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ABSTRACT

In attempting to model and predict the magnitude of the surface
currents induced on aircraft in the ground-alert mode, it is necessary
to examine the effects of the near proximity of the earth's surface.
For thin cylindrical scatterers sufficiently far removed (several wave-
lengths) from the surface, these effects may be taken into account with
filamentary currents on the scatterer and its image. However, if the
scatterer is moved very near (a fraction of a wavelength) to the ground,
the assumption of filamentary currents is invalidated. In this note a
transmission line mode approximation is used.to model the cf?&uﬁ%erentié1
variations of the surface current induced on a finite length cylindricai
scatterer very near a perfect ground. This solution is compared to
previous solutions based on filamentary currents. The results give clear
indications as to when the more'sophisticated approach should bg used tq

obtain valid solutions to the scattering problems of this type.
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I. INTRODUCTION

Previous investigations have considered the interactions of thin
cylinders with an electromagnetic pulée over perfectly conducting
grounds [1-5]. Limitations imposed by the so-called "thin—wi;e"
assumpticns and approximations are inherent short-comings [6-8]. 1In
general, these epproximations can be divided into threeiareas:
(i’icuf;éht is a;;ﬁﬁedmts fiéﬁuéhly in the directign of the wire axis,
(2) boundary ccnditions are applied only torﬁhe‘axigl component of the
electromegnetic field at the wire surface, (3) current and charge den-
sities are approximated by filaments of current and charge on the wire
axis [9-11]. The emphasis of this investigation is on the last of
tﬁese approximgtions. The first assumption ignores the induced current
in the circunferential direction, which is an appropriate approach (7],
(12] provided the length of the cylindrical scattere; is much greater
than its radius. With this restriction, the séattered field is deter;
mined prima;ily by the longitudinal compohent of the current so that

the significance of the circumferential component is minimal. It is

well known that for infinitely long cylinders, the axial component of

the incident electric field produces only currents in the axial direc-

tion and the component of the incident electric field in the circumfer-

entialudirection_results in only circumferential currents [13-21]. For

finite length cylinders, either component of the incident electric

field excites current in both the axial and circﬁmferential directions



{22-25]. The second "thin-wire" approximation does not teke into ac- .
count that portion of the axial current contributed by the circumferen-
tial component of the incident electric field. The axial current caused
by the axial component of the incident field is much more significant
than that fesulting from an incident electric field with a circumferen-
tial compqnent. This restriction, that the cylindrical scatterer be
thin, makes this approximation very reasonable [26]. Representing the
current and charge densitieé induced on a thin cylindrical scatte

by filaments of current and charge on the cylin&er axis is in effec.t
assuming that their circumferential variations are uniform [1-4]. This
is well founded for a thin ¢ylindrical scatterer maﬁy radil away from
the ground plane [6], [27], but certainly not correct when the cylin~
drical scatterer is positioned near the ground plane - on the order of .
a radius away. In this analysis, thé circumferential behavior of the ‘
induced currents on & thin cylinder is taken into account when the
scatterer is near the ground plane.

A.Pocklington type integro-differential equation {11] is formulated
for the current induced on the thin cylinder and its imege in terms of
a complex frequency. This equation is reduced to a system of algebrgic
matrix equations through appiicatign of the method of moments [9], [11],
[28-29]. This transient analysis problem employs the singularity
expansion method, which was formalized anéd discussed in general by
Baum, among others [30-~33], and practically demonstrated by several
researchers [1-3], [34-37]. The complex natural resonances, natural
mode vectors, and normalization coéfficients are calculated and com-

pared to those found through enforcement of all the "thin-wire" .
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assumptions. As the cylinder approaches the ground plane, the trajec-
tories of certain singularities are presented and discussed. Induced

currents are calculated for various geometries and incident fields.



II. 'THEORY

Integro-differential Equation

Consider & finite length, infinitely thin-walled, perfectly con-
§ucting, right circular cylinder as shown in Figure 2-1. The cylinder
is near and parallel to an infinite, perfectly conducting, ground plane.
As indicated in the figure, the cylinder is of length L, radius a .nd
height h above the ground plane. A combined cartesian and cylindrical
coordinate system is centered on the cylinder as showvn. The system,
consisting of the cylinder and the ground plane, is illuminated by a
transient incident field of electromagnetic radiation. The incident
field is, by definition, that field which would exist if the cylinder
and ground plsne were absent. As shown in Figure 2-2, the incident
electromagnetic field propagates in a general direction described by
the angle ei with respect to the z axis and the angle ¢i with respect
to the x axis. It is then desired to obtain the induced currents on
the cylinder as a function of time.

By application of image theory {18], [38-39], the cylinder and
incident TEM trensient plane wave, in conjunction with the perfect
ground plane, are transformed into an eqﬁivalent problem consisting of
the "original cylinder" - to be called the object cylinder - and its
image - to be named the image cylinder. According to image theory, the
incident field must be imaged also -~ producing the equivelent twc-body

préblem shown in Figure 2-3. Two individuel coordinate systems are

]



1
AN
N ]

|

|

!

|

{.

L |

|

|

i

]

|

|

|

|

:4-&.__,‘

]

|

i

}

.:r._ \ l//‘

|

Figure 2-1. Finite Length, Right Circular Cylinder -
Near and Parallel to Perfect Ground Plane
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defined by Figure 2-3, indicated by the subseripts "o" and "i", repre-
sentirg the object and image coordinate systems respectfully. Note the
redundancy of defining a 2o and zi axis since the cylinders are iden-
tical and pearallel. With respect to the electromagnetic excitation,
the term. "incident field" shall now be understood to represent the
field plus its reflection from the ground plane. The surface currents
induced on the object and its image by £hislincident TEM plane wave are
cénsidered as equivalent source currents radiating in free space [ ‘j.
Thus, the principles of free space Green's functions may be used i«
compute the scattered field at an arbitrary field point in space.
Referring to Figure 2-4, define appropriate magﬁetic vector poten-

tials for the object and its image as follows:

Ay (Ry) = the magnetic vector potential of the object in
object coordinates
A;(Ry) = the magnetic vector potential of the image in

imsge coordinates

Ry = a general field point in space measured from the
object coordinate system

t
ﬁo = a general source point on the object cylinder with
respect to its coordinate system

.t
Ry = a general source point on the image cylinder with
respect to its coordinate system

R; = the same general field point in terms of the image
coordinates

Thus, the magnetic vector potential of the object is expressed as

Bl = 38 [ Rolfe) colfoss') aso’,

(2.1)
5%

-

where primed indicates source points, unprimed indicates field points,
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and

Go(ﬁo,Ro } = the free space Green's function in oblect
coordinates

KO(RO ) = the surface current density radiating in free
. space.

This Green's function has the general form of

Go(ﬁo ,R ) "'Y l §0"§0 '
|Rg~Ro | ' (2.2)

Implicit in this equation is the assumption that the temporal vari 1on

of the fields is eSt, where

s =0+ ju, ' (2.3)
the complex frequency variable, with

Y = s/e (2.h)

= the speed of light in free space.
From Figure 2-4, define a cylindrical coordinate system superimposed
upon the cartesian coordinate system in the usual manner. Through

simple geometry,

= = ! 2 £ ¥ ' t
[Ro-Bo | = [Po™*pPo “~2p0po cos ($o-d0 )} + (z-z )211/2 (2.5)
and for this circular cylinder, p§ =.=.
Therefore, ‘
EO ﬁ (Po: dos z) (2.6)

ff K(oo,%,Z)‘

Go(po,%,‘,po ¢o )% N ddg dz (2.7)

12
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L 2n
A (Ry) = h—% f f Ko(%',z')Go(po,%,Z;%",z')a d¢o'dz'
(o] (o] :
(2.8)

X % YRy
Ao(po>¢o’2) i Ro(’#o ’Z, )e a d¢g dz s (2.9)
o Yo Yo R]_

where B = [ps2 + a2 - 205 a cos ($o-ds ) + (z~-2 )2]1/2 . (2.10)

Upon accepting the first "thin-wire" approximation,

Rolbo »2' ) = Koldo'z') az »  (2.11)
such that

KC)(DO:‘#O’Z) = Ao(pos¢0az) ;z | (2.L2)
and

- u rL am ty -YR 1ot .

Aolpgsd0,2) = éz);;}j f Koldo's2')e "L adpy'az’, (2.13)

(o} o Rl

or simply '

OZ(QO’¢O’Z) L—Q' f Ko(¢ ! »Z )e YR]‘ ad¢ '

. Ry

(2.1k)

This process can be repeated for the image cylinder, producing the

similar equation

y L 2%
Aiz(pi"’i,z) = ﬁ _/ f Ki(cbi',z’)e_YR? addy 'dz'

Q o R2
(2.15)
13



where

Rp = |By-Ry'[=(o,2+aP-20 8 cos (43-8;'W(z-z' )22 (2.16)

Up to this point, the kernels of (2.1kh) and (2.16) are exact, in that
the integrations are over the surface of the cylinders. The current
has not been assumed to exist only on the cylinder axis, which would
resulf in an approximate kernel.

As pointed out by others [1-4], (6], the circumferential variation
of the currents can be described as uniform when the cylinder is m s
radii away from the ground plane, but this approximation becomes pcor
when the cylinder is near the ground plane. Taylor [hO].has derived
expressions for the circumferentigl va&iations of the axial current on
an infinitely long cylinder over a ground plane in a static mode. As
pointed out by Taylor, these resulting equations are also applicable
to electrically thin cylinders separated a short distance from the
ground plane and to finite length cylinders, provided the length is

much greater than the height above the ground plane. Utilizing the

equations of Taylor [40G],

Ko(cbo',z') = %fé—z—l £,(¢0' )2z (2.17)

where

[1 - (a/n)2]1/2 .
£.(6,") = 1+ (a/n) cos ¢, (2.18)

Io(z') = exial varietion of object surface current.

Sezarubility of the current into its two distinct functional variations

14
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becomes & better approximation as the cylinder becomes longer with re-

spect to its radius. Note thal as h becomes large, the circumferential

variation of the axial current becomes uniform, as desired for a cylin-
der far removed from a ground plane [1-3]. Therefore, by assuming the
current to behave in this manner, the . magnetic vector potentials are
compésed of exact kernels, in the sense thaf the current resides upon

the cylinder surface as opposed to the cylinder axis; the current is

" uniformly distributed about this surface when the cylinder is at a far

distance from the ground plane; and the current becomes nonuniformly
.distributed as the cylinder draws near the ground plane. The results
of these two approaches - approximate kermel with uniform circumfer-
ential variation of the axial current and exact kernel with an assumed
circumferential variation of the axial current - will be examined and

compared.

Returning to (2.17), the image currents are similarly

Rie1",2") = %j;ﬁi)- £3(41" )8z (2.19)
where

£1(4;') = £l+-(§§ﬁ?)ili/f¢i'+n) , - (220)
or -

£3(457) = £1--§§;;§21222¢1' (2.21)
- ,

Ii(z') = axial variation of image surface current.
Note the difference in £3 (2.21) and f, (2.18) due tc the coordinate

references chosen. The megnetic vector potentials become

15



L 2n
M s ' - ' '
Bolpgrtor2z) = éz“r: -/o. /; -5;3-}3—) fo(%‘); TR add, 4z

1
(2.22)
™ J/’I. “/f'QI ( .
- _ Ti{z ) 1, -YR 1
Ai(ﬂi:¢is?) = azh? ° ° -E%; fi(¢i )gz [ ad¢i'dz
(2.23)
Define two functions,‘Fo and Fy, as
. 2w - .
Folpgrdoszsz ) = (60" )e "L & dog - 2k)
o Ry
v 2n 1y, -YR 1
Fi(pi:¢isz3z ) = fi(¢i Je 2a d¢i ’ (2.25)
o Ro
such that
Eo(portosz) = 8z 22 P Ialz) g0 o az'laz (2.26)
pO’ [o Z )_”r ona olPos»P0:2 .
Ri(pi,9i,2) = &4 %% f Ei—(—z——)— Fi(pi,¢i,z,z’)dz' . (2.27)

Drawing upon the principles of image theory, the currents on the object
and image are related. At equivalent points on the object cylinder and

its image, the currents ere equal in magnitude, but opposite in sign.

Stated simply,

To(z') = -11(z") = I(z"). | (2.28)

]

Therefore

L
Aolpgrd0s2) = 82 -E% f e) Fol0osb0s2,2' )dz2' (2.29)
. (o

2na

16




- Rilpga8y,2) = -8y o ./‘L I(z') Filpi,dg,2,2')az’.  (2.30)
' w 2ra

Locate fhe field point at some general point on the surface of the ob-

Ject cylinder as illustrated in Figure 2-5. Trom the law of sines,

pi 8in ¢; = a sin a = a sin ¢, ‘ (2.31)
and from thei;avrof cogiﬁgs,

p;2 = a2 + 4n2 + ﬁah cos ¢ . (2.32)

Therefore, when Ki is evaluated on the object surface,

pi = [a2 + L4n2 + Lah cos ¢°]1/2 (2.33)
and
= -l})a sin 4
¢1= sin T T02 4 InZ + Lan cos GolUE( . (2.34)

Rote that when Ko is evaluated on the surface of the object,

po =8 . | , (2.35)
Thus,
Eo (0gsb0,2) J = By(do»2) (2.36)
So
and
Ki(bi9¢isz) J = Ki (4’0’2)9 (2'37)
So

which demonstrates their functional dependence, upon this eveluation.

17
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Therefore, on the object cylinder surface

A _ 4 Mo L 1(z') Ty,
E5(¢0,2) = 2y, A Foldo,z,2z )az

T ora ’ (2.38)
with
, en -YRy1
1y _ /—'7—— 1 e 1
' F°(¢OSZ,Z ) = l"'a. h- \/0.‘ l+Ya/h/)??S ¢°’ RL a d¢o
T T e (2.39)
Ry = [2a2-2a2 cos(¢o-do') + (z-2')2)1/2 (2.L0)
and
. u L I(z') ' 1
Ai(¢o,Z) = "'e-zx% ona Fi(¢oazaz )dz ) (2'1‘1)
) i . ) 0 ] R
with

2x

e-YR2

0 1-{a/h)cos é3' Ro

Fy(d0,2,2') =v1-a/n J/~ 1

Ry =
e coslene) + (a2)21202
. 3 ga sin ¢4 }
¢4 = sin [a2+4h2+hah cos ¢o]l/2

a d¢;' (2.h42)

{2a2+hh2+hah cos $o-2[a+hn2+lhah cos $5) /2

(2.43)

(2.h%)

The current, I(z'), induced by the incident field produces a scattered

field. The total field, composed of the superposition of incident and

scattered fields, must obey certain boundary conditions, which enforce

uniqueness - [18]. The total field is defined as

Et = ipc
= Eln

ident field + scattered field
¢+ B8,

19
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The scattered field is related to the induced currents and charges by

td
[ 2]
-~
e
S
"

-sAS(R)-v¢3(R), (2.46)

where

the total "scattered" magnetic vector potential

>
—
j2ef
—
it

$S = the total "scattered" electric scalar potential,

which can be related to AS through the Lorentz gauge condition,

s(ry = Y AS(R)
¢5(R) pTRv— . (2.47)

Equation (2.46) becomes

ES(R) = ~s [ES(E)— L. v[v.ES(ﬁ)]] . (2.48)
HofoS

The charge distribution need not be known since the charges have been

related to the current through the Lorentz gauge condition. Xote that

since Yy = s/c and ¢ = 1/\/Tigcq, Y2 = szuoeo. Thus,

-

BS(R) = -s [zsm - %2 (v - zzsm]] . (2.49)
On the surface of the object cylinder, the boundary condition is

8 x B = 0, _ (2.50)

with ft being the outward normal unit vector on the cylinder surface.

This boundary condition can also be represented by

inc . oS
Eien JSO = ~Eian jSo ’ (2.51)

whicl. nerely states that the tangential ccmponents of the incident and

Scattered fields must cancel on the object surface in order to produce

20




the appropriate boundary condition. Combining (2.49) and (2.51) re-

sults in
ine _ A=ars b3 rs(® ‘
Eion JSo = s[és(R) - 32 v[v.-& (R)]] JSO . (2.52)
Since T | .
AS(R,) = A% + AyS = Ao,8y + Ajjlz , (2.53)

o e '
Ks(ﬁ)JSo= 4, Eg' Jé- é%g‘l [FO(¢o:z,z')-Fi(¢Olz’z'ﬂ dz} . 9
2.5

Incorporating the ideas proposed by (2.52) and (2.54), one arrives at

inc _ 1(z')
EtanJ = S[l-izv("')] é.zzm f e F o(80,2,2") -
So Y

Fi(w ] e ®255)
Since
(<bmeos)sl1-2p V(T-) L =geos?(1-2p 9(7+)]
- =% [1-%2v'(v-)] = --*{2[1—%2V(V‘)]
= [9(v:) - ¥2], (2.56)
(2.55) becomes B
el | ] =t e [UEED
{Fo(¢o,z,2')~Fi(¢o,z,2')]dz' . (2.57)

The differential operator [U41] readily reduces since it acts on

e vector with only a z component.

21



grad div V = ¥(v.v) (2.58)

[9(7°) - 2] = 32_ &, + 232 gy + 22 8,92 . (2.59)
3poz 3¢5z 92

The boundary conditions implied through (2.57) are simply

.Eznc = -E: on So-
ine (2.60)
E -
¢ ——E¢ on So .

Through application of these two equations, it is apparent that f-~
finite length cylinders an axial component of current ié created by
both an axial and a circumferential component of the incidént field
[22-25]. Nevertheless, accepting the second "thin-wire" approximation,
boundary conditions will only be enforced on the axial component of the
incident field. This leaves the integro-differential equation

L
i 32 I(z') '
(-L‘TTEOS)EZHC JS = (522- - Yz) [ 2“_: [FO(¢O>Z,Z )"
o

Py (40,2,2" ) ]az" . (2.61)

Referring to Figure 2-6, the total incident field can be formulated
on a general basis. El is shown inm the plane of the two descriptive
coordinate directions a and b. An electric field normal to this plane

will not produce a z component. Thus,

EINC = Ele"Yb + Eo g7Ye
= E; exp ;—Y z cos 61 + a cos[(w/2)-81] §
+ Es exp% -y |z cos 81 + ¢ cos[(n/2)-81] % (2.62)

22
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General Incident Field
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ginc o E; ?XP{ -y [z cos 81 + a sin Oi] %

+ Es exp { v [z cos 81 + ¢ sin ef]i

= E; exp 3-xz cos 81 ~ y sin 6l [x cos 41 +

y cos(¢l - ﬂ/2i]E

+ By exp {~yz cos 81 - y sin 6% |x cos (m-¢1) +
2

y cos(sl - n/2)]§,(' 3}

where the principle of direction cosines [42] has been forwarded.

Simplification gives

I i _. sin ot 1 in i
gine _ Epe vz cos 8% -y sin 8%[x cos ¢t + y sin 41}

+ §2e-yz cos 81 ~y sin 81[-x cos ¢ + y sin ¢1] (2.64)

Since only the axial component of the incident field is to be used,

Ez; = |E1f sin 61 = B} sin o (2.65)

Ezp = -|E2| sin o1 = -E3 sin 61 , (2.66)

such that

- i_ i i i
E‘iznc - E; sin ele vz cos 0*—y sin 6i{x cos 4% + y sin ¢1]

_E5 sin gle~Y% COS 8i-y sin 0i[-x cos ¢l + y sin ¢i].
@ . 67:‘}

On the ground plane, E; must satisfy the boundary condition

E"° = gL = 0. (2.68)
(Ground Plane) (x = =h)



[ )

Enforeing this requirement on (2.67) necessitates that

E) = Epe~21h sin 6t cos ¢ | (2.59)
Defining
Eo = -Ej , . | (2.70)
then N )
i i ‘ ‘
Ep = _Eoe2yh sin 8 cos.¢ , . ( | (2.71)
such that
) e -777 V 77- B ”i - i i L4
Einf”=,-Eo sin ole—YZ cOS 8 [e vy sin 61{x cos ¢1 + y sin ¢1])
_e2Yh sin 81 cos ¢ - y sin 01{-x cos ¢1 + y sin ¢i]]
(2.72)
or
i i
Eznc = -E, sin gle=Y2 coOs 81 - vy sin 6! sin ¢t

[e-yx sin 81 cos ¢i_eyx sin 81 cos 41 + 2yh sin 6 cos ¢{]
' (2.73)

Comparison of this incident field to that of Umashankar, et. al. [3],

is favorable. Letting ¢1 = 1800,
gine = _E_ sin gle-YZ €OS ei[éyx sin ol
2 liag O B
o~Y 5in ei(x + 2h)] , (2.7h4)

and.evaluating Einc on the cylinder axis (approximate kernel) instead

of on its surface,



Ezinc = -Ey sin gle=Y2 €OS ei[; _ e—yzh sin Bﬂ (2.75)

.¢i=1:

xX=o0 ?

whicﬁ is identical to Umashankar's [3] field. This comparison is made
note of since the induced current found Elemashankar shall be compared
to the current found through this exact kernel formulation.

Before evaluating the incident field on the cylinder surface,
the integro-differential equation (2.61) needs to be examined mor.
closely. The unknown quantity, I{z'), is not a function of ¢o5- It is
apparent that by letting ¢o = @y, any particular angle, solving for
I{z') and letting ¢g = a5, & different particular angle, again solving
for I(z') ~ the two solutions mus? ?e identical. The implication is
thet in order to determine the unknown induced current, boundary
conditions need not be enforced all over the object cylinder surface,
but just at one particular value of ¢é,5. The circumferential variation
of the current has alre;&y been assumed to be of the form expressed by
(2.18) and (2.21), such that « solutioﬁ for I(z') at any particular
velue of ¢o will readily result in a general solution for I{z',80).
Through exaemination, ¢5 = 09 seems as profitable as any other choice.

Thus, the integro~differential equation reduces to

o L 1
(-hﬂEOS)EinC ] = <%;2 - YZ) ~/f é%ﬁfl'(Fo(Z’Z')"
b = 0° o
Fi(Z,Z')]dZ' ’ (2'76)

26
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where

2x
. \ _ 1
Folz,2') = Foldo,z,2") J¢o = oo l‘a/h',ér 1+(a/h) cos G

€L 4 ddg" (2.77)
r]
ry =Ry = [222(1 - cos 40') * (z - 2')211/2  (2.78)
$o = 0° '

Fi(z,z') = Fi(éo,2,2') J¢o - 00=\’l—a/h .

2n

3 1 -Yrz t '
./ 1-@/h) cos ¢y ~ - a dég (2.79)
ol 2

ro = R2 J¢o =g = [(2a2°+ 4 ah) (1~ cos ¢i') + 4n2 +

(z-2')2]1/2 | (2.80)

Evaluation of the incident field results in

Einc =.Einc -

S o}
o
$o = O° X =a

-yz cos ei[e-wa sin 81 cos ¢i_

$ i
-Eo sin 61e

Ye sin ol coé. ¢i+ 2yh sin 6l cos ¢i] ' (2.81) |
By defining
gl = sin o1 cos ¢1 | (2.82)
the incident field is simply

Einc = -E, sin eie-Y(z

cos o1 + gla)
So
to = O° [l_eYzei(a + h)] _ (2.83)
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Through examination of this equation, the appearance of a phasge
difference between the two terms inside the brackets is obviously that
caused by the "origingl" incident field and the same field reflected
from.thc ground plane arriving at some later time.

The integro-differential equation (2.76) can be altered slightly
in form and notation invorder to better reéresent the problem. Since

the differential operator does not operate on z',

| ’ L ] 2
(neosrene | - fo (R [EXSRUE
o
%o = 0° Fi(z,z')]‘dz'. (2.84)

In order to better represent the complex frequency dependence,

L '
(—hn’eos)Einc(s)J =f %—:—45’(% -YE){Fo(z,z',s)—
. 0

z S
Q
$o = 00 Fi(z,z',s)] az'. (2.85)
' .
Let 1 - cos ¢o = 2 sin? é%— (2.86)
and d = dismeter of the cylinder

2a, (2.87)

in Fo, such that

[2a2(1 - cos ¢o') + (2z-2')2]1/2 = (a2 sin2 igl + (z-z')2]1/2,

(2.88)
with a similar substitution in Fy.
The final results are summarized for reference:
. L ' 2
‘(-h'ﬂEoS)Einc(S) - f éf(tz ,S) (g 5 - Ye) .
6o = 0© .70 a z
So 14 ¢ f
[Fo(z,z »8)-Fi(z,z ,s)] dz (2.89)
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i i
 inc - i-y(zcose +pga)
- £} (s)_j%zoo = -g(s)sin o'
S :
e e G_evefh-+h§ (2.90)

Fo(z,z‘,s) =4'l-(a/h)2/'2Tr 1 e M a d¢o‘ (2.91)
0

1 + (a/h)cos 4’0. ™

-
N

P ’ 2 [ 2n 1 Y2
F.(z,2',s) =4¢1-(a/h e do.' (2.92)
i (a/h) / 1 - (a/n)cos ¢, 2 9%
0

= [d2 sin® %o ¢° (z-2')%)1/2 (2.93)

r, =({d? + 8ah) sin? ¢1 +ahe 4 (22 )21)V/2 (2.94)
This integro-differential equatlon is to be solved for the unknown

induced current on the cylinder. .

Application of the Method of Moments

The integro-differential equation shall be cast into matrix form

gsuitable for a numericai solution. This general process has come to
be known as the method of moments [9]), {11], [28-29]. Generally, the
"viire" along the cylinder surface at ¢o = O° is broken into segments,
integrals approximated by the sum of integrals over N small segments,

and the current assumed to be constant over each individual segment.

With regard to Figure72-7, expand the current in a set of basis

functions such that

I(z',s) = 3 apls)ig(z'), (2.95)
n
where

an(s) = unknown cocefficient of constant current in the
- nth subsection
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MATCH POIKTS ON CYLINDER
SURFACE AT o = 0°

i
1
t
i
¢
i
L

LN+1 .
N T L
{
|
Zntl i
IIWIREH " Zm
RS S S
SUBSECTION ENDS
X MATCH POINTS
I 23_—[_—
zp = (m-1)a (MATCH POINTS)
m=1,2,...
X 22
2zl = (n-2/3)a (SUBSECTION ENDS) o
n=12,...N1 2
A = L/(N-1) LENGTH OF ZONE
N = NUMBER OF SUBSECTIONS .1
Figure 2-7. Moment Method Partitioniang of Geometry
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1. for zN < z < zntl

In(z.) = =
0 elsewhere n=2,3,....581\, (2,96)

‘Thus, use is made of a pulse function expansion described by Harrington

[9]. This representation is chosen such that the boundary conditioms,
" 1(0) = I(L) = O, (2.97)

are satisfied automatically by allowing the two end subcections or
zones to extend past the surface of the cylinder end assuming the
current on theseiibne; to be iero. As shbwn oanigure 2-T, each zone is

of length A, where

A= %:1 = length of a zone (2.98)

»’

N = number of subsections or zones

20 = (n-3/2)A n=1,2,....N+1 (2.99)

subsection ends.

#on

Applying these concepts to the integro-differential equation (2.89)

produces
- iy _ i
(-bmegs) { -Eo(s) sin eile™Y% €08 G [; YBia_eyB {a + 2hﬂ ;

SRy
=Zan(s) fn m—(m - Y2> [Fo(z,z',s)-Fi(z,z',s)] dz'.
n z

(2.100)

- Poreing this equation to be satisfied at discrete match points amounts
to choosing delta functions as testing functions [{9]. The match

) points are the center of subsections as shown in Figure 2-T, vwhere
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zm = (m-1)a m=1,2,,...N
= match points. (2.101)
As pointed out by Harrington [9], the derivatives may be carried out
analytically or approximated by finite difference techiiques. Both
avenues of approach were investigated, with the decision going to

finite differences due to its ease of evaluation and simplicity. Using

finite difference approximations, where

gig = (Ai)gr [(F(z + az)-2F(z) + F(z-Az)] , (2.102)

the integro-differential equation is

. i .
(-brmegs) g-Eo(s) sin elg‘TzE cos 8 [;-Yﬁi&_eYBl(a + 2h{]§

+ 1
_ < Oafs) 1 fzn [Fo(zm+l,z' ,s) -(y282 + 2)e
2na A2

Fo(zm:z':s) + Fo(zm-lszrlss) -Fi(zm+l,z',s) + (72132 + 2)e

Fi{zp,z",s8) -Fi(zm_l,z',s)1 dz' n=2,3,.... N-1

2,3,.... N-1. (2.103)

H
nu

This equation is pleced in the form of a matrix equation,
V(s) = &(s) I(s), (2.10%4)

where a single bar represents & column matrix or vector and double

bars indicate a square matrix. Let the matrices be defined as

¥(s) = the source vector = [vg],

where
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Vm = the matrix elements of ¥(s)

7 | i
= (-hmegs) ['EO(S) sin oie~VZm €08 ei[;-YB a_eYBi(a+2h%

R D s m= 2,3,...N-1 (2.105)

I(s) = the response vector %_[in] R

‘wher'e
"ip = the matrix elements of I(s) 7
i - = ap, unknown ccefficient of constant current in the
nth zone
ns= 2,3,--..N"‘l ; (2-106)
Z(s) = the impedance matrix = {zmn) »
where

= the matrix elements of %(s)

1
5

zn+l g
u/f E%Q.EFO(Zm+l’Z'15) - (Y2A2 + 2) FO(zmvz'nS)
A

%dk‘

+ Fo(zm;laz'as) - Fi(Zm+l,Z',S)
+ (Y2A2 + 2) Fi(Zm,Z'sS) —Fi(Zm_l,Z',S)] dz'.

n
m

2,3....N-1
2,3....N-1 (2.107)

With simplification in mind, let

| z+l  ~op -yry
(zp,s) = L - + £ déo'dz'
Hon ' 2m> n o 1 *(a/n)cos ¢q ry

(2.108)

] r; = [d2 sin2 Q%L + (2 - 2")211/2 . (2.109)
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and

. _ zntl 2r 1
Hin (Zn>8) = J/; Jg. 1 ~-(a/n)cos ¢;

%
_er
:2 gy az' (2.110)
with
rp = [(42 + 8an) sin? £L+ k02 + (2 - 2')200/2 . (2.711)

Thus, zp, may be redefired as
1 2
rmn = V50 {lig, (eme1as) - (Y242 + 2) Hg (en,s) +

Hﬁn(zm“l’s) ‘Hﬁn(;m*l’s) + (y242 + 2) H&n(zm,s) -

Hém(zm_,l,s)} K (2.112)

The integrals defined by (2.108) and 2.110) presént prodblems in
numerical evaluation - but these can be overcome. Tesche [43] provides
methods of treating integrals of ﬁhis type. HNote that the integrand of
H&n is never singular due to.the obvicus fact that all terms in the
redical (2.11) are greater than or dqual to zero except the term Lh?e
which is never zero. Therefore, numericsal evaluationrof H&n offers no
problem. However, Hﬁn(zm,s) presents some problems; in that, when
éo = 00 and z' = z;, the integrand is singular. Hﬁn(zm,s), Hﬂn(zm‘l’s)’
and Hﬁn(zm+l,s) shall be examined separately.

At ¢5 = 0°, the integrand of.H%éfm+1,s) is singular when zpm+l = z ',

where 2zft < z' < 2n*l, Hence, at this point,

zh < zpyy < z0ML . (2.113)
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Utilizing (2.99) and (2.101), reproduced here

zm = (m-1)4 nm=1,2,....N¢1

zh = (n-3/2)4 n

1,2,....004
the singularity occurs when
(n - 3/2)a < [(m+1) -1]a < [(n+1) -3/2]A (2.114)

or when

=3/2 < (m-n) < - 1/2.

Since m and n are integers, "m-n" must be an integer between these two

fractions. Thus, Hgn(zm+l,s) is singuler vwhen m-n = -1 or when m = n-1l.

it

In a like manner, Hﬁn(zm,s)_is singuler when o' = 0° and zp = z'.

Thus, the singularity occurs when

2t <z < Zhtl (2.115)

which can be expressed as

(n - 3/2)4 < (m-1)8 < [(n+1) - 3/2]a (2.116)
or

- 1/2 < (m-n) < 1/2.

Through the samg_reasqning, Hﬁn(zm,s) is singular when m = n.
It is apparent that HBn(zm‘l’s) is singular when m = n+l.
Whgn these respective conditions do not exist, the integrals are readily

amenable to numerical integration techniques, but at a singular point;

4
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numerical techniques become suspect at best. Following general proce-

dures outlined by Tesche [43], let the integral of Hﬁn(zm,S) at its
singularity be T;.

Ty = Hﬁn(zm,s) vhenm =n , (2.117)
with Hﬁn defined by (2.108). Transform variables in (2.108) as follows:
let $ = dg'

z =z -2
dz = -dz' ' (2.118)

and as for limits of integration

ZnJ = Zm - z0 = YA
m=n m=n 2

zn"‘lj - zm—zn+l _ A (2 119)
=N Jm =n 2
Thus,
Ty = 2 [ 1 " wa (2.120)
1 s o 1 +(afh)cos ¢ r b dz . ’
T2
with r=[22 + 4% sin? %]1/2 . (2.121)

which is one of the singular integrals to be evaluated. In a like

manner, let

T2 = Hy (247,8) whenm = n-1 (2.122)
and af'ta:r transforming by allowing
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-

¢=¢o'
z = zm+l-z'
dz = -dz'
A . A
ol = = _n+l = o=
Zml=%" |p = p-1l © 2 Zm+l-Z _]m = n-1 2 .

% LAY Rt
T2 = -4 J/[ 1 +(a/h)cos ¢ =~ d¢ dz (2.123)
) -2 0

with r defined as in (2.121). A comparison of (2.120) and 2.123) obvi-

ously shows that
T2 = Tl'

In addition, T3 could be defined as H (zm_1,8) when m = n+l and the end
3 Qn " ém-1

product would be that

Therefore, the integral of the singular integrand of Han(zm+1,s)

vhen m = ;-l, Hé;(im,s) for m = n, and Hﬁn(zm-l’s) with m = nt+l is
% or 1 e~ Y*
v= f, Jo ta/h)eos & T 444, (2.12%)
o .

with r given 5y7(2.121).

This integral is further pursued in Appendix A, which concludes with

the result that
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- -2myd . hv
*Ti-(e/m2]i7z * T = (a/m)2jire )ln 2-

2% 1
ln[ﬁ/a + 1 = [(h/a)2 - 111/2] % +2 Jéﬂ 1 +(a/h)cos $ *

' 1/2
1n3§; + [(-ﬁgﬂ + sin2 %] /'E d¢ . (2.125)

T

The function is numerically evaluated easily, as the integrand is not

singular.

_The integro-differential equation has been cast as a system of

matrices, which must be solved for the unknown induced current.

Application of the Singularity Expansion Method

The singularity expansion method (SEM) was introduced by Baum [31-
33] and formalized and applied by many others [1-3], (30], (34-37] as =a
method for characterizing the response of scattering objects when 1llu-
minated by either transient or steady-state electromagnetic radiaticn.
Before applying SEM to this transient problem, a brief survey of the
generel theory is appropriate - highlighting the areas of particular
interest.

| The complex natural frequencies of the scattering system, denoted

by sa, are those such that (2.104), when expressed as the homogeneous

equation,
Z(sa) T (sq) = 0, (2.126)

has a nontriviai solution for I(sq). The implication is that the deter-
minant of Z must vanish at these complex nstural frequencies. Tﬁﬁs,

the equation for determination of these natural resonances of the
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induced current is
det Z(sq) =0 . ' ' (2.127)

As requiredfbj well-known rinear circuit theory and Laplace transfoﬁ;r
fheory, these natural resonances must occur in the left half portion of
the complex s (s = o+jw) plane, defined in the usual manner by Laplace
transform theory (44-45]. 1In addition, these natural resonances can

not appear on the Jw axis and must consist of complex conjugate pairs.

These facts are obvious, in order to produce real currents in the time

domain which eventually go to zero due to the radiation of energy. It

has been shown [35] that for bodies of finite extent, the response func-

- tion has only poles and no branch'cuts. Speculation has been put forth

(37] that only simple poles exist for perfectly conducting bodies. The
assumption that only simple poles exist is accepted without proof -

although this has been substantiated numerically. Other researchers

have made wide use of the simple pole assumption [1-3], [31], [34-37].
The matrix equation,
Z(s) I(s) = ¥(s), (2.1.28)

has as a solution
I(s) = Z(s)"1¥(s). (2.129)

Through the inverse Laplace transform, the current in the time domain

is

ootIm
I(6) =37 [ ZTE)(s)est as, (2.130)
Oo=J*
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vhich could be evaluated numerically along the Bromwich path. SEM, an
extension of well-founded techniques in>c1assical circuit theory, is
based upon the ides that the time doma&n response of the induced current
is determined through knowledge of the complex natural frequencies of
the system in addition to their corresponding residues. The time

domain current is described by a sum over all the residues, times expo-

nentially damped sinusoids.

Based upon this concept, SEM assumes that

z(s)-t -'E: —5L—- (+ entire functions, etc.) (2.131)

vhich is a suwmation over all poles in the complex s plane. Define ﬁu
as the system residue matrix at the pole sg. Note that ﬁa is a constant

matrix, In the sense that it is not a function of s. This residue matrix

is & dyadic and can be represented as the ocuter product of two vectors

independent of s as

& s (2.132')
where My is the natural mode vector and is a solution to

Z(sq)Hg = 0 : (2.133)
and Ea is the coupling vector, which satisfles the equation

E(SQ)T Cq =0

(T denotes transpose). For the electric field formulation, where

symetric matrices are encountered, these two vectors are identical

[371.
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Thus,
§0'= Co Cot . ' (2.13%4)

Progressing one step further, let éa be normélized such that its max-

imum element is real and equal to unity.

8, =+Ba  [Cq normalizea] i ' (2.135)

and define
Cq normalized = Cyq,

such that

Rq = 8o Cay anT , (2.136)

where 84 is the normalization coefficient.

Since

= Coly®
Ut = 7 Bl
8

> (2.137)

the normalization coefficient is determined through consideration of a

particular singularity (2], sp, such that

EpTﬁ(s)i(s)’lﬁp = CplUCp

1}

CpTCp (2.138)

(Noteé: U is the identity matrix.) .

- M2 c.6.7T - - -
GpTis) T 84 Qggg; tp = BpTCp
a

5 g, O zifizaﬁa €2 o g.Top . (2.139)
- .



Hoting that

CoTalsp)C, = Cptalsp) e, = (2(s,)TC,)TE, = B, (2.1%0)

Col[7(s) ~ Zsp) BB T _ = Tx

. La) -

> Ba—t 5 < 5, 2= 00, (2.141)
) a

By definition,

m  Z(s) = %(sp) _ 3
s+sp Py = Z'(sp) 8pg (2.142)

where

and Spq 1is the Kronecker delta function. Taking the limit as s

approaches sp in (3.141) results in

saEpTE‘(sp)EpépTép = 5TG, (2.143)

from which we conclude that

g =
j= B —- -
cpTz'gsp)cp : (2.1Lk4)
Therefore,
i 1 o c e d
i(t) = — v s 2.145
211'3' Z Gao S-SG ( )
g =Je o
0
where r1q=_B&E;TV; (2.146)
o

is defined as the coupling coefficient. With the matrix elements of

Vks) defined by (2.105), let the incident field be a step-function

plane wave, such that
Eo(s) = E,/s.

The matrix elements of V(s) are then defined as
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- i] _ygi i
vy = buegEg sin oie™Y%m €OS 6 [e Y8 a_ Y8 (a+2h)]

m=2,3,...N-1. (2.147)

Evaluating (2.145) through the residue theorem will produce appropriate

~ Heaviside functions, which are viewed as enforcing causality [37], (1-3].

The exponential dependence of (2.145) is expressed by
vmeSt.; pe=YZm €OS l3i[e_Ygia-eysi(a + 2h)] oSt | (2.148)
where
D = LwegEy sin 61, (2.149)

(2.148) can be written as

- Zm COS ei + Bia
vpest = D[es [t - c ]_.
slt - 2z cos ol ~ gi(a + 2n) 1 (2.150)
c
such that (2.145) becomes
gotje
- 1 BaCan~Cant =
= — ...Q_—-O_-_Q—
it = 55 .J;O_Jw }% 2T Vals) as (2.151)

with Va(s) a vector with matrix elements defined by (2.150). In other

words,

Vols) = [vgest] = V(s)est, (2.152)

For the sske of simplicity, let

ol + gi .
1y =mees St Ba | (2.153]
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and

_ zm cos 81 _ gi(a + 2n)
- c s (2.154%)

12
such that the matrix elements of Vy(s) are
vgest = D [es(t-rl)_es(t-rg)] (2.155)

Since the integrand of (2.151) has only poles at s = Sq, evaluation

through the residue theorem produces

I(t) = 3 BaCqoCa,TValt) (2.156)
a
vhere
Salt) = [vmg(t)] (2.157)
it

Vmu(t) =D (u(t‘fl)esu(t-rl)—u(t-Tg)esu(t-Ta))

m=2,3,...N-1 (2.158)

Note that the complex natural frequencies, natural mode vectors,
and normalization coefficients are not functions of the incident field.
Only vq(t) is altered upon a chenge in the angles of incidence. There-
fore, once sg, By, and an are found for a particular L, h, and a,
the current excited by any incidené field is easily found. This is
perhaps the greatest utility of SEM.

The singularity expansion method, epplied to this transient elec-
tromagnetic problem, produces a system of matrices, which are solved for
the iadiced current on the object cylinder as a functicn of tize.

Heuristic study into the nature of these complex natural frequencies,
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natural mode vectors, and normalizat*on coefficients is Justified

through a better understanding of the two—body transient scattering

problemn.

Approxinations and Limitations Imposed

The approximations and assunptions whieh are accepted throughout,
this thesis are of prime importance. Vhether analytical or numerical
solutionsﬂtgﬁproblems are exercised, final results must be evaluated in
light of limitations placed upon their very existence. Tﬁerefore, this
section brings together all of these approximations and assumptions
with 'the purpose of examination and evaluation.

The assumptions and approximations are as follows:

a) Current is assumed to flow only in the direction of the
cylinder axis (2.11).

b) Boundary conditions are enforced only to the axial
component of the tangential electric field (2.61).

¢) End caps on the cylinders are ignored (2.8).
a) The current is assumed to be separable (2.17).

e) Taylor's {hO] equations are adapted for the circumferen-
"~ tial variation of the currents (2.18).

) The moment method introduces an approximate numerical
solution (2.95).

g) The exponential e‘Yf is expsnded in a two term Taylor
series for the solution of T (Al.5).
As previoﬁsly outlined in”therintroduction; the first two assumptions
restrict the cylinder to be thin, L >> a. Ignoring the endcaps amounts
to letting the cross sectional surface area be small, a << A, so that
erdy current induced on the endecaps will not significantly contribute tc

the scattered field [hGJ. By assuming the current to be separable, the



restriction that L >> a is again necessary, since this approximation is
poor only near the ends of the cylinders.

Up to this point, the most restrictive clause placed upon this
formulation is that the length of the cylinder must be much greater
fhan its radius. Thus, the cylinders muét be thin.

Taylor [40] states that the equation for circ;mferential variations
of the axial current (2.18) is applicadle to electrically thin cylind-
ers separated a short distance from the ground plane and provided *..»
length is much greater than the height above the ground plane, the
expressions can be used for finite length cylinders. Concerning the
separation from the ground plane, this restriction is linked to approx-
imating the two parallel cylinders as supporting a trensmission line
mode (TEM). Typically, this TEM mode requires that h << A, a << X,
and L >> h. Nevertheless, note that when a << h, (2.18) approaches
unity end the circumferential variations of the axial current becomes
uniform - as would be the case for a thin cylinder far from the ground
plane [1-4]. The current is uniformly distributed in ¢ at a far dis-
tance from the ground plane and only becomes nonuniformly distributed
as the cylinder draws near the ground plane. Therefore, when (2.18) is
actually affecting the distribution of the currents, these typical TEM
mode restrictions are satisfied. More importantly, when the cylinder
is far removed, circumferential variation of the currents is uniform,
(2.18) doesn't significantly affect the equations, and the typical
transmission line restrictions need not be satisfied.

With reference to (Al.5), the Teylor series expansion of e YT

about r = 0 is truncated after two terms:
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where

r = [22 + 42 sin2 ¢/2]1/2 -%-< z < %

The maximum of yr is

ol yr = BT

where
d = 2a. -
Thus
_ max of yr = YgﬁﬁfifiZér
LB
N 2\/%%1; (ra)2
it ) "
Y4 << 1
and
ya << 1,

it follows that

tooe (2.159)

(2.150)

(2.161)

(2.162)

(2.163)

(2.164)



max of yr << 1. (2.165)

Therefore,

e YT = 1yr _ (2.166)

provided (2.163) and ©.164) are satisfied. This does not place any
restrictions on the relative zone size, A, with respect to the radius

as pointed out by Tesche [l3]. By momentarily letting y = 2n/X, (2.163)

and (2.164) are implied by

A << ) (2.167)
a << . ‘ (2.168)

The restriction, (2.167), is a necessity whenever a numerical technique
is forthecoming. Accurate reconstruction ofrthe current on an object
couldn't be expected if the zone size was on the order of a wavelength.
As for (2.160), the cylinder has already been assumed thin with respect
to L and this must now require that the cylinder be thin with respect

to wavelength. OSince this is not a steady-state problem but one involv-
ing transients composed of an infinite number of frequencies, (2.168)
indicates that this formulation is not applicable to high frequency
response analysis. In conclusion, the "most" restrictive sentence

encountered is that this formulation applies to thin cylinders.
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| IIL. YUNERTCAL 1THODS AND RESULTS

A comnputer code has been written to implement the equations
developed in the previous sécticn and thereby determine the natural
resonances, naturul mode vectors, normalization coefficients, and
transient currcnt response. The cylindrical scatterer is described by
a gencral length, radius, and height above the ground plane. Illumi-
nation is provided by a step-function plane wave with arbitrary angles
of incidence. Brief mentlon of some of the numerlcal methods used is.
wairanted.

In order to better adapt the equations for zp, (2.112), Hﬁn(2'108)’
and 3$n(2.110) to numerical evaluation, their form can be altered.
After supprés'si&%’gféhéﬁ functional éé;éhdenéé; and highlighting the

matrix notation, these éqUations are

Jl4h/} V[ Ho (m+l,n) - (72A2+2)Ho(m n) + Hy(m-1,n)

fma T Topa2
~Hg (m+1,n) + (vy242+2)#; (m,n) - Hi(m-1,n)]
(3.1)
(n-1/2)A o -yr]
_ 1 e 1 ( '
Folmm) f(n-3/2)A /; T+GEmeos 37 7 0
(3.2)
o) /‘(n—l/2)A/‘2w 3 v
Hi (m,n) = - e dei' az',
i (m,n Jinssova Jo 1 -(a/h)cos ¢3 e = ¢i dz
(3.3)

whare
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ry = [d2 sin® Q%L + ((m_l)A_z')Q]ll2 (3.4)
ro = [(a2 + 8zh) smegik b2+ ((m-1)a-z')21Y2 . (3.5)

Knowledge of the symmetries occuring in these matrix equations
can significantly reduce the amount of computer time required

for this numerical solution. In (3.2), let
u =z -(n-3/2)4a , (3.6)

such that

A ox =Yr '
i 1 e 7Y dy' du (3.7)
Ho(m:n) - ‘/O- [ l. +(a/h)COS ¢Or r

with
t
r = fa2 sin2 -‘?g— + (8(m-n+1/2)-u)211/2 | (3.8)
Obviocusly,

Ho(m,n) = Hy(m+i,n+i)
i =0,1,2,3... (3.9)

since r is determined by the difference between m and n - not their
actual values. Note also that a similar change of variables in (3.3)
leads to the same conclusion with regard to Hj. On relating this

symmetry to (3.1), it is apparent that
Zmn = Zmes pei L= 0h1,2.... . (3.10)

Thus, every element in any diagonal of the impedance ratrix, E(s), is

idertical. This reduces the number of matrix elements, z,,, which have
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to be calculated fron (N-2)2 to only 2N-5. Furthermore, upon numerical

evaluation it was found that

) = Hglnd 1)

and likewise that this symmetry existed in Hi’ Through (3.1), it
follows that

i z(m,n) = z(nim). - ' ' (3.12)

Proving (3.11) analytically was pursued at length, but not established.
However, this symmetry was used to conserve computer time in calcu-
lating z(m,n). These simplifications require that only'HO(m,n) and
Hi(m,n) form=1and n = 2,3,...N-1 be determined along with T (2.125)
in order to form the entire impedance matrix.

Since both single and double numerical integrations were necessary,

-a n-dimensional Romberg integration routine [47] was modified for

dealing with complex functions.

Other researchers [1-3] have considered the interactions of thin
cylinders with an electromagnetic pulse over perfectly conducting
grounds. The "thin-wire" assumptions and approximations have been
incorporated intoiahrséﬂrana1ysfs. Onerofrsé;eralﬂcomputer programs
written by Shumpert [1], [3] was secured and data obtained concurrently
with the computer code written by this author. In this manner, the
number of zones used, accuracy requested, and geometrical parameters
were insured to be identical. The numerical results produced by
Shumpert's [1] computer program, shall be associated with the title
"approximate" kernel, f&ﬁzze géhse that thé “éhin-wire"rapproximations
were incorporated; and in particular, the current was approximated by
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filaments of current on the cylinder axis. Data found through equations
developed in this paper shall be associated with the label 'exact"
kernel, for obvious reasons.

Before presenting da”a related to the cylindrical scatterer over
the ground plane, a brief analysis of the'cylinder in free space is
appropriate. By setting the image terms (2.110) equal to zero and
letting h >> a, the impedance matrix (2.112) reduces to one character-
istic of a cylindrical scatterer in free space with uniform circumf - =n-
tial variation of the axial current. The kernel is still 'exact', ia the
sense that the current resides on the cylinder surface. Figure 3-1
illustrates the position of some of the complex natural resonances,
or singularities, for both the "exact' and 'approximate'" kernel. Only the
second quadrant is shown - the complex conjugates appearing in the third
quadrant. As noted by Tesche [37], the singularities occur in layers
and can be described by two subscripts, sgn: "L denoting the layer
of the pole and ''n'' referring to the pole within that layer. The
natural frequencies are presented as having mode distributions that are
either.even or odd with respect to the scatterer center. Figure 3-1
illustrates the soundness of the third ""thin-wire' approximation -
currents might as well be approximated by filaments of current on the
cylinder axis, since singularity locations for the "exact' and "approxi-
mate" kernels occur at essentially the same points. Computer time required
to locate the singularities through the '"exact'! kernel was roughly twice
that necessary with Shumpert's [1] program. Table 3-1 gives the numerical
data depicted in Figure 3-1. Figure 3-2 points out the well-known fact

that as the cylinder becomes fatter, the singularities must move to the
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left and down [37]. From circuit theory, this movement points to a

decreased quality factor, Q, [48], which is expected as the radius of
the cylinder becomes larger with respect to its length. Data shown in

Figure 3-2 for the case o{ L/a = 10 can only be considered as a "first-cut"

approximation because of the thin cylinder restrictions that have been

imposed upon the ﬁexact" kernel. Nevertheless, one would expect the
results, displayed in Figure 3-2, for the "exact' kernel to be more
accurate as the cylinder approaches L/a = 10 than the trajectory produced
by the "approximate“kernel Table 3-2, presenting Figure 3-2 in tabular’
form, shows the divergence of correlation between the '"approximate' and

exact" kernels as the cylinder becomes fatter. Note that in this figure

and table, the commonly used shape parameter is defined by

Q = 2 1In(L/a). (3.13)

Suppose a cylinder With a shape parameter of 10.6 (L/a = 200) is now

placed in proximity to and parallel to a perfectly conducting ground plane

véf infinite extent. As the cylinder approaches the ground plane, the

circumferential vaciation of the current becomes nonuniform and one

would expect the singularities nearest the imaginary axis to approach

the theoretical resonéncés of the ideal two-wire transmission line. As

displayed in Figure 3-3 the singularity associated with the first res-

onance of the scatterer itself, 11 moves toward its expected destination,

wL/c = m. Both the "approximate' and the '"exact' kernel yield the same

trajéctory until h/L = .1 or when the scatterer is approximately twenty radii

53



away from the ground plane. The '"exact" kernel continues on its upward
arc toward the first resonance of the transmission line as the ""approxi-
mate' kernel falls rapidly toward the origin. The increasing difference
between the 11 singularity locations predicted by the two different
formulations is highlighted in Table 3.3. With the cylinder two radii
away from the ground plane, the "approximate' kernel was ill conditioned
and the singularity could not be located. Figures 3-4, 3-5, 3-6, and 3-7
present similar trajectories of the S11 singularity for L/a = 100,

30, 20, and 10 respectively. Tables 3-4, 3-5, 3-6, and 3-7 exhibit .he
numerical data observed in the figures of the same number. It should be
pointed out that in each of these trajectories, the "exact' and "approximate"
kernel data seem to begin diverging when the spacing (h/L) is approximately
equal to ten. This fact seems to be rather independent of the particular
L/a ratio. The trajectories of the singularities associated with the
second resonance of the scatterer itself with L/a = 200, 100, 30, 20, and
10 are found in Figures 3-8 through 3-12. As was the case with the S11
trajectories, the path traversed by siz in these figures is predicted by
both kernels, until some point of divergence. The exact kernel natural
resonance continues to advance towards the imaginary axis while the
approximate kernel breaks downward. Note that when L/a is equal to 200,
the point of depérture between the two formulations occurs when the
cylinder axis is slightly closer than L/10 to the ground plane, or when
its axis is 20 radii away. With L/a = 100, the last point of agreement
in singularity locations between the exact and approximate kernels occurs

when h/L = .1 and with the cylinder as close as 10 radii away from the
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ground plane. The ratio of height to radius is apparently mnot as
critical as the ratio of height to cylinder length. Tables 3-8 through
3-12 present in tabular form the trajectories of S12 corresponding
Figures 3-8 through 3-12,

. The real and imaginary parts of the normalized natural modes
associated with the first three resonances of the scatterer for L/a = 30
and h/L = 0,05 are found in Figure 3-13. It may be pointed out that these

distributions are essentially indentical to those found previously for

scatterers isolated in free space.

______ With the coupling coefficient as defined in eq. (2.146), calculations

_of this coefficient vgrsuswghgiapg}eAgf were made for the case L/a = 30

~-and h/L = 0.05. These calculations are shown in Figure 3-14. (Note the

angle ﬁl was held constant at ﬂi = 1800.) As would be expected, then11
and n13 peak for broadside incidence. However it is more difficult

to interpret the behavior of'nlz. Figure 3-15 presents similar data for

n.4 for the case L/a = 20 and h/L = 0.075.

With the thin cylindrical scatterer far removed from the ground
plane, let the direction of propagation of the incident field be such
that ei = 30° and ¢i = 1866 (see Fig. 2-2). Thé current on the
cylinder at z/L = .75 is presentéd in Figure 3-16 for both the exact
and approximate kernel. Data for the approximate kernel was found by

Umashankar [2], [3] and is made note of only to illustrate correlation

between the two kernels when the circumferential variation of the axial

current is uniform. All of the current plots in this note were constructed

using the first three singularities nearest the imaginary axis, which is

a valid approach [1-3] when considering 'late time', low frequency
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response. Obviously, the utility of the exac':t kernel formulation is with 7 .
the scatterer near the ground plane. With the scatterer 1/20 of its

léngth away from the cylinder broadside (Bi = 900) and from above

Ch
cylinder at three different positions is.presented for the case when

L/a = 30, %= 0.05, o = 90°

= 1800). As shown in Figure 3-17, the transient current on the

, and ¢i= 1800. As indicated, the low damping
constant results in considerable ringing of this current. A similar tran-

sient current was obtained for the case L/a = 20, h/a = 0,075, ei = 900,
and ¢i = 180°. Again, considerable ringing is evidneced as indicat..d by
the close proximity of the poles to the j%? axis in the trajectory curves.
Since both time histories presented in the previous two figures represented
behavior for broadside incidence from above the scatterer, another more
general case is included in Figure 19 where L/a = 30, h/L = 0,05, ei = 30°

>

¢~ = 180°, and /L = 0.25, 0.5, 0.75. .
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|" ‘ Note: Due to the small difference between singularity locations
- for the exact and approximate kernels with respect
to graph dimensions, they are shown at the

same point. 815 x4 U
L/a = 200 {2=10.6)
x EVEN MODES 12
e ODD MODES ‘
S1he
- - B 1 10
. . g
: . 13%
523 o 3
4 8
. . wls
’ - B
] 6
812°
822
’ 1
$11 X
] 2
2 : . , 0
8 6 oL Iy 2 0
. . c
Figure 3-1. Singularity Locations of the Free Space Case with L./a=2C0
'.‘) - Approzimate and Exact Kernels
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Table 3-1. Location of the Singularities for the Free Space Case where
L/a = 200, (Note: Approximate and Exact Kernels yield
essentially the same values for a very thin wire scatterer.)

SINGULARITY LOCATION
S]] -0.2575+32,9093
SIZ -0.3570+35.9346
513 -0.3903+j8.8286
514 -0.3676+311.5061
S5 -0.1920+j15.9934
521 -7.1023+30.0031
S20 -8.0816+34.7632
523 -8.1417+38.4358
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EXACT KERNEL - EVEN MODES
“APPROXIMATE KERNEL - EVEN MODES

EXACT KERNEL - ODD MODES
APPROXIMATE KERNEL - ODD HODES

- B --9.5
L. =
Lo _;1_?0 == =X :
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T 3.0
- L:zo
Q/ a
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1 £=200
L ) e
oo T,
~ Loy 5.0
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L1o %“39—-4*"§
a0 et 100
X -Loog
| \ | B a \ 2.0
H =1 1 1 i
1o 0.8 -0.6 -0.4 -0.2
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Figure 3-2. Trajectories.of the Singularities Associated with the First
Three Resonances of the Scatterer Itself for the Free Space
Case as a Function of L/a - Approximate and Exact Kernels.
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Table 3-2. Trajectories of Singularities Associated with the First
Three Resonances of the Scatterer in Free Space as a
Funcation of L/a.

Singularity Locations

09

Solution Method-

L/a Q Sy4 S1, S)3

200 10.60 -0.2575+j2.9093  -0.3570+j5.9346  -0.3903+j8.8286 Mapproximate"
-0,2576+j2.9096  -0.3557+j5.9368  ~-0.3858+j8.8338 "exact"

100 9.21 -0.2970+j2.8499  -0.4230+j5.8550  -0.4702+j8.7407 "approximate"
-0.2973+j2.8517  -0.4212+j5.8612  -0.4633+j8.7533 Nexact™

30 6.80 -0.3903+j2.6524  -0.5990+35.5646  -0.6995+j8.4030 "approximate"
-0.3946+j2,6742  -0.5990+j5.6232  -0.6804+j8.5088 vexact"

20 5,99 -0.4279+j2.5377  -0.6815+j5.3829  -0.8167+j8.1833 “approximate"
-0.4380+j2.5847  ~0.6879+5.5098  ~0.7866+j8.4120 Yexact"

10 4.61 -0.4893+j2.2498  -0.8464+j4.8964  -1.0790+j7.5747 “approximate"
-0.5340+j2.3878  ~-0.9065+j5.3055  ~1.0085+j8.3377 nexact"



B,

43.15

Note: When the difference between exact and
approximate kernel singularity loca-
tions is small, they are shown as one h/L =

o
point. h/a -

nn
N e

L/a = 200 (2 = 10.6)

X S77 SINGULARITY - EXACT KERNEL 05
® sq; SINGULARITY - APPROXIMATE KERNEL 10
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Figure 3-3. Trajectory of the Singularity Associated with the First Resonance
of the Scatterer Itself as a Function of h/L or h/a with L/a=200 -
Approximate and Exact Kernels
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Table 3=3; Trajectory of the Singularity A
Resonance of the Scatterer Itse

L/a = 200

h/L

ssociated with the First
1f as & Function of h/L

or h/a with L/a = 200 - Approximate and Exact Kernels

(@ = 10.6)

h/a

150
120
100
80
60
ko
20
1h
12

10

N

s17 SINGULARITY LOCATION

APPROXIMATE KERNEL
-.3755 + j2.8313
~.2824 + 32.7804
-.2212 + 32.7805
-.1635 + 3é.8001
-.1099 + 52.8385
-.0615 + §2.8987
-.0217 + 32.9866

~,0121 + 32.9928

~ -.0087 + j2.9256

-.0042 + j2.5959.
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EXACT KERHNEL
-.3769 + 32.8339
-.28k0 + j2.7811
-.2228 + 32.7806

.16k9 ‘32.7998

o+

L1113 + j2.8380

.0626 + 32.8982
-.0225 + j2.989k

L0131 + J3.0257
-.0104 + J3.030L
-.0079 + j3.0532

-.0009 + J3.1150




l‘g’ . { 3.0%

L/e = 100 (9=9.21) : " h/L = .05
. : h/a = 5
x 871 SINGULARITY - EXACT KERNEL
@ S11 SINGULARITY - APPROXIMATE KERNEL .Og 3.0

2.95

2.9

wh

2.85

9

2.8

42.75

h/L
h/a

it u

. . 2.7
~.25 -.2 -.15 -.1 -.05 0

oL

c
Figure 3-4. Trajectory of the Singularity Associated wiZh the First

. Resonance of the Scatterer Itselfl as a Function of h/L
or h/a with L/a = 100 - Approximate and Exact Kernels
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Teble 3-4.

L/a = 100

h/L

.07
.06
.05

.02

Trajectory of the Singularity Associated with the First
Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 100 - Approximate and Exact Kernels

(@ = 9.21)
h/a
APPROXIMATE KERNEL

-50 -.2375 + 32.7063
Lo - 1767 + 32.7340
30 -.1202 + 32.7804
20 -.0689 + 32.8501
10 -.0256 + 52.951&

T -.01k6 + 32.955h

6 -.0103 + 32.8660

5 ~-.0040 + j2.4108

2
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811 SINGULARITY LOCATION

EXACT KERNEL

.2h11 + j2.706k

.1799
1232
.0715
L0275
.0170
.0138
.0107

.0035

+

+

+

32
52
j2
32
32
33
J3
33

.T33L
7787
;8h76
.951k
.9933
.0088
.0256

.0821




L/a
X Sy

L

30 (o = 6.80)
SINGULARITY - EXACT KERNEL

SINGULARITY - APPROXIMATE KERNEL ' 1.8

h/L = 0.4
h/a = 12

-0.3

oL -0.2 -0.1 0.0
(o

Figure 3-5. Trajectory of the Singularity Associated with the First Resonance of the

Scatterer Itself as a Function of h/L or h/a with L/a = 30 - Apnroxinate
and Exact Kernels
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Table 3-5. Trajectory of the Singularity Associated with the First
Resonance of the Scatterer Itself as a function of h/L
or h/a with L/a = 30 - Approximate and Exact Kernels.

L/a = 30

h/L

0.4
0.3
0.2
0.1
0.08
0.06
0.04

(a = 6.80)

h/a

12

2.4
1.8
1.2

511 SINGULARITY LOCATION

APPROXIMATE KERNEL
-0.1957 + j2.5422
~-0.1387 + j2.6077
-0.0850 + j2.7000
-0.0362 + j2.8329
-0.0271 + j2.8500

- o -
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EXACT KERNEL
-0.2098 + j2.5448
-0.1505 + j2.6066
-0.0957 + j2.6924
-0.0454 + j2.8208
~-0.0363 + j2.8547
-0.0277 + j2.8936
-0.0173 + j2.9397
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Figure 3-6. Trajectory of the Singularity Associated with the First Resonance of
the Scatterer Itself as a function of h/L or h/a with L/a = 20 -
Approximate and Exact Kernels
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Table 3-6. Trajectory of the Singularity Associated with the First
Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 20 - Approximate and Exact Kernels.

L/a =20 (@ = 5.99)
h/L h/a S SINGULARITY LOCATION
APPROXIMATE KERNEL EXACT KERNEL
0.4 8 -0.198 + §2.443 -0.2211 + j2.454
0.3 6 -0.143 + j2.516 ~0.1644 + §2.519
0.2 4 -0.091 + j2.617 -0.1085 + §2.611
0.1 2 -0.041 + j2.763 ~0.0563 + 352.747
0.08 1.6 -0.031 + §2.776 20.0463 + §2.784
0.06 1.2 - ~0.0359 + §2.829



L/a = 10 (9= 4.60 5)

x S11 SINGULARITY - EXACT KERNEL

@ sy SINGULARITY - APPROXIMATE KERNEL
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176 @
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Figure 3-7; ffajectory of the Singularity Associated with the First

2.5

2.h

wl

2.3

2.2

2.1

2.0

Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 10 ~ Approximate and Exact Kernels

69



Table 3.7 Trajectory of the Singularity Associated with the First
‘ Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 10 - Approximate and Exact Kernels

L/a = 10 (Q = 4.605)

h/L h/a s3] SINGULARITY LOCATION
APPROXIMATE KERNEL EXACT KERNEL

.T5 7.5 -.369k + 32,0327 ~-.bs506 + 32.088¢
.6 6 -.2905 + j2.0355 -.3565 + j2.1hko1
.5 5 -.2h1h + 32,1482 ~.2995 + j2.1982
A b -.1939 + j2.21hk -.2k52 + 32,2576
3 -.1473 + §2.3004 -.1923 + j2.3330
"2 2 -.1007 + j2.h190 ~-.1ho1 + j2.43hs
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Note: When the difference between exact and approxi-

mate kernel singularity locations is small,
they are shown as one point.

L/a = 200 (2 = 10.6)

: .05 -
¢ S1y SINGULARITY - EXACT KERMNEL 10
E]S]z SINGULARITY - APPROXIMATE KERMEL 06
12

h/L
h/a

non

.5 ,
100 //
.07

Figure 3-83.

-.4 -.3 -.2 -.1

oL
c
Trajectory of the Singularity Associated with the Second

Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 200 - Approximate and Exact Kernels
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Table 3-8 fTrajectory of the Singularity Associated with the Second
Resonance of the Scatterer Itself as & Function of h/L
or h/a with L/a =

L/a = 200

h/L

-T2
.6
R
-3
.2
1
.07
.06
.05

.01

(2 = 10.6)

h/a

150
120
80
60
ko

20

1k

12 -

10

APPROXTHMATE KERNEL

{

{

!

.2919
.3633
4589
.3385
. 201
LOTTh
.0L68
.0369

.025h

200 -~ Approximate and Exact Kernels

$1o SINGULARITY LOCATION

+ 35.9h01
+ 56.030&
+ §5.8343
+ §5.7136
+ §5.8051
+ 35.918%
+ §5.9L98
+ §5.9207
+ J5.760
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EXACT KERNEL

.291h + j5.9Lok
.3591 + 36.0308
.4583 + 35.8Lob
.3395 + 35;7783
.2022 + j5.8092
.OT6T + 35.9339
.0456 + 35.9945
.0364 + j6.0L78
L0279 + 36.0428

.00kl + 36.1552
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.05 - 6.0
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L/a =100 (o = 9.21)
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5.9
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- 5.7
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c
Trajectory of the Singularity Associated with the Second

Figure 3-69.

Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 100 - Approximate and Exact Kernels
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Table 3-9. Trajectory of the Singularity Associated with the Second
Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 100 - Approximate end Exact Kernels

L/a = 100

h/L

. .
& o\

w

.07
.06

-OS
.02

(2 = 9.21)

. h/a

50
Lo
30
20

10

512 SINGULARITY LOCATION

APPROXIMATE KERNEL

.5876 + j5.8812

t

5263 + §5.7139

.3791 + js5.6668

.2271 + 35.71Shk
.0909 + 35.8521

.0563 + j5.8860

~.0hkkh + 35.845)1
~.0295 + 35.6256
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EXACT KERNEL

.5807 + J5.8969
.530L + 35.7262
.3848 + 35.6737
.2323 + }5.7201
.0938 + §5.8664
.0583 + §5.9367
.0L75 + 35.9673
L0375 + §5.9931
L0124 + 36,0958
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o Sy, SINGULARITY - EXACT KERNEL 1.8
B 512 SINGULARITY - APPROXIMATE KERNEL
5.70
5.60
h _
L* 0.5
h
—=15
a 5.50
5.40
5.30
| 1 1 | 1 5.20
-1.00 -0.80 -0.60 -0.40 -0.20 0.0
oL
c
Figure 3-10. Trajectory of the Singularity Associated with the Second

Resonance of the Scatterer Itself as a Function of h/L or
h/a with L/a = 30 - Approximate and Exact Kernels
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Table 3-10. Trajectory of the Singularity Associated with the
Second Resonance of the Scatterer as a Function
of h/L and h/a with Lfa = 30.

L/a = 30 (@ = 6.80)

h/L h/a | 82 Singularity Location
Approximate Kernel Exact Kernel
G¢.5 15 -0.8431+j5.4258 -0.8888+3j.5.5322
0.4 12 -0.6403+35.3128 -0.6857+35.3652
0.3 9 -0.4535+j5.3299 -0.4917+35.3602
0.2 6 -0.2826+j5.4324 -0.3138+j5.4481
0.1 3 -0.1275+35.6261 -0.1515+35.6406
0.08 2.4 -0.0989+j5.6614 -0.1212+35.6983
0.06 1.8 -0.0646+j5.5414 ~-0.0916+3j5.7669
0.04 1.2 -0.0064+j4.9373  -0.0619+j5.8585
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Figure 3-11. Trajectory of the Singularity Associated with the Second
Resonance of the Scatterer Itself as a Function of h/L or
- ’} h/a with L/a = 20 - Approximate and Exact Kernels
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Table 3-11.

L/a = 20
h/L

0.5
0.4
0.3
0.2
0.1
0.08

0.06

Trajectory of the Singularity Associated
with the Second Resonance of the Scatterer
as a Function of h/L and h/a with L/a = 20.

@ = 5.99)

h/a

10

S12 Singularity Location

Approximate Kernel

-0.8848+j5,1403
-0.6617+j5.0947
-0.4738+j5.1454
-0.3032+j5.2737
-0.1452+j5.4913
-0.1146+j5.5214

-0.0711+j5.2959
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Exact Kernel
-1.005+35.296
-0.7459+35.185
-0.5995+35.208
-0.35§8+j5.3131
-0.1851+j5.5265
-0.1509+35.5936

-0.1131+35.6887
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Figure 3-12. Trajectory of the Singularity Associated with the
Second Resonance of the Scatterer Itself as a Function of
h/L or h/a with L/a = 10 - Approximete and Exact Kernels
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Table 3-12. Trajectory of the Singularity Associated with the Second

L/a = 10

/L

2

Resonance of the Scatterer Itself as a Function of h/L
or hf/a with L/a = 10 - Approximate and Exact Kernels

(9 = 4.605)
h/a S5 STHGULARITY LOCATION
APPROXIMATE KERGEL EXACT KERNEL

6 ~1.1060 + 3k.53h9 -1.702% + 3h.7277
P -.8479 + jb.5388 -1.1620 + 34.8091
L -.65T1 + 34.5976 ~.8720 + j4.8323
3 -.4915 + j4.7092 -.652L + 3h,91Lh
2 ~.3366 + jL.8886 -.4560 + §5.0709
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IV. CONCLUSIONS

The use of an assumed circumferential variation for the axial
cuirents induced on a thin cylinder, near a perfectly conducting ground
plane, enhances the validity of analysis. 'Thin-wire" approximations
produce reasonable results when the thin cylindrical scatterer is more
than one-tenth of its length above the ground plane. As the thin c¢yl-
inder is brought near to the ground plane, the assumption of only axial
variation of the currents begins to breakdown.

With the thin scatterer in free space or far removed from the
ground plane, the computer time coﬁsumed in locating singularities
through this formulation is roughly three times that required by
Shumpert's [1] computer code. As the cylinder approaches the ground
plane, the computer time required increases markedly. Nevertheless,
when the scatterer is close, one cannot use "thin-wire' approximations -
the exact kernel with allowance for nonuniform circumferential variation
of the axial current is necessary. The usefulness of this formulation,
due to the increased complexity and calculation time required, must be
evaluated in light of the particular scattering problem being solved.

As noted previously, the assumed circumferential variation of the
axial current is linked to a transmission line mode (TEM) approximation.
The addition of higher order modes would improve the accuracy of the
data obtained. However, the improvement in accuracy versus the increase

in time and effort required would necessitate careful study.
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APPENDIX A

EVALUATION OF A PARTICULAR SINGULAR INTEGRAL

This appendix deals with the evaluation of a particular singular

integral, namely

A
2 ¥ S -yr R
= 1 o
. “Z:; ul: 1 +(@/h)cos ¢ r d¢ dz , (A1.1)
2 .

where

H
n

1/2
[Z2 + d2 sin2 %] / . (Al.Z)

As shown by Tesche [43], in order to accurately treat the integration

the singularity can be integrated analytically. Interchanging the order

of integration and rearranging the form gives
A

2r . 1 -2— e—YI’
T = A T+ (a/n)cos ¢/:A - dz d¢ . (AL.3)

—_—

2

Expanding e Y in a Taylor series about r=0,

e =1 yr+r242 3434 . (-1)P 0yt (AL.L)

21 3! nl
and retaining only the first two terms (this truncetion places restric-

tions on the problem, which are mentioned on page 47) yields
o~ l - Yr (Al'S)
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Thus,

A 4 s
1.;‘ ‘/0‘ 1 +(a/h)cos ¢'[.é.2 ('1:" ) dz d¢

2 .
‘ . \
e § s a
— 1 2 i _ 2 .
= A 1 +(a/h)cos ¢ , L 7 dz’ Y[_A_ dz; a¢ (AL.6)
2

T = —vyA A 1 +(a/h)cos & d¢ 'é 1 +(a/h)cos ¢
A

2
[ -]:- dz d¢ b (Al-?)
-A r

2

+

with r given by (Al.2). Tesche [43] used Dwight's equation (200.01) [49]

to give
A
2

/s

2

W

dz = 2 1n [%;1- [({:-3)2 + sin? %]1/2] -

2 1n (sin &¢/2). (A1.8)

Thus,

1 1

/271' 2%
T = -va 0 1 +(8./h)COS ¢ d¢ + 2 l 1 +(a/h)cos ¢ *

1/2 .
}ln[ﬁ—a- + [(ﬁ—;)2 + sin2 .@/2] ] ~1n[sin ¢/2]{ aé

(A1.9)
2n 1 2% 1
= -vh ,[ 1 +(a/h)cos ) dg + 2-/0‘ 1 +{a/h cos ¢

in (%a +[(%a)2 — sin? ¢/211/2) dé

H
1

2w
1
2 .[ 1 +(a/n)cos ¢ In[ sin (¢/2)] a¢. (A1.10) ®
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Provided (a/h)2 < 1, which is satisfied (see Figure 2-1), any standard
integral table [50] (for instance equation 509, page 425 of this

reference) gives

f2n' 1 = o /n)2]-1/2 :
0' 1 +(a/h)cos ¢ d¢ = 2“[1-(&/)\) ] . (Alol.l)

Therefore,

| : 2n 4 A o
~21vA 1 in + [(1)2 +
T= [1-(a/m)2]172 *2 d{( 1 +(a/h)cos ¢ ( ba la

2n
. 1/2 1
sin® $/2) ) ¢ -2 ¢£‘ 1 +(a/h)cos ¢

In[sin ¢/2] as . | : (A1.12)

The second term on the right-hand side of this equation is non-singular
and easily determined by machine integration, but the last term on the

right-hand side has a singularity. Let

2n "
_ 1n (sin ¢/2)
A=2 ~{: 1 +(a/h)cos ¢ dé . (A1.13)

From Dwight [L49], page 140, equation (603.2),

ln}sinx| = -1n2 ~ cos 2x - cos Ux - cos 6x ... (A1.1h)
T ) -2 3

for sin x # o.
Let x = ¢/2 for ¢ between O and 27, such that

[sin.x[ = |sin ¢/2] = sin ¢/2 | (AL.15)
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and

In(sin ¢/2) = -1n2 - i 1/n cos n¢

ot . (AL.16)

This allows A to be expresscd as

ox _2 1/n cos n¢

2 n=1
{-1n2) de + 2 f as
=2 _{ T+ (a/n)cos 3 b 1 +(a/h)cos ¢

™
(

(A1.17)

=4rin2 cos né

= 2%
A= in(amEnre -2 Z;ll/n ‘é‘ T+(a/n)eos 5 b . (A.18)

Continuing with the last term on the right-hand side,

‘/evlcosncp as = f’r cos né d+.
o L *(a/h)cos ¢ H 1 +{a/h)cos ¢ ¢

-/421T cog né — a4 (A1 19)
A +(a/h)os ¢ ) :

Consider the last term on the right-hand side of (A1.19). The trans-

formation, ¢ = B ylields

2x
cos né cos ni
'4‘ 1 +(a/h)cos ¢ a = f T +@/njcos 8 ¥ - (A1.20)

Letting 68 = B + 2% results in

em x
cos nd - cos n(8-27)
~[ 1 +(a/n)cos ¢ ° ,/0‘ T +(a/n)cos (e-2n) 493 (AL.21)

and since cos [n(® - 27}]} = cos n#b,.

2% cos né " cos nf
.[ 1 +(a/h)cos ¢ d¢ = .4‘ 1 +{a/h)cos & de . (m.22)
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Therefore (Al.19) can be expressed as

2u . T
cos n¢ - : Welo}:} n¢
ué” 1 +(a/h)cos ¢ d¢ = 2 ,éﬂ 1 +(a/h)cos ¢ dé . (A1.23)

From Dwight [49], page 219, equation (858.536) is

cos né T [[l-(é/h)ell/e-l] -

,é. 1 +(a/h)cos ¢ d¢ = (a/n)n[1-(a/n)e 172 > (AL.24)

for 0 <a/h <1, n=0,1,...

Substituting this expression into (A1.23) and then placing (A1.23) beck
into (A1.17),

= “bx 1n(2)[1-(a/n)2]-1/2

-2 i 1/n (2" [['l-(a/h)e]l/z-l]n )

&= (a/hin[1-(a/n)2]1 /2

by o n |
A= — n - 2. . .
> [me + n§=:ll/n(h/a) [\/1 (a/n) ] } (A1.25)

Simple manipulation shows that

. n
l/n(h/a)n[\/l—(a/h)2-l]n =1/n [\](h/a)Q-l - h/a]

Let

b = \](h/a)2-1 - h/a . ' (A1.26)

such that

“hx

Az e |1n2 +5 1/n 7] . | (AL.27)
V1i-(a/n)2 [n nz'—’:l : ] ‘

Since a < h < » (see Figure 2-1)
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limhﬁap = ]
and by L' Hospital's rule
{a/n)
lim] b = lim] o~ e =0
V1-(a/n)2
Conclude that for a <h < ®y -1 <b < 0. Let'c = -b, such that

0 <c <1, then

. S & (-1)n |
A m [me +n§=:l ~ cn] . {AL.28)

From [50], page 432, a logarithmic series has the form of

1n({l+x) = x - 1/2x2 + 1/3x3 = 1/hx% + ... , © (AL.29)
for ~1 < x < 1. Thus,
=In{l+c) = —¢ + 1/2¢2 ~'1/3c3 + l/hch—.... . (A1.30)
since 0 < ¢ < 1. With
An(ire) = 35 (ML
n=1
(A1.28) is written as
_ <hw '
A="——— [1n2-1n(c+1)] R : (A1.31)
\[l-(a/h)Q
with |
¢ = hf/a [1 - [1-(a/h)2}1/2] . ‘ (A1.32)

Using this expression for A, originally defined by (A1.13), in the

equation for T (Al.12) gives the final result
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2x ‘
T = -2ny4 + 2 J/' 1

V1 - (a/n)2 5 1 *(a/h)cos ¢ °

A A \2
1n 4T +‘/(Ea> + sin2 ¢/2 d¢  +

b

Jl - {(a/n)2

gln 2 - ln[%/a_+ 1- J(h/a)2 -1 ]i . (A1.33)

This function can be easily evaluated numerically since the integrand is

not singular.
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