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ABSTRACT

. 77112eZect2vxrlagnetic scattering of a plane ux.zve
b

. .. - ...

bzj a rectangukr wire mesh is analyzed in both a

free space and a half-space environment. Plane

wave refZec750n and” transmission coefficients are

computed to illustrate the dependence of wire mesh

perfozmmnce on the nwnerous”inpn+znt parameters.

The case ofpkne wave excitation is also extended
,. . . ..

to surface wave propagation and dipole radiation ‘::.

patterns. . . .
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SECTION I

INTRODUCTION

This report consists of four sections (II-V) which deal with electro-

magnetic scattering by wire mesh structures. Here we summarize what has

been done, how the various sections are related, and what problems remain

to be solved.

Section 11 considers the plane wave scattering by’s square wire mesh

with bonded junctions. Such square, bonded meshes are frequently used for

ground screens and in other shielding applications. A special junction

treatment was found necessary to efficiently analyze a bonded mesh, and

numerical results for plane wave reflection and transmission coefficients

are presented to illustrate the effect of various parameters on mesh per-

formance.

Section III utilizes the formulation developed in Section 11 in order

to treat surface wave propagation over a square, bonded mesh. This is an

important problem since surface waves can be excited by realistic sources,

such as a vertical dipole antenna. Numerical results are presented for the

propagation constant as a function of various parameters. The similarity of

this propagation constant to that of a plane wave in free space is a measure

of the shielding effectiveness of the mesh.

In order to examine a more realistic model for antenna ground screens,

Section IV considers a wire mesh over a Iossy half-space. The treatment is

only rigorously valid for unbended meshes, but for square meshes the results

for incidence along the mesh diagonal (+ = 45°) are also representative of



P a bonded mesh. Numerical results for’the plane wave reflection coefficients

( are presented in order to illustrate the effect of various parameters.

Section V is primarily an extension of Section IV with numerous
-

additional numerical results presented. The results for a mesh very close

to the ground should also be valid for the practical case of a mesh lying

on the ground or even slightly buried. Numerical

meshes are presented, and they are found to agree

aged boundary conditions developed by the Soviets

results for rectangular

with the method of aver-

for small mesh sizes.

Also considered in Section V are the radiation patterns of short electric

dipoles of arbitrary orientation, located above a mesh. The numerical

results are applicable to scattering by a test object (by giving an indi-

cation of how the image fields are modified) as well as source radiation

for frequencies high enough to satisfy far field criteria.

The main geometry which remains to be analyzed is the b-ended,rectan-

gular mesh-–eitherin free space or above a half space. This type of mesh

has been used, and there are some questions regarding the appropriat-ecross-

wire spacing. As well as plane wave reflection, surface wave propagation

along this type of structure is also of interest. The propagation con-

stant in the half space geometry would be complex since the lossy earth

would introduce attenuation. Some numerical resul”tswould be useful in

quantifying th-eimportance of attenuation of the high frequency components

Electromagnetic Pulse (EMP) simulators.

---‘J— 7



SECTION 11

ELECTROMAGNETIC SCATTERING OF AN ARBITRARY PIANE

WAVE BY A WIRE MESH WITH BONDED JUNCTIONS

INTRODUCTION

The electromagnetic properties of a single planar array of parallel

wires have been investigated extensively in both a free space environment

(r%~s. 1-5) and for various half-space environments (refs. 6-10). The wire

mesh screen has received less attention, and some disagreements on the

properties of such screens still exist.

The reflecting and transmitting properties of both square meshes

(ref. 11) and rectangular meshes (ref. 12) have been calculated by using

the method of averaged boundary conditions (ref. 13). The method appears

to give good results for both bonded and unbended junctions, but is only

valid for mesh dimensions which are small compared with a wavelength.

Otteni (ref. 24) has presented a general solution to the problem which re-

quires matrix inversion to determine the mesh currents and resultant re-

flection coefficients. However, his results are in disagreement with those

of Kontorovich et al. (ref. 11) and Astrahan (ref. 12)

muthal dependence for the properties of bonded meshes.

A general solution has also been given for plane

who predict no azi-

wave scattering from

separated wire grids (relr.15). The planar grid separation was allowed to

become small as in an unbended mesh, but the bonded mesh limit was not con-

sidered. Here we extend the previous solution to the bonded mesh case by

setting the separation equal to zero and making slightly different approxi-

mations. No special junction conditions on the current or charge at the

junction are found necessary, but convergence of the solution is found to

be extremely slow resulting in the need for inversion of very large matrices.

Our convergence calculations indicate that some of the results of Otteni

8
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(ref. 14) are incorrect “because h-e has not taken enough terms in his current

expansion to obtain convergence.

The primary reason for slow convergence in the bonded mesh problem is

that the Fourier series expansion for the current is inefficient in synthe-

sizing the current jump which occurs at the wire junction. We find that by

adding the proper jump function to the Fourier series representation, the

required number of current expansion coefficients is reduced by a factor of

about ten, and the required computer time is reduced by more than a factor

of one hundred. Using this improved solution, numerical results for current

distributions and reflection and transmission coeff-icientsare obtained.

For simplicity, we consider a square

but the technique is also applicable

conducting wires.

mesh with perfectly conducting wires,

t:orectangular meshes with imperfectly

FORMULATION

The geometry is illustrated in Fig. 1. Arrays of–wires parallel to the

x and y axes with spacing a are located in the plane z = O, and perfect

contacts are made at the junctions. ‘rhewire radius c is small compared

to both the spacing a and the free space wavelength A. Consequently, the

wires carry only axial currents, and the usual thin-wire approximations are

valid.

The incident electric field ~inc is an arbitrarily polarized plane

wave:



ZE,

Figure 1. Geometry for a plane wave of arbitrary
wire mesh with bonded junctions. Wire

polarization incident on a
radius equals c.



Pt.
(’

Fin== ~. exp{ik[z cos 0 + sin 6 (x cos $ + y sin $)]}
(1)

where E. is the incident field at the origin, k(= 2Tr/A) is the free space

wavenumber, and @ and 0 are theai:imuthal and elevation incidence angles.
.

The time dependence is exp(iut).

From Floquet’s theorem (ref. 16), the wire currents for the qth x-dir-

ected wire I and the mth y-directed wire I
Xq

can be written as periodic
P

functions multiplied by the phase dependence of the incident field in (l):

I = ~ A exp{i[2nmx/a +ksin6(x cos$+qasin’$)1}
Xq III~.-m

I
P

= ~ B exp{i[2nqy/a +ksin6(y sin@ +macos$)l}
q=_cu q

(2)

The fields scattered by the wires can be derived from a magnetic vector

potential which has only x and y components. In order to solve for the un-

di%- known coefficients A

[r?

and B
m q’

we set the total tangential electric field

equal to zero at th-etops of the wires: E =Oaty=Oandz=c
x, total

and E = O at x = O and z = c. From these conditions, a doubly
y, total

infinite set of–linear equatfons can be obtained for A and Bq (ref. 15).m

The procedure is equivalent to a method of moments solution of Pocklingtonls

equation for thin wires (ref. 17) using entire domain sinusoidal expansion

and testing functions. Specializing the solution of Hill and Wait (ref. 15)

to the-bonded square mesh with perfectly conducting wires, we obtain the

following doubly infinite set of linear equations:

11



~{-[kz -~~+lcsin~cas$)zjsm}6moEoxexp(ikccosG) - A

itopo

(

exp (-r“ c)
+—

)(
~+ ksin8cos$ ~ B

211q

)
~ + ksin6sin$

r
=0

2k2a nlq

,{:;[ ( )1 }
%+ksln(lsin$ ~6qoEoyexp(ikccos6)- B —

kz - 2 s’
a

iupo
+—

(
‘+ ksin~sin$) I Am(*+ ksine..s$)exp(-y) = 0 ‘3)

2k2a a m

= [(2nm/a+ksinecos$) 2 + (2mq/a + ksin%in@)2 - k2]~where ~
Inq

exp(-r C)
S/ ~

Inq
r $

q mq

6 .
mm

and E and E are the x
ox Oy

exp(-rm C)
s;= ~

r
m mq

{

l,m=n

O,m#n

and y components of

field at the origin. All summations are taken to run

the incident electric

from - to m

unless otherwise stated. The factor exp(ikc COS6) which multiplies the

incident fields in (3) was dropped in the previous treatment because it is

near unity. The convergence of the summations S and S1 can be improved
m q

as was done previously (ref. 15), but some of the previous approximations

cannot be made here because large values of m and q are required for

convergence of (3). For Sm, we have:

.

12
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where

+:
y -+ ‘XP(L”C)

=~{-~.[1- exp(~)] +Am} + ‘xp(~oc)

(4)

and ‘ on ~ indicates omission of the q = O term. The term A con- = -
m

verges rapidly and is easily summed on a computer. In a similar manner for

s’, we have:
~

‘~=${-~n[l:”e’p( -2~c)]+~q}”+”&(-JOqc) ‘
“q

(5)

where

Th-e–solutionof (3) is discussed in the following section.

Th-e–transmissionand reflection coefficients are the quantities of

most interest in characterizing the mesh. In order to define these coeffi-

cients, it is first necessary to specify the incident electric field. For

6 (vertical or TM) polarization, the incident electric Eield has a 6 coul-

inc
ponent

‘e given by

inc = ~
‘e

“e exp{ik[zcos9 + sin~(xcos$ + ysin$)]] (6)

Consequently, the x and y components at the origin which are required in

(3) to solve for the current coefficients are given by:

13
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For $

E = E06 cost3cos(#l,ox

(horizontal or TE)

field has a ~ component

E = EOO cosf3sin$
Oy

polarization, the incident electric

.
~nc given by

‘o

fnc

‘4 ‘E@$
exp{ik[zcosO +sinQ(xcos@ +ysin$)])

Consequently, Eox and E for $ polarization are:
Oy

E = -E
ox

sin$, E = E
0$

cos~
Oy o~

(8)

(9)

For a less than i/2, there are no grating lobes, and only the constant

current components A and B
o 0’

contribute to the scattered far field.

The rectangular components of the scattered field for large negative z are

given by (Pef. 15}:

-n.
Es- =

2acos6
[Ao(l -

x
sinz~cos2~) - Bos~n28sin$cos$]

● exp{ik[zcos9 + sin~(xcos$ + ysin$)]}

no
Es- =

2acos0
[Aosin20sin@cos@ -Bo(l - sin20sin2@)]

Y

- exp{ik[zcos6 + sin6(xcos@ + ysinf$)]}

ilosinO
Es- = ~a [Aocos$ + Bosin$l exp{ik[zcose
z

(10)

@--

+sin$(xcos~ + ysino)ll



— —

.—

.

%
where no = (no/Co) .

The 6

and

and $ components of the scattered field are:

-E;- sin(l-1-E~- COSOCOS{J+ Es- cos~siu~
Y

(11)

‘; = -E~-sin$ + E~-cos@

For O polarization, the parallel and

mission coefficients (Tee and T6@)

cross-polarized trans-

are defined as

‘ee = 1 + E;-/#’c and
‘8$

= E;-/E~c

parallel and cross-polarized trans-For $ polarization, the

mission coefficients (T$$ and T@@) are defined as

inc

‘$$ ‘l+ E;%
and

‘+9
= E;-/E~c

(12)

The reflection coefficients are determined from the scattered field

evaluated at large positive values of z.

tangular components are

in z in the exponents

the same as th-o-se

and a sign change

(13)

and

-. ,J

E
s+ = E~- E

s-i-
x ? Es-

Y=Y

In this case, the scattered rec-

in (10) except for a sign change

in the z component

IZ=-z I 2=-Z

E
s+ = -E;-
Z

15
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‘I%e 6 and @ components of the scattered field for large posi-

tive z are:

~s+ s-f- s-i- - Es+=-
0 ‘z ‘ine - ‘X Cosecos$ Y cOsesit@

and
s+

‘;+= -Ex
sin+ + E;+cos~

.-

For 0 polarization, the parallel and cross-polarized reflection

coefficients (R06 and ‘e+) are ‘effned as:

‘+ exp{-ik[-zcose -1-sinO(xcos$ + ysin@)]]/Eoe
’89 = ‘e

(16)

‘+ exp{-i.k[-zcos6+ sinfl(xcos$+ ysin$)l}/Eo6
‘e@ “ ‘+

For $ polarization, the parallel and cross-polarized reflection

coe~ficients (R+$ and R$el are defined ~~ ,

‘+ exp{-ik[-zcosO + sine(xcos$ + ysin@)])/Eo@
‘$0 -%

‘qe = E;+ exp{-ik[-zcos6 + sine(xcos$ + ysin@)]}/Eo@

The exponential factors in (16) and (17) simply refer the phase to the origin.

Since we are considering the case of lossless wires and mesh spacings

less than a half wavelength, all incident energy is either transmitted or

reflected, and energy conservation can be used to provide a consistency check

for the calculations. For 9 polarization, the necessary condition is:

\T~el
(18)2 + ITG412 + \R06\2 + \R80\2 = I

16
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For $ polarization, the necessary condition is

‘r$$lz+ IT$J2+ lR@$2+ lR@12= 1

NUMERIC7iL SOLUTION

(19)

. In order to solve the doubly infinite set of equations in (3) for the-

current coefficients A~ and B the equations were truncated and solved
q’

by matrix inversion. A computer program was written which was capable of

inverting a matrix of order 126 x 126 (m,q = -31 >...!o,...31)0 The accuracy

of the matrix inversion was verified by obtaining good agreement between

single and double precision inversion. Convergence was examined by increas-

ing the matrix order in steps and cjbservingthe change in the dominant current

coefficients A and B
o This is roughly equivalent to observing the changeo“

in the reflection and transmission coefficients. We define convergence as

having been obtained when a further increase in the matrix order (N x N)

produces a negligible change in A. and B. (or in th-ereflection and

transmission coefficients). A number of cases were studied numerically, and

for 9 polarization, convergence was found to be extremely slow for inci-

dence along a wire axis ($ = 0°) and near grazing (0 near 900). Con-

versely, convergence is found to be very rapid for $ near 45° (all 9) or

for f3 near 0° (all $), This qualitative behavior is in agreement with

Otteni (ref. 14) whose program was written for 9 polarization for a matrix

order up to 70 x 70. However, we find that, for cases where convergence is

slow, a much larger matrix order is required than that predicted by Otteni.

Convergence is

In order

following case

quite fast for @ polarization for all incidence angles,

to illustrate the convergence difficulties, we consider the

f-or f3 polarization: a/A = 0.25, cla = 0.02, 6 = 70°, and

$=OO. This case is chosen because a measured value of the transmission

17



coefficient is available (ref. 11), The convergence of ~T661 as a function

of N is shown in Fig. 2, and the final value is seen to agree closely with

the measured value of Kontorovich, et al. (ref. 11). The cross-polarized

transmission coefficient

For comparison, the rapid

radii for the x and y

lation for unbended wires

‘0$1is zero by symmetry in this case since $ = OO.

convergence for a planar separation h of 3 wire

directed arrays as computed by the previous formu-

(re~. 15) is also shown in Fig. 2 along with the

experimental value of Kontorovich et al. (ref. 11). Although the agreement

is fairly good, an exact comparison is not expected because the unbended wires

in the experiment

existed.

In order to

were touching and some finite junction impedance probably

understand why the convergence 5s so slow for the bonded

case in Fig.

for the same

tions on m

2, it is useful to examine the current distribution on the wires

case as given by Fig. 2. For a given value of N, the summa-

and q run from -(N-2)/4 to (N-2)/4. Consequently, the

summations run from -30 to 30 for N = 122. The resultant real and imagin-

ary parts of I and I are shown for one Floquet cell
Xo yo

(-a12 <x < a/2,

–a/2 ~ y < a/2) in Fig. 3. It is seen that the current waveforms suffer

from Gibbs’ phenomenon (ref. 18) near the junction (x=y=O) where a step

discontinuity is expected in both Ixo and I This difficulty does not
yo“

occur for the unbended mesh where the

ant convergence is much more rapid as

If the jump discontinuities in

waveforms in Fig. 3, it is found that

current is continuous, and the result-

seen in Fig. 2.

I and I
Xo

are estimated from the
yo

the jumps are the negatives of each

other, Consequently, Kirchhoff’s current law has been satisfied:
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IXO(O+)- IXO(O-) + IYO(O+) - IYO(O-) = O

This is a partial check on the accuracy of-the solution. In a finite

ence treatment of Pocklington’s equation for a pair of crossed wires,

and Ko (ref.

satisfied if

appears that

crossed wire

19) have recently shown, that Kirchoff’s current law is,

(20)

differ-

Mittra

in fact,

the proper sampling interval is used. Thus, in principle, it

junction conditions do not necessarily have to be enforced in

problems. Furthermore, from charge continuity, King and Wu

(ref. 20) have derived the following additioml conditions for crossed wires

of equal radii:

=

+
X=o

52 .
ay

y=o-

(21)

~=o+

The Gibbs’ phenomenon oscillations in Fig. 3 make the current slopes diffi-

cult to estimate, but it appears that (21) is roughly satisfied if average

slopes are used. Actually, good agreement for current waveforms has been

obtained by a number of investigators (refs. 19 and 21-23) even when (21) is

not well satisfied.

Numerical results for other cases show that as in Fig. 2 large matrices

are required for convergence, but that Kirchhoff’s current law is sat-isfied.

Thus a direct solution of (3), without enforcement of junction conditions,

is a valid procedure but excessive computer time is required.

IMPROVED SOLUTION

The primary reason for the slow convergence of the truncated system

of equations (3) is that the continuous functions in the current—expan-

sions in (2) are ineff-icientin synthesizing the discontinuous current which

21
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occurs for the bonded mesh. This problem could be eliminated by using dis-

continuous expansion functions for the current (such as pulses), but then

the resultant equations would be much more complicated than those in (3).

A more efficient scheme is suggested by the fact that the higher order co-

efficients for I and I
Xo

are observed to fall off linearly wi.chan
yo

amplitude determined only by the jump at the junction. Thus, we define the

following jump function fA(x):

where

(22)

{

I,x>o
u(x) =

O,x<o

Note tlx3t
‘A

is a sawtooth function with

that 1 in Fig. 2 has a similar shape.
yo

a jump of A at the origin and

Using (22), it is possible to write the currents in the following form

which Le.still equivalent to (2):

Ixq(x) = exp[iksin6(xcos$ + qasin$)]

~p(Y) = exp[iksine(ysin$ + macos$)]

.
[
-fA(y) + 1 B; exp

m

(~)]

22
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(
p

!,

where

and

A(l - dmo)
“A; =A -

m 2nim.

A(I - 6 ~)
B;= Bq+-

27riq

Note that equal and opposite jumps are now built into the x and y dir-

ected currents and Kirchhoff’s law is automatically satisfied, Note that

(23) is actually obtained by replacing Am and Bq by

A(I - Q
A =A;+—
-m 27Tim

and
A(I - 6 o)

B =B’ - —
qq 27riq

(24)

In order to derive the new set of equations equivalent to (3), we substitute

(24) into (3) and obtain the following:

~moEoxexp(ikccos@) - A: {~ [k2 -(&+ksinec@)z]sm}

iup
o (2Trm )

exp(-r C)
-l——— +ksin6cos$ ~ B’ (~+ ksinosin~

)
mq

2k2a a qq r
mq

{

(gmo - 1) iup
+A o

2~mi [(
kz_@

)]
a .+ ksinecos$ 2 Sm

2k2a

ib.llo

(
27Tm

)[

s
-— ~ + ksinOcos@ &

2k2a

{

ibyl
6qoEoyexp(ikccos8) - B’ — o

q 2k2a

iup
-1-J

(
~ + ksin(3sin@

2k2a
) 1 A: (:9+ ksinecos$)exp(->c)

m mq

ksinOsin$ ,
2iTi 1}lm =

o

[(
kz- m

H }
a i- ksinesin$ 2 S’

q

22-ft

.)

(25)



{

(1 - 6 ~) i(q..l
o [(kz - )]~+kstifkin$ 2 S;+A

2’rrqi
2k2a

a

exp (-I’mqC)
s
lm = 1’ ~

q Ulq

em (-~mqc)
s’”~’——————
lq ~ d’

mq

Note that rapid computational formulas for Sm and S’ were given in (4)
q

t
and (5) and that

‘lm
and S

lq
are already rapidly converging series as

defined in (25). Since A is actually an unknown in (25), another equation

must be introduced before truncation and inversion of (25) in order to have

– an equal number of equations and unknowrs. Kirchhoff’s current law as given

by (20) cannot be used because it is already built into (25) and would not

provide an independent equation. The following convenient condition can be

drived from (21):

I_

(26)

In order to be sure of satisfying all three conditions in (21), without an

infinite number of terms, it would be necessary to add additional inverse

square terms to the current expressions in (23) which would complicate the

coupled equations (25) even further. By substituting (23) into (26) and

carrying out the differentiations, we obtain:
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~ + ~ A~(im + i ~ Sinocos$) - ~ B’(iq - i ~ sinesi.n$)= O
qq

(27)

m’

Th-etruncated set of equations from (25) plus (27) can now be inverted to

rn’B:’and ‘“solve efficiently for A’

When the new set of equations is tested for convergence on the case

shown in Fig. 2, convergence is obtained for a matrix of order 11 x 11

(m,q = -2,...2). The current waveforms given by (23) are shown in Fig. 4,

and they are seen to be essentially the same as those in Fig. 3 without the

Gibbs’ phenomenon oscillations. Other test cases also show very rapid con-

vergence, and the new set of equations can thus be used to obtain parametric

curves without using excessive computer the. In all cases, the energy con-

servation conditions given by (18) and (19) are found to be well satisfied.

The $ dependence of the various transmission coefficients is shown

in Fig. 5. Note that the bonded mesh coefficients exhibit almost no $

dependence. _

H.>-
>

On the other
-.

with @ and

Also, the cross-polarization is negligible on the scale shown.

hand, the unbended mesh transmission coefficients vary markedly

sizeable cross-polarization occurs. These effects are in agree-

ment with

The

in ground

both the theory and experiment of Kontorovich et al. (ref~ 11).

reflection coefficients for O polarization are quite important

screen applications, and the wavelength dependence is shown in

Fig. 6 for @ = 0° and 8 = 70°. Note the more rapid decrease from unity

for

The

not

the bonded mesh. For other values of @ the difference is always less.

reflection coefficient for ~ polarization is also shown, but it does

depend on the junction bonding fc)r’$ = OO.

We have also compared our solut:ionwith Otteni’s (ref. 14) free-space

results in his Fig. 4, and we find that his variation in results for differ-

ent values of ~ is not correct. He obtains the $ variation because he

24
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Normalized current waveforms for one Floquet cell as generated by

the improved solution.
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Figure 6 Reflection coefficients for bonded and unbended junctions. For

this case (+=00), IR I is independent of the bonding and there
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haS

90°

.

not used enough terrrrsfor convergence for small @ and 6 close to

—.
where convergence is extremely slow.

CONCLUDING REMARKS

Plane wave scattering by a bonded mesh has been successfully treated

both with and without application of wire junction conditions. However, by

building the current jump at the junction into the solution, convergence is

greatly improved and computer time is reduced to the point where parametric

curves can be easily generated. The same method is applicable to rectangular

meshes and imperfectly conducting wires and perhaps to junctions with imper-

fect contacts since the current jump is obtained directly.

Our results indicate that the properties of a square bonded mesh are

essentially independent of $ for wire spacings less than a quarter wave-

length. Also, for 6 polarization, t:heunbended mesh provides a larger

reflection coefficient (smaller transmission coefficient) for values of @

other than 45°. However, the bonded mesh does produce less cross-polarization

than the unbended mesh. Our conclusions are in agreement with Kontorovich

et al. (ref. 11), but in disagreement with Otteni (ref. 14).

A worthwhile extension of this analysis would be transient excitation.

Th-e-rapid computational feature of our improved solution would b-euseful in

generating sufficient frequency domain data for inversion to the time domain,

Another useful extension would be to include the influence of a conducting

half space whose interface is parallel to th-emesh, This configuration has

application to antenna ground screens and has b-eenconsidered for a single

wire array parallel to various half-spaces (refs. 6-10 and 14).

28
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SECXION IIi

g)
(1

ELECTRO~GNETIC SURFACE WAVE PROPAGATION

OVER A BONDED WIRE MESH

INTRODUCTION

Wire mesh screens and grids are often employed in electromagnetic

shielding devices. They are much cheaper and lighter than sheets of met-al

but it is important to know what differences can be exp-ectedwhen such struc-

tures are used. Using averaged boundary conditions, the reflecting and

transmitting prop-ertiesof crossed wire meshes have been analyzed in the

past for both rectangular and square meshes (refs. 11-13). The method appears

to give good results for both bonded and unbended junctions, but is restrict-ed

to mesh dimensions small compared with a wavelength. General solutions have

also been obtained for plane wave scattering from separated wire grids

(ref. 15) and bonded wire grids (ref. 24). In general, these solutions re-

quire a numerical matrix inversion in solving for the wire currents although

perturbation procedures can be used in certain cases.

Here, using a previous formulation (ref. 24), we consider the surface

wave that may propagate along a square wire mesh with bonded junctions. Such

I
a surface wave would not be supported by a perfectly conducting surf-ace.

This property of wire meshes should be understood when used in anY special

applications.

Although we consider here a square mesh with perfectly conducting wires,

the technique is also applicable to a rectangular mesh with imperfectly con-

duct-ingwires and in other similar configurations. In the appendix, we dis-

cuss the significance of the averaged boundary conditions and an interesting

analogy of the wire mesh with a thin plasma sheet.
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FORMULATION

The geometry of the bonded mesh in free space (with permi~tivi.ty co

and permeability Po) is illustrated in Fig. 7. Arrays of wires parallel to

the x and y axes with spacing a are centered in the plane z = O, and per-

fect contacts are made at the junctions. The wire radius c is small compared

to both the spacing a and the free space wavelength 1. Consequently, the

wires can be considered to carry only axial currents, and thus the usual thin

wire approxirmtions are appropriate.

Before proceeding with the analysis, it is worth noting that the mesh

structure has a plane of symetry (z = O). For objects having a plane of

synmetry, the electromagnetic field can be decomposed into symmetric and

antisymmetric parts which are uncoupled and can be treated separately (ref.

25). The rectangular components of the symnetric part of the electric field

satisfy the following:

Ex~(x,y,z) = Ex~(x,y,-z), E~s(x,y,z) = ~y~(x!Y$–z), and Ezs(x,Y,z)
(?.8)

= -Ez~(x,y,–z).

The antis>-mmetricpart of the electric field satisfies

~xa(x,Y,z)= -EJx,Y,-zL ~~a(x,y,z) = -Eya(x,Y>–z) , and

Eza(x,y,z) = Eza(x,y,-z)

Since Exa and E
ya

are odd tn z, they are.both zero in the plane of

the meslL:

Exa(xYY>o) = Eya(x,y,O) = O

(29)

(30)

Thus the antisymsnetricpart of the electromagnetic field does not interact

with the mesh (due to the thin wire approximation) and can be treated sep-

arately. Here we need consider only the symuet,ficpart of the elec-

tromagnetic field and, henceforth, the subscript s is dropped. Also, in

30



-

.

..J

. .. —._

z

,yj/////////

a

v I
A

Figure 7 Geometry for a surface
bonded junctions.

direction of

Y

propagation

wave propagating on a wire mesh with

31



what follows, we will assume a time dependence exp(iwt) for all field

quantities.

From Floquet’s theorem (ref. 16), all electromagnetic quantities can

be expressed as an exponential function multiplied by a function which is

periodic in x and y. Consequently, if we seek a solution for a surface

wave propagating at an angle ~ to the negative x axis, the current on the

qth x-directed wire I and the current on the mth y-directed wire I
Xq ym

can be written:

w

I = exp[y(x cos$ + qa sin$)] ~ Am exp(i2nru~/a) (31)Xcf
~.-cn

co

I~ = exp[y(ma cos$ -l-ysin+)] ~ Bq exp(i2mqy/a) (32)

q=-

Here Am and B are unknown coefficients, and
q

y is the propagation con-

stant which we seek. The m and q summations indicated in (31) and (32) are

over all integers including zero from -CO to +. Because, in general, the

currents are discontinuous at the junctions (>”ef.24), it is useful to use

the equivalent form:

I
Xq

= exp[y(x cos$ + qa sin~)]

(33)

● [fA(x) +~A~exp(i2mnx/a)]

m

I
yrrl

= exp[y(ma cos$ + y sin$)l

o
.

(34)

. I-fA(y) + ~ B’ exp(i2nqY/a)

~q
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where A’ and B‘ are modified coefficients. The sawtooth funct-ion
m q ‘A

has a jump of A at the origin and is defined by:

‘A(x) = ~ ~’ ~(i2~n~/a)n
n

[ 1=Au(x) -:-~ ,-;<X<;

-@)

(
l,X>O

where u(x) =
O,x<o

The super-scriptedprime over the summation sign in (35) indicates

omission of the n=O term.

We now invoke the condition that the axial electric fields are zero

on the surface of the wires. Because of–the thin-wire–idealization, we

may apply this condition at the tops of the wire-s. Thus

Ex(x,o,c) = Ey(o,y,c) = O (36)

The expressions for the current in (33) and (34) are identical to those in

the case of plane wave scattering (ref. 24) except that y has replaced

ik sinO where k was the free space wavenumber (= 2TT/~) and O was

the angle of incidence. Consequently we need not repeat the derivation,

Thus, on omitting the incident field in equation (25) of ref. 24 , the

needed doubly infinite set of equations is found to be:
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-.:{- [,2e- -02]’.}

t

ib.wo

(
j2.._

[ D
k+” =0

+— iy sin$) ia lq

2k2a a

exp(-T c) , exp(–rm C)

where s s qrn’q ‘ %1= ; ‘l~mq
(39)

lm =
q mq

k

r [(
2TrIil iY .0s$)2 ‘(,~- i~ sin@)2 - k2

1
(40)—-

and .
nq a

As indicated in the previous analysis of the

the summations given by (39) and (40) can be

scattering problem (ref. 24),

converted to forms that converge

rapidly when the ratio cja is small. Thus, for present purposes, we use

(37)

(38)

(41)
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.
where

1}

exp(-ro C)
+6 +

q 1’
Oq

exp(-2nlqlc/a

l-qI ‘1

[

exp (-I’ C)
and 6q=$~’~r

ma ;’ “-VI

(42)

(43)

Also, as shown before (ref. 24), a condition on charge continuity is needed

to determine the “current discontinuity” A at the junctions. This leads

to the requirement-that

A

(
,, + ~ A’ im- w

)-:,q(
I-—

-iq+*)=~

m m (45)

The current expansions as given by (33) and (34) are rapidly conver-

gent; thus, the doubly infinite set of equations in (35) can be truncated

with m and q ranging from -N to N where N is a fairly small integer. As

a result, a set of T(= 4N + 3) linear, homogeneous equations in A’ B’
m’ q’

and A is obtained:

—

‘rx~

coeff-icient

matrix

—

.

.

0

.

..

...

..

.

................
0

—.

(46)
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A solution to (46) exists only if the determinant, which is a function of

Y% vanishes. Symbolically, this is writtert

det = O (47)

which is the mode equation to be solved for y. The resulting z depend-

ence of the associated Floquet harmonics are then given by the factor

exp(-~mqlzl). For sufficiently small a/A, there are no grating lobes

(rmq real) and thus no loss mechanism. Consequently, y is purely

imaginary. The same conclusion cartbe reached by examining the coeffi-

cients in (37), (38), and (45). We might also anticipate that the dom-

izant surface wave mode will have a solution y near the propagation

con-scant ik of free space.

For small a/A and large Izl, the z dependence is essentially

determined by the lowest order Floquet harmonic:

(48)

However, as a/A is increased, grating lobes eventually occur and Y

becomes complex. For example, if @ = 0“, the first grating lobe

occurs when r_l o becomes zero:
Y

I
:= 1 + (y/ik)

Since (y/ik) actually depends on a/A, {50) is not an explicit

expression for ali. Actually, the numerical results in the following

sectiun are presented only for the range uhere al~ is sufficiently

small that y is purely imaginary.
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The mode

(ref. 26), and

. of y did not

NUMERICAL RESULTS

equation (47) was solved numerically by the bisection method

the convergence was examined by increasing N until the value

change significantly. It was found that y remained essen-

tially constant beyond N ??2(T = 11) wh:Lchis consistent with the plane

wave scattering case (ref. 24). For comparison, approximate results have

also been derived from the work of Kontorovico et aL fre~. Il)(e.g. see (55)

in Section 111 A.

Results for the relative change in y for a fairly sparse mesh

(a/c = 500) are shown in Fig, 8. Note that for small a/A, the numerical

results agree with the approximate soluton and are independent of $. Such

behavior is again consistent with the plane wave scattering case (ref. 24).

Results for a more dense mesh (a/c = “50) are shown in Fig. 9, and the

trends are similar, but the yelative change in y is less. In both figures

3-—.—_? the range of a/A extends almost to the point where the first grating lobe

occurs for $ = OO. For other $, the first grating lobe occurs at a larger

value of af~. Of course we need only show ~ from 0° to 45° because of

-,J

symmetcy.

PHYSICAL SIGNIFICANCE OF RESULTS

A somewhat

is as follows.

crude interpretation of the significance

If we wish to propagate a wave on one side of the mesh

(such as in antenna ground screens or in parallel plate regions), then the

total field must be made up of both a symmetric and an antisymmetric part in

order to cancel on one side. Since the propagation constant of the anti-

symmetric part is that of free space (i’k), the phase difference between

the syrmnetricand antisyrmnetricparts, ~s - 48, after having propagated
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a distance d along the mesh is

$s - Va = (y/i)d -kd= kd[(y/ik) - ~j

When this phase difference becomes approximately TT/2,

longer occurs and the mesh is no longer effective as an

In pulse propagation, this phase difference is greatest

(51)

the cancellation no

electromagnetic shield.

at the highest fre-

0

quency component so that the leading edge of the transmitter–signal would be

most seriously affected. This is just one aspect of the present stwdy that

could be followed up with this type of wire mesh model.

CONCLUDING REMARKS

The propagation constant of a surface wave propagating along a square

wire mesh in free space has been determined numerically and compared with

the approximate solution from the method of averaged boundary conditions.

For small mesh spacings, the solutions agree and the results are independent

of the direction of propagation. For larger mesh spacings, the propagation *

constant depends on the direction of propagation as illustrated in Figs. 8

and 9.

A worthwhile extension to this analysis is for imperfectly conducting

wires using an impedance boundary condition at the wire surface rather than

(36). This does not complicate the formulation, but the propagation constant

y becomes complex. Also, a second mesh (as in a parallel plate waveguide)

can be introduced, and this configuration has already been treated by the

method of averaged boundary conditions (re-f:27). Finally, the introduction

of a lossy half space (ref. 14) would be useful in modelling ground screens

for antennas.
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AVERAGED BOUNDARY CONDITIONS, THIN PLASMA SHEET
ANALOGY, AND EFFECTIVE TRANSFER INDUCTANCE

For a vertically polarized plane wave incident at an angle f3 frcjm
.

the z axis, the reflection coe:Eficient R as obtained from the rnethocl
z

of averaged boundary conditions is (ref. 11)

[
R=li-

1%0- +“’’)”’ (52)
z

where

(53)

As indicated, Rz is normalized so that it would be +1 in the limit of

zero grid spacing (i.e. the perfectly conducting plane).

The propagation constant (Y = ik sine) of the surface wave can be

determined from the pole location ofiR in the complex 8 plane. Thus,
z

1

4-..–
>~“

.J

the node equation is:

1
“ 20)ak(l - ~ sln

O=R-l=l+—— 7 (54)
z

Ey substituting -Y2/k2 for

formula, the desired root--for

1- sin26]%

sin20 in (54) and using the quadratic

y is found to b-e–

{

~%+

y=ik ‘kN)2-’i+[1 -@a
(ku)2/2 ‘]}

(55)

It is easy to show that the other root of (54) does not satisfy the

condition Im cose < 1 required for fields evanescent in the ?z—

direction. For Ikal <<1, (55) reduces to

—
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(56)

There is an interesting amlogy of this wire mesh problem to the situ-

ation of a thin plasma sheet that can also support a surface wave. The plasma

configurations analyzed earlier (refs. 28 and 29) were, in effect, continuous

thin slabs of relatively high adnittivity so that the induced currents were

only in the horizontal plane (i.e. z = O in the present context). While

these earlier analyses dealt with anisotropy resulting from a D.C, magnetic

field, we consider here the relevant aspects for the isotropic limit (i.e.

gyro-frequency is zero). Thus the thin sheet boundary condition used in

(refs. 28 and .2!?)has the form

[Hly - ~yH ] = -MEX

and

[Hlx - H2X]= ME
Y

where the subscript 1 denotes the region above the sheet and subscript

2 denotes the region below. The parameter M can be expressed in terms

of the sheet thickness 6, plasma frequency w and the collision fre–
0

quency V by

M = coLw~d/(V+ iw) mhos

I.fMe write

(57)

(58)

(59)

M= (r -+i&)-l (60)

we can interpret r + iu~ as the effective transfer impedance of’the

thin sheet. We note that in the limit of vanishing collision frequency,

only the inductive term iu~ survives.
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Using the results from references 28 and 29, we can

pression for the reflection coefficient that is analogous

Sinlply

Rz = q~fcos6/(rIMC056 + 2)

write down an ex-

to (52). It iS

(61)

%where Q = (po/Eo) . ‘i’hecorresponding surface wave pole occurs when

Coso = -2/(rIM) and th-e–correspondingpropagation constant is

((2)

“=,k”pL_j

in the case where lnM\ >>1.

On making a direct comparison of (52) and (61), it is evident that

the cf~cctive value of M, denote Meff, for the wire me-shis given by

r)M 2_
eff =

cxk[l- (sin20/2)]
(63)

For angles near grazing including the surface wave case thus can be

approximated by

TWe~~ = 4/(ak) ((4)

The corresponding expression for eff-ectivetransferinductance of–the

square mesh is

(65)

This value for !? is just one-half for the effectjve inductance o? the
eff

wire mesh observed for normal incidence (i.e. 8 = OO). This statcncnt is

consistent with the analysis (ref. 5,J of a parallel grid of spacin3 a wllcn

the electric field is parallel to the wires.
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It is important to point out that, at normal

mesh, it would not make any difference whether the

bonded or not. However, for oblique incidence and

incidence from a square

wire junctions were

particularly for the

case near grazing, it makes a vast difference unless, of course, $ ~ 45°.

For example, the effective value of the transfer inductance Eeff for an

unbended square mesh at grazing incidence is orders of magnitude smaller

according to the general analysis gfven in (Pef. 24). This statement is also

consistent with the Soviet work (m?fs. 11-13) but it is in conflict with the

conclusions of Ot~eni (ref. 24) for reasons we have already discussed (ref.

24).
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SECTION IV

ELECTROMAGNETIC SCATTERING BY ‘IWOPERPENDICULAR
WIRE GRIDS OVER A CONDUCTING HALF-SPACE

. INTRODUCTION

In an earlier paper (ref.15) an analysis was presented for the scat-

tering of a plane wave by two nonintersecting perpendicular wire grids

located in free space. A doubly infinite set of linear equations was

derived for determining the coefficients of the doubly harmonic expansions

for the currents on the grid wires. Thes~ equations were solved by a per-

turbation procedure that is valid for a reasonably large separation of the

grids. In other cases the infinite set was truncated and the solution was

obtained by matrix inversion. In a later paper (ref. 24), the limit of

zero separation of the perpendicular grids was considered. There it was

shown that such mesh structures with bonded wire intersections have vastly

53 different scattering characteristics than for corresponding meshes with un-

bended intersections. It seems significant that the scattering properties

determined by the matrix inversion method for both the bonded and unbended

meshes were fully consistent with the theoretical and experimental data

published by Kontorovich et al. (ref. 11). They used an approximate analyti-

cal method that is valid for small wire spacing.

Here we wish to extend our analysis to the case where the perpendicu-

lar grids are located over a conducting half-space. This may be considered

as a model to study the screening influence of a wire mesh located over the

surface of the earth for an electromagnetic wave incident from above. Such

a problem was considered by Otteni (ref. 14) who claimed to have obtained a

valid solution for a bonded wire mesh located over

his results are inconsistent with both the data of

.)---
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and Astrakhan (ref. 12) as well as the recent analysis by Hill and Wait (ref.

24). The possible reasons for the discrepancies are discussed in the latter

reference. In the present formulation we consider explicitly only the

unbended case where the grid wires are nonintersecting . The matrix inver-

sion method in this case is straight-forward and no auxiliary circuit rel-

ations need be invoked.

o

FORMULATION

The situation to be analyzed is illustrated in Fig. 10 with respect to

Grtesian coordinates (x,y,z). An array of x-directed thin wires with spac-

ing b is located in the plane z = O. A second array of y-directed wires

with spacing a is located in the plane z = -h. The common wire radius

c is small compared with both the spacings a and b as well as the free..

space wavelength h. Consequently, we may assume that the grid wires carry

axial currents and, to within a very good approximation, these currents are
o

azimuthally symmetric about the wire axes. The impedance per unit length of

the wires is denoted Z and
a ‘b

that have dimensions of ohms per unit

length. The required impedance boundary conditions are discussed explicitly

below.

The region z > -d, external to the grid wires, is free space with

permittivity E. and permeability Po. The region z < -d is taken to be

homogeneous with permittivity c
~’

conductivity o and free space perme-
g’

ability Uo. In the formulation given below, the wire grids are located in

the free space region which means that d > h and both these quantities are

non negative.
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As indicated in Fig. 10, the incident plane wave

direction and polarization. Its electric field $inc,

factor exp(iut), can be written
.

+inc
E = to exp{ik[@ cost +y sin@)S + zC]}

has an arbitrary

for an implied time

(66)

“1
. where k = (CO.lO)% = 2Tr/~,S = sin~ and c = COS6. The objective now is
..

to deduce the fields scattered from the perpendicular grid wires with due

account for the conducting half-space. Here we follow the earlier analysis

(ref;- 15) but make the necessary generalizations in a manner analogous to

that used for analyzing single grids in the presence of a half-space (ref. 8).

Thus we choose electric and magnetic Hertz vectors fi and I’ with x an~

y components in the direction of the grid wires. Conceptually this approach

somewhat diff-ersfrom that used by Otteni (ref. 14) who formulated the problem

of the bonded mesh over a half-spac(:.byusing z directed electric and mag-

netic Hertz vectors.

FIELD REPPZSENTATIONS

As before (ref. 15), we assume that the currents on the x and y

directed grids have the respective forms

I = ~ A exp{i[2m/a -t-kS(xCOS$ + qb sin$)]}
Xq ‘ m~.a

for q =0,fl,i-2,f3....

and
-~o

I
P

= ~ B exp{i[2nqy/b +kS(ysin$ +macos$)]l
~=-cn q

for m = 0,il,i2,i-3....

Tilesummations are over all integer values of r~and q from -COto -!@

including zero. The coefficients A and B
m

are as yet unknown.
q

(67)

(68)

—
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We are now led to write down, in abbreviated notation, the follo:rinG,.

~~
.

—. representations in the regiOn z > -d for the Hertz potent-ialsclue to the

—
grid currents:

.

--%’)

H=- ~ ~ ~ A [exp(-I’lz1) + Rmq exP(-r(~+2d))l r-1 ‘Xp (69)
x

2k2b m q m

rry=- ~]y ~ ~ B [exp(-rlz+hl) +rmq exp(-r(z+2d-h) )]r-1 EXP (7o)

2k2a m q q

ipob) “-
rI*=—— ~z Amsnlqexp (-I’(z+2d))r-l ~x

2k2b m q

and
illob!

rI*’— — ~ ~ Bqs.,q
Y

exp(-r(z+2d))r-1 ExP

2k2a m q

where

r
2 1/2

= i(k2 -k2 -ky) = (k: + kj - k2)1’2
x

,

kx = (2mn/a) +kS COS$

(71)

(72)

ky = (2nq/b) +kS sinil

and
.–

EXI-= exp(ikxx + ikyy)

Similar expressions for

The z dependence is now

;= i(k; - k2
x

these Hertz potentials apply for the region z < -d.
A

according to exp(-r(dd)) where

- k2)l/2 = (k; + k; - k:)l/2
Y

where
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The corresponding fields P and H‘, due to the wire grid currents

and their interaction with the lower half-space for z > -d are obtained

frolll

-%
E = kzfi+ grad div i - ipom curlfi* (73)

and

~ = kz~ + grad div fi*+ iEou curl~ (74)

For the region z ~ -d, we replace kz by kz and iEoti by (ag+icgu)
g

in the above.

The unknown coefficients in (69) to (72) are now obtained by matching

the tangential fields E;, E;, H; and H; across the interface at z = -d.

This rather tedious algebraic process leads to

and

kz(r + &x)(r - icrKx) -t (kXk )2(1 - KX)2
R=
mq

k2(I’+ ;Kx)(r ?-f&rKx) - (kxky)2(1 - Kx)2

-2iSoukxk I’
s=
nlq

k2(I’+ I’Kx)(i7+ ~ErKx) - (kxky)?(1 - KX)2

k2(I’+;K)(I’ - iErK) + (kxkY)2(l -K)2

r . .
mq

k2(r + ‘i’Ky)(~+ ~:rKy) - (kxky)2(l -Ky)z

+2i&oukxk r

s=
mq

kz(~ + ~Ky)(I’+ ~Kg) - (kxky)2(l - KY)2

where

Kx = (k2 - k;)/(k2 - k;)
g

(75)

(76)

(77]

(78)

o

E = (G~ + iEgm)/(iEoU)
r
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ill!!) We now consider the appropriate forms of the Hertz potentials for the
_=

incident and the reflected fields that would exist in the absence of th-e—

wire grids. For the region z > -d, these have the relatively simple

.
forms

T = a[exp(r z) + Rooexp(-ro (z+2d)”)]EXP0
x- ----—o

lf
Y

‘-~[exp(roz) +rooexp (-ro(z+2d)]ExP0

Tr’ = aS
x

oof2xp(-ro(.+2d) )mwo

T* = ~sooexp(-ro(z+2d))~~po
Y

where

—‘) and—

r. = i[k2 - k2 - k~yl’/2ox

k = kC COS$
ox

k = kS,sin$
Oy

E.XPO= exp(ikoxx + ikoyy)

(79)

(80)

(81)

(82)

The coeff-fcients Roo, r S
00’ 00 and s

00
are given by (75) to (78) for

m= q = (). The factors a and 6 are prescribed by the incident field.

For example, it easily follows that

~ox=(k2-k2)a-kk ~
ox ox Oy (83)

and

E
Oy

= (k* - k~y)~ - koxkoya
(84)

where E and E
ox are the tangential field components of–the incident

Oy

field at the origin as indicated by (66).
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APPLICATION OF WIRE BOUNDARY CONDITIONS

We now come to the “piece de resistance” which iS the app~~caticm of

the boundary conditions at the wires. These may be written

~total =1 Z at Y = qb and z = c
x xq a

and

E
total .I z atx= ma and z=-h-c
Y ymb

(85)

(86)

It is not difficult to show that because of the postulated forms of the

series representations, we need only apply these conditions explicitly at

Y =Oandx= O respectively. In terms’of the Hertz potentials the

boundary conditions are

(k’ + ~
a=

— (ny+lry)

ax2
~(fix+ ‘x) + axay

(87)

- iLIou & (n:+f) =Iz
x=c1 YO b

Z.–h-c

(88)

Using (69) to (72) arid(79) to (82), these lead in a straight-forward manner

to dmo(kz - k~x)a[exp(I’oc)+Roexp(-~o(2d+c))]

- ~mo~koykoy[=p(roc) + [ro+(ivo~~oso/(koxkoy))lew(-ro(Zd+c))l

-Am[Za + iPow(k2- k;)Pm/(2k2b)]
(89)

-.—

il.iocd iuoursm
+— kx I ~qkytexp(-r(h+c)) + (r -I- - ~ k ‘) exp(-I’(2d-hk)) ]r-~ = o

2k2a q
mq

XY

—

●
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when

I/!0

and

exp(-I’c)+ Rm exp(-r(2d*))
P
m= ~ r

q

(9~)

.

6qo(k2 - k~y)(3[exp(-ro(c+h) + roexp(-ro (2d-h--c))]

‘~qoakoxkoy[exp(-ro(c+h) + [Ro -(iHouI’oSo/(koxkoy))]exp(-r(2d-h-c))]

iuokl
+—

2k2b

where

As

and Qq

fOHllS by

-Bq[~+ i.uo~(kz - k~)Qq/(2k2a)] (91)

(
iv tirsm

k ~Ak [exp(-r(h+c))+l Rmq - kok
Ymmx

‘)

exp(-r(2d-h-c) )]r-1 = o

XY

exp(-rc) + rmqexp(-r (2d-2h+c))

Qq= I
-m r (>2)

indicated before (refs. 15 and 24), the summations indicated by P
m

are poorly convergent but they can be transformed to more convenient

utilizing the identity

~ ~ .- f.n(l-e-”y).k*(l/~) if ~<<1.
-1 m
J-

Thus, provided a, b and d >> C, they can be written in th-e--equivalcnt=forms

exp (-r
mot)

R
P% k [in ~+An]+ —— + ~ ~exp(-rmq(2d+c))
m==m r (93)

mo q mq

and

exp(-~ c)

Qq: ~Ig’n~+dq]+ —--roq +1+ exp (-rmq(2d-2h+c)) (94)
Oq m mq

where

A= ~ ~’ (+)exp (-r C) - fiexp(-2[q]mc/b)m
q mq

mq

and

53



6=+ 1’ (+ ) exp(-r c) - ~ exp(-2~m~Tc/~) (96)
~ mq

m mq

The primes over the latter two summations indicate that the m=O and q=O

terms are to be omitted.

SOLUTION OF

The infinite

and solved for the

COUPLED EQUATIONS AND NUMERICAL

set of coupled equations (89) and (91)

EXAMPLES

was truncated

coefficients A and B
m

by matrix inversion in the
c1

manner described by Hill and Wait (ref. 15,J. The size of the matrix was

increased until there was no sensible change in the value of the coefficients

A and B
o

needed to describe the far scattered field in the case where a
o

and b < A/2. There was no problem with convergence since the separation

distance h between the grids was non zero.

The numerical results for the scattered fields are

ingfully in terms of reflection coefficients referred to

as described previously (refs. 15 and 241. For example,

presented most mean-

the z = O plane

when rhe polarization
o

of the incident electric vector is in a plane ~ = constant, the reflection

coefficient
‘ee

for the scattered electric field in this same plane is

defined by

’00
= E:+ exp{-ik[(x COS$ + y sin$)sinfl- z cose])/Eoo

s+
where ‘e is the 6 component of the total scattered electric field for

large positive values of z (i.e. kz >> 1) and E06 is the 6 component

of the incident electric vector at the origin. In the vernacular of radio

engineering,
’90

would be called the “vertically polarized reflection

coefficient .“



Some numerical results of the O dependence for the amplitude and

phase of
‘e%

for a square mesh (a’=b)are illustrated in Figs. 11 and 12

for grid spacings of a/A = 0,05 and 0.20 respectively. Two values of $

,,
are shown,

h/c = 3.0,

The latter

namely 0° and 45°. The other parameters used are c/a = 0.01,

d/a=O,l, Za= Zb = O, and Cr = (LSg+iCgU)/(iEoU)= 10 - il.8

would correspond to a ground conductivity o = 10-zmhos/m and
g

- ‘)

relative permittivity E IE = 10 at a frequency of 100 MHz. For compari-
go

son the corresponding results for the same mesh located in free space are

also shown in Figs. 11 and 12 (i.e. the limit of Er = 1). Then, in additicln,

the reflection coefficient of the ground or half-space by itself is shown

for the same value of Er (i.e. the limit where c+ O).

The results clearly show that, for incidence in the direction of the

wires (i.e. @ = O), the magnitude of the reflection coefficient remains high

for both the mesh in free space and located just over the ground or half-

space. This is particularly the case for the smaller mesh spacing. The

phase angle of the reflection coefficient also remains reasonably small ex-

cept.for angles near grazing. On the other hand, when the incidence is at

45° to the grid wires, the magnitude of the reflection coefficient is sub-

stantially reduced for oblique angle-sof incidence although the results at

normal incidence are unchanged. The phase shift on reflection is also some-

what larger for $ = 45° at the oblique angles and it becomes excessive at

grazing angles.

The numerical results illustrated in Figs. 11 and 12 for th-emesh in

free space are fully consistent with the results of Kontorovich et al.

(ref. 11) and Astrakhan (ref. 12) for square mashes with unbended wire inter-

sections. Th-eyuse the method based on averaged boundary conditions that-

,.

..)
clearly distinguishes between bonded and unbended meshes. As indicated in
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Figure lla Amplitude of the reflection coefficient R8G for a/A~ 0.05

for mesh over ground and in free space. The correspond-ing

ground reflection fn the absence of the mesh is also shown.
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an earlier paper (ref. 24), we can treat

boundary value method by allowing h to

case, it is desirable to invoke junction

gence of the matrix solution of (89) and

the bonded mesh by the present

approach zero. However, in this

conditions to improve the conver-

(91). In the present case, we chose

h = 3C which corresponds to non-intersecting grids in close proximity. In

fact, the results for h in ttierange h = 2C to 10c or so would not be

sensibly different for the parameters used in Figs. 11 and 12 for all values

of 4.

One of the important findings in the earlier studies (ref. 24) which

is confirmed by the Soviet work is that bonded and unbended square.meshes have

identfcal scattering properties in two special cases. Namely,
‘$6

is identi-

cal for both bonded and unbended square meshes if ~ = 45°
‘bile ‘$0

(horizontally polarized reflection coefficient) is identical at @ = OO.

.

Also, it was found for meshes with interwire spacings even as largeas a quarter

length that the bonded square mesh was essentially isotropic wtth negligible *

cross polarized scattering for all angles $. Thus, we can assert that our

present calculations for
‘ee

for the unbended square mesh for $ = 45°

apply to a bonded square mesh for all angles of ~. At least this is correct

to within graphical accuracy for the range of parameters employed here.

CONCLUDING REWS

The fact that unbended wire meshes used as ground screens have

superior reflecting properties over bonded wire meshes would seem to be a

major factor in the design of antenna systems for high frequency antennas.

To the authors’ knowledge, this fact has not been appreciated tn the past

by those responsible for designing such installations. Further analytical

and experimental work on this subject is vitally needed.

o
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SE(TION V

ELECTROMAGNETIC SCATTERING FROM AN UNBONDED RECI’.ANGUIAR

WIRE MESH LOCATED NEAR ~E AIR-GRo~D INTERFACE

..=.—=-.....— .
INTRODUCTIC)fi ‘“ ~

.

In an earlier paper (ref. 30), we described a formal analysis for plane-.

wave scattering by perpendicular wire grids located above a conducting half-

space. To illustrate the metlio-d,a few numerical examples were presented

for the “vertically polarized reflection coefficient” of a square mesh. Howeyer,

there are many parameters that influence the scattered field; thus a numerical

study is needed to gain a proper understanding of the situation. This is the

purpose of the present paper. We also consider the radiation patterns of

short dipoles located above the wire mesh for various conditions.

T)- --+

The situation

array of x-directed

y-directed wires is

small compared with

wavelength A. The

for plane wave incidence is illustratedin Fig. 13. An

wires is located in the plane 2=0, and an array of

located in the plane z =

both the spacings a and

wires, assumed here to be

immersed in free space with permittivity co

-h. The wire radius c is

b as well as the free space

perfectly conducting, are

and permeability Po. The

region z < -d is taken to be homogeneous with p.ermittivity c ton-
g’

ductivity o
g’

and free space permeability Uo.

As we indicated earlier (refs. 24 and 30), the far field reflecting

properties

completely

‘4)6’and

of the configuration, for both a and b less than ~/2, are

characterized by the four reflection coefficients:
’99’ ‘E@’

‘0$”
The subscript O refers to the electric field polarized

in the plane of incidence, and the subscript $ refers to the electric

field polarized perpendicular to the plane of incidence. The first sub-

script refers to the state of polarization of the incident wave while the
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Figure 13 Perpendicular wire grids located over a conducting half-space
(perspective and side view).
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p
second subscript refers to the reflected wave. Consequently, in radio

[ “ engineering terminology,
‘e8

is the “vertically polarized reflection CO-

efficient ~
“ ‘0$

is the “horizontally polarized reflection coefficient”,

(, —
and

‘9$ and ‘@e are ‘he
“cross-polarized reflection coefficients”. In

matrix no~ation the reflection coefficient can be written

’90 %$

‘f$e ’44

EFEECT OF’ MEJH HEIGHT

In the following results, the grid separation h is taken equal to

3C. This separation has been shown to yield results which are representative
-

of an “unbended” mesh (ref. 24), but the results are not strongly dependent

on h provided h > 2c. Since some wire mesh ground screens are actually

@

[E)
in contact with the earth or even slightly buried, it is desirable to show

some results for a small mesh height d. The separation between the y-

directed wires and the earth is d - h - c which-must be positive in this

p-articularformulation and should be greater than or equal to c to satisfy

the th-inwire approximations.

The magnitude and phase of
‘ee

for d - h - c equal to c and 6C

are illustrated in Figs. 14a and 14b. The other parameters are: al~ = bl~

= 0.05, c/a = 0,01, h/c = 3.0, and &r = (cg-iog/@)/& = 10.0 - il.8. Theo

latter corresponds to a ground conductivity o = 10-2mhos/m at a frequency
g

of 100 MHz. As expected, the reflectioficoefficient is larger for @ = 0°

than for $ = 45°. Actually, the results for @ = 45° can be approximately

identified as those for a bonded mesh (h=O) at any value of O since the

bonded mesh is quite isotropic in its @ behavior (ref. 30). Also, note
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Figures 14a Magnitude and phase of the reflection coefficient
‘ee

for a mesh
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that the reflection coefficient magnitude and phase are degraded when the–

mesh is located close to the earth (d-h-c=c). This behavior is consistent .-

with that of a single wire grid over a half space (ref. 9).

.

HORIZONTAL POLARIZATION

Although ground screens are more commonly used for vertically polarized

radiation, the “horizontally polarized reflection coefficient” R
+4

is also

of some interest. Thus, we show the behavior of the magnitude of
’44 ‘n

Fig. 15 for the same parameters as those in Fig. 14. The depar-tureof IR@+I

from unity is quite small (note the enlarged scale), and again there is a
.+—.

slight degradation when the mesh is closer to the ground (d-h-c=c). AIsO
-.

note that there is little difference between the results for $ = 0° and

$ = 45°.

‘or ‘w’
the results are identical for bonded

,d
&

) at @ = 0°, and the bonded mesh properties again are
-’

~. Consequently, for @ near 45°, the unbended mesh

and unbended meshes

nearly independent of

is somewhat better

(larger IRO$I). The phase is not shown because it is in the vicinity of

180° for all cases.

The.cross polarized reflection coefficients,
‘6$ and ‘$%’ are ‘ot

shown because they are identically zero

They generally peak at about $= 25°,

in Figs. 2 and 3 (a/A=O.05), they are

RECTANGULAR

Since rectangular meshes (a# ‘b)

decided to extend the previous computer

at $ = 0° and very small at @ = 45°.

but for the small mesh spacing given

always small.

MESH

are often used in practice, it was

program to the case where– a # b.

Here we compared the predictions based on the approximate average boundary
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for the sams conditions as Figure 14. $’$

:.



.

condition. Astrakhan (ref. 12) and other Soviet workers have often used the

latter approach. To facilitate the comparison, his equations were programmed

after correcting his equation 14 (y2 sin2$ should be yl sin2$). Since

Astrakhan’s

we chose h

itly in the

required to

results

in our

16a-16d

—

only apply to the f!reespace case, we must set c = c
go

formulation. A comparison is shown for four values of ‘

for a/A = 0.2, b/~ = 0.1, and cIA = 2 x 10-3. Again

= 3C, although this separation parameter does not occur explic-

Astrakhan formulation. Here, of course, a 90° range in @ is

cover all cases for the rectangular mesh.

‘he ‘esults ‘or ‘$X3are not shcwn because the Astrakhan model pre-

‘icts ‘be = ‘Re$ and our model yields
‘+0 = -Rfk$”

It is significant in

Figs. 16b and 16c that the rectangular mesh produces significant cross

polarization. The main deviation occurs in
‘e0

at El=90° for $=0°

or 90° where the Astrakhan model predicts
‘ee

= 1 rather than zero. This

occurs because the Astrakhan model does not include the effect of the cross
— --

wires in this case. The phases are not shown because they are less inter-

esting, but the agreement is similar.

Although the method of average boundary conditions is strictly valid

only for a/A and b/A small, we show some further results for al~ = 0.5,

b/A = 0,25, and c/A = 5 x 10-3 in Figs. 17a and 17b. Here the agreement

is not as good, particularly for ~ = 0° and O approaching 90° in Fig,

17a. This is because the first grating lobe is ready to emerge as 6

approaches 90°.

For th-erectangular mesh, the bonded and unbended meshes no longer

yield the same result for
‘ee

at $=45°. Consequently, a useful extension

would be to treat the bonded (h=O) rectangular mesh by means of the method
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previously employed for the square bonded mesh (ref. 24). This remains to

be done.

DIPOLE RADIATION PATTERNS

Although the near field of a source dipole above a mesh is quite com-

plex, fairly simple far-field expressions can be derived by reciprocity.

Consider a source dipole of moment Id! with exp(iwt) time dependence

located at (X,y,z) = (0,0,1.) in the same geometry described in Fig. 13.

The far-zone electric field at (r,O,@) has only 6 and

‘6
and

‘$
which can be written in the following forms:

where

c = (ipow/4n)IdL exp[-iko(r - L COSO)]

To cover all possible cases, we derive
‘e

and
‘d

$ components

(97)

for x-, y-

z-directed dipoles. Results for arbitrary dipole orientation can then

obtained by resolving the dipole moment into X, y, and z components

subsequent

dipole, we

and

(98)

and

be

with

superposition of the respective radiation fields. For a z-directed

have:

P6 = (1 -tR exp)sinO
._ef3

—.

‘+
= (R8+exp)sin0

where

exp = exp(–i2k09.COS6)

For an x directed dipole,

‘o= -(1 + R$$exp)sirt$ + (Re4exp)cos$ COSO

71

(99)

(100)

(101)



and

PO = -(1 - Re6exp)cos6 COS@ -(Rooexp)sin$ (102)

FinallY, for a y directed dipole,

‘4
= -(l+ R$$exp)cos$ + (RO@exp)sin$ cos~ (103)

and

= -(1 - R66exp)cose siru$+ (ROeexp)cos@ (104)
‘8

Strictly speaking, the above results are valid only for E somewhat greater

than a and b so that the higher order evanescent modes are negligible.

However, for small 1, these results are still valid if the dipole position

is averaged over one mesh cell (-a/2 < x c a/2 and -b/2 c y < b/2) since

the evanescent fields have a zero average.

To illustrate the radiation patterns, the following parameters are

chosen: a/A = b/A = 0.05, c/a = 0.01, h/c = 3, dfa = 0.1, and c = 5.0r

- iO.18. The latter corresponds to a ground conductivity ~ = 10-3mho/m
g

at a frequency of 100 MHz. This Er value was chosen to illustrate the

improvement provided by the mesh over poorly conducting ground.

illustrates IP81 for a vertical (z-directed] dipole located at

surface ($2=0) for three values of b. The patterns for ground

Fig. 18

the mesh

alone and

for perfect ground alone are also shown, and they are independent of ~.

Also shown is the cross-polarized pattern, IPJ
for $ = 22.5°. IC is zero for @ = 0° and very

which is quite small even

small for + = 45°. Fig.

19 illustrates the same case except that the dipole is now elevated (2,/?$=

0.5) so that an extra lobe is introduced into the pattern. Note that

“cutback” still occurs as 6 approaches 90°.
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I

I

The rad}ation patterns of a horizontal dipole (x-directed) are shown
I

for the end-oh ($=0°) and the broadside ($=90°) directions in Figs. 20

I
and 21. The ~ipole is elevated (L/A=O.25) so that a maximum occurs directly

overhead (e=~”). For $ = 0°, ~P=o, and for @ = 90°, P6 = O. For com-

parison, the ~esults for ground alone

CONCLUDING

The numerical results show in a

above the gro~nd surface will reflect

I

and perfect ground alone are again shown.

R12MA17KS

quantitative manner how a wire mesh

electromagnetic waves incident from

above, Howevbr, it appears that the reflection efficacy is somewhat degraded

i~the mesh ‘is located very close to the ground surface.

Rectangular mesh calculations have been shown to agree well with the

average bound~ry condition method for sufficiently small spacings. A signi-

ficant point i!ereis that the rectangular mesh produces greater cross polari-
_p.

)
1

zation than the square mesh, presumably because it has less synraetry. Unlike
I

the square mesh, there is no azimuthal angle $ where the bonded and unbended
~
~

rectangular m~sh produce the same
1

’00”
Consequently, it may be worthwhile

to extend thi~ treatment to the case of the bonded rectangular mesh since

I
such meshes a~e sometimes used in practice. We may anticipate that even in

this case, bonding the mesh degrades the reflecting properties. However, in

dealing with ~ery wideband fields, certain practical considerations, such as

finite mesh extent at low frequencies or grating lobes at high frequencies,

could justify bonding.
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