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ABSTRACT

In attempting to model and predict the magnitude of the surface

currents induced on aircraft in the ground-alert mode, it is necessary

to examine the effects of the near proximity of the earth’s surface.

For thin cylindrical scatterers sufficiently far removed (several wave-

lengths) from the surface, these effects may be taken into account with

filamentary currents on the scatterer and its image. However, if the

scatterer is moved very near (a fraction of a wavelength) to the ground,

the assumption of filamentary currents is invalidated. In this note a

transmission line mode approximation is used.to model the ci”;curnferential

variations of the surface current induced on a finite length cylindrica”i

scatterer very near a perfect ground. This solution is compared to

previous solutions based on filamentary currents. The results give clear

indications as to when the more sophisticated approach should be used to.

obtain valid solutions to the scattering problems of this type.
m
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I. INTRODUCTION

Previous investigcitionshave considered the interactions of thin

cylinders with an electromagnetic pulse over perfectly conducting

grounds [1-5]. Limitations imposed by the so-called “thin-wire”

assumptions and approximations are inherent short-comings [6-8]. In

general, these approximations can be divided into three sreas:

(1) current is assumed to flow only in the direction of the wire sxis,

(2) Wndaw c@~ditions are applied only to the axial component of the

electromagnetic field et the wire surface, (3) current and”charge dens-

ities are approximated by filaments of current and

ais [9-11]. The emphasis of this investigation is

these approximations. The first asswption ignores

charge on the wire

on the last of

the induced current

in the circumferential direction, which is an appropriate approach [7],

[12] provided the length of the cylindrical scatterer is much greater

than its radius. With this restriction, the scattered field is deter-

mined primarily by the longitudinal component of the current so that

the significance of the circumferential component is minimal.. It is

we~ known that.for infinite~y long cylinders, the sxial component of!

the incident electric field produces only currents in the axial direc-

tion and the component of the incident electric field in the circumfer-

entisl,tirectfon results in oriLycircumferential currents [13-21]. l?or

finite length cylinders, either component of the incident electric

field excites current in both the axial and circumferential directions
—
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[22-2’j]. The second “thin-wire” approximation does

count that portion of the axial current contributed

tial component of the incident electric field. The

not take into ac-

hy the circumferen-

sxial current caused

by the sxial component of the incident field is much more significant

than that resulting from an”incident electric field with a circumferen-

tial component. This restriction, that the cylindrical scatterer be
.

thin, makes this approximation very reasonable [26]. Representing the

current and charge densities induced on a thin cylindrical scatte

by filaments of current and charge on the cylinder axis is in effc.t

assuming that their circumferential variations are uniform ~1-~]. This

is well founded for a thin cylindrical scatterer many radii away from

the ground plane [6], [27], but certainly not correct when the cylin-

drical scatterer is positioned near the ground plane - on the order of

a-radius away. In this analysis, the circumferentialbehavior of the

induced currents on a

scatterer is near the

thin cylinder is taken into account when the

ground plane.

A Pocklington type integro-differential equation [11] is formulated

for the current induced on the thin cylinder and its ima~e in terms of

a complex frequency. This equation is reduced to a system of algebraic

matrix equations through application of the method of moments [9], [N-I,

[28-29]. This transient analysis problem employs the singularity

expsmsion method, which was formalized and discussed in general by

Baum, among others [30-33], and practically demonstrated by several

researchers [1-3], [34-37]. The complex natural resonances, natursl

mode vectors$ and normalization coefficients are calculated and com-

pared to those found through enforcement of all the ‘~thin-wire’~

.
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assumptions. As the cylinder approachesthe ground plane, the trajec-

tories of certain singularitiesare

currents are calculated for variws

J

presentedand discussed. Induced

geometries and incident fields.

5
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11. THEORY

Integro-differential Equation

Consider a finite length , infinitely thin-willed, perfectly con-

ducting, right circular cylinder as shown in Figure 2-1. The cylinder

is near and parallel to an infinite, perfectly conducting, ground plane.

As indicated in the figure, the cylinder is of length L, radius a ind

height h above the ground plane. A combined cartesian and cylindrical

coordinate system is centered on the cylinder as shown. The system,

consisting of the cylinder and the ground plane, is illuminated by a

transient incident field of electromagnetic radiation. The incident

field is, by definition, that field which would exist if the cylinder

and ground plane were absent. As shown in Figure 2-2, the incident

electromagnetic field propagates in a general direction described by
.

the angle 61 with respect to the z sxis and the angle $i tith respect

to the x axis. It is then desired to obtain the induced currents on

the cylinder as a function of time.

By application of

incident TEN transient

image theory [18], (38-39], the cylinder and

plane wave, in conjunction with the perfect

ground plane,

the “original

image - to be

are transformed into an equi\*a3.entproblem consisting of

cyll~der” - to be called the object cylinder - and its

named the image cylinder. According to i~age theory, the

incident field must be imaged also - producing the equi-;alenttvc-body

prhblcm shown in Figure 2-3. Two indiuridualcoordinate systems are

6
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Figure 2-1. Finite Length, Right Circular Cylinder -
Near and Parallel to Perfect Ground Plane
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Figure 2-2. Incident Field
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defined by Figure 2-3,

sentirg the object and

redudancy of defining

tical and parallel. I?ith

the tem.’tincident field”

indicated by the

image coordinate

a !&Oand zi sxis

subscripts “o!’and l’i.’~,repre-

systems respectfully. Note the

since the cylinders are iden-

field plus

induced on

considered

its reflection

the obJect and

respect to the electromagnetic excitation,

shall now be understood to represent the

from the ground plane. The surface currents

its image by this incident TEM plane wave are

as equivalent source currents radiating in free space ( ‘J.

Thus, the principles of free space Greenls functions may be used if

compute the scattered field at an arbitrary field point in space.

Referring to Figure 2-4, define appropriate magnetic vector poten-

tials for the object and its image as follows:

ii’o(~o)= the nagnetic vector potential of the object in
obJect coordinates

Zi(’Ri)= the magnetic vector potential of the image in
image coordinates

%= a generai field point in space measured from the
object coordinate system

~’= a general source point on the object cylinder with
respect to its coordinate system

Hit = a general source point on the image cylinder with
respect to its coordinate system

fji . the same general field point in terms of the image
coordinates

Thus, the magnetic vector potential

liJRo} = *
1

R&’)
s&

of the object is expressed as

Go@o;~’) dSo’, (2.1)

.

where primed indicates source points, unprimed indicates field points,

10
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and

Go(i;%)’) = the free space
coordinates

●

\

o
Green’s function in object

~-(~’) = the surface current density radiating in free
. space.

&.s Green’s function has the general fom of

Go(?io;fio’) = e-~l%-~o’i

pie+’l “ (2.2)

Implicit in this equation is the assumption that the temporal vari Ion

St
of the fields is e , where

s =Cf+jh),

the complex frequency variable, with

Y = s/’c

(2.3)

(2.4)

c = the speed of light in free space.

From Figure 2-4, define a cylindrical coordinate system superimposed

upon the cartesian coordinate system in the usual manner. Through

simple geometry,

l&Ro’~ =[Po2+Po’2-2popo’ Cos (+o-+of)+(z-zjllfa

and for this circular cylinder, P6 ‘a.
.!

Therefore,

“ IJfio) = L (Po, 4’0,z)

(2.5)

(2.6]

(2.7)

12
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La

~(RJ = ~
J/

~($o’, z’)Go(po,$o,z;40’,z’)a d~o’dz’
00”

(2.8)

L am

&( Po,40,z) = : .IJ
-YRIa d~o’dz’ ,%(#J,z’)e_ (2.9) ~

00 R1

where 5=[Po2+a2- 2P0 a COS (1$0-1$0’)+ (2-2’ )2]1/2 . (2.lo)

Upon accepting the first “thin-tire” approximation,

A

R&40’,z’) =%(+.’,2’) Eq ,

such that
A

L(PO>+O,Z) =&(Po,+o,z) az

(2.:L1)

(2.:L2)

and

FL 21T

ej j&( Po,’+o>z) = Q’n ‘YR1 ad$o’dz’,Ko(I$o’,z’)S-. (2:13)
00 RI

or simply

This process can be repeated for the image cylinder, producing the

similar equation
L

H

2X

‘yR2 ad$i’dz’ JAiz(Pi>$i,2)=2 .0 0 Ki($l’,d)e
R2

(2.15)

13



where

R2= l~i-Hi’l=[pi2+a2-2Piacos (~i-+i’)+(z-z’)2]112. (2.36)

Up to this point, the kernels of (2.14) and [2.16) are exact, in that

the integrations are over the surface of the cylinders. The current

has not been assumed to exist only on the cylinder axis, which would

result in an approximate kernel.

AS pofnted out by others [1-4], [6], the circumferential

of the currents can be described as ~iform when the cylinder

varfation

isri Ir

radii away from the ground plane, but this approximation becomes poor ,

when the cylinder is near the ground plane. Taylor [kg] has derived

expressions for the circumferenti@. variations of the axial current on

m infinitely long cylinder over a ground plane in a static mode. As

pointed out by Taylor, these resulting equations are also applicable
o

.toelectrically thin cylinders separated a short distance from the

ground plane and to finite length cylinders, provided the length is

much greater than the height above the ground plane. Utilizing the

equations of Taylor [40],

I (Z’)
Eo(+o’ ,Z’) = &’a fo(+o%z ,

where

[1 - (d’nj2]l/2
fo(f$o’ ) = 1 + (a/h) cos $.’

(2.17)

(2.18)

~(~’} = axial variation of object surface cuxrefit.

SeyarnbUity of the current into its two distinct’functional variations

1“4
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becomes a be~ter approximation as the cylinder becomes longer with re-

spect to its radius. Note that as hbecomes large, the circumferential

variation of the axial current becomes uniform, as desired for a cylin-

der f= removed from a ground l?lane[1-3]. Therefore, by ass~ing t~le

current to beham in this manner, the,magnetic vector ptentials are

composed of exact kernels, in the sense that the current resides UPOIL

the cylinder surface as opposed to the cylinder axis; the current is

u.iiiformlydistributed about this surface when the cylinder is at a far

distance from the ground plane; and the current becomes nonuniformly

distributed as the cylinder draws near the ground plane. The results. .

of these two approaches - approximate kernel with uniform circumfer-

ential variation of the axial current and exact kernel with & assumed

circumferential variation of the =ial cuxrent - will.be examined and

compared.

where

Returning to (2.17), the Wge currents are s~ilarlY

fi(+i’) =

or

fi($i’) =

(2.1!7)

[1 - (a/h]2]1/2 (2.20)
1 + (a/h) cos ($i’+lr) ‘

[1 -(a/h)2]1/2
1- (a/h} cos gi’

Ii(z’) = axisl v~iation of ima&e surface current.

(2,21)

Note tke difference in fi (2.PJ) and f. (2.IJ3)due tC the COOXdinatI~

references chosen. The magnetic vector potentials become

15



(2.22)

L

~J

2U ‘
‘YR2 ~d$itdzl .!&L tiz’ )fi($i’).L-

-Ii(pi,$i,z) = tlz47f ~ ~ 2ra R2

(2.23)

Define two functions, F. and Fi, as

24)

(2.25)

spch that

I

L In(z’)
IJPO,+OA = ~z * FO(PO,$O, >2,Z’)dz’ (2.26)

2na
o

&z ~

/

L If(z’)
~i(Pi,’+i,z)= Fi(Pi>4i>z>z‘)dz’ . (2.27)

o .2ra

Drawing upon the principles of im.ge theory, the currents on the object ,

and image are related. At equival.e~tpoints on the object cylinder and

its image, the currents are equal in magnitude> but oPPsite ‘n ‘igno

Stated skply,

Xo(z’j = -1+’) = m“)” (2.28)

.

Therefore

(2.29)



.

:%(Pi.s’+j.sz)= -~z V
~J

L I(Z’) Fi(pi,$i,z,z’)dz’. (2.30)
n 27ra

o

Locate the field

Ject cylinder as

-J

pi sin

and from the law

point at some general point on the surface of the ob-

illustrated in Figure 2-5. From the law of sines,

+i = a sin a = a sin $., (2.:)1)

of cosines,

Pi2 = a2 + 4h2 + Lah ccs $0 . (2;32)

Therefore, when Ii is evaluated on the object surface, ,

pi = [a2 + 4h2 + 4ah cos $.]1/2 (2.33)

and

Note that when ~. is evaluated,on the surface of the object,

po=a .

Thus, “

% (P*,4’O,Z)
1

= 1.(+0,2)
so

and

1

%(PiA’i,z) s = % Gb>d,
o

(2.34)

(2.35)

(2,36)

(237)

which demonstrates their functional dependence, upon this evaluation.
.

17
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Therefore, on the object cylinder surface

with

IJ+o,z)
/

= !az* ~ 1’I(z’)
2na

Fo($o,z,z’)dz’ , (2.38)

—. .-
(2.39)

R1 = [2a2-2a2 cos(~o-.~o’)+ (Z-z’)2]1/2

“Xi(+o,Z) =
J’

“ I(z’)
-AZ% — Fi(~O,z,z’)dz’,

0
2xa

Fi(+o,z,z’)

(2.!0)

(2.41)

J
.J= 2=1

~-yR2
—a d~i’

o l-(a/h)cos $i’ R2 (2.42)

R2 =
{
2a2+bh2+4ah cos $o-2[a2+bh2+hah

}
a cos($i-$~) + (z-z’)* 1/2

1

a sin +0
+i = sin‘1 [a2+4h%}~ah cos ~.]1/2 I

Cos

.

$’011/2 ●

(2.!!3)

(2.1+4)

The current, I(z’), induced by the incident field produces a scattered

field. The total field, composed of the superposition of incident and

scattered fields, must obey

uniqueness [18]. The total

c’ertainboundary

field is defined

conditions, which enforce

as

~ = ~~c&dent field + scattered field
=E +Es. (2.45)

19



The scatteredfield is related to the induced currents and charges by

fis(~)= -SKS(R)-V+S(H), (z.46)

where

j@(~) = the total “scattered” magnetic vector pOtential

+s = the total “scattered” electric scalar potential,

which can be related to ~s through the Lorentz gauge condition,

+s(~) = v ● AS(R)
-J.losos

●

Equation (2.46) becomes

(2.4’7)

(2.48)

The charge distribution need not be known since the charges have been

related to the current through the Lorentz gauge condition. Note that

since y = S/C and C = l)Q-;, ya = S2UOE0. Thus,

[
ES(E) = -s IS(R) - +2V[v “ F(R)]]. (2.49)

On the surface of the object cylinder, the boundary condition is

fixw=o, (2.50).

with fibeing the outward normal unit vector on the cylinder surface.

This boundary condition can &so be represented by

~inc

1tan so J
= -E~&n S ,

0

-JM.cI.merely states that the tangential ccnponents of

Scattered fields must cancel on the object surface in

20

(2.51)

the incident and

order to produce



(@l the appropriate boundary condition. Combining (2.49) and (2.51) re-

sults in

~inc

1[
=s KS(R) - $2

1
V[v .N(R)] j~o ●

tan so
(2.52)

—

. Since
., .

Incorporating the ideas proposed by

- ...

)“- ..

!!

(2.52) and(2.54)’,one arrives at

,’@~o(+o,z,y -
F@oZ,Z’) dz’

(2.5;)

Since

(-kos)s[+ V(V”)l& =-PoEoS2[l-;* v(v”)l

_s.2
= ~ [+(V”)l = .-Y2[1+V(V”)I

= [v(v’) -yq, (2, !;6)

(2.’j5)becomes

.[ 11-47WOS E;~n
1

‘I(z’] .
= [v(v”) - ya] a’ —

so ~ 2na

[Fo($o,z,z’)-Fi($o,z,z’)]dz’ . (2.57)

Thc differential operator [41] readily reduces since it acts on
—

-’%) a vector with only a z component.

21
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grad div V = V(V~V)
*

The boundary conditions im~lied through (2.57) me Sim’P~Y

(2.60)

.

Through application of these two equations, it iS apparent that f--”

finite length cylinders an axial component of current is created by

both m axial and a circumferential component of the incident field

[22-25]. Nevertheless, acceptin~ the second “thin-wire” approximation,

boundary conditions will only be enforced on the axial component of the

incident field. This leaves the integro-differential equation

(-47c&os)Ey
j,+-.’) J’=’ ,FJ,o,z,zh--

FL(40,z,z ‘)]dz’ . (2.61)

Referring to Figure 2-6, the total incident field can be formulated

on a general basis. El is shown im the plane of the two descriptive

coordinate directions a and b. An electric field normal to this plane

will not produce a z component. Thus,

zinc
= Ele-yb ~ ~2 ~-yd

= !31exp
\
-y z cos 6i + a cos[(m/2)-9il

-i-E2 exp
1[
-y z Cos ei + c cos[(?l/2)-e~l

111

22

(2.62)



.

(Note: due to image theory, Ci =

t z.

b

Figure +6. General Incident Field
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t

Einc = El $Xp
1[
-y z cm Oi + a sin Oi

II

+ E2 exp
1[ II
-y z Cos 13i+ c sin ei

= EL exp
t
-“Yzcos 6i - y sin $i

[
x Cos ‘pi+ -

1[
ycos(+i - T/2)

+ E2 exp 1 r-yz Cos ei - y sin e~ x Cos (i’r-+q+
( L

1[
y Cos(+i - lT/2) ,(’ b3)

where the principle of

Simplification gives

direction cosines [42] has been forwarded.

j?inc=i?~e-yz Cos‘i -y sin ei[x cos $i +y sin $i]

+ Qe-y z cos ei -y-sin 6i[-x cos $i + y sin $il (2.64)
.

Since only the sxial component of the incident field is to be used,

Ezl = 1~~1 sin 6i = El sin 9i (2.65)

EZ2 = -1~21 sin 13i= -E; sin $i , (2.66)

such that

~inc
= El sin ~ie

-yz cos ei-y sin ei[x cos $i + y sin ~i]
z

-E2 sin 6ie
-YZ cos ei-y sin Qi[-x cos ~i + Y sin +i]

(2.67;

plane, Ez must satisz> the boundary conditionOn the ground

~inc
=Einc O. (2.68)

z (Ground Plane) z (x = -h;

24
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Enforcing this requirement on (2.6?) necessitates that
.

El = E2e
-2yh sin $i cos @i

●

Defining

.,

%= -El >

then

such that

(2.’70) “

(2.71)

#nc ‘----””” ‘“ ‘“-”
. .-~ sin Oi.e-yzCos Oi [e-

y sin 13i[xcos #i + y sin $i]
-z--=

-e2yh sin Oi COS’~i”- y sin 9i[-x cos +i + y sin +i]
1

(2.?2)

or

Einc
z -E. sin eie-yz Cos ei - yy sin f3isin $i .=

--[ 1
~-yx sin Oi cos I$i-e’xsin i3icos $i t 2yh sin t3icos L$i

(2.73j

Comparison of this incident field to that of Umashar@r, et. al. [3],

is favorable.

Einc
z

and.evaluating

Letting @i = 18oo,

J

= -E. sin 6ie-y
[

Z COS ~i ~yx sin Oi

in=
..

1
~-ysin Oi(x + 2h) , (2.74)

Einc
on the cylinder axis (approximate kernel) instead

z

of on iw surface,

25



~ inc

J

[
-yz Cos Oi ~

1
- ~-y2h sin 6i (2.75)

z = -E. sin tlie
. +i=~
X=o s

which is identical to Umashankar’s [3] field. This comparison is made

note of since the induced current found by Umashankar shall be compared

to the current found through this exact kernel formulation.

Before evaluating the incident field on the cylinder surface,

the integro-differential equation (2.61) needs to be examined mor.

closely. The unknown quantity, I(z’), is not a function of 4.. It is

apparent that by letting $0 = al, any particular angle, solving for
.

I(z’) and letting to = a2, a different particular angle, again solving
.

for I(z’) - the two solutions must be identical. The implication is
● .

that in order to determine the unknown induced current, boundary

conditions need not be enforced all over the object cylinder surface,
,

but Just at one particular value of +.. The circumferential variation

of the current has already been assumed to be of the form expressed by

(2.18) and (2.21), such that a solution for I(z’) at any partic~ar

value of $0 will readily result in ~ general solution for I(z’,40).

wowh ex~inat~on, 1$0= 00 seems as profitable as any

Thus, the integro-differentid equation reduces to

(-4meos)E;nc

JR=o: (%-y’) JL-
Fi(z,z’)]dz’

other choice.

(Fo(z,z’)-

9 (2.76)

.’

26



-;)

.

where

FO(Z,Z’) ‘)
1

= Fo($o,Z>z ~.
= .=FJa

=-Vi

rl

rl = R1

J

= ~= [2a2(l - cos $.’) + (Z
+0.,

Fi(z,z’)
1

= Fi($o,z,z’) to . ~=~=

1‘2” R2+~=@

Evaluation of the incident

1
7*

l+(a/h) cos 4)0

a d+o’

2$ )2]1/2 (2.”~8)

●

= [(2a2-+ 4 ah) (1- cos $i’) + 4h2 +

results

=

-E. sin eie-y
z C!osei

[
e-ya

(2.”(”()

(z-z’)2]1/2 ,

in

.

sin ei cos $i_
.

eya sin f3icos @i+2yh sin ei cos $i
J ●

By defining

fii = sin Oi cos $i ,

the incident field is simply

-Y )
.

(2;79)

(2.81)

(2(82)

(2.83)
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Throughexamination of.this equation, the appearance

difference between the two terns inside the brackets

caused by the ‘toriginal~’incident field and the same

from the ground plane arriving at some later time.

The integro-differential.equation (2.76) canbe

of a phase

is obviously that

field reflected

altered slightly

in form and notation in order to better represent the problem. Since

the differential operator does not operate on z’,

J+.= 00

In order to better represent the complex

Let 1 - Cos +.’ = 2 Sinz$
.

and d = diameter of the cylinder
= 2a

Fi(z,z’)] dz’. (2.8L)

frequency dependence,

()I(z’,s) 32
~ -y2 [Fo(z,z’,s)-

%ra

Fi(z,z’,s)] dz’. (2.85)

(2.86)

(2.87)

in Fo, such that

[2a2(l- Cos +0’) + (2-2’)2]1/2 = [d2 sin2 $ + (.-.’)2]1/2,

(2.88)

with a similar substitution in Fi.

The final.results are summarized for reference:

Jso [Fo(~,Z’,s)-~~(Z,Z’,S)] dz’ (2.89)
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J __,- -E~nc(s)_ ~ ~, z -Eo,(s)sin@i ‘Y(2 co’ ‘i + ‘is) .e
s:

( )

~-e y’li(a + h) (2.90)

Fo(z,z’,s) =&~
F 217 1 ~-fil

a d$o’ (2.91)
1 + (a/h)cos $.’ rl

o

““”‘“-=W[2= —Fl(z,i-’,s)
~-vz

a d$i’ (2.92)
1 - (a/L)cos $.’ r2

o

‘1 = [d2 s# $ + (,-,’)2]1/2

2 + 8ah) sin2 @i’r2 =([d + 4h2 + (Z-Z’)2]1’2 .
T

(2.93)

This integro-differential equation is to be solved for the unknown

induced current on the cylinder. .

Application of the Method of Moments

The integro-differential equation shall be-cast into matrix form

suitable for a numerical solution. This general process has come tc)

be known as the method of moments [9], [u.], [28-29]. Generally, the

(2.94)

—

“wire” along the cylinder surface at $0 = W is broken into

integrals approximated by the sum of integrals over Iismall

and the current assumed to be constant over each individual

With regard to Figure 2-7, expand the current in a set

functions such that

1(z’,S)

where

an(S) =

segment:3,

segments,

segment.

of basis

n

unknown cciefficientof constant current in the
nth subsection

(2.95)
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I “WIRE”

SUBSECTION ENDS

x“ MATCH K)INTS
,

MATCH POIHTS ON
SURFACE AT +0 =

Jwl .

~ = (m~l )LJ(lMTCH POINTS)
m = 1,2,*..H

b =

1?=

CYLINDER
00

L/(N-1) LENGTH OF ZONE
i Zl=o

NUlfBEROF SUBSECTIONS .1

Figure 2-7. Moment Method Partitioning of Geometry
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c Zn+l

n= I2,3,....N-1 .IIn(z’) = ~“ for zn < z
elsewhere (2,96)

.

.

use is made of a pulse

This representation is

Thus,

[91*

function expansion described by Barrington

chosen Such that the boundary conditions,

(2.97)I(0) = I(L) = O,

are satisfied automatically by allowing the two end subsections or
—.

zones to etiend past”the surface of the cylinder end assuming the

current on these zones to be zero. As shown on Figure 2-7, each zone is

of length A, where

(2.98)
L
— = length of a zone
M-1

number of subsections or zones

“A=

(n-3/2)A n= 1,2,..*+N+1
subsection”ench.

(2’.99)
.

,Zn=
=

Applying these

produces

concepts to the integro-differential equation (2.89)

(-4m&) I [ II-Eo(s) sin Oie-yzCos ‘i e-yBia-ey6i(a + 2h)

-)
~)-Fi(z,z’,s)] dz’.Y2 cFo(z,z’,-

.(2<100)

at discrete match points amounts!;atisfiedForcing this equation to be

as testing functions [9]. The matchto choosing delta functions

points are the center of subsections as shown in Figure 2-7, where
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w = (m-l}A m= ~,2,,0a.N

= match points. (2.101)

As pointed out by Barrington

analytically or approximated

[9], the derivatives may he carried out

by finite difference teck:iques. IQth

avenuesof approachwere investigated, with the decision going to

finite differences due to its ease of evaluation and simplicity. Using

finite difference approximations, where

d%?
~ = -~~ [I’(z+ Az)-2F(z) + F(z-Az)] , (2.202)

the integro-differential equation is

%(s’) 1
~n+l

[

)

.=~cp J Fo(~+l,z’,s) -(y2A2 + 2)”

Zn

Fo(zn,z’,s) + Fo(zm-~,z’,s) -Fi(zm+~,z’,s) + (v2A2 + 2)*

Fi(zm,z’,s)
1

-Fi(zm_15z’,s) dz’ n= 2$3, .... ~f-~
n = 2,3, .... N-1. (2.103)

This equation is placed in the form of a xzatrixequation,

v(s) = z(s) 7(s), (2.104)

where a single bar represents a column matrix or vector and double

bars indicate a square matrix. Let the matrices be defined as

?(s) = the source vector = [vm],

where
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-’p:
—

v~ = the matrix elements of ~(s)

= (-k’fcos)
. [’.___ [ 1]

-~(s) Sin e~e-yzmcos ei e-Y6ia-ey6i(a+2h)

m _= 2,3 ,9.-N-1 (2.105)

~(s) = the response vector =[in] ,

wher-e

‘-“in= the matrix elements of ~(s)
= an-,unknoti”coefficient of constant current in the
nth zone

n = 2,3,....N-1 ; (2.106)

z(s) = the impedance matrix = [ZIJ ,

where

‘7—
— Zmn = the matrix elements of ~(s)

J
z n+l

=$ &[ Fo(w+I,z’,s) - (Y2A2 +2) Fo(%>z’,,s)
Zn

+ Fo[zm-~,z’,s) - Fi(zm+l,z’,s)

+ (y~A2 + 2) Fi(za}z’ ,s) ‘Fi(~-l,z’,s)j dz’.

n= 2,3 ....N-1
m = 2,3 ....N-1 (2.107)

With simplification in mind, let

J]

~n+l f 2X
1 ~-yrl

H&(zm,s) =
1 ~(a/h)cos 4.’ rl

d$o’dz’ ,
zn o

(2.138)

—

) rl= [d2 sin2$+ (zm-z’)2]1/2 ,—4

33,

(2.109)



and

with

r2 = [(dz + 8ah) sinz # + hh2 + (~ - 2’)2]1/2 .

.

(2.110)

(2.’11)

Hh(zm.l,s) ‘H~n(Zm+~,S) + (y2A’ + 2) H~(Zm,S) -
,

HJJ ~_l ,s)
}

(2.112)

The integrals defined by (2.108) and 2.3.10)present problems in

numerical evaluation - but these can be overcome. Tesche [43] provides

methodsof treating integrals of this type. Note that the integrand of

H& is never singular due to the obvious fact that all terms in the

“ radical(2.11}are greater than or ~qual to zero except the term $h2

which is never zero. Therefore, numerical evaluation of H“~ offers no

problem. However, H~(zm,s) presents some problems; in that, when

i#I&= Oo and Z’ = ~, the integrand is singular. H#m,s), li~(%l-,,s),

and ~(.m+l,s) shall be examined separately.

At $: = W, the integrand of ~(zm+l,s) is singular when zm+l = z’,
m

where zn < z’ ~ Zn+l. Hence, at this point,

Zn < Zm+l ~ Zn+l ,
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Utilizing (2.99) and (2.101), reproduced here

~ = (m-l)A m = 1,2,....N+1

zn = (n-3/2)A n = 1,2,....11+1 ,

the singularity occtis when
.“

(n- 3/2)A~[(m+l) -i]A:[(n+l) -3/2]A (2.1:L4)

or when

-3/2~ (m-n) ~- 1/2.

Since m and n are integers, “m-n” qust be an integer between these two

fractions. T%us, H~n(zn+l>s) is singular when m-n = -1 or when m = n-l.

In a like manner, H~(~,:s),is sing~ar when $0’ = @ and h = z’”

Thus, the singularity occurs

which can be expressed as

when

(n - 3/2)A s (LU-l)As [(n+l) - 3/2]A

or

- 1/2: (m-n) ~1/2.

Through the ssme reasoning, H~n(zrn,s) is singular when m = n.

(2.1.16)

It is apparent that H~n(zrnq,s) is singular when m = n+l.

l?h~nthese respective conditions do not exist, the integrals are readily

amenable to numerical.integration techniques, but at a singular ~int~
t
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numerical.techniquesbecome suspectat best. Following general proce-

dures outlined by Tesche [43]$ let the integral of ~(zm, s) at its

singularity be T1.

with ~= defined by (2.108]. Transform variables in (2.108) as follows:

let , 0+0’

z =%E -z’

dZ = -dz’

and as for limits of integration

1

zn .%-zn

m=r3 1m=n

zn+l
I

= 2m-2n+l
1

+A
‘z--

(2. Js8)

(2.119)

Thus,

with r= [22+ d2 sin2$~/2 , (2.Ml)

which is one of the singular integrsls to be evaluated. In a likq

manner, let

T2=~(Zm+L,S) when m= n-1 (2.122)

X tit:r transformingby allowing

36



+ = ‘$0’
.

J
A

~+1-zn
m= n-l ‘T

‘+1 I A
Zm+l-Zn =-

m= n-l 2

with r defined as in (2.121). A comparison of (2.120) and (2.123)obvi-

ously shows that

T2 = T1.

In addition, T3 could be defir~edas H~(zm-l,s) whenm = n+l and th~!end

product would be that

T1 = T2 = T3.

Therefore, the integral of the singular integrand of HQ@n+l>s)

when m = n-1, Hk(zm,s) form = n, and Hti(zm_l,s) within= n+l is

with r given by-(2.121).

This integral.is further pursued in Appendix A, which concludes with

the result that
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T=

[
lnh/a+l-

11
~(h/a)2- 1~1/2 + 2

2-

●

(2.125)

The function is numerically evaluated easily, as the integrand 3.snot

singular.

The integro-differential equation has been cast as a system ot

matrices, which must be solved for the unknown induced current.

Application of the Singularity Expansion Method

The singularity expansion method {SEM) was introducedby Mum [31-

33] and formalized and applied by many others [1-3], [30], [34-37] as a

method for characterizing the response of scattering objects when illu-

minated by either transient or steady-state electromagnetic radiation.

Before applying SE?*1to this transient problem, a brief survey of the

general theory is appropriate - highlighting the areas of particular

interest.

The complex natural frequencies of the scattering system, denoted

by sa, are those such that (2.104), when expressed as the homogeneous

equation,

z(sa) z (s~) = 0, (2.126)

has a nontrivial.solution for T(sa). The implication is that the deter-

minant of ~ must vanish at these complex nat-aralfrequencies. Thus,

the equation for determination of these natural resonances of the
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-f!!):’ inducedcurrentis

—

-J

det ~(sa) = O . (2.127)

As required by well-known ~inear circuit theory and Laplace transfomn

theory,these natural resonances must’occur in the left half portion of

the complex s (s = u+ju) plane, defined in the usual manner by Laplace

transform theory [44-45]. In addition, these natural,resonances can

not appear on the Ju axis and :mustconsist of complex conjugate pairs.

These facts are obvious, in order to produce real cuxrents in the time

domain which eventually go to zero due to the radiation of energy. It

has been shown [3S] that for bodies of finite extent, the response func-

tion has only poles _ad_no branch’cuts. Speculation has been put forth

[37] that ofiY simPle Poles exist for perfectly conducting bodies. The

assumption that only simple poles exist is accepted without proof -

although this has been substantiated numerically. Other researchers

have made wide use of the simple pole assumption [1-3], [31], [34-37’].

The

has as a

matrix equation,

E(S) 7(s) =V(s), (2.1.28)

solution

1(s) = ??(s)-17(s). (2.1.29)

Through the inverse Laplace transform, the current in the time domain

is

(2.130)
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vhich could be evaluatednumerically along the Brornwichpath. SEM, an

extension of w~l-founded techniques in classical circuit theory, is

based upon the idea that the time domain response of the induced current

is dete~ned through knowledgeof the complex natural.frequencies of

the system in addition to their corresponding residues. The time

domaincurrentis describedby a sti over all the residues,times expo-

nentially damped sinusoids.

Based upon this concept, SEM assumes that

=?

~(s)-~ ‘~ ~ (+ entire functions, etc.)
a

(2.131]

which is a summation over all poles in the complex s plane.
=

Define ~

aS the system residue matrix at the pole Sa. Rote that ~ is a constant

matrix, in the sense that it is not a function of s. TM.s residue matrix

is a dyadic and can be represented as the outer product of two vectors

independent of s as

(2.132)
*

where pa is the natural mode vector and is a solution to

%a)% = o (2.133)

and @a is the coupling vector, which satisfies the equation

(T denotes transpose). For the electric field formulation,’where

symnetric matrices are encountered, these two vectors are identical

[;71:
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Thus,

..

(2.134)

further,let ~a IN?norm.~ized such that its mu- .Progressing one step

imum element and equal to unity.

[Ca normalized]
. .

(2.135)

and define

normalized

(2.M6)

such that

-D
where $a is the normalization coefficient.

(2.1:37)

Since

the normalization coefficient is determined through consideration of a

particular singularity [2], Sp, such that

6pT~(s);(s)-%p = CpTfi5p= @Tcp (2.138)

(Note: B is the identity matrix.”) .

—

—. )
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Botingthat

I -----
I

where

E JZ’(SP) == S=sp

anc36W is the Kronecker delta function. Taking the

approaches Sp in (3.141) results in

= ~pr?jf3aE#z’(SP)5PCPWP .

from which we conclude that

6P= 1 “- ●

cp%t(sp)~

Therefore,

where na=,

= 8, (2.140)

(2.141)

(2.142)

limit as s

Is defined as the coupling coefficient. With the matrixelementsof

~(s) defined by (27105), let the incident field be a step-function

plane wave, such that

Eo(s) ~= E /S.

(2.143)

(2.144)

(2.145)

(2.146)

Thernatrix elements of~(s) are then defined as

42
-

..._



. .

- dl#
-~” ‘

(2.1,47)

H..
—%-

.)

i -“yzmCos ei
vn =4ncoE0sin 0 e [

e-YBfa-eyBi(a+2h)
1

m= 2,3,...N-l.

Evaluating (2.145) through the residue theorem will prcduce appropriate..=-—...—. -–.—.—. ..—.—-=.== .-

Heaviside functions, which M(z viewed as enforcing causality [37], [1-3].

The exponential dependence of (2.1~5) is expressed by

Cos Oi~meSt . De-yzm ‘[ 1
e-yBia-eyf3i(a+ 2h) est,

where

D= 4UCOE0 sin f3i.

(2.].48,.)

(2.:Llg)

(2.148) can rewritten as

[
di-- rJ 1-

cos ei + fh
Vmest =De

es[t - Zm cos ei - ~i(a + 2h) ]

1
(2;L50)

c

such that (2.145) becomes

(2.151)

with ~a(s) a vector with matrix elements definedby (2.150). In other

words,
. .

Va(s) = [vmest] = V(s)est.

For the sake of simplicity, let

Zm
71 =

cos f3i + 13ia—
c

_ ..]

(26153)



and

(2.151)

such that the matrix elements of ~a(s) are

vmeSt =D

Since the integrand
.

through the residue

I(t) = E
a

[
s(t-Tl)-es(t-T2)

1
(2.155)e

●

of (2.151) has only poles at s = Sa, evaluation

theorem produces

8c.lCcfoE~oTG~(t) (2.156)

where

tith

( sa(t-~l)-u(t-~a)e
%@ = D u(t-?l)e

8a(t-72)

)
.

m= 2,3>...1-1 (2.158)

Note that the complex natural frequentiies,natural mode vectors~

and normalization coefficients are not functions of the incident field.

Only ~a(t) is altered upon a change in the singlesof incidence. ~ere-

fore,once s=, !3a,and ~ao are found for a particular L, h, and a,

the current excited by any incident field is easily found. This is

perhaps the greatest utility of SEM.

The singularity expansion method,

tromagnetic problem, produces a system

applied to this transient elec-

of matrices , which are solved for

the fa~d~cedcurrent on the object cy~inder ss & ~.cticn cf tiZX!.
o

Hemistic study into the nature of tliesecomplex natural frequencies,
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natural mode vectors, and normalization coefficients is justified
.—

through a better understanding of the two-body transient scattering

problem.

ApproxiL?3tionsand Limitations Imposed

The approximations and assumptions which are accepted throughout

this thesis are of prime importance. Whether analytical or numerical

solutions_t_oproblems me exercised,,final results must be evaluated in

li~ht of limitations placed upon their very existence. Therefore, this

section brings together all of these approximations and assumptions

with ‘thepurpose of examination and evaluation.

The assumptions-and approximations are as follows:

a)

b)

c)

d)

e)

f)

g)

As previously

Current is assumed to flow only in the direction of the
cylinder axis (2.11).

Ikmmdary conditions are enforced only to the axial
component of the tangential electric field (2.61).

End caps on the cylinders are ignored (2.8).

The current is assumed to be separable (2.17).

Taylor’s [Lo] actuationsare adapted for the circumferen-
tial variation of the currents (2.18).

The moment method introduces an approximate numerical
solution (2.95),

The exponeritid e-yr is expanded in a two term Taylor
series for the solution of T (A1.5).

outlined in the introduction, the first two assumptions

restrict the cylinder to be thin, L >> a. Ignoring the endcaps smounts

to letting the cross sectional suxface area be small, a << A, so that

atiycurrent induced on the endcaps will not significantly contribute tG

the scattered field [46]. By assuming the current to be separable, the
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restriction that L >,>a is

poor only near the ends of

Up to this point, the

again necessary , since this approximation

the cylinders.

most restrictive clause placed upon this

formulationis that the length of the cylinder must be much greater

than its radius. Thus, the cylinders mu;t be thin.

Taylor [40] states that the equation for circumferential variations

of the axial aurrent (2.18) is applicable to electrically thin cylind-

ers separated a short distaricefrom the ground plane and provided ‘,.?

length is much greater than the height above the ground plane, the

expressions can be used for finite length cylinders. Concerning the

separation from the ground plane, this restriction is linked to approx-

imatingthe two parallel cylinders as supporting a transmission line

mode (TIM). Typically, this TEXmode requires that h << 1, a <C A,

and L >> h. Nevertheless, note that when a c< h, (2.18) approaches

unity and the circumferential variatiom of the axial.current becomes

uniform - as would be the case for a thin cylinder far from the ground

plane [1-4]. The current is uniformly distributed in $ at a fsx dis-

tance from the ground plane and only becomes nonuniformly distributed

as the cylinder draws near the ground plane. Therefore, when (2.18) is

actually affectin~ the distribution of the currents> these typical TIM

mode restrictions are satisfied. More importantly, when the cylinder

is far removed, circumferential variation of the currents is uniform,

(2.18) doesn’t significantly affect

transmission line restrictions need

the equations, and the typical

not be satisf~ed.

With

aboutr =

reference to (AI.5),the Taylor series expansion of e
-yr

O is truncated after two terms:
.
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where

-yr = ~
- yr + r2y2 - r3y3 + . ..(-l)nrnyn +

21 3! (2.l:j$l)
n! ““”._—

(~)n
n! s

r= [z2+d2sin2+/2]1/2 -~<z<$
.

The maximum of yr is

where

.—

d = 2a.

Thus

maxofyr=y P

rA2 —
=y ~+lia2

if

yA << 1

and

(2.161)

(2.162)

(2.1,64)

it follows that
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max of yr << 1.

Therefore9

(2.165)

~-yr
= Lyr (2.266)

provided(2.163) and (2.164)are satisfied. This does not place any

restrictions on the relative zone size, A, with respect to

as pointed out by Tesche [43]. By momentarily lettin~ y =

and (2.164) are implied by

The restriction, (2.167), is a necessity

is forthcoming. Accurate reconstruction

the radius

2fi/A,(2.163)

(2.167)

(2.I.68)

whenever a numerical technique

of the current on an object

couldrtftbe expected if the zone size was on the order of a wavelength.

As for (2.160), the cylinder has already been assumed thin with re~pect

to L and this must now require that the cylinder

to wavelength. Since this is not a steady-state

ing transients composed of an infinite number of

be thin with respect

problem but one involv-

frequencies, (2.168)

indicates that this

response analysis.

encountered is that

formulation is not applicable to high frequency

Ii conclusion, the “most” restrictive sentence

this formulation applies to thin cylinders.
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111. NUMERICAL l.fRT1~-!YS--XNDRESULTS

A computer code has

developed in the previous

resonances, naturul mode

transient

a general

nation is

been written to implement the equations

section and thereby determine the natural

vectors, normalization coefficients, and

current response. The cylindrical scatterer is described by

length, radius, and height above the ground

provided by a step-function plane wave with

of incidence. Brief mention

w.rrtinted.

of some of the numerical

plane. Il~~~i-

arbitrary angles

methods used is

In order to better adapt the equations for ~ (2.112), H&(2.108),

and H~(2.110) to nmerical evaluation, their fom can be ~tered”

After suppressing the f~lnction,~ dependence and highlighting the

matrix notation, these equations are

-Hi(m+l,n) +

(y2A2+2)Ho(m, n) + Ho(a-l,n)

(y2A2+2)Hi.(~,n) - Hi(m-l,n)]

~(m,n)

Hi(m,n)

= J(n-3/2)A

J

(n-1/2)A
=

(n-3/2)A

1~(n-1/2)A

J

2ir e-yrl

I d~o ‘

o
1 t(a/h)cos $0 rl

f21T ,

J
J- e‘yr2 d+i’

o
1 -(a/h)cos ~i —

rz

(3.1)

dz’

(3.2)

dz’,

(3.3)
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can

for

r~= [d2 sin2$ -f-((m-l)A-,z’)Z]2/2 (3.4)

ra = [(dz + &h) si;~’+ 4h2 + ((m-l)A-z’ )~]1~2 . (395)

Knowledge 0$ the s-yrmetries occuring in these matrix equations

significaritly reduce the amount of computer time required

this numerical solution. In (3.2), let

u = zt-(n-3/2)A ,

such that

(3*6)

L

H

21T ~
‘v d~or du

Ho(m,n) =
e (3.7)

1 +(a/h~cos $0’ r
00.

with

r= [d2 sin2 $ + (A(m-n+l/2]-u)2 ]~/2 .

..

Obviously,

(3.8)

Ho(m,n) = Ho(m+i,n+i)
i = 0,1,2,3.. . (399)

since r is determined by the difference between m and n - not their ,

actual values. Rote also that a similar change of variables in (3.3)

leads to the same conclusion with regard to Hi. on relating this

symmetry to (3.1), i.ti.sapparent that

%iln= ‘m-i n+i i = 0;1,2 . . . . . (3.10)

Thus, every element in any diagonal of the impedance r.atrix,~(s), is

idecti.cal. This reduces the number of matrix elements, ~, which have s
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to be calculated fron (N-2)2 to only 2N-5. Furthermore,upon numerical

evaluation it was found that

HO(m,n) = HO(n,m) (3.11)

and likewise that this s~mnetry existed in Hi. Through (3.1), it

follows that

z(m,n) = z(n,m). (3<12)

Proving (3.11) analytically was pursued at length, but not established.

However, this syrrrnetrywas used to conserve computer time in calcu-

lating z(m,n). These simplificationsrequire that only”HO(m,n) and

Hi(m,n) form =landn =2,3,... N-1 bedetemined along w’ithT (2.125)

in order to form the entire impedancematrix.

Since both single and double numerical integrationswere necessary,

a n-dimensional Romberg integration routine [47] was modified for

dealing with complex functions.

Other researchers [1-3] have considered the interactions of thin

cylinders with an electromagnetic pulse over perfectly conducting

grounds. The “thin-wire” assumptions and approximations have been

incorporated into an SEM analysis. One of several computer programs

written by Shumpert [1], [3] was secured and data obtained concurrently

with the cornputercode_written bythis author. In this manner, the

number of zones used, accuracy requested, and geometrical parameters

were insured to be identical. The numerical results produced by

Shumpert’s [1] computer program, shall be associated with the title

“approximate” kernel, in the sense that the “thin-wire” approximaticms

were-incorporated; and in particular, the current was approximated by

51



filamentsof currenton the cylinderaxis. Data foundthroughequations

developedin this paper shallbe associatedwith the label“exact”

kernel,for obviousreasons.

Beforepresentingda’;arelatedto the cylindricalscattererover

the groundplane,a brief analysisof the’cylinderin freespaceis

appropriate.By settingthe image terms (2.110] equal to zero and

letting h >> a, the impedance matrix (2.112)reducesto one character-

isticof a cylindricalscattererin freespacewithuniformcircumf ‘:r,-

tialvariationof the axialcur-rent.The kernelis still“exact”,ifithe

sensethatthe currentresideson the cylinder surface. Figure 3-1

illustratesthe position of some of the complex natural resonances,

or singularities, for both the “exact” and “approximate” kernel. Only the

second quadrant is shown - the complex conjugates appearing in the third

s
quadrant. As noted by Tesche [37], the singularitiesoccur in layers

and can be described by two subscripts, s~n: “Lfrdenoting the layer

of the pole and I%” referring to the pole within that layer. The

natural frequencies are presented as having mode distributions that are

eitherevenor odd with respectto the scatterercenter. Figure3-1

illustratesthe soundnessof the third“thin-wire’!approximation-

currentsmightas well be approximatedby filamentsof currenton the

cylinderaxis,sincesingularitylocationsfor the “exact”and “approxi-

~te~!kernelsoccurat essentially the Sme point~. Computer time required

to locate the singularities through the l’exact~’kernel was roughly twice

that

data

that

necessarywith Shumpertts[1]program. Table 3-1 givesthe numerical

depictedin Figure3-1. Figure3-2 pointsout the well-knownfact

a; the cylinderbecomesfatter,the singularitiesmust move to the
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.41J_p-
leftand down [37]. From circuittheory,thismovement
.,,
decreasedqualityfactor,Q, [48],whichis expectedas

the cylinderbecomeslargerwithrespectto its length.

pointsto a

the radiusof

Data shownin

Figure3-2 for the caseoi L/a = 10 can onlybe consideredas a “first-cut”

approximationbecauseof the thincylinderrestrictionsthathavebeen
-———._

imposedupon the “exact”kernel..Nevertheless,one wouldexpectthe

results,displayedin Figure3-2,for the “exact”kernelto be more

accurateas the cylinderapproaches‘L/a= 10 than the trajectoryproduced

by the “approximate’’kernelTable 3-2, presenting Figure 3-2 in tabular’

form,showsthe divergence of correlation between the “approx

l!exactl!kernel-sas tha cylinder becomes fatter. Note that in

and table, the commonly used shape parameter is defined by

Q = 2 ln(L/a).

Suppose a cylinder with a shape parameter of 10.6 (Ua =

mate” and

this figure

(3.1.3)

200) is now

placedin proximity to and parallel to a perfectly conductingground plane -

of infinite extent. As the cylinder approaches the ground plane, the

circumferentialvariation of the current becomes nonuniform and one

would expect the singularitiesnearest the imaginary axis to approach

the theoreticalresonancesof the idealtwo-wiretransmissionline. As

displayedin Figure3-3 the singularityassociatedwith the firstres-

onanceof the scattereritself,Sll,moves towardits expecteddestination,

o.)L/c= T. Boththe “approximate”and the “exact”kernelyieldthe sane

trajectoryuntilh/L ~ .1 or when the scattereris approximatelytwentyradii
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away fromthe groundplane. The “exactl’kernel continues on its upward

arc toward the first resonanceof the transmission line as the “approxi-

mate”kernel“fallsrapidlytowardthe origin. The increasingdifference

between‘he‘H singularitylocationspredictedby the twodifferent

formulationsis highlightedin Table3.3. With the cylindertwo radii

away fromthe groundplane,the “approximatet’kernelwas ill conditioned

and the

present

30, 20,

singularitycouldnot be located. Figures3-4,3-S,3-6,and 3-7

similartrajectoriesof the Sll singularityfor L/a = l~o~

and 10 respectively.Tables3-4,3-S,3-6,and 3-7 exhibit-he

numericaldataobservedin the figuresof the samenumber. It shouldbe

pointedout that in eachof thesetrajectories,the l’exact”and “approximate”

kernel data seem to _begindiverging when the spacing @/L] is approx~m-at~~y

equal to ten. This fact seems to be ratherindependentof the particular

L/a ratio. The trajectories of the singularitiesassociated with the

second resonance of the scatterer itself with L/a = 200, 100, 30, 20, and

10 are foundin Figures3-8 through3-12. k was the casewith the Sll

trajectories,the path traversedby S12 in thesefigures is predicted by

both kernels, until some point of divergence. The exact kernel natural

resonancecontinuesto advancetowardsthe imaginaryaxiswhilethe

approximatekernelbreaksdownward. Note thatwhen L/a is equalto 200,

thepointof departurebetweenthe two formulationsoccurswhen the

cylinderaxisis slightlycloserthanL/10to the groundplane,or when

its axisis 20 radiiaway. With L/a = 1O(I,the lastpointof agreement

in singularitylocationsbetweenthe exactand approximatekernelsoccurs

whenh/L = .1 and with the cylinderas closeas 10 radiiawayfromthe
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groundplane. The ratio of height to radiusis apparentlynot as

criticalas the ratio of height to cylinderlength. Tables 3-8 through

3-12 presentin tabularform the trajectoriesof S12 corresponding

Figures 3-8 through3-12.

The real and imaginarypacts of the normalizednaturalmodes

associatedwith the first three resonancesof the scattererfor L/a = 30

and h/L = 0.05 are found in Figure3-13. It may be pointedout that these

distributionsare essentiallyidentical to thosefoundpreviouslyfor

scatterersisolatedin free space.

With the couplingcoefficientas definedin eq. (2.146),calculations

._ofthis coefficientversus the angle ei were made for the case L/a = 30

-and h/L = 0.0S. These calculationsare shown in Figure3-14. (Notethe
.

anglej31was held constantat fli= 1800.) J% would be expected,therl~1

andnt3 peak for broadside incidence. However it is more difficult

tornterpret the behavior ofn,2. Figure 3-15 presents similar data for

n.d for the case L/a = 20 and h/1.= 0.075.

With the thin cylindricalscattererfar removedfrom the ground

plane,let the directionof propagationof the incidentfieldbe such
.

that ei = 30° and $1 = 180° (seeFig. 2-2). The currenton the

cylinderat z/L = .7S is presentedin Figure3-16 for both the exact

and approximatekernel.
.

Umashtikar [2], [3] and

. betweenthe two kernels

Data for the approximatekernelwas foundby

is made note of only to illustratecorrelaticm

when the circumferentialvariationof the axial

currentis uniform. All of the currentplots in this note were constructed

usingthe firstthree singularitiesnearestthe imaginaryaxis,which is

a validapproach[1-3]when considering“late time”, low frequency
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response. Obviously,the utilityof the exactkernelformulationis with
@

the scatterer near the ground plane. With the scatterer1/20of its

lengthaway from the cylinderbroadside(ei= 900)and fromabove

(Oi= 1800). As shownin Figure 3-17, the trankient current on the

cylinderat threedifferentpositionsis.presentedfor the casewhen

h
L/a = 30, ~= i i

O.OS~e = 90°,and $ = 180°. As indicated,the low damping

constantresultsin considerableringingof thiscurrent. A similartran-

sientcurrentwas obtainedfor the case L/a = 20, ‘/a = 0.075, ei = 90°,
.

and +1 = lgo”. Again, considerable ringing is evidneced as indicat.d by

.tiL
the close proximity of the poles to the j= axis in the trajectory curves.

Since both time histories presented in the previous two figures represented

behavior for broadside incidence from above the scatterer, another more

‘/L = 0.0S,6=
.

generalcase is includedin Figure19 whereL/a = 30, ~ 30°,

$i = 180°,and /L=O.2S, 0.S,0.75.
0
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Note: Due to the small difference betveen singularity locations
for the exact and approximate kernels with respect
to graph dimensions, they are shown at the

same point. 815 x I

= 200 (0=10.6)

x EVEN MODES
. ODD 140DES

. .

’23 .

I

S13>

S91
G-1.

1 , ,

8 6 4 2
UL—

Figure

12

c

3-1. SinolaritY Locations of the Free Space Case with L/a=~~OO

Approximate and Exact Kernels

.
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Table 3-1. Location of the Singularities for the Free Space Case where
L/h = 200, (Note: Approximate and Exact Kernels yield
essentially the same values for a very thin wire scatterer.)

SINGULARITY

‘II

’12

’13

’14

‘15

’21

’22

’23

LOCATION

-0.2575+j2.9093

-0.3570+j5.9346

-0.3903+j8.8286

-0.3676+jll.5061

-0.1920+j15.9934

-7.1023+j0.0031

-8.0816+J4.7632

-8.1417+j8.4358
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EXACT KERNEL - EVEN HODES
APPROXIMATE KERNEL - EVEN MODES ‘

EXACT KERNEL - ODD MODES
APPROXIMATE KERNEL - ODD II(K)ES

El’-’ +20

9,5

j+-

0)0

6.5

5,,0

3,5

2,0

Figure 3-2. Trajectories.ofthe SingularitiesAssociated with the First
Three Resonancesof the Scatterer Itself for the Free Space
Case as a Function of L/a - Approximate and Exact Kernels.
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*

*

L/a

200

100

30

20
.,

.?l

10

Table3-2. Trajectoriesof SingularitiesAssociatedwith the First
ThreeResonancesof the Scattererin FreeSpaceas a
Funcationof L/a.

SingularityLocations
n Sll ’12 ’13

10.60 -0.2575+j2.9093 -0.3570+j5.9346 -0.3903+j8.8286
-0,2576+j2.9096 -0.3S57+j5.9368 -0.38S8+j8.8338

9.21 -0.2970+j2.8499 -0.4230+j5.8SS0 -0.4702+j8.7407
-0.2973+j2.8517 -0.4212+jS.8612 -0.4633+j8.7533

6.80 -0.3903+j2.6524 -0.S990+jS.5646 -0.6995+j8.4030
-0.3946+j2,6742 -0.S990+j5.6232 -0.6804+j8.S088

5*99 -0.4279+j2.S377 -0.6815+jS.3829 -0.8167+j8.1833
-0.4380+j2.S847 -0.6879+j5.5098 -0,7866+j8.4120.

4.61 -0.4893+j2.2499 -0.8464+j4.8964 -1.0790+j7.S747
-0.S340+j2.3878 -0.9065+jS.3055 -1.0085+j8.3377 “

SolutionMethod “

~’approximate”
“exact”

?lapproximate”
“exact”

‘approximate”
“exact”

“approximate”
lt~3&I

‘Approximate”
“exact”

* o
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Note: When the difference between exact and
approximatekernel singularityloca-
tions is small, they are shwn as one
point.

L/a = 200 (O L 10.6]

X11 SIiWJLARITY- EXACT KERNEL

a ’11 SINGULARITY- APPROXIMATE KERNEL

14

-=: 11

.0

h/L = .1
h/a = 20 +

h/L = .5
h/a = 100
I,

-.25

-2.95

.06 a
12

--2.9

-2.85

t ‘2
.8

9 7Q

-. 2 -.15 ~L -.1 -.05 0

-z-
Figure 3-3. Trajectoryof the SingularityAssociated with the First !lesonance

of the Scatterer Itself as a Function of h/L or h/a with L/a=200 -
Approximateand Exact Kernels
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L/a = 200

h/L

.75

.6

●5

.4

.3

.2

.1

. o-z

.06

.05 “

.01

-,.

Trajectory of the SingularityAssociatedwith the First
Resonanceof the ScattererItselfas a ~cti”n ‘f ‘/L

or h/a with L/a = 200 - Approximateand ExactKernels

(o ‘= 10.6)

h/a

ly3

120

100

80

60 .

40

20

14

12

10

2

a

. .

s1l SIHGUIARITY LOCATIO1l
APPROXI1.fiTEKERNSL EXACT KERNEL

-.3755 + j2.8313 -.3769 + J2.8339

-.2824 + j2.T804 -.28~o + j2.7811.

-.2212 + j2.7805 -.2228 + 32.7806

-.1635 + s2.8001 -.1649 + 32.7998

-.1099 + J’2*8385 -.1113 + $2.8380

-.0615 + ~2.8987 -.0626+ J2.8982 o

-.0217 + J2.9866 -.0225 + J2.9894

-.0121 + 32.9928 -.0131+ j3.0257

-.0087 + $2.9256 -.0104 + J3.0391

-.oo\2 + j2.5959. -.0079 + J3.0532

-.0009 + J3.l150
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L/a = 100 ($2=9.21) h/L =
h/a =

h/L =
h/a =

SI1!GUMRITY - EXAH KERNEL
SII{GUMRI1’Y- APPROXIMATE

●3

.4

.05
5

.06
“6

.07
7

.1
10

.2

.06
6

-El
1 t t 1 r

-. ‘d> -. -.15 CL -.1 -.05
—

.0$

I.o

!.95

?$9

2.85

2.0

12.75

2.7
0

c

Figure 3-4. Trajectory of the Singularity Associated wi’.hthe First
Resonance of the Scatterer Itself as a Function of h/1,
or h/a with L/a = 100 - Approximate and Exact Kernels
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Table 3-4.

L/a = 100

Trajectoryof the SingularityAssociated with the First
Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 100 - Approximate ad Exact Kernels

(Q = 9.21)

h/L h/a

●5 ’50

.4 40

●3 30

.2 20

.1 10

.0’7 7

.06 6

● 05 5

● 02 2

% SINGUWIm LOCATIO1i
APPROXIMATE KERNEL EXACT KERNEL

-.237s + j2.7063 -.2411+ j2.706b

-.1767 + j2.73J0 -.1799+ 32.7331

-.1202+ j207804 -.1232+ J2.778’7

-.0689 +j2.8501 -.0715 + j2.8~176

-.0256 + j’2.9514 -.0~5 + j2.951~

-.m.b6+ j2.9554 -.0170 + j2.9933

-.0103 + ~2.8660 -.0138 i- j3.oo88

-.0040 + J2.4108 -.0107 + j3.0256

-.0035 + J3.0821_
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L/a = 30 (n s 6.80)

-p
x Sll SINGULARITY- EXACT KERNEL

Ea s,, SIflGULARITY- APPROXIMATE KERNEL ‘

-.

-;3

h/L = 0.4
h/a = 12

-0.3 OL -0.2 -0.1

/

0,06
1.8

0.00
2,4

0$0

2.9

j~

c

2.8

2.7

2.6

c

Figure 3-5. Trajectory of the SingularityAssociated with the First Resonance of the
Scatterer Itself as a Function of h/L or h/a with L/a = 30 - Approxilriate
and Exact Kernels
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Table 3-5. Trajectory of the Singularity Associated with the First
Resonance of the Scatterer Itself as a function ofh/L
or h/a with L/a = 30 - Approximate and Exact Kernels.

L/a = 30 {Q = 6.80)

h/L

0.4

0.3

0.2

0.1

0.08

0.06

0.04

h/a ’11 SINGULARITY LOCATION

APPROXIMATE KERNEL EXACT KERNEL

-(?.1957 +j2.5422 -0.2098 +j2.5448

-(1.1387+j2.6077 -0.1505 + j2.6066

-0.0850 + j2.7000 -0.0957 +j2.@324

-0.0362 +j2.8329 -0.0454 +j2.8208

-0.0271 +j2.8500 -0.0363 +j2.8547

----- -0.0277 +j2.8936

-,---- -0.0173 +j2.9397
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—-
-)

—

● ’11
SINGULARITY- EXACT KERNEL

C3 s,, SINGULARITY- APPROXIMATE KERNEL

0.06
1.2 /

0.08
106 1

0.1
2

0.2
4

h–= 0.3L

h6—=

/
~

-0.3 -0.2aL -0.1

2.9

2.8

2.7

2.6

2.5
0.0

) c—* Figure 3-6. Trajectory of the SingularityAssociated with the First Resonance of
the Scatterer Itself as a function of h/L or h/a with L/a = 20 -
Approximateand Exact Kernels
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Table 3-6. Tra$ectoryof the Singularity Associated with the First
Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 20 - Approximate and Exact Kernels.

L/a = 20 (Q = 5.99)

tt/L h/a
%

SINGULARITY LOCATION

APPROXIMATE KERNEL EXACT KERNEL

0.4 8 -0.198 +j2.443 -0.2211 + j2;454

0.3 6 -0.143+ j2.516 -0.1644+ j2.519

0.2 4’ -0.091+j2.617 -0.1085+ j2.611

0.1 2 -0.041 +j2.763 -0.0563 ? j2.747

0.08 1.6 -0.031 +j2.776 -0.0463 + j~.784

0.06 1.2 ‘ ----- -0.0359 + j2.829
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L/a = I.O(Q= 4.60 5)

.

_—

)

x s1l SINGULARITY -

a 811 SINGULARITY -

.,

APPROXIMATE kZRNEL
h/L = .2
h/a = 2

/
w

//’
~/’3 /

/3/

/

/
7

.4 /../x 4
/

la

/’$ ,/

../

-“/””2 /a
/

-x/’
/- ----

h/L = .75 /5
h/a = 7.5 /

#

* t
-. 5 -.4 -.3 aL -.2 -.1

?*5

?.4

&

2.3

2.2

2.1

2.0

c

Figure 3-7; “Trajectoryof the SingularityAssociatedwith the First
Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a =:10 - Approximate ad Exact Kernels
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Table 3.?

L/a = 10

Trajectoryof the SingularityAssociatedwith the First
Resonanceof the ScattererItselfas a Functionof h/L
or h/a with L/a = 10 - Approximateand Exact Kernels

(0 = 4.605)

h/L h/a s1l SINWLARITY LOCATION
APPROXIMATE KERNEL EXACT KERNEL

.75 7.5 -.3694 + J2.Q327 -.4506 + j2.088r

.6 6 -.2905 + 52.0?55 -.3565 + 32.1491

.5”5 -.241b + j2.1482 -.2995 + J2.1982

.4 4 -.1939 +j 2.2144 -.2452 + 32.2576

●3 3 -.1473 +J2.3004 -.1923 + j2.3330

“2 2 -.1007 + J2.4190 -.1401+ J2.J345

0
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Note: }/henthe difference between exact and approxi-
mate kernel singularity locations is small,
they are shown as one point. ‘4

I
L/a = 200 (o = 10.6)! /.

.05
● ’12 SINGULARITY- EXACT KERNEL 10
❑s,~ SINGULARITY- APPROXIMATE KERNEL

.06 /

.

–,=

h/L = .5
\ h/a = 100
I

f

.07/
14

I
●

i
.06
12

[
.4

* 80

/

12

/

~~
-. -. 4 -.3 OL -. -.

I
.

--E-
Figure 3-8. Trajectoryof the SingularityAssociatedwith the Second

Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 200 - Approximateand Exact Kernels

6.11

6.05

6.()

5.:)5

J$

5.5)

5.85

f

5.8

5.75
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Table 3-8 Trajectory of the Singularity Associated with the Second
Resonance of the Scatterer Itself as e Function of h/L
or h/a with L/a = 200 - Approximate and Exact Kernels

. .

~/a = 200 (Q = 10.6)

h/L

*75

.6

.4

.3

.2

*1.

.07

.06

.05

.01

h/a

150

120

80

60

’40

20

14

12

10

2

s-10 SIHGUIMITY LOCATION
/@PROXIMAiiiKERNEL EXACT KERNEL

-.2919 + j5.9401 -.29z~ + j5.9404

-.3633 + j6.0304 -.3591 + j6.0308

-.h58g + J5.83b3 -.4583 + j5.8404

-.3385 + j$.7736 -.3395 + j5i7783

-.2014 + j’5.8041 -.2022 + j5.8092

-.0H4 + J5.gi84 -.0767+ j5.9339

-.0468+ j5.9L98 -.0456 -i-J5.9945

-.0369 + J5.9207 -.0364 + j6.oII’8

-.0254 -I-j5.760 ‘ -.0279 + j6.04z8

-.004L -i-j6.1552
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L/a = 100 (o = 9.21)

“ ’12 SINGULARITY - EXACT KERNEL

w ’12 SINGULARITY - APPROXIMATE KERNEL

.05
5

h/L= .06
h/a = 6

/

~~
-. 5 -.4 -.3 -.2UL -.1

-
c

Figure 3-9. Trajectory of the SingularityAssociated with the Second
Resonance of the Scatterer Itself as a Function of h/L
or h/a with L/a = 100 - Approximate and Exact Kernels
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Table 3-9. Trajectory of the SingularityAssociatedwith the Second o

Resonanceof the ScattererItselfas a I!Mctionof h/L
or h/a with L/a = 100 - Approximateand ExactKernels

L/a = 100 (Q = $2.21)

h/L “ h/a

●5 50

.4 40

.3 30

.2 20

.1 10

● 07 7.

.06 6

.05 5

.02 2

s12 SINGULARITY LOCATION
APPROXIMATE KERNEL EXACT KERNEL

-.5876 + j5.8812 -.580T + j5.8969

-.5263 + J5.7139 -.5304 + j5.7262

-.3791 + J5.6668 -.38+8 + J5.6737

-.2271 + j5-.7l54 -.2323 +j5.7201

-.0909 + ~’5.8521. -.0938 + ~5.8664

-.0563 +35.8860 -.0583 + j5.9367

-.0444 + j5.8451 -.0475 + j5.9673

-:0295+ j5.6256 -.0375 + j5*9931

-.0124 + j6.0958
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L
–=30 (n= 6.80)
a

● S12 SINGULARITY - EXACT KERNEL

E3 S,* SINGULARITY- APPROXIMATE KERNEL

h–= 0.5
L.

l!.=15
a

s

0,04
1.2

/

0.05
1.5

0.06
1.8

0.03

~6~
-1.00 -0.80 . . . c

OL
7

J—.

5.90

j%

5.80

5.70

5.60

5.50

5.40

5.30

5.20

Figure 3-10. Trajectory of the SingularityAssociated with the Second
Resonance of the Scatterer Itself as a Function of h/L or
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Table 3-10. Trajectory of the SingularityAssociatedwith the
SecondResonanceof the Scatterer as a Function
of h/L and h/a with L/a = 30.

h/L

0.s

0.4

0.3

0.2

0.1

0.08

0’.06

0.04

h/a

15-

12

9

6

3

2.4

1.8’

1.2

’12
SingularityLocation

ApproximateKernel ExactKernel

-0.8431+j5.4258 -0.8888+j.5.5322

-0.6403+j5.3128 -(1.6857+jS.36S2

-0.4535+jS.3299 -0.4917+jS.3602

-0.2826+jS.4324 -0.3138+j5.4481

-C1.127S+j5.6261-0.lS15+jS.6406

-0.0989+jS.6614 -0.1212+jS.6983

-0.0646+j5.S414 -0.0916+jS.7669

-0.0064+j4.9373 -0.0619+jS.8S8S
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Figure 3-11. Trajectory of the SingularityAssociated with the Second
Resonance of the Scatterer Itself as a Function of h/L (or
h/a with L/a = 20 - Approximate and Exact Kernels
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Table 3-11. Trajectory of the Singularity Associated
with the SecondResonanceof the Scatterer
as a Functionof h/L and h/a with L/a = 20.

.

L/a= 20 (n = 5.99)
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’12
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-0.3032+jS.2737 -0.3558+j5.3131
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Table3-12.Trajectoryof the SingularityAssociatedwith the Second
Resonanceof the Sc&ttererItselfas a Functionof h/L
or h/a with L/a = 10 - Approximateand ExactKernels

L/a = 10 (Q = 4.60s)

h/L h/a ’12 STHGIJTLARITYI.OCATION
APPROXIWTE KERHEL EXACT KEFWEL

.6 6 -1.1060 + jh.5349 -1.702~ + j4.7277

●5 5 -.8479 + ~4.5388 -1.1620 + ~4.8ogl

.4 4 -.6571 i-J4.5976 -:8720 + Jk.8323

●3 3 -.4915 + J~.’?Og2 -.6524 -i-54.9144

●2 2 -.3366 + ‘jh*8886 -,4s60 + J5.0709
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Iv. CONCLUSIONS

The use of an assumed circumferentialvariation for the axial

cu~~ents induced on a thin cylinder, near a perfectly conducting ground

plane, enhances the validity of analysis. ‘~in-wire” approximations

produce reasonable results when the thin cylindrical scatterer is tnon

than one-tenth of its length above the ground plane. As the thin cyl-

inder is brought near to the ground plane, the assumption of only axial

variation of the currents begins to breakdown.

With the thin scatterer in free space or far removed from theJ

ground plane, the computer time consumed in locating singularities

through this formulation is roughly three times that required by

Shumpert’s [11 computer code. As the cylinder approaches the ground

pIane, the computer time required increases markedly. Nevertheless,

when the scatterer is close, one cannot use “thin-wire’tapproximations-

the exact kernelwith allowance for nonuniform circumferentialvariation

of the axial current is necessary. The usefulness of this formulation,

due to the increased complexity and calculation time required, must be

evaluated in light of the particular scattering problem being solved.

& noted previously, the assumed circumferentialvariation of the

axial current is linked to a

The addition of higher order

data obtained. However, the

transmission line mode (TEM] approximation.

modes would improve the accuracy of the

improvement in accuracy versus the increase

in timeand effortrequiredwouldnecessitatecarefulstudy.

.
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APPENDIXA

EVALUATION OF A PARTICULAR SINGUIAR INTEGRAL

t
This appendix deals with the evaluation of a particular singulsr

integral, namely

where

r = [Za+da ~~n2!$1/2
.

;-yr ““-
—d~dz,
r

(Pal)

(A1.2)

As shown by Tesche [43], in order to accurately treat the integration

the singularity can be integrated analytically. Interchanging the order

of integration and rearranging the form gives

f

211
T=

o

Expanding e-Yr in ~

A.-
1

1

2 e-yr

1 +(a/h)cOs $ -A
—dzd$ .
r

-Z

Taylor series about r=O,

(Al*3)

e-w =l-yr+#y2-r3 y3i- ....(-l)nrnyn .... (A1.4)
K m m

and retaining only the first two terms (this truncation places restrict-

ions on the problem , which are mentioned on page 47) yields

:-w=.,.yr ‘(A1.5)

9.3



Thus,

with r given by (Al.2). Tesche [$3]used Dwight’sequation(200”01~[491

~

d

;dz= 2 in
[ 1

A 2+ Sin2*]M2 -
-~ *+ [(&)

2,

Thus,

J

2m ~
T= -yA

o
1 +(a/h~cos @

1[[1.~+$#+

21n (sin +/2). (AI..8)

111/2

1

-ln[sin4/21 d$
Sinz ‘$/2

(Al*9)

f

2X ~

J

2X ~
T= -yA 1 +(a/h)cos$

d$+2
1 +(a/ticos$ ●

o 0

0

( A*_in $a +[(jj-a)
)

sin2 $/2]1/2 d+

f

*T ~
-2 ln[ Sin ($/2)1 d+. (A1.lo)

o
1 +(a/h)cos ~

.
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-..

v

t

Provided (a/h)2 < 1, which is satisfied (see Figure 2-l), any standard

integral table [50] (for instance equation 509, p,age425 Of this

reference)gives

t

‘1
1 +(a/h)cos $

d,$= 2r[l-(a/h)2]-1/2 .
0

(AltiLl)

Therefore,

I~=-27ryA +2 *r 1
(

in ~a + [(~)2 +
11-(a/h)2]1~

o
1 +(a/h)cos$

sir32 $/2]
)

1/2 d+

ln[sin $/2] d$ .

-2
J

‘1

o
1 +(a/h)cos $ ●

(Al(12)

The secondterm on the right-hand side of this equation is non-singular

d easily determined by machine integration, bit the last term on the

right-hand side has a singularity. Let

A=2 f
2F In (sin 4/2) d+
1 +(a/h)cos$ ●

o
(KL*13)

From Dwight [~g], page 140, equation (603.2),

ln~sinxl =-ln2 - cos 2x- cos 4x - cos 6x ... (Alo14)— —
2 3

for sin x #-o.

Letx= 4/2 for $ between O and 21T, such that

-p—

..

Isinxl = lsin $/21 =sin $/2 (A1.15)
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and

ln(sin

This allows A to

A=2
J

2T (-ln2)

o
1 +(a/h)cos #

. (AI,16)

g/2s-n=l
1 n cos n$

d~+a
J I +(a/h)cos ~

d+
o

(M.17)

-47rln2 2U
A= -2~ l/n

f

Cos I@
11-(a/h)2]l/2 1 +(a/h)cos ~ d+ . (U-18)

n=l o

Continuing with the last term on the righ&hand side, ,

f
2Tr cos nf$
1 +(a/h)cos~ ‘+ “Jr

Consider the last term on

formation, $ = S yields

d++

u3..l9j

the right-hand side of (A1.19). The trans-

f

2%

J
-n

cos n$ cos nS
1 +(a/h)cos $ ‘$ = -~ 1 +(a/h)cos B ‘B “z

Letting O = 6 + 2Trresults in

J

2’K
cos no

f
d$=

z cos n(f3-2n)
1 +(a/h)cos $ 1 +(a/h)cos (~-2m) de;

z o

and since cos [n(f3- 2F)] = cos ne,.
..

f

a
cos n$
1 +(a/h)cos$

u

(A1.20)

(A1.21)

(A1.22)
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d
1

1

II

Therefore (A1.19) can be expressed as

J
2W

cos n$’
J

.U
d$=2 “cos n$

1 +(a/h)cos + ~ 1 +(a/h)cos $
d+ . (JU.23)

o

from Dwight [49], page 21g, equation (858.536) is

,1
%

Cos n+ = m [ [1-(a/h)2]1/2-1] n
1 +(a/h)cos $ ‘$ (a/h)n[l-(a/h)2]l12 (AI.24)

o
$

for O c a/h<l, n= 0,1,... .

Substituting this expression into (A1.23) and then placing (A1.23) back

into (All?),

A= -4u ln(2)[l-(a/h]2]-l/2

(27T[ [1-(a/h)@2-1~
-2 ~l/n ~}n[l-(a/h)21

n=l ‘iz )

[

n

‘“k ‘, [ 1]
ln2 +~ll/n(h/a)n ~--1 “ . (A1.25)

Simple manipulation shows that

l/n(h/a)n[~--l]n = l/n [=- h/a]n .

Let

b = ~-- h/a ,

such that

[ 1A‘b ‘n2‘$:’”bn “

(u,26)

(Alc21’)

Since a c h < = (see Figure 2.3, )
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‘i%d’ =-1

and by L’ Hospitsl’srule

l~b

Concludethat for

O<C<l,then

- (a/h}
.,

= 1%= ~- = 00

a<h<co,” - 1 < b < (). ~t’e = -b, ~u~hthat

[

‘m (-l)n en 1‘=& ‘“2+21“ ●

Worn [50],page 432, a logarithmicserieshas the form of

lD(l+X) =x- l/a2 + l/3x3 - l/4x4 + ● .. 9

for -1 < x c 1. ‘I%us,

-In(l+c) = -c + l/’.@ =“1{3C3 + 1[4C4-....

since O < c < 1. With

(M..28) is written as

with

c = h/a [1 - [1-(dh)2]i/2].

Usibg this e~ression for A, originally defined

equation for ‘1[A1.12) gives the final result

.
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,“

o

(A&.28)

(m*a)

(’1.30)

(A1.31)

(M.32)

by (AJ-.13),in the

-



4?’).
T“F
In

—+2 J 1 ~(a/h)cos$ ●a/h)2 o

4?T

J-

i$ +

in 2 f-
[

in h/a.+ 1 - J-]
-1

This function can be easily evaluated numerically

not singular.

. (A1.33)

since the integrand is

1
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