig. 5) and for large values of ]ﬁwl ~one has asymptotically

pI0W = (a+Pui-g 1n(256n'0°) + 0(a"t n w) (65)

C. Even, Antisvyvmmetric TM Modes

The even, antisymmetric TM modes are determined from the integral equation

dq' = 0, q€¢C (66)

1 J exp(-Zq'W)iz(Q')
C

-~ e
L+(Q)xa<q) - (q'+q)L_(q')

27i

which can also be written in the following form

' o r eXP(-ZE'W)h:(E') ; . . ‘
N(g)ha(g) - 0 2P + g + gl E - ’ < E < ® (67)
' where
By(E) = 2(OE(p + B)
N(E) = 2mi exp(2pw)L, (p + £)/2(E)
and = '
() = 1im [L ( +1 Iy "~ +1 - ] (68)
‘ 0+ _\P '5 €) L_(P § - ig)

For large values of lpw] one can use the same type of approximations as those

employed in (54) to obtain the following approximate equations

e ~ 1.&
h (£) =h /g
(69)

msb
~L
Tl

v2p exp}pr + (2ph/m) [ﬁ,n(z-n/ph) -y+1-1n/2] s - f vVET exp(—Zg'w)dg'] =0
. ' : ' 0
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e : )
In order for h  mot to be zero .p must be a root of the transcendental equati‘

»

8 1rpw3/h2 expg 2pw + (2ph/w) [2n(2n/ph)-—y-+l] -1=0 (70)

Before trying to solve this equation, it should be pointed out that it has been
derived under the assumption that ‘ph[ << 1. Thus, the roots of interest of
(70) must therefore satisfy [ph]| << 1. The roots p;en of (70) were found

?

numerically using a desk calculator and they are presented in Fig. 6 for

difterent values of w/h.

D. 0dd, Antisymmetric TM Modes

. - . o
Similarly, the transverse propagation constant p; n of the odd,
¢ ’

antisymmetric modes are determined by the solutions of the equation

+1=0 (71)

8 'npw3/h2 exp { 2pw + (2ph/w) [2n(2n/ph)-y4—l]

and they are shown in Fig. 6. .Again, it is found that the absolute value of
the real part of the propagation constants gets larger as h/w gets smaller.
This effect can be understood from the fact that the field of this mode is

mainly ocutside the two plates.

E. Eveﬁ, Symmetric TE Modes

Turning the attention to the transverse electric field one has the

following integral equation determining the even, symmetric TE modes,

o _ -e R —9at se 1
exp ( ZWK2m+1>ys(K2m+l) 1 J exp(-29 W)Yg<q ) dq' = 0 (72)
. s

-
POy (@) - ) o P Gy ) ¢ 2w (@ +)P_(q")

m=0 2mt1 _

where

K = l/(mr/Zh)2 + p2

Again, when' the width of the plates is large compared to the separation such
that . |n/h] >> |p] one can neglect the contribution from the sum in (72), .

in which case this equation can be written .alternatively as

2
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Figure 6. The roots of (70) and. (71). Roots such that |ph| << 1
are the transverse propagation constants for the anti-
. symmeétric TM modes
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| e o exp(-26'W)e2(E")
EM(E) (2p + ) %@>+h T 48 = 0 (73)

where

() = ER(DI + )

and k(E), M(§) are given by (55). For large values of lpwl he main
contribution to the integral comes from small values of £&'. By using small
argument approximation of M({) one gets

© exp(—ZE'W)eo(E')
e a
™ E/zp eXP<2PW>eS(E) + JO 2P + £ + g‘

dg' =0 (74)

and this equation shows that for small values of the argument one has
e (£) = e2//E. (75)

Substituting this expression into (74) one obtains the following equation that .

p must satisfy in order for (74) to have a nontrivial solution
2/ /-1;\7' exp(2pw) +1 =20 (76)

For large values of lpw[ this equation has the asymptotic solution

p's'enw = (n + -83‘)111 - %; ln(lmzn) + O(n—l 1n n) an
3

whereas in the general case (76) was colved numerically and the results are

presented in Fig. 5.

F. 0dd, Symmetric TE Modes

Siniilarly, the transverse propagation constants for the odd, symmetric

TE modes are determined from

2/ /p—w- exp(2pw) +1 =0 (78).
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which for large values of’ lpw[ has the asymptotic solution

-

pLOW = (= §) mi- 7 InGér’) + 0@ 1n n) (79)

For not so large values of |pw] the solutions of (78) are presented in Fig. 5.

It is seen that the absolute value of the real part of the transverse
propagation constant for the symmetric TE modes is smaller than that of the
symmetric TM modes. This means of course that for high enough frequencies the

TE modes are less attenuated than are the TM modes.

G. Even, Antisymmetric TE Modes

It now remains to obtain the propagation constants for the antisymmetric
TE modes. TFor large separation-to-width ratio the even, antisymmetric TE modes

are determined by the nontrivial solutions of the integral equation

exp(—Zq'W)ifi(q‘)
(q'+)Q_(q")

~e Ly 1 . ‘
Some care has to be exercised when evaluating the integral in (80) since
Q_(q) has a zero at q==p‘. In fact, by using the small argument expansion of

Q_(q) we obtain the following expression, valid in a neighborhood of q=p :

Q 1(q) ~Q_,;%p) 2ph(ql~ ) [l + ik /2p(a-p) :] > 4~P (81)

By inserting the expression (81) for Q_(q) into (80) and following a procedure
similar to the one used previously in this section one obtains the following,

transcendental equation that p must satisfy

1l - exp'{zpw + (2ph/7m)[2n(2n/ph) - Y%—l]} - h vp/wr =0 (82)

‘where we have used the fact that

31




) ~ - (4hp?) exp {(ZPh/Tr)[ﬁn(Zw/Ph) - y+11}

»

When h/w << 1 then the solutions, p;en , of (82) are given by
?

e h 21w 1 '
p' " w=dim ¢l - — [ln =) = v+l = ]
a,n { wT ( nh ) 2/

—?1;- 'n’n [% + ']- ] s n= 1,2;3, o‘oo
27¥2n .

(83)

In Fig. 7 the roots P;en are displayed for some different values of h/w .
b

H. 0dd, Antisymmetric TE Modes

In the same way, the transverse propagation constants p;on of the odd,
3

antisymmetric TE modes are given by the following expression

"6 . 1 _ jl. _bmw -‘——é;
Py,p¥ = irlm 2) { Sl [’m ((2n-1)h) T rEl 2/2n—1]§

(84)‘
1 @

_%ﬂ(n_}z-)[—:'z:-*-————-—] s, h/w<<1l.
27vY2n~1

and these values are graphed in Fig. 7.

Some comments are now in order concerning the results obtained for the
transverse propagation constants. First of all, the antisymmetric TE modes have
the smallest real part. This means of course that for high enough frequencies,
the antisymmetric TE modes are the least attenuated ones. In the next section -
it will be seen that the antisymmetric TE modes are the modes with the highest
field intensities between the plates. Therefore, besides the TEM mode, these

modes are the most important ones inside a wide-plate simulator.
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IV. FIELD DISTRIBUTION OF THE MODES ’3)

)
In this section, the field distribution of the different modes on the '

parallel-plate waveguide will be investigated. The main emphasis will be paid

to the region between the plates, since this region is the region of interest for

the simulétor.‘ The first part of this section deals with the TM modes ‘and the

second part with the TE modes.

A, Field Distribution of TM modes

As has been pointed out in the two previous sections the transverse
magnetic modes can be classified as a combination of symmetric/antisymmetric
and even/odd modes. The longitudinal component of the electric field of these

modes are given by the following expressions, which are obtained from (4), (6),

(17), (26), and (31), |y| <nh

. . . n
B, sy) = e ]Cx?q)exp(-qw)cosh(qx) Sln[K(erzg-Jn(zntssn[K(y ) 4q
E:,S(X’Y) =,Z}}_{ jci:(Q)lexp(—qW)sinh(qx) Sir{K(y+2)iJrl(;K§§n[K(y-h)l dq ‘
(85)
E,,a 000 = e jci:(@exﬂ-qw)cosh,(qx) Sin[KCY+2£..<;K§:)Ln[K(y_h)] dq
-~ . 4 - _h
£ o | s SO L e,

-~

Since x: is a holomorphic function to the right of C the integrals in (85)

can be evalunted using residue calculus. Wheh lxl < w one gets

e __l_m_mm'n'-e __‘
Ez,s(x,y) = 30 Zl -1) ;;; x_(k_)exp(-k_w)cosh(x_x)

[orn g L mrgem] o)
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o o] . s .
and similarly for Ez,s’ E ’ Ez a The quantity Km is given by

m T 2 _,omw . (87)

" since Iph1 << 1 for the modes of interest here. Therefore, each term in the

sum (86) is very small provided that |w x| > h and so the field of the T™
modes is very.weak between the two plates. Thus, the TM mode contribution to the
electromagnetic field on a 81mulator con51st1ng of two parallel, wide plates can
be neglected. This is different from the narrow-plate case where besides the
TEM mode the TM modes make up the major contribution to the electromagngtlc

field.

B., TField Distribution of TE modes

The field distribution of the TE modes are determined from the longitudinal

component of the H-field,

S(X’Y) = Z%; JC§Z(Q)exp(—gw)sinh(qx) COS[K(y+21i(;K§§S[K(Y’h)]
s(x’z),='2%§ jc§:(Q)eXP('qW)cosh(qx) COS[K(Y+Zzi(;K§§S[K(Y"h)]

(88)
g GOY) = Z%I JC§§(Q)exP<"qw)cosh(qx) COS[K(y+Zth2§g§[K(v-h)] dq.-

. These integrals can be evaluated with residue calculus thereby yielding
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a(x,y) 4ph y (P)exP(—PW)COSh(Px)

+_1§T_ E m( 1)
m=l K h
LGy = 7 Faedexp (-pw)sinb(px)’
’
o m
5 Lo
m=1 Kk h
_ T T m(-1)" ~o _
,S»(x,y) =3 mzl ,'<2h2 yS(Km)exp( me)cosh(Km
e _ T m(-—l)m
J&Y) =3

Z2h

—5 y (K )emp (- w)cosh(K x) [cos mr (yth) + cos E“_:g%‘_@.]

(89)

—_— SI:. (Km) exp (—me)sinh (Kmx) [cos E—T%*ﬁ-)- + cos TET%%;'E)]

x) {?os Eﬂé%#hl._ cos Ezé%:hl]

2h

Z =55 ;r: (Km) exp (—me)sinh (Kmx) [cos_, I_nwib—)— - cos .mﬂézh-h)]

Since each term in the sums in (89) is very small wher h << w and lw+xl >h it

is clear that only the ant:.symmetrlc TE modes constitute an important contr:.but:v.on

to the simulator field. The only 31gn1f1cantly contributing field components of

the odd and ‘even antisymmetric TE medes are, therefore, given by

a(x,y) = Hocosh(pX) Hz,a(xly)
° _(x,y) = —(u s/pH sinh(px) P CR
° G6y) = (2/p)E sinh(px) Hi RS

2

13

Hosinh (px)

R

—(uos/p)Hocosh (px) (90)

13

(t /p)llocosh (px)

Graphs of the field distributions of the three lowest even and odd antisymmetric'
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TE modes are presented in Figs. 8 and 9. It is observed from these graphs that
around the center of the simulator, the field of thesc modes can be expressed
in terms of an almost real function. It is also noted that the magnitude of

the field of these modes gets larger as the distance from the center of the

waveguide increases.
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