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The electromagnetic scattering of a plane wave
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Plane
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computed to illustrate the dependence of wire mesh
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SECTION I

INTRODUCTION

This report consists of four sections (II~V) which deal with electro-
magnetic scattering by wire mesh structures, Here we summarize what has
been done, how the various sections are related, and what problems remain
to be solved.

Section II considers the plane wave scattering by‘a square wire mesh
with bonded junctions. Such square, bonded meshes are freguently used for
ground screens and in other shielding applications. A special junction
treatment was found necessary to efficiently analyze a bonded mesh, and
numerical results for plane wave reflection and transmission coefficlents
are presented to illustrate the effect of various parameters on mesh per-
formance.

Section III utilizes the formulation developed in Section II in order
to treat surface wave propagation over a square, bonded mesh. This is an
important problem since surface waves can be excited by realistic sources,
such as a vertical dipole antenna. Numerical results are presented for the
propagation constant as a function of various parameters. The similarity of
this propagation constant to that of a plane wave in free space is a measure
of the shielding effectiveness of the mesh.

In order to examine a more realistic model for antenna ground screens,
Section IV considers a wire mesh over a lossy half-space. The treatment is
only rigorously valid for unbonded meshes, but for square meshes the results

for incidence along the mesh diagonal (¢ = 450) are also representative of
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a bonded mesh. Numerical results for the plane wave reflection coefficients
are presgnted in order to illustrate the effect of various parameters.

Section V is primarily an extension of Section IV with numerous
additional numerical results presented. The results for a mesh very close
to the ground should also be valid for the practical case of a mesh lying
on the ground or even slightly buried. Numerical results for rectangular
meshes are presented, and they are found to agree with the method of aver-
aged boundary conditions developed by the Soviets for small mesh sizes.
Also considered in Section V are the radiation patterns of short electric
dipoles of arbitrary orientation, located above a mesh. The numerical
results are applicable to scattering by a test object (by giving an indi-
cation of how the image fields are modified) as well as source radiation
for frequencies high enough to satisfy far field criteria.

The main geometry which remains to be analyzed is the bonded, rectan-

gular mesh—either in free space or above a half space. This type of mesh

has been used, and there are some questions regarding the appropriate cross-—

wire spacing. As well as plane wave reflection, surface wave propagation
along this type of structure is alsc of interest. The propagation con-
stant in the half space geometry would be complex since the lossy earth
would introduce attenuation. Some numerical results would be useful in
quantifying the importance of attenuation of the high frequency components

Electromagnetic Pulse (EMP) simulators.



SECTION II

ELECTROMAGNETIC SCATTERING OF AN ARBITRARY PLANE
. WAVE BY A WIRE MESH WITH BONDED JUNCTIONS

INTRODUCTION

The electromagnetic properties of a single planar array of parallel
wires have been investigated extensively in both a free space enviromment
(refs. 1-5) and for various half-space environments (refs. 6-10). The wire
mesh screen has received less attention, and some disagreements on the
properties of such screens still exist.

The reflecting and transmitting properties of both square meshes
(ref. 11) and rectangular meshes (ref. 12) have been calculated by using
the method of averaged boundary conditioms (ref. 13). The method appears
to give good results for both bonded and unbonded junctions, but is only
valid for mesh dimensions which are small compared with a wavelength.
Otteni (ref. I4) has presented a general solution to the problem which re-
quires matrix inversion to determine the mesh currents and resultant re-
flection coefficients. However, his results are in disagreement with those
of Kontorovich et al. (ref. 11) and Astrahan (ref. 12) who predict no azi-
muthal dependence for the properties of bonded meshes.

A general solution has also been given for plane wave scattering from
separated wire grids (ref. 15). The planar grid separation was allowed to
become small as in an unbonded mesh, but the bonded mesh limit was not con-
sidered. Here we extend the previous solution fo the bonded mesh case by
setting the separation equal to zero and making slightly different approxi-
mations. No special junction conditions on the current or charge at the
junction are found necessary, but convergence of éhe solution is found to
be extremely slow resulting in the need for inversion of ver§ large matrices.

Our convergence calculations indicate that some of the results of Otteni
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(ref. 14) are incorrect because he has not taken enough terms in his current
expansion to obtain convergence.

The primary reason for slow convergence in the bonded mesh problem is
that the Fourier series expansion for the current is inefficient in synthe-
sizing the current jump which occurs at the wire junction. We find that by
adding the proper jump function to the Fourier series representation, the
required number of current expansion coefficients is reduced by a factor of
about ten, and the required computer time is reduced by more than a factor
of one hundred. Using this improved solution, numerical results for current
distributions and reflection and transmission coefficients are obtained.

For simplicity, we consider a square mesh with perfectly conducting wires,

but the technique is also applicable to rectangular meshes with imperfectly

conducting wires.

FORMULATION

The geometry is illustrated in Fig. 1. Arrays of wires parallel to the
x and y axes with spacing a are located in the plane z = 0, and perfect
contacts are made at the junctions. The wire radius ¢ is small compared
to both the spacing a and the free space wavelength A. Consequently, the
wires carry only axial currents, and the usual thin-wire approximations are

valid.

The incident electric field Einc is an arbitrarily polarized plane

wave:



Hor€o

Figure 1. Geometry for a plane wave of arbitrary polarization incident on a

wire mesh with bonded junctions. Wire radius equals c.

10



Eine = Eo exp{ik[z cos 8 + stu 6 (x cos & + y sin ¢)])} (1)
where Eo is the incident field at the origin, k(= 2n/A) 1is the free space
wavenumber, and ¢ and 6 are the azimuthal and elevation incidence angles.
The time dependence is exp(iwt).

From Floquet's theorem (ref. 16}, the wire currents for the qth x-dir-

ected wire qu and the mth y-directed wire I can be written as periodic:

functions multiplied by the phase dependence of the incident field in (1):

qu = ) Am exp{i[2mmx/a + k sin 6(x cos ¢ + qa sin ¢)1}
m:—(‘o
(2)
I = ¥ B exp{i[2mgy/a + k sin 8(y sin ¢ + ma cos ¢)]}
ym q=- q

The fields scattered by the wires can be derived from a magnetic vector
potential which has only x and y components. In order to solve for the un-

known coefficients Am and Bq, we set the total tangential electric field

equal to zero at the tops of the wires: Ex, total 0 at y=0 and 2z = ¢

and E =0 at x =0 and z = c¢. From these conditions, a doubly
y, total

infinite set of linear equations can be obtained for A and B (ref. 15).
The procedure is equivalent to a method of moments solution of Pocklington's
equation for thin wires (ref. 17) using entire domain sinusoidal expansion
and testing functions. Specializing the solution of Hill and Wait (ref. 15)

to the-bonded square mesh with perfectly conducting wires, we obtain the -

following doubly infinite set of linear equations:

11
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o 2 2T
6m0E0xexp(ikccose) - Aﬁl{ [k < S + ksinecos¢) J nx}

2k%a
iwy exp(-I'_ ¢)
+ = ( 218 ks1n6cos¢) ] B <2nq + ksin651n¢)——————£EL—— = 0
2 a q r
2k“a q mg
imuo 2T )
§ E exp(ikccos8)~ B [kz - <~—1 + ksinBsin¢)2] s
40 oy 91 2x2a & d
Ly . exp(-T_ ¢) (3)
4+ —0 <21‘l + ksinﬁsiné)) 1A <2mn + ksinGcoscﬁ:)————Eg——- =0
2 a my a r
2k“a m mq

1
where qu = [(2™m/a + ksin8c03¢)2 + (27qfa + ksinGsin¢)2 - kz}ﬁ

exp (- T c) exp(-I'_ ¢}
s_ = ) ___________ , ' = ¥ _ﬂ_____il__
q Fnq 1 m P

i1, m=n
émn = {

0, m#n
and on and Eoy are the x and y components of the incident electric
field at the origin. All summations are taken to run from -~ to <
unless otherwise stated. The factor exp(ike cosej which multiplies the
incident fields in (3) was dropped in the previous treatment because it is
near unity. The convergence of the summations Sm and S; can be improved
as was done previously (ref. 15), but some of the ﬁrevious apﬁroximations

cannot be made here because large values of m and gq are required for

convergence of (3). For Sm, we have:
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e

s = 7 [eXP(—FmSC) _ exp(—Zﬂ‘Q[c/al}
q

m qu |2mq/al
-T
o2y exp(-2mlgle/a) exp (-, )
Z al
.9
exp(-T_ ¢)
a =2Tc mo
= = {-4fn [l ~ exp ( >} + 4 } +
il { a m Fmo
h A = 1 Z' 2 exp(—quc) _ exp(-ZWlﬂJc/él]
wihere o 2 a —-——-—'——"'I.,mq (q
and ' on ) 1indicates omission of the q = 0 ternm.

verges rapidly and is easily summed on a computer. In a similar manner

S', we have:
q

- : -~ )
_af_ e [ 22TE | AR
Sq - { Rn[l exp( . )] + Gq + roq

exp(~quc)

where § =% Z' [ZE eXE(-2EJm1C/al}
q 2 o a [‘mq lm'

The solution of (3) is discussed in the following section.

(4)

The term Am con-

for

(5)

The transmission and reflection coefficients are the quantities of -

most interest in characterizing the mesh.

cients, it is first necessary to specify the incident electric field.

In order to define these coeffi-~

For
0 (vertical or TM) polarization, the incident electric field has a 8§ com-
ponent Eénc given by
Eénc = E_q exp{ik[zcos8 + sinB(xcosd + ysind)]} (6)
o

Consequently, the x and y components at the origin which are required in

(3) to solve for the current coefficients are given by:
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on = Eoe cosfcosd, Eoy = EoB cosfsind (7)

For ¢ (horizontal or TE) polarization, the incident electric

field has a ¢ component g0e given by

¢
inc . s
E¢ = Eo¢ exp{ik[zcos8 + sinB(xcosd + ysing)]l} (8)
Consequently, on and Eoy for ¢ polarization are:
= - = 9
on Eo¢ singd, Eoy Eo¢ cosd (9)

For a less than A/2, there are no grating lobes, and only the constant
current components, A0 and Bo, contribute to the scattered far field.
The rectangular components of the scattered field for large negative =z are

given by (ref. 15):

N
5T = S - 2 2 - Y 2n
x Tacosh (B (1 — sin Ocos®¢) - B sin 8singcos¢]

« exp{ik[zcosB + sinb(xcosd + ysin@)]}

n

E;— - Zacgse {AOSinzesin¢C°S¢ - Bo(l - sin%0sin?¢))
(10}
» exp{ik[zcos® + sinb(xcosd + ysind)]}
5— ﬂosine
_ o + . .
EZ = s oncos¢ B051n¢] exp{ik[zcos8

+ sinB(xcosd + ysind)1}

14
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where n_ = (UO/EO) .

15”

The © and ¢ components of the scattered field are:

s~ s- s- s~ .
= - 56 +
Eq E sin + E_ cosBcosd Ey cosfBsind (11)
and B = -Es—sin¢ + E% cos
¢ X y 0%t

For 8 npolarization, the parallel and cross—polarized trans-

mission coefficients (Tee and T6¢) are defined as
- s-,_inc - 7S~ ine
Tee 1+ E8 /Ee and T6¢ E¢ /E6 (12)

For ¢ polarization, the parallel and cross-polarized trans-

mission coefficients (T¢¢ and T¢6) are defined as
s=-,_inc s—, inc
T,.=1+E, /E and T,. = E. /E 13
0% s "o % = o %y (13)

The reflection coefficients are determined from the scattered field
evaluated at large positive values of =z. In this case, the scattered rec-
tangular components are the same as those in (10) except for a sign change

in z in the exponents and a sign change in the =z component

+ - -

ES = ES , ES+= ES

% x y y

2==z ==z
(14)
and ES+= —Es_
zZ z
Z=-Z
15



The 6 and ¢ components of the scattered field for large posi-

tive 2z are:

Es+ = --ES+ sinf - ES+ cosBcosd - gt cosfsind
& z X y
(15)
s+ st s+
f?d E¢ EX sind + Ey cosd
For © polarization, the parallel and cross-polarized reflection
coefficients (R68 and R8¢) are defined as:
Ryg = EZ+ exp{~ik[~zcos® + sinB(xcos¢ + ysin¢)]}/Eo8
(16)
s+
= ~ik [~ + + E
R8¢ E¢ exp{~ik [-zcos8 + sinf(xcos¢ + ysind)1}/ o8
For ¢ polarization, the parallel and cross-polarized reflection
coefficients (R¢¢ and R¢6) are defined as:
s+ L
- ~ik[- + sinb + HE
R¢¢ E¢ exp{~ik[-zcosB + sin®(xcosd + ysing)] 0d
(17)
s+
= -3 - + E
R¢8 Eg exp{~ik [~zcos® + sinB(xcosd + ysing)]}/ ot

The exponential factors in (16) and (17) simply refer the phase to the origin.
Since we are considering the case of lossless wires and mesh spacings

less than a half wavelength, all incident energy is either transmitted or

reflected, and energy conservation can be used to provide a consistency check

for the calculations. For 6 polarization, the necessary condition is:

|Tggl® + ¥T8¢‘2 + |Rggl?® + lR6¢l2 =1 (18)

16
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For ¢ polarization, the necessary condition 1is

NUMERICAL SOLUTION

VIn Qfder to solve the doubly infinite set of equations in (3) for the
current coefficients Am and Bq, the equations were truncated and solved
by matrix inversion. A computer program was written which was capable of
inverting a ﬁatri% of order 1557X7126 (m,d = -31,...,0,...30). :The accuracy
of the matrix inversion was verified by obtaining good agreement between
single and double precision inversion. Convergence was examined by increas-
ing the matrix order in steps and observing the change in the dominant current
coefficients Ao aqd Bo. This is roughly equivalent to observing the change
in the reflection and transmission coefficients. We define convergence as
having been obtained when a further increase in the matrix order (N X N)
produces a negligible change in Ao and BO (or in the reflection and
transmission coefficients). A number of cases were studied numerically, and
for 6 polarization, convergence was found to be extremely slow for inci-
dence along a wire axis (¢ = 0°) and near grazing (8 near 90°). Con-
versely, convergence is found to be very rapid for ¢ near 45° (all 8) or
for 6 near 0° (all ¢). This qualitative behavior is in agreement with
Otteni (ref. 14) whose program was written for 6 polarization for a matrix
order up to 70 %X 70. However, we find that, for cases where convergence is
slow, a much larger matrix order is required than that predicted by Otteni.
Convergence is quite fast for ¢ polarization for all incidence angles.

In order to illustrate the convergence difficulties, we consider the
following case for 6 polarization: a/X = 0.25, c¢/a = 0.02, & = 70°, and

$ = 0°. This case is chosen because a measured value of the transmission

17



coefficient is available (ref. 11). The convergence of }Teel as a function
of N 1is shown in Fig. 2, and the final value is seen to agree closely with
the measured value of Kontorovich, et al. (ref. 11). The cross-polarized
transmission coefficient T8¢ is zero by symmetry in this case since ¢ = 0°.
For comparison, the rapid convergence for a planar separation h of 3 wire
radii for the x and y directed arrays as computed by the previous formu-
lation for unbonded wires (ref. 15) is also shown in Fig. 2 along with the
experimental value of Kontorovich et al. (ref. 11}. Although the agreement
is fairly good, an exact comparison is not expected because the unbonded wires
in the experiment were touching and some finite junction impedance probably
existed.

In order to understand why the convergence is so slow for tﬁé bonded
case in Fig. 2, itlis useful to examine the current distribution on the wires
fgr the same case as given by Fig. 2. For a given value of N, the summa-
tions on m and q run from -(N-2)/4 to (N-2)/4. Consequently, the
summations run from -30 to 30 for N = 122. The resultant real and imagin-
ary parts of Ixo and Iyo are shown for one Floquet cell (-af2 < x < a/2,
-af2 < y < a/2) 1in Fig. 3. It is seen that the current waveforms suffer
from Gibbs' phenomenon (ref. 18) near the junction (x=y=0) where a step
discontinuity is expected in both Ixo and Iyo' This difficulty does not
occur for the unbonded mesh where the current is continuous, and the result-
ant convergence is much more rapid as seen in Fig. 2.

If the jump discontinuities in Ixo and Iyo are estimated from the
waveforms in Fig. 3, it is found that the jumps are the negatives of each

other. Consequently, Kirchhoff's current law has been satisfied:

18



1.0

‘3 -oo-o- ponded
| 0.9 | h = 3¢ (unbonded)
08 F (bonded)
-
| Tag1 a/x =025
0.7 r ¢/a =0.02
¢ = 0°
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B Kon’rorovich/
o5 (unbonded)
: W_*—*
v f") 0.4 ! i ! 1 ! 1
:"’ 0 20 40 60 80 |00 120 140

Number of Unknowns, N

Figure-2. Convergence for bonded and unbonded meshes. The experimental values
of Kontorovich et al. (ref. 1l1) are shown for comparison.
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Normalized Current

' a/r=0.25
0.8F c¢/a=0.02
$ =0° Re[I,,(x)]
0.6} g =70°
N =1i22
0.4 |-
0.2 F
—~ =
/“"‘J"..‘
e /Im[lyo(y)]
O == ”—
| /\f\/*""—/—’-’
-0.2F % \
<Re[I00y)]
f-/-‘
-0.4 B -"_,_—'
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1
"C).é o ‘
!
___________________ P e L]
-1.0! i } 1 ] 1 i | \
-0.5 -04 -03 -~02 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 3. Normalized current waveforms for one Floquet cell., (The normalization

factor is Eoea/no.
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+ S - 4+ - .
IXO(O ) - IXO(O ) + Iyo(O ) - Iyo(O ) =0 (20)

This is a partial check on the accuracy of-the solution. In a finite differ-
ence treatment of Pocklington's equation for a pair of crossed wires, Mittra
and Ko (ref. 19) have recently shown, that Kirchoff's current law is, in fact,
satisfied 1f the proper sampling interval is used. Thus, in principle, it
appears that junction conditions do not necessarily have to be enforced in
crossed wire problems. Furthermore, from charge continuity, King and Wu

(ref. 20) have derived the following additional conditions for crossed wires

of equal radii:

9L 9T a1 9T
—Xo = X0 = X = Y9 (21)
9% _ ax + oy _ y +
x=0 x=0 y=0 y=0

The Gibbs' phenomenon oscillations in Fig. 3 make the current slopes diffi-
cult to éstiméte, but it appea;sithat (21) is rouéhly satisfied if average
slopes are used. Actually, good agreement for current waveforms has been

obtained by a number of investigators (refs. 19 and 21-23) even when (21) is

not well satisfied.

Numerical results for other cases show that as in Fig. 2 large matrices
are required for convergence, but thar Kirchhoff's current law is satisfied.
Thus a direct solution of (3), without enforcement of junction conditions,

is a valid procedure but excessive computer time 1s required.

IMPROVED SOLUTION

The primary reason for the slow convergence of the truncated system

of equations (3) is that the continuous functions in the current—expan-

sions in (2) are inefficient in synthesizing the discontinuous current which

21



occurs for the bonded mesh. This problem could be eliminated by using dis-
continuous expansion functions for the current (such as pulses), but then
the resultant equations would be much more complicated than those in (3).

A more efficient scheme is suggested by the fact that the higher order co-
efficients for Ixo and Iyo are observed to fall off linearly with an
amplitude determined only by the jump at the junction. Thus, we define the
following jump function EA(x):

A v exp(i2nnx/a)
fA(x) = omi oy n

2mi
(22)

= A[U(x)—i‘“%‘] y 5 <x <

i, x>0
where U(x) =
06, x <@

Note that fA is a sawtooth function with a jump of A at the origin and
that Iyo in Fig. 2 has a similar shape.
Using (22), it is possible to write the currents in the following form

which 1s still equivalent to (2):

qu(x) = exp[iksinb (xcos¢ + qasing)]
. [fa(x) + g Al exp (“122’7““)] (23)

Iym(y) = exp{iksinB(ysin$ + macos¢) ]

a

. [—fA(y) + g B; exp (JJHEEL)]

22
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-

: AL - S8 )
S nmo
where ) A = A -

m m  27im _
. Al - 6§ o)
and B =38 + -
qQ q 2miq

Note that equal and opposite jumps are now built into the x and y dir-

ected currents ané Kiféhhoff's law is automatically satisfied. Note that

(23) is actually obtained by replacing Am and B by
AL -8 )
' mo
A = —_—
-m Am + 2Tim
(24)
1 A(l -6 )
and B =B - ———39
q q 2miq

In order to derive the new set of equations equivalent to (3), we substitute

(24) into (3) and obtain the following:

1wy
§ E exp(ikccosB) - A 2 [kz - (2EE-+ ksin6c03¢)zJS }
mo oX m Zkza a m

iwy
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1-8 1wy
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t
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2k?a & )

. . E' exp (—rch)
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im q q mq
exp (=T ,©)

1 *
Slq = g wl’

mq

Note that rapid computational formulas for Sm and S; were given in (4)
and (5) and that Slm and S;q are already rapidly converging series as
defined in (25). Since A 1is actually an unknown in (25), another equation
must be introduced before truncation and inversion of (25) in order to have
- an equal number of equations and unknowns. Kirchhoff's current law as given
by (20) cannot be used because it is already built into (25) and would not

provide an independent equation. The following convenient condition can be

drived from (21):

1 X0 N x0 - % Yo + Yo (26)

In order to be sure of satisfying all three conditions in (21), without an
infinite number of terms, it would be necessary to add additional inverse

square terms to the current expressions in (23) which would complicate the

coupled equations (25) even further. By substituting (23) into (26) and

carrying out the differentiations, we obtain:
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Ly ) A'(im +1 2 sinBeosd) - J B'(iq - 1 2 sinBsing) = 0 (27)
m o >\ ] i q A

m m - q
The truncated set of equations from (25) plus (27) can now be inverted to
solve efficiently for A;, B;, and 4.

When the new set of equations i1s tested for convergence on the case

shown in Fig. 2, convergence is obtained for a matrix of order 11 x 11

and they are seen to be essentially the same as those in Fig. 3 without the
Gist' pﬂénomenon ogcillations. Other test caseéialso?show very rapid éon—
vergence, and the new set of equations can thus be used to obtain parametric
curves without using excessive computer time. In all cases, the energy con-
servation conditions given by (18) and (19) are found to be well satisfied.

The ¢ dependence of the various transmission coefficients is shown
in Fig. 5. Note that the bonded mesh coefficients exhibit almost no &
dependence. Also, the cross-polarization is negligible on the scale shown.
On the other hand, the unbonded mesh transmission coefficients vary markedly
with ¢ and sizeable cross-polarization occurs. These effects are in agree- -
ment with both the theory and experiment of Kontorovich et al. (refs 11).

The reflection coefficients for © polarization are quite important
in ground screen applications, and the wavelength dependence is shown in
Fig. 6 for ¢ = 0° and O = 70°. Note the more rapid decrease from unity
for the-bonded mesh. For other values of ¢ the difference is always less.
The reflection coefficient for ¢ polarization is also shown, but it does
not depend on the junction bonding for' ¢ = 0°.

We have also compared our séiution with Otteni's (ref. 14) free-space
results in his Fig. 4, and we find that his variation in results for differ-

ent values of ¢ 1s not correct. He obtains the ¢ variation because he
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Figure 4

Normalized current waveforms for one Floquet cell as generated by
the improved solution.
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Figure 5 The ¢ dependence of the various transmission coefficients for
bonded and unbonded junctions. |T8¢]and IT¢8] are zero to

graphical accuracy for the bonded mesh.
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Figure 6 Reflection coefficients for bonded and unbonded junctions. For
this case (¢-0°), |R¢¢[ i{s independent of the bonding and there

is no cross polarization.
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has not used enough terms for convergence for small ¢ and B close to

90° where convergence is extremely slow.,

CONCLUDING REMARKS

Plane wave scattering by a bonded mesh has been successfully treated
both with and without application of wire junction conditions. However, by
building the currentrjump at the junction into the solution, convergence is
greatly improved and computer time is reduced té the point where parametric
curves can be easily generated. The same methoa is épplicable to rectangular
meshes and imperfectly conducting wires and perhaps to junctions with imper-
fect contacts since the current jump is obtained directly.

Our results indicate that the properties of a square bonded mesh are
essentially independent of ¢ for wire spacings less than a quarter wave-
length. Also, forr 8 polérizéﬁion; the unbonded mesh provides a larger
reflection coefficient (smaller transmission coefficient) for values of ¢
other than 45°. However, the bonded mesh does produce less cross-polarization
than the unbonded mesh. Our conclusions are in agreement with Kontorovich
et al. (ref. 11), but in disagreement with Otteni (ref. 14).

‘A worthwhile extension of this analysis would be transient excitation.
The rapid computational feature of our improved solution would be useful in
generating sufficient frequency domain data for inversion to the time domain.
dnother useful extension would be to inélude the influence of a conducting
half space whose interface is parallel to the mesh. This configuration has
application to antenna ground screens and has been considered for a single

wire array parallel to various half-spaces (refs. 6-10 and 14).
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SECTION III
ELECTROMAGNETIC SURFACE WAVE PROPAGATION
OVER A BONDED WIRE MESH

- ee—owo . INTRODUCTION

Wire mesh screens and grids are often employed in electromagnetic

shielding devices. They are much cheaper and lighter than sheets of metal

but it is important to know what differences can be expected when such struc-

tures are used. Using averaged boundary conditions, the reflecting and
transmitting properties of crossed wire meshes have been analyzed in the

past for both rectangular and square meshes (refs. 11-13). The method appears
to give good results for both bonded and unbonded junctions, but is restricted
to mesh dimensions small compared with a wavelength. General solutions have
also been obtained for plane wave scattering from separated wire grids

(ref. 15) and bonded wire grids (ref. 24). 1In general, these solutions re-
quire a numerical matrix inversion in solving for the wire currents although
perturbation procedures can be used in certain cases.

Here, using a previous formulation (ref. 24), we consider the surface
wave that may propagate along a square wire mesh with bonded junctions. Such
a surface wave would not be supported by a perfectly conducting surface.

This property of wire meshes should be understood when used in any special
applications.

Although we consider here a square mesh with perfectly conducting wires,
the technique is also applicable to a rectangular mesh with imperfectly con-
ducting wires and in other similar configurations. In the appendix, we dis-
cuss the significance of the averaged boundary conditions and an interesting

analogy of the wire mesh with a thin plasma sheet.
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FORMULATION

The geometry of the bonded mesh in free space (with permittivity €
and permeability 110) is illustrated in Fig. 7. Arrays of wires parallel to .
the x and y axes with spacing a are centered in the plane =z = 0, and per-
fect contacts are made at the junctions. The wire radius ¢ is small compared
to both the spacing a and the free space wavelength X. Consequently, the
wires can be considered to carry only axial currents, and thus the usual thin
wire approximations are appropriate.

Before proceeding with the analysils, it is worth noting that the mesh
structure has a plane of symmetry (z = 0). For objects having a plane of
symmetry, the electromagnetic field can be decomposed into symmetric and
antisymmetric parts which are uncoupled and can be treated separately (ref.
25}). The rectangular components of the symmetric part of the electric field
satisfy the following:
Exs(x,y,z) = Exs(x,y,—z}, Eys(x,y,z) = Eys(x,y,—z), and Ezs(x,y,z) .

(28)
= ~Ezs(x,y,—z)-

Toue antisymmetric part of the electric field satisfies

E (y,2) = ~E (5y,-2), Eya(x,y,Z) = —Eya(x,y,-Z), and

(29)
E (xsy,2) = E ,(x,y,-2)
Since Exa and Eya are odd in z, they are both zerc in the plane 6f )
the mesli:
Bra(x:7,0) = E_(x,y,0) = 0 . o)

Thus the antisymmetric part of the electromagnetic field does not interact
with the mesh (due to the thin wire approximation) and can be treated sep~
arately. Here we need consider only the symmetric part of the elec-

tromagnetic field and, henceforth, the subscript s is dropped. Also, in
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direction of
'.“) propagation

Figure 7 Geometry for a surface wave propagating on a wire mesh with
bonded junctions.



what follows, we will assume a time dependence exp{iwt) for all field
quantities.

From Floquet's theorem (ref. 16}, all electromagnetic quantities can
be expressed as an exponential function multiplied by a function which is
periodic in x and y. Consequently, if we seek a solution for a surface
wave propagating at an angle ¢ to the negative x axis, the current on the
qth x-directed wire qu and the current on the mth y-directed wire Iym

can be written:

[o+]

qu = exp[Y(x cosd + qa sind)] 2 A.m exp(i2nmx/a) (31}
Iym = exp[Y(ma cosd + y sing)] Bq exp(i2mqy/a) (32)

Here Am and Bq are unknown coefficients, and Yy 1is the propagation con-
stant which we seek. The m and q summations indicated in (31) and (32) are
over all integers including zero from -= to +~. Because, in general, the
currents are discontinuous at the junctions (ref. 24), it is useful to use

the equivalent form:

qu = exp[y(x cos¢ + qa sind)]
(33)
RO E A exp(i2mmi/a)]
Iym = exp[Y(ma cos¢ + y sind) ]
. (34)

C )+ CZI B, exp(12may/a)
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where A; and B; are modified coeff{icients. The sawtooth function f

A
has a jump of A at the origin and is defined by:
, _ A v exp(i2mnx/a)
fA(x) ©oo2mi Z n
n
. (35)
X 1 ] a a
= - —— e e ,__.< -—
A[U(x) a 210 T2 Sxy
1, x>0
vhere U(x) = {
0, x <0

The superscripted prime over the summation sign i? (35) indicates
omigssion of the n = 0 term.

We now invoke the condition that the axial electric fields are zero
on the surface of the wires. Because of the thin-wire-idealization, we

may apply this condition at the tops of the wires. Thus

EX(X,O,C) = Ey(O,y,C) =0 (36)

The expressions for the current in (33) and (34) are identical to those in
the case of plane wave scattering (ref. 24) except that Yy has replaced
ik sin8 where k was the free space wavenumber (= 27/)A) and 8 was
the angle of incidence. Consequently we need not repeat the derivation.
Thus, on omitting the incident field in equation (25) of ref. 24 , the

needed doubly infinite set of equations is found to be:
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2miq 2k2a N !
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1wy
+ o (_2_'}19._“ sin@)[i l%%slq]}= °
2k%a
. e T e CoL f‘_’(_lsf_)_
‘,;here Slm = Z qI-. 3 Slq B (39)
q mq s e
R 1
and mq B a v @

As indicated in the previous analysis of the scattering problem (ref. 24),
the summations given by (39) and (40) can be converted to forms that converge

rapidly when the ratio c/a is small. Thus, for present purposes, we use

a _77e . exp{-T_ ¢) -
m - { n [l - exp ( ] } + : mo_ (41)

mo

w
it
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oq (42)
where A = L Z' [2E-exp(—quc) - eXP(-Zﬂ[qlc/a)}
' m2 g e Mg - [q] (43)
it: ' 277 exé(ipffc) o 7—2ﬂ /
and 6q f > Zm [EE 7 - mq _exp( m|mlc a) (o

Also, as shown before (ref. 24), a condition on charge continuity is needed

to determine the "current discontinuity" A at the junctions. This leads
to the requirement that

A

_?+gAg(im—%°T_s_Q>__§B;(iq+X_;%Q)=o (45)

The current expansions as given by (33) and (34) are rapidly conver~-
gent; thus, the doubly infinite set of equations in (35) can be truncated

with m and q ranging from -N to N where N is a fairly small integer. As

1

a result, a set of T(= 4N + 3) linear, homogeneous equations in A;, Bq,
and A 1is obtained:
—_ — = — —_—
A~N 0
ML
A
o
“
TxT
coefficient ' = :
Bn : (46)
matrix . :
]
B
o
én
N
A 0
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A solution to (46) exists only if the determinant, which is a function of

Y, vanishes. Symbolically, this is written
det = 0 (47)

which is the mode equation to be solved for Y. The resulting z depend-
ence of the associated Floquet harmonics are then given by the factor
exp(-?mqlzl). For sufficiently small afA, there are no grating lobes
(qu real) and thus no loss mechanism. Consequently, Y is purely
imaginary. The same conclusion can be reached by examining the coeffi-
cients in (37), (38), and (45). We might also anticipate that the dom-
inant surface wave mode will have a solution Y ~near the propagation
constant 1k of free space.

For small a/X and large |z|, the z dependence is essentially
_determined by the lowest order Floquet harmonic:

2 4k
exp(—Foolz[) = exp{;k{ {E’) - i] Izl} (48)

However, as a/A is increased, grating lobes eventually occur and Y

becomes complex. For example, if ¢ = 0°, the first grating lobe

occurs when T-l 0 becomes zero: o
2m Y a 2 a \t
= = — — - - - 4
0=T10 a[(l+ik %) (A)] (49)
or |
a I S (50 -
X 1+ (y/ik) )

Since (Yy/ik)} actually depends on afX, {50) is not an explicit
expression for a/A. Actually, the numerical results in the following
section are presented only for the range where a/A is sufficiently

small that Y 1is purely imaginary.
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NUMERICAL RESULTS

The mode equation (47) was solved numerically by the bisection method
(ref. 26), and theréané;gence was é;gﬁinéd byu&ncreaéing N until the value
of vy did not change significantly. It was found that Y remained essen-
tially éonsténérggy;nd N = 2(T = 11) which is cbnsistent with the plane
wave scattering case (ref. 24). TFor comparison, approximate results have
also been derived from the work of Kontorovich et al (ref. 11)(e.g. see (55)
in Section ITIIL A.

Results for the relative change in Yy for a fairly sparse mesh
{a/c = 500) are shown in Fig. 8. Note that for small a/)\, the numerical
results agree with the approximate soluton and are independent of ¢. Such

behavior is again consistent with the plane wave scattering case (ref. 24).

Results for a more dense mgsh (alc = 30) are shown in Fig. 9, and the

trends are similar, but the relative change in Yy 1is less. In both ffgures
the range of a/A extends almost to the point where the first grating lobe
occurs for ¢ = 0°. For other ¢, the first grating lobe occurs at a larger

value of a/X. Of course we need only show ¢ from 0° to 45° because of

symmetry.

PHYSICAL SIGNIFICANCE OF RESULTS

A somewhat crude interpretation of the significance of (y/ik) - 1
is as follows. 1If we wish to propagate a wave on one side of the mesh

(such as in antenna ground screens or in parallel plate regions), then the

total field must be made up of both a symmetric and an antisymmetric part in

order to cancel on one side. Since the propagation constant of-the anti-

symmetric part is that of free space (ik), the phase difference between

the symmetric and antis etric parts, Y - ¥ , after having propagated
yrmm s a &
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Figure 8
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Propagation constant for a sparse mesh as a function of
various propagation directions. (Ref. 11)
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Figure 9 Propagation constant for a more dense mesh. (Ref. 11).



a distance d along the mesh is

Vg — b, = (¥/1)d - kd = kd[(y/1k) - 1] (s1)

When this phase difference becomes approximately 7/2, the cancellation no

longer occurs and the mesh is no longer effective as an electromagnetic shield.

In pulse propagation, this phase difference is greatest at the highest fre-
quency component so that the leading edge of the transmitter signal would be
most seriously affected. This is just one aspect of the present study that

could be followed up with this type of wire mesh model.

CONCLUDING REMARKS

The propagation constant of a surface wave propagating along a square
wire mesh 1in free space has been determined numerically and compared with
the approximate solution from the method of averaged boundary conditions.
For small mesh spacings, the solutions agree and the results are independent
of the direction of propagation. TFor larger mesh spacings, the propagation
constant depends on the direction of propagation as illustrated in Figs. 8
and 9.

A worthwhile extension to this analysis is for imperfectly conducting
wires using an impedance boundary condition at the wire surface rather than
(36). This does not complicate the formulétion,rbut the propagation constant
¥ becomes complex. Also, a second mesh (as in a parallel piate waveguide)
can be introduced, and this configuration has already been treated by the
method of averaged boundary conditions {refv 27). Finally, the introduction
of a lossy half space (ref. 14) would be useful in modelling ground screens

for antennas.
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SECTION III A

AVERAGED BOUNDARY CONDITIONS, THIN PLASMA SHEET
ANALOGY, AND EFFECTIVE TRANSFER INDUCTANCE

For a vertically polarized plane wave incident at an angle 6 from
the z axis, the reflection coefficient Rz as obtained from the method

of averaged boundary conditions is (ref. 11)

-1

B ok I S .
Rz = [l + - Q1 5 sin 6)] (52)
where ia a
a= -~ fIn (m) (53)

As indicated, RZ isrnormalized so tﬁat it would be +i in the limit of
zero grid spacing (i.e. the perfectly conducting plane).

The propagation constant (y = ik sinB) of the surface wave can be
determined from the pole location oﬁ:,Rz in the complex 6 plane. Thus,

the wode equation is:

ak (1 - %'sinzﬂ)
0 =R =1 + (54)

1
[1 - sin208]7?

By substituting —Yz/k2 for sin?® in (54) and using the quadratic

formula, the desired root—for 7Yy is found to be

- , %
. {(@9 -1+[l~(kCi)L}
Yy = ik 5

(k) /2

(55)

It is easy to show that the other root of (54) does not satisfy the
condition Im cos® < 1 required for fields evanescent in the z

direction. For Ikal << 1, (55) reduces to
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2 2
Y:ik[l__()ig‘_l_] =ik[1+.§[.k_":.£n_a_}:‘ (56)

T 27

There is an interesting analogy of this wire mesh problem to the situ-
ation of a thin plasma sheet that can also support a surface wave. The plasma
configurations analyzed earlier (refs., 28 and 29) were, in effect, continuous
thin slabs of relatively high admittivity so that the induced currents were
only in the horizontal plane (f.e. z = 0 in the present context). While
these earlier analyses dealt with anisotropy resulting from a D.C, magnetic
field, we consider here the relevant aspects for the isotropic limit (i.e.
gyro-frequency is zero). Thus the thin sheet boundary condition used in

{refs. 28 and 22) has the form

[Hly - sz] = —MEX (57)

and

n

[y, = Uy ] = ME (58)
where the subscript 1 denotes the region above the sheet and subscript
2 denotes the region below. The parameter M can be expressed in terms
of the sheet thickness §, plasma frequency W and the collision fre-
quency Vv by

M = 86“26/(v + iw) mhos (59)
If we write
. -1
M= (r + iwl) (60)

we can interpret r + iwf as the effective transfer impedance of the
thin sheet. We note that in the limit of vanishing collision frequency,

only the inductive term iwf survives.
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Using the results from references 28 and 29, we can write down an ex-

(61)

pression for the reflection coefficient that is analogous to (52).

Rz = nM cosB/ (MM cosB + 2)

simply
1
(Ho/eo)é. The corresponding surface wave pole occurs when

and the*corréébonding:Efépagation constant is
b
(€2)

where n

cosO = =2/ (M)
‘Y:
2

ik [ 1 - ‘
( (M) )

~

(63)

[nM] >> 1.

On making a direct comparison of (52) and (61), it is evident that
for the wire mesh is given by

in the case where
denote Meff’

M,
2

the effective value of
ak[1l - (sin?6/2))

(€4)

For angles near grazing includiung the surface wave case thus can be
(65)

nM CE==4/(ak)

approximated by
The corresponding expression for effective transfer-inductance ofthe

square mesh is )
M2 a
effzig,zg— n e henries
is just one-half for the effective inductance of the
(i.e. 6 = 0° This statement is

This value for zeff
wire mesh observed for normal incidence
consistent with the analysis (ref. 5) of a parallel grid of spacing a when

the electric field is parallel to the wires.
43
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It is important to point out that, at normal incidence from a square
mesh, it would not make any difference whether the wire junctions were
bonded or not. However, for oblique incidence and particularly for the
case near grazing, it makes a vast difference unless, of course, ¢ ~ 45°,
For example, the effective value of the transfer inductance zeff for an
unbonded square mesh at grazing incidence is orderé of magnitude smaller ;
according to the general analysis given in (ref. 24). This statement is also

consistent with the Soviet work f(refs. 11-13) but it is in conflict with the

conclusions of Otteni (ref. 14) for reasons we have already discussed (ref.

24).
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SECTION IV

ELECTROMAGNETIC SCATTERING BY TWO PERPENDICULAR
WIRE GRIDS OVER A CONDUCTING HALF-SPACE

INTRODUCTION

In an earlier paper (ref.l5) an analysis was presented for the scat-
tering of a plane wave byrtwéigéginﬁersecting perpendicular wire grids
located in free space. A doubly infinite set of linear equations was

derived for determining the coefficients of the doubly harmonic expansions
for the currents on the grid wires. Thése equations were solved by a per-
turbation procedure that is valid for a reasonably large separation of the
grids. 1In other cases the infinite set was truncated and the solution was
obtained by matrix inversion. In a later paper (ref. 24), the limit of

zero separation of the perpendicular grids was considered. There it was
shown that such mesh structures with bonded wire intersections have vastly
different scattering characteristics than for corresponding meshes with un-
bonded intersections. It seems significant that the scattering properties
determined by the matrix inversion method for both the bonded and unbonded
meshes were fully consistent with the theoretical and experimental data
published by Kontorovich et al. (ref. 1l). They used an approximate analyti-
cal method that is valid for small wire spacing.

Here we wish to extend our analysis to the case where the perpendicu-
lar grids are located over a conducting half-space., This may be considered
as a model to stud}ifhe scree;iqg influenceiof a wirgrggshrlocated over the
surface of thé earth for an electromagnetic wave incideﬁtrfrom above., Such
a problem was considered by Otteni (ref. 14) who claimed to have obtained a
valid solution for a bonded wire mesh located over the half=space. However,

his results are inconsistent with both the data of Kontorovich et al. (ref. 11)
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and Astrakhan (ref. 12) as well as the recent analysis by Hill and Wait (ref.

24). The possible reasons for the discrepancies are discussed in the latter
reference. 1In the present formulation we consider explicitly only the
unbonded case where the grid wires are nonintersecting . The matrix inver-
sion method in this case is straight-forward and no auxiliary circuit re-

lations need be invoked.

FORMULATION

The situation to be analyzed is illustrated in Fig. 10 with respect to
Cartesian coordinates (x,y,z). An array of x-directed thin wires with spac-
ing b 1is located in the plane 2z = 0. A second array of y-directed wires

with spacing a 1is located in the plane 2z = -h. The common wire radius

¢ 1s small compared with both the spacings a and b as well as the free

space wavelength A. Consequently, we may assume that the grid wires carry
axial currents and, to within a very good approximation, these currents are
azimuthally symmetric about the wire axes. The impedance per unit length of

the wires is denoted Za and Z that have dimensions of ohms per unit

b

length. The required impedance boundary conditions are discussed explicitly
below.

The region z > -d, external to the grid wires, is free space with
permittivity €, and permeability Mo The region 2z < -d 1s taken to be
homogeneous with permittivity Eg’ conductivity Gg’ and free space perme-
ability uo. In the formulation given below, the wire grids are located in
the free space region which means that d > h and both these quantities are

non negative.
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As indicated in Fig. 10, the incident plane wave has an arbitrary

direction and polarization. 1Its electric field Einc

factor exp(iwt), can be written

R | >
ENC = EO exp{ik[(: cosd + y sind)s + 2C)}

, for an implied time

(66)

, e
where k = (eou6>1w = 2m/X, S = sinf and C = cosB. The objective now is

to deduce the fields scattered from the perpendicular grid wires with due

account for the conducting half-space. Here we follow the earlier analysis

(ref~15) but make the necessary gerneralizations in a manner analogous to

that used for amalyzing single grids in the presence of a half-space (ref. 8J.

Thus we choose electric and magnetic Hertz vectors ﬁ and 1%

[

and

y components in the direction of the grid wires. Conceptually this approach

somewhat differs from that used by Otteni (ref. 74) who formulated the problem

of the bonded mesh over a half-space_by using =z directed electric and mag-

netic Hertz vectors.

FIELD REPRESENTATIONS

As before (ref. 15), we assume that the currents on the

directed grids have the respective forms

o
qu = ) Am exp{i[2mm/a + kS(x cosd + gb sing)]}
m=-—o>
for q =0,%1,%2,%3....
and
o
I = Z B exp{if[2mqy/b + kS(y sin$ + ma cosd) ]}
yTn q=—-00 q
for m= 0,%1,42,%3....

The summations are over all integer values of m and ¢ from - to -

including zero. The coefficients Am and Bq are as yet unknown.
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Figure 10 Perpendicular wire grids located over a homogeneous ground or
conducting half-space (perspective and side view).
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We are now led to write down, in abbreviated notation, the following

representations in the region z > -d

grid currents:

iy
I, = - ©.
2k m
[ he¥
Y 2k%a
iy
*
= - 9 I AS
2%% mgq 4
and
iy w
* = - =2 7] Bs
y 2k%a m q 99
where
F = i(kz - k2 - k2)1/2
S ST % y
kx = (2mm/a) + kS cos¢
ky = (2mgq/b) + kS sind
and

EXP = ; -
XP exp(lkxx + 1kyy)

for the Hertz potentials due to the

) g Aplexp(-Tlz]) + R exP(-r(z+Zd))]r“l EXP (69)

) BquXP(—F]z+h]) +r exp (- (z+2d-h)) IT™F EXP (70)
mq d

exp (T (z+2d))T L EXP (71)
exp (-T (z4#24))T " EXP (72)
1/2

(k; + k; - k?)

Similar expressions for these Hertz potentials apply for the region 2z < -d.

The z dependence is now according to exp(-T(z+d)) where

(ky =k = k)

where

1

k2 + k2 - k2
ey + kg = k)

1/2

/2
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The corresponding fields iw and ﬁw, due to the wire grid currents

and their interaction with the lower half-space for 2z > -d are obtained

from

- -
Ew = k*Il + grad div - ipow curlﬁ* (73)
and

o

—)*
= k2TF + grad div 1* + ie w curll (74)

For the region 2z < -d, we replace k% by k; and ieom by (Og+iegw)

in the above.

The unknown coefficients in (69) to (72) are now obtained by matching

W w w

the tangential fields Ex’ Ey, Hx and H; across the interface at z = -d.

This rather tedious algebraic process leads to

2 T _a 2, 2
k(T + th)(r FEer) + (kxky) (1 KX)

R = ~ . 5 5 (75)
T (T o+ TR (T +Te k) = (e k) (L - K)
-2ie wk k T
a 2 XY 5 5 (76)
e S Y A PR (T + Te Ky - (k k) (1 - K,)
K2 4 TR (T - Te K ) + (k k)2(1 - K )2
r = ~ ~ = I 77)
O PK)(F + Te k) - (kxky)z(l - )
and +Zi€0mkxkyF
"mq T 2 - = 2 2 (78)
K2(T + Thy)(F + FKg) - (e k)7A - K,)
wvhere
- Z _ 12 2 _ 2
K o= (k kx)/(kg k)
K o= (k% - k3)/? - &?
. (k y)/( g y)
e = (og + iegw)/(ieow)
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We now consider the appropriate forms of the Hertz potentials for the
incident and the reflected filelds that would exist in the absence of the—

wire grids. For the region 2z > -d, these have the relatively simple

forms - _ .
= aloxn (] <p (- +2d)) JEXPO
ﬂ-x jrqr[ezcipgoz) + Rooexp( PO(Z 2d))] (79)
o= xo (T ) ¢p (= PO 80)
m B[exp(Foz) + 1 exp( To(z+2d)]EX (
* o p (- + XPO 8
WX aSOOexp( Fo(z 2d))FE (81)
* - + X PO
ﬂy Bs__exp ( I (zF2d))E: (82)
where
I o= i[k? - k2 - k2 ]1/2
o ox oy
kox = kC cosd
koy = kS sing
and ' + 1k _y)
EXPO = exp(lkoxx Oyy
The coefficients R T

00’ Yoo’ SOO and S,, are given by (75) to (78) for

m=q = 0. The féctors @ and B are prescribed by the incident field.

For example, it easily follows that

E
ox

2 2 _
(k kox)a kcxkoyB (83)

and

E
oy

2 _ 2 -
(k koy)B koxkoya (84)

where EOx and Eoy are the tangential field components of the incident

field at the origin as indicated by (66).
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APPLICATION OF WIRE BOUNDARY CONDITIONS

We now come to the "piece de resistance" which is the application of

the boundary conditions at the wires. These may be written

gtotal _ 1 7 ¢ y=gb and z=c (85)
X xq a
and
Etotal =1 Z at x=ma and z = -h-c (86)
y ym'b

It is not difficult to show that because of the postulated forms of the
series representations, we need only apply these conditions explicitly at
y =0 and x = 0 respectively. In terms of the Hertz potentials the

boundary conditions are

32 32

(k% + — YA+ 1)+ e a, + 7))
s . (87)
+ipw o (ny + wy) oo = 1 Z
Z=C
and .
2 ., 9% 32
(k? + ;;; Y+ BT v el (O )
(88)
- ipw -g—; (n; + w:) o = L%
z=-h-c

Using (69) to (72) and (79) to (82), these lead in a straight-forward manner

to Smo(kz - kéx)a[exp(roc) + Roexp(—Fo(2d+c))]

- 5m08koxkoy[exp(Toc) + [ro +(iu0wfoso/(koxkoy))}exp(—TO(2d+c))]

(89)
_ 2_ .2 2
Am{Za + iuom(k kx)Pm/(Zk b)] e
.+ iuom . E ipOstm 1
B k =T (hte)) + —o— -T'(2d~ o=
e L q y[exp( th+c)) (rmq + kxky Y exp(-T'(2d~h+c))]IT 0
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o

when
exp (-'e) + quexp(-F(2d+c))

= o0
Pm - Z r 0
a4
and
qu(kz - kéy)B[exp(-To(c*Hn) + r_exp(-T_(2d~h~c))]
- qoakoxkoy[exp(—Po(c+h) + [Ro —(iuowToSo/(koxkoy))]exp(—T(Zd—h—c))]
co 7 7 27 2 V 2 7
-Bq[Zb + 1uow(k - ky)Qq/(2k a)] (91)
o oSy I(2d-h-c))]TF = 0
+ " ky r%t’&mkx[em(-l“(h~l~<:)) +!(qu - kxky exp (-I'(2d-h-¢))] =
where ’
exp(-Te) + rmqexp(—T(Zd—2h+c))
Q, = 1 F (v2) -~
q -m

As indicated before (refs. 15 and 24), the summations indicated by Pm

and Qq are poorly convergent but they can be transformed to more convenient

forms by utilizing the identity

[oe]
poeRCm |- ey = a@/y) if y << L.
1 n
Thus, provided a, b and d >> ¢, they can be written in the-equivalent—forms
exp(-T_ ¢) R
m== T (o4 o mo q mq
and
) o ~ . exp(-I'_ <) r
QT Un g +8 ]+ —=— + ] Flexp(-T_ (2d-204c)) (qq)
q= T 27c q roq n mq q
where
1 ! 2% 1
= = — - - xp(-2|q|mec/b)
by= 3 L Gr o) eI e) - Ty exp(-2]q] (95)
' q nq
and
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t 2 1 -
b7 3 L Gr) ey -y e 2ininel® _

The primes over the latter two summations indicate that the m=0 and q=0

terms are to be omitted.

SOLUTION OF COUPLED EQUATIONS AND NUMERICAL EXAMPLES

The infinite set of coupled equations (89) and (91) was truncated
and solved for the coefficients Al and Bq by matrix inversion in the
manner described by Hill and Wait (ref. 15). The éize of the matrix was
increased until there was no sensible change in the value of the coefficients
AO and BO needed to describe the far scattered field in the case where a
and b < A/2. There was no problem with convergence since the separation
distance h between the grids was non zero.

The numerical results for the scattered fields are presented most mean-
ingfully in terms of reflection coefficients referred to the =z = 0 plane
as described previously (refs. 15 and 24). For example, when the polarization
of the incident electric vector is in a plane ¢ ='constant, the reflection
coefficient RSG for the scattered electric field in this same plane is

defined by

Rgq = EZ+ exp{-ik[(x cosd + y sind)sind - z cosB]}/EoG

where Eg+ is the 6 component of the total scattered electric field for
large positive values of z (i.e. kz >> 1) and Eoe is the © component
of the incident electric vector at the origin. TIn the vernacular of radio
engineering, RBGV would be called the "vertically polarized reflection

coefficient ."
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Some numerical results of the 8 dependence for the amplitude and
phase of Ree for a square mesh (a=b) are illustrated in Figs. 1l and 12
for grid spacings of a/A = 0.05 and 0.20 respectively. Two values of ¢
are shown, namely_0° and 45°. The other parameters used are c/a = 0.01l,

h/c = 3.0, d/a = 0.1, z_ =z, =0, and e, = (o e u) /(e w) = 10 - 11.8
The latter would correspond to a ground conductivity Og = lO_thos/m and
relative permittivity €g/€O = 10 at a frequency of 100 MHz. For compari-
son the corresponding results for the same mesh located in free space are
also shown in Figs. ll and 12 (i.e. the limit of E. = 1). Then, in addition,
the reflection coefficient of the éround'or half-space by itself is shown

for the same value of €. (i.e. the limit where ¢ =+ 0).

The results clearly show that, for incidence in the direction of the
wires (i.e. ¢ = 0), the magnitude of the reflection coefficient remains high
for both the mesh in free space and located just over the ground or half-
space. This is particularly the case for the smaller mesh spacing. The
phase angle of the reflection ccefficient also remains reasonably small ex-

cept. for angles near grazing. On the other hand, when the incidence is at—
45° to the grid wires, the magnitude of the reflection coefficient is sub-
stantially reduced for oblique angles of incidence although the results at
normal incidence are unchanged, The phase shift on reflection is also some-
what larger for ¢ = 45° at the oblique angles and it becomes excessive at
grazing angles.

The numerical results illustrated in Figs. 11 and 12 for the mesh in
free space are fully consistent with the results of Kontorovich et al.
(ref. 11) and Astrakhan (ref. 12) for square meshes with unbonded wire inter-

sections. They use the method based on averaged boundary conditions that-

clearly distinguishes between bonded and unbonded meshes. As indicated in
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Mesh Above Ground
——————— Mesh in Free Space

- Ground
\
0 €,=10-il.8 \
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-a-=O.I \ \
/
00 | |
0’ 30° 60° 90°

Figure lla Amplitude of the reflection coefficient Ry, for a/x= 0.05
for mesh over ground and in free space. The corresponding

ground reflection in the absence of the mesh is also shown.
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Figure 11b

00

Phase of the reflectiourcoefficient Ree for a/\ =0.05 for
mesh over ground and in free space. The corresponding ground
reflection in the absence of the mesh is also shown.
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0° 30 60° 0°

8

Figure 12a Amplitude of the reflection coefficlent Ree for a/x = 0.20
for the mesh over ground and in free space. Conditions are

otherwise the same as for Figure 11,
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~120°

-180°

Figure 12b  Phase of the reflection coefficient Rgg for a/A =0.20
for the mesh over ground and in free space. Conditions
are otherwise the same as for figure 11.



an earlier paper (ref. 24), we can treat the bonded mesh by the present
boundary value method by allowing h to approach zero. However, in this
case, it is desirable to invoke junction conditions to improve the conver-
gence of the matrix solution of (89) and (91). 1In the present case, we chose
h = 3c which corresponds to non-intersecting grids in close proximity. 1In
fact, the results for h in the range h = 2¢ to 10c or so would not be
sensibly different for the parameters used in Figs. 1l and 12 for all values
of ¢.

One of the important findings in the earlier studies (ref. 24) which
is confirmed by the Soviet work is that bonded and unbonded square. meshes have

identical scattering properties in two special cases. Namely, R is identi-

80
cal for both bonded and unbonded square meshes if ¢ = 45° while R

od
(horizontally polarized reflection coefficient) is identical at ¢ = 0°.

Also, it was found for meshes with interwire spacings even as large as a quarter
length that the bonded square mesh was essentially isotropic with negligible
cro;s polarized scattering for all angles ¢. Thus, we can assert that our
present calculations for R88 for the unbonded square mesh for ¢ = 45°

- apply to a bonded square mesh for all angles of ¢. At least this is correct

to within graphical accuracy for the range of parameters employed here.

CONCLUDING REMARKS

The fact that unbonded wire meshes used as ground screens have
superior reflecting properties over bonded wire meshes would seem to be a
major factor in the design of antenna systems for high frequency antennas.
To the authors' knowledge, this fact has not beeﬁrappreciated in the pasf
by those responsible for designing such installations. Further analytical

and experimental work on this subject is vitally needed.
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SECTION V

ELECTROMAGNETIC SCATTERING FROM AN UNBONDED RECTANGULAR
WIRE MESH LOCATED NEAR THE AIR-GROUND INTERFACE

INTRODUCTION

In an égrliér paper (ref. 50);;ye7desgp{kgé‘aiformal analysis for plane
wave scattering by perpendicular wire grids located above a conducting half-
space. To illustrate the method, a few numerical examples were presented
for the "vertically polarized reflection coefficient'" of a square mesh. Howeyer,
there are many parameters that influence the scattered field; thus a numerical
studyris needed to géin a pfoﬁér undefstandinérof the situation. This is the
purpose of the present paper. We also consider the radiation patterns of

short dipoles located above the wire mesh for various conditions.

The situation for plane wave incidence is illustated in Fig. 13. An
array of x-directed wires is located in the plane =z = 0, and an array of
y-directed wires is located in the plane =z = -h. The wire radius c¢ |is
small compared with both the spacings a and b as well as the free space
wavelength A. VThe wires, assumed here to be perfectly conducting, are
immersed iﬁ frée ééace with éerﬁitﬁivity éo and permeability M- The
region 2z < -d 1is taken to be homogeneous with permittivity Eg, con-
ductivity Og, and free space permeability uo.

As we indicated earlier (refs, 24 and 30), the far field reflecting
properties of the configuration, for both a and b less than A/2, are

completely characterized by the four reflection coefficients: R

Reg® Rgy
R¢6’ and R¢¢. The subscript © refers to the electric field polarized
in the plane of incidence, and the subscript ¢ refers to the electric

field polarized perpendicular to the plane of incidence. The first sub-

script refers to the state of polarization of the incident wave while the
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Figure 13  Perpendicular wire grids located over a conducting half-space
(perspective and side view).
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second subscript refers to the reflected wave. Consequently, in radio

engineering terminology, R88 is the "vertically polarized reflection co-

efficient, §&¢ Tiéighér"hofizbﬁfally polarized reflection coefficient",
and R6¢ and Aﬁée are thémhcfosélpoiéfizédrreflection coefficients”". In

matrix notation the reflection coefficient can be written

Rosg  Rog

Roo  Roo

EFFECT OF MESH HEIGHT

In the following results, the grid separation h is taken equal to

3c. This separation has been shown to yield results which are representative

of an "unbond;é"rmesh }féf;724), bﬁt the results are not strongly dependent
on h provided h > 2c¢c. Since some wire mesh ground screens are actually
in contact with the earth or even slightly buried, it is desirable to show
some results for a small mesh height d. The separation between the y-~
directed wires and the earth is d - h - ¢ which must be positive in this
particular formulation ahd'éhouldrﬁé greacér than or equal to ¢ ﬁo satisfy
the thin wire approximations.

The magnitude and phase of R88 for d - h - ¢ equal to c¢ and 6¢c
are illustrated in Figs. l4a and 14b. The other parameters are: a/X = b/A
= 0.05,.C/a = 0,01, h/e = 3.0, and e, = (Eg—icg/w)/so = 10.0 - 11.8. The
latter correspondsipo a groupdrconductiv;ty g = lo—zmhos/m at a frequency
of 100 MHz. As expected, the reflection coefficient is larger for ¢ = 0°
than for ¢ = 45°. Actually, the results for ¢ = 45° can be approximately
identified as those for a bonded mesh (h=0) at any value of ¢ since the

bonded mesh is quite isotropic in its ¢ behavior (ref. 30). Also, note
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Figure l4b
Figures 14a Magnitude and phase of the reflection coefficient Ree
and 14b at two heights above ground.
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that the reflection coefficient magnitude and phase are degraded when the-
mesh is located close to the earth (d-h-c=c). This behavior is consistent

with that of a single wire grid over a half space (ref. 9J).

HORIZONTAL FOLARIZATION

Although ground screens are more commonly used for vertically polarized

radiation, the "horizontally polarized reflection coefficient" R is also

¢d

of some interest. Thus, we show the behavior of the magnitude of R in

ol

Fig. 15 for the same parameters as those in Fig. l4. The departure of

Ry

from unity is quite small (note the enlarged scale), and again there is a

sliéﬁt degfadatién Qhenrghgﬁ;éép”igrciogep/;o the ground (d-h=-c=c). Also
note that there is little difference between the results for ¢ = 0° and
¢ = 45°.

For R¢¢, the results are identical for bonded and unbonded meshes
at ¢ = 0°, and the bonded mesh properties again are nearly independent of
¢. Consequently, for ¢ near 45°, the unbonded mesh is somewhat better
(larger ‘R¢¢|). ’The phase is not shown because it is in the vicinity of
180° for all cases.

The .cross polarized reflection coefficients, R and R¢6’ are not

8¢

shown because they are identically zero at ¢ = 0° and very small at ¢ = 45°.

They generally peak at about ¢ = 25°, but for the small mesh spacing given

in Figs. 2 and 3 (a/A=0.05), they are always small.

RECTANGULAR MESH
Since rectangular meshes (a # b) are often used in practice, it was
decided to extend the previous computer program to the case where- a # b.

Here we compared the predictions based on the approximate average boundary
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Pigure 15 Magnitude of the horizontally polarized reflection coefficient R
for the same conditions as Figure 14.
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condition. Astrakhan (ref. 12) and other Soviet workers have often used the

latter approach To facilitate the comparison, his equations were programmed

after correcting his equation l4 (Yz gin? ¢ should be Yl sinzo) Since

Astrakhan s results only apply to the free space case, we must set € = €,

and ,og = 0 in our formulation., A comparison is shown for four values of

6 in Figs. 16a-16d for a/l = 0.2, b/A = 0.1, and o/A = 2 X 10"3. Again

we chose h = 3¢, although this separation parameter does not occur explic-

itly in the Astrakhan formulation. Here, of course, a 90° range in ¢ 1is
required to cover all cases for the rectangular mesh.

The results for R¢6 are not shown because the Astrakhan model pre-
dicts R¢6 = -Re¢ and our model yields R¢6 = -Re¢.

Figs. 16b and 16c that the rectangular mesh produces significant cross

It is significant in

polarization. The main deviation occurs in R at 8 = 90° for ¢ = 0°

66

or 90° where the Astrakhan model predlcts Ree = 1 rather than zero. This

occurs because the Astrakhan model does not include the effect of the cross

wires in this case. The phases are not shown because they are less inter-

esting, but the agreement 1is similar.

Although the method of average boundary conditions is strictly valid
only for a/A and b/A small, we show some further results for a/A = 0.5,
b/A = 0.25, and c/A =5 x 10> 1in Figs. 17a and 17b. Here the agreement

is not as good, partlcularly for ¢'='o°"”ahq' 8 apptoaching 90° in Fig.

17a. This is because the first grating lobe is ready to emerge as 6
approaches 90°.
For the rectangular mesh, the bonded and unbonded meshes no longer

yield the same result for Ree at ¢ = 45°., Consequently, a useful extension

would be to treat the bonded (h=0) rectangular mesh by means of the method
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previously employed for the square bonded mesh (ref. 24). This remains to

be done.

DIPOLE RADIATION PATTERNS

Although the near field of a source dipole above a mesh is quite com-
plex, fairly simple far-field expressions can be derived by reciprocity.
Consider a source dipole of moment Id% with exp(iwt) time dependence
located ét (x,y;i) =7(OQO;£)77157the samergeomeénydéscribed in Fig. 13.

The far-zone electric field at (r,6,¢) has only 8 and ¢ components

Ee and E¢ which can be written in the following forms:
E6 = CPe and E¢ = CP¢ (97)
where
C = (iuom/4ﬂ)1d2 exp[—iko(r - £ cosB)] (98)

To cover all possible cases, we derive Pe and P¢ for x-, y- and
z-directed dipoles. Results for arbitrary dipole orientation can then be
obtained by resolving the dipole moment into x, y, and 2z components with
subsequernt superposition of the réspective radiation fields. For a z-directed
dipole, we have:

Py = (l + Seeexp)sipe (99)

and

P¢ = (Re¢exp)sin0 (100;
where
exp = exp(—iZkO£ cosB)

For an x directed dipole,

- P¢ = -(1 + R¢¢exp)sin¢ + (Re¢exp)cos¢ cosf (101)
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and

Pe = (1 - Reeexp)cosa cosd —(R¢88XP)51“¢ (102)

Finally, for a ¥y directed dipole,

P

A -(1 +R

n

¢¢exp)cos¢ + (R6¢exp)sin¢ cosB (103)

and

i

P -1 - Reeexp)cose sind + (R¢68XP)C°S¢ (104)

8
Strictly speaking, the above results are valid only for £ somewhat greater
than a and b so that the higher order evanescent modes are negligible.
However, for small £, these results are still valid if the dipole position
is averaged over one mesh cell (-a/2 < x < af2 and -b/2 < y < b/2) since
the evanescent fields have a zero average.

To illustrate the radiation patterns, the foilowing parameters are
chosen: a/k = b/A = 0.05, c/fa = 0.0i, h/c = 3, dfa = 0.1, and €. = 5.0
- 10.18. The latter corresponds to a ground conductivity ¢ = 10—3mho/m
at a frequency of 100 MHz. This €. value was chosen ﬁo illustrate the
improvement provided by the mesh over poorly conducting ground. Fig. 18
illustrates |P9| for a vertical (z-directed) dipole located at the mesh
surface (£=0) for three values of ¢. The patterns for ground alone and
fo; perfect ground alone are also shown, and they are independent of .
Alsc shown is the cross-polarized pattern, |P¢[, which is quite small even
for ¢ = 22.5°. It is zero for ¢ = 0° and very small for ¢ = 45°. Fig.
19 illustrates the same case except that the dipole is now elevated (&/X =

0.5) so that an extra lobe is introduced into the pattern. Note that

"cutback'" still occurs as 8 approaches 90°.
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The rad#ation patterns of a horizontal dipole (x-directed) aré shown
!
for the end-on (¢=0°) and the broadside (¢=90°) directions in Figs. 20
and 21. The dipole is elevated (&/X=0.25) so that a maximum occurs directly
overhead (8=0°). For ¢ = 0°, P¢ =0, and for ¢ = 90°, Py = 0. For com-

parison, the results for ground alone and perfect ground alone are again shown.

CONCLUDING REMARKS

The numerical results show in a quantitative manner how a wire mesh
|
above the ground surface will reflect electromagnetic waves incident from
above. However, it appears that the reflection efficacy is somewhat degraded

if-the mesh is located very close to the ground surface.

Rectangular mesh calculations have been shown to agree well with the

average bound%ry condition method for sufficiently small spacings. A signi-
|
ficant point here 1s that the rectangular mesh produces greater cross polari-

zation than tﬁe square mesh, presumably because it has less symmetry. Unlike

l

. the square meéh, there is no azimuthal angle ¢ where the bonded and unbonded

rectangular mesh produce the same Ree. Consequently, it may be worthwhile
to extend this treatment to the case of the bonded rectangular mesh since

such meshes are sometimes used in practice. We may anticipate that even in

this case, bonding the mesh degrades the reflecting properties. However, in

dealing with yery wideband fields, certain practical considerations, such as

finite mesh extent at low frequencies or grating lobes at high frequencies,

could justify bonding.
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