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ABSTIUCT

A system of time dependent integral equations are derived and “
then are analytically demonstrated to be capable of treating
scattering by a dielectric interface. A finite difference method
is demonstrated to be capable of determining” the fields scattered
by an obstacle having an edge, by comparing a numerical solution
toa canonical solution for scattering by a perfectly conducting
wedge. Both methods are applied. to the dielectric platform model
which has both a dielectric interface as well as an edge. The
results obtained are in close azreement and we choose to ~enerate
production data for ATLAS I related parameters by employi~g the
finite difference nethod; however, this should not be taken as
an endorsement that this me”thod is always preferable. As part
of the investigation we identify problems for which either method
would be preferred. Finally, we present time dependent plots of
the electric field at points in the working volume that show the
amount of distortion caused by the platform model.
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SECTION I

INTRODUCTION AND SUMMARY

The primary issue that pervaded this investigation was

the question of how to achieve confidence in the numerical

data that would be generated. The approach used was to

compare the results obtained by two dissimilar calculational

procedures after each was demonstrated to be capable of

yielding results known to be valid for separate canonical

problems. The two approaches are a coupled system of time

dependent integral equations and an appropriate finite

difference method.

The concern about the validity of the results is due to the

fact that the plate model of the ATLAS I trestle platform requires

the proper numerical treatment of a dielectric interface as

well as an edge. The vast majority of numerical time

dependent scattering calculations deal with scattering by a

perfectly conducting obstacle and few of those studies focus

on the effect of singularities caused in the solution due to

an edge. We are not aware of any previous solution in the

literature of the coupled system of integral equations that

we derive, and

method that we

Peterson (ref.

procedure they

numerically solve.’ The finite difference

employ has been previously used by Page and

1) for a dielectric interface; however, the

employ at the inte~face is different from our

procedure. This difference in the procedures does not appear

to have serious consequence since numerical testing indicated.
that both procedures yield similar results for sufficiently

small grid step size.

1. Page, W. E. and D. H. Peterson, A Numerical Method for

Computing the Propagation of an Electromagnetic Pulse

Guided Over a Material Interface, Sensor and Simulation

Note 96, Air Force Weapons Laboratory, 1970.

. .
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The canonical problems used to test the system of

integral equations are the problem of scattering by a

dielectric half space and the problem of scattering by an

infinite dielectric slab. For these problems, we analytically

solve our system of integral equations and obtain the known

solutions.

Our testing of the finite difference method was considerably

more involved and a consequence of this testing has the

potential for yielding significant side benefits. We utilize

the known canonical solution for scattering of a plane wave

step function by a perfectly conducting wedge. This solution

was convolved with the function of time that we intended +

choose for an incident plane wave pulse that would be con~ ~-

ient for us to treat by the finite difference method. The

result of this convolution describes the scattering of a plane

wave, having the desirable time dependence, by the perfectly

conducting wedge. It is a simple matter to test that the
. results obtained by the convolution procedure are accurate

to any prespecified number of significant figures. The test

consists of increasing the number of points in the convolution

integration procedure. We compared the results obtained by

the finite difference method with the results of known accuracy

obtained by the convolution approach and determined that the

finite difference approach could also yield solutions to any

prespecified number of significant figures by decreasing the

finite difference grid step size.

The side benefit of this testing of the finite difference

method was that we were able to show that the convolution

solution and the finite difference solution were still in

agreement when we let the wedge angle approach zero. This

demonstrated that a particular finite difference method was

capable of determining the field scattered by a particular

perfectly conducting open surface (the semi-infinite half

plane) . This identifies an area of investigation that has

.

.-
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the potential to satisfy a long standing need in the area of

EMP interaction and coupling. The question of whether an

appropriate finite difference method is capable of determining

the fields scattered by a nonplanar open surface merits a

thorough investigation. This capability is necessary to

quantify errors introduced by the many approximations

currently employed to calculate the currents and voltages at

the inputs of subsystems contained within metallic

enclosures (missiles, aircraft, tanks, ships, etc.).

Returning to the question of confidence in the numerical

data we present for the model of the ATLAS I trestle platform, we

have explained how we concluded that the integral equation approach

was capable of treating the dielectric interface problem and

our finite difference method was capable of treating the

edge problem. Our final test was to apply both methods to

the dielectric plate, of finite”extent and thickness, which

has both an edge and a dielectric interface. The results
. obtained by the two methods were in agreement and we chose to

use the finite difference method to generate the production

runs that had parameters chosen to study the effect of the

trest=le~splatform. For this particular problem, the finite

difference method was chosen due to computer memory consider-

ations; however, this should not be taken as-n endorsement

that this method is always preferable to use. As part

our investigation we have identified problems for which

either method would be preferred.

The results of our production runs show that, according

to our simplified model of the platform, the fields in the

ATLAS I working volume are clearly distorted by the platform.

This distortion occurs to the pulse shape as well as to its

amplitude. As the observation point is chosen further in

from the leading edge of the platform, the distortion persists

for larger distances above the platform. Our present study

is limited to a distance from the leading edge that corresponds

9



to 25 platform thicknesses.

fundamentally limited by our

The observation distance is

two-dimensional modeling of

a three-dimensional platform. The deeper in and higher up

we choose to observe, the sooner we sense the effects of

the sides of the platform that are not included in the two-

dimensional model. Even with this limitation, our data is

applicable for times longer than the time the incident field

requires to achieve its maximum amplitude.

We view the amount of distortion exhibitedby our model

and calculations as demonstrating a need for further investi-

gations, both theoretical and experimental, in order to asse~s

and assist the threat relatability of tests that will be pi

formed in ATLAS I. These investigations should include a m re

detailed model of the entire support structure as well as

interactions with test objects and other portions of the

simulator.

.

●
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SECTION II

FORMULATION OF THE INTEG~ EQUATION METHOD

In this s“ectionwe derive the system of integral equations

for the problem of scattering from a dielectric cylinder of

infinite length and arbitrary cross section. The configura-

tion of interest is depicted in figures la and lb. The

incident electromagnetic field is given by

Einc = E. f(t - Z’/Co)$x—

Hinc =H inc “ inc A+ Hz e%
Y“ ‘Y

E. COS ~
inc inc E. sin ~

H= Z* f(t - z’/co), Hz = - f(t - z’,/c)
Y Z.

.

0
z’ = (z - 2.) cos fl+ (y - yo) sin f3 (1)

where :X, ~Y, ;Z are unit vectors, 6 is the angle defined in

figures la

impedance,

are the‘o
cylinders,

(X. =0).

%d lb, Z. is the free-space characteristic

co is the speed of light in free space and xo~ Yo?

coordinates of a point-P. on the surface of the

that is swept by the incident wavefront at t = O

The dielectric cylinder is homogeneous with a dielectric

permittivity Ci and a magnetic permeability pi ‘equal to the

vacuum permeability PO. Our problem is clearly two-dimensioni~l,

i.e., all the physical quantities of interest are independent

of x* Under these circumstances one can show that the

scattered electric field will only have an x-component whereas

the scattered magnetic field will lie entirely in the yz

plane. Maxwell’s equations for the total field, incident

plus scattered, are then reduced to

-.
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Figures1. Three- and Two-Dimensional Geometries for the Scattering
of an ElectromagneticPulse from an Infinite

Dielectric Cylinder

12



0 .

...

where c is equal to s

the body and Jo(y,z,t?

~Hz ! a~z
~“r - Jo(y,z,t)

(2)

(3)

outside the body and equal to &i insicie

is the source of the incident field

located far away from the scattering volume. (when c = S.
the source term in Equation 3 should be set equal to zero:)

The boundary co~ditions across the surface of the cylinder

are: Ex and ~ ● ~ continuous, i.e., total tangential electric
and magnetic fields should be continuous (fig. 2). If the
incident wavefront has a sharp front, i.e., the fields ar~

nonzero there, then at t = O there is a discontinuity of the

fields across the boundary. We will assume that f(u) is a

smooth function of u and define it more precisely as we treat.

our equations numerically h subsequent sections. For the
derivation of the system of integral equations we need, as we
shall see, continuity of Ex and aEx/an where n is the outward

normal on the surface of the cylinder. Continuity of 3Ex/~n
is -inf.e~red-by-noting--that(fig, 2)

(4)

,.
,,,..-, ,-
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Figure 2. Geometry Depicting Certain Quantities Relevant to the Integral Equation Method
for Solving the Scattering Problem
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‘where the penultimate step employed equations 2. Since H c ~
is continuous across the boundary for all times we understand

that so are i3/~t(~
● ~) and ~Ex/3n. (We exclude pathological

functions.)

Next we proceed to derive the system of integral equations

that solves our two-dimensional scattering problem, i.e., it

allows the calculation of the scattered fields inside and

outside the dielectric body. We begin with the wave equation
satisfied by Ex that can be derived by manipulating equations

2 and 3:

(
2 22

vy’z’
)- $iWQ’’t’) ‘F(p’’t’) -

(5)

where p? = y’~ + Z’;zr. Y
Y : Ex (Q’,t’) = total electric field

cc= o = (uoEo)-~/2 outside the cylinder and

cc.== 1 (No.i)-llz inside the cylinder,

F(~’,t’) = Po(~Jo/2t) outside the cylinder and

F(p’,t’) = O inside the cylinder.

Next, we introduce the two-dimensional Green’s function G

satisfying

(V2 82

y’z’ - ;2 at’2)
—— G(~’,~; t’,t) = d(p’ - @ d(t’ - t)

(6)

G(p’,p; t’,t) is defined in an infinite——
infinite dielectric medium depending on

c = Ci. The solution to equation 6 is

free-space or an “ . _

whether c = c or
o

.
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[
*c(tt - t) - IQ’ - &l

G(~’,~; t’,t) = - ~ 1
[ 2c2w - t) - (p’ -Q)2 11’2

(7)

where U(x) =lforx> Oand U(x) =0 for x<O. The PIUS

sign in equation 7 corresponds to the retarded solution, i.e.,

an observer at p’ senses at tl a disturbance caused by a

source at P fired at the retarded time t = t’ - 1.2’- dice—
The minus sign in equation 7 corresponds to the advanced solu-

tion~ i.e.l an observer at p’ senses at t’ a disturbance caused

by a source at p fired at the advanced time t =— t’ + ~p’ - Q//c.

This solution violates causality. Notice, however, that if

we switch the observation and source space-time points the

advanced solution of equation 7 becomes the retarded solution

for the problem of a disturbance observed at (~,t) and caused

by a source at ~’ fired at t’ = t - IQ’ - Q1/c. This observation.

will be utilized later on when we derive our integral relationships.

o

-~o(~’r~; +=’,t)&i- Y(Q’,t’)
1

dstdt’

-y(Q’,t’) +
1

GOQ’,P; t’,t) dA’dt’ = Y=nc(@) - Y(~,t)

.

(8)

-.
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m where C is the contour shown in figure 2, ~’ is the outward

normal (fig. 2), S@ is the region bounded by the circle at,
infinity and C and Y1nc is the incident electric field.

The derivation of equation 8 assumes that the contour

integral at infinity (resulting from Green’s identity) has

been set equal to zero. The reason is that Y and ~Y/~n’

in the integrals can be replaced by the scattered fields.
(one can see this by applying equation 8 for Y = Y1nc) and,

for any finite t’ or -OJ,they are zero. Thus the integration

in t’ is over one instant only (t’ = +w) and it can be shown

to have zero contribution. The t’-integration in the second

integral in equation 8 can be performed explicitly. At t’ = -~

the scattered fields are zero throughout region Sm and at

t’ = @ have gone to zero smoothly to assure that the integralL

over S is zero. Thus equation 8 can be rewritten as

co

.
Y(Q,t) = Y=nc(Qt) - /$[

y(~’’,t’)+ Go (Q’,Q; t’,t)
-m ?:

- GO(Q’,Q:
1

t’,t) ~Y(~’,t’) ds’dt’. (9)

As we can see from equation 9 the scattered field at ~ and

t is due to contributions from points ~’ on the contour

firing at t’. Thus t’ must be less than t and if we recall I

equation 7 we understand that G(~’~Q: t’~t) must be taken

with the minus sign in front of c(t’ - t), i.e., it is the

advanced solution of equation 6 with c = co.

For the region inside the contour C we can’apply a similam

procedure and arrive at the following equation

--

17
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- Gi(Q’, Q; t’, t) &- Y(Q’, t’)1ds’dt’

where C is the same contour as in equation 9, ~’ is the

ward normal and the Green’s function Gi is the advance~

of equation 6 with c = Ci.

In order to obtain our system of integral equations

we let the observation point ~ approach the contour C.

(10)

out-

solution

If “

the contour C is smooth then the singularity due to ‘i?G/an

at p’ = p results in a term t(l/2)’Y{p,t) (plus for the iris.Ie

and minus for the outside) and equakions 9 and 10 give

ccl

M
2G0 WO

* YJf@ = Yinc(f),t) - ‘o an’
—- G

–)
ds’dt’

0 ari’
-m c

co

14( aGi 3yi
+ Yi(Q,t) = Y* )—-G.—I ~ni

ds’dt’1 ant
-m c

(11)

where we have used the subscripts “o” and “i” to denote the

outside and inside of the cylindeb respectively. One can

show that a principal value integration over C (resultin9

from the limiting process ~ + ~’ from the outside) is not

necessary because the kernel in the integral is not singular

_’ + ~ when both ~ and qtas p lie on the contour. (A contour

with sharp corners is discussed at

If we recall the continuity of

the boundary contour we understand

the end of this section.)

Y and ~V/an as we cross

that YO = Yi s Y(~,t) and

0 -.



aYo/an = 3Yi/aIl E ~Y/an where ~ is on the contour C. Thus

equations 11 represent a system of integral equations which

allow the determination of Y and aY/an on the boundary contour—.
c. Once these quantities are known one can employ equations

9 and 10 to determine Y outside the body and inside the body

respectively. Then Maxwell’s equations 2 allow the determina-

tion of ~ everywhere.

In order to cast our system of equations into a form

amenable to numerical treatment we employ the explicit form of

G given by equation 7 and manipulate the resulting integrals

to eliminate the apparent singular behavior that results frc>m

the differentiation of G. We have,

where R = IQ’ - PI
.

aG c

.[

(S[c(t- t’) - R]—= -— -
aR 2r

[ 1
1/2

c2(t - t’)2 - R2

+
R

[ 13/2c2(t - t~)2 - R2

-1

U[c(t - t’) - RI
I
(13)

If we combine equations 12 and 13 we can write

.

co

J [
Y(Q’,t’) (Q’ -g”:’

Y # dt’ 1
‘+%

[ 1“2
R

c2(t - tl)2 - R2 1-m t’=k-R/C

my(~’,t’) (~’ - Q) “ ii’
-—

2: 1
[ 1‘23 U[c(t - t’) - R] dt’

-m c2(t ‘-tl)2 - R2
(14)

. .
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Recalling that

J

dt ‘ t- t’
3/2 = 1/2

[c2(t- t’)2 - R2]
~2[c2(t _ ~,12

- R21

we can rewrite the integral on the right-hand side of

equation 14 as

my(Q”,t’) (p_’- Q) ● ii’

–ii J 1~
U[c(t - t’) - R] dt’

-W [c2(t - t’)2 - R2]3

w

=-—
2cmJ

Y(fJ’,t’)(Q’ - @ ‘ ii’U[c(t - t’) -R]*
-m

. t- t’ ‘4dt’

R2[c2(t - p)z - R2]

=-—
2-T 1/2

R2[c2(t - t’)
2
- R21

w

-m

- cY6[c(t - t’) - R]
1
dt 1

_l‘[ ‘+’(g’ - tl)(pt -— Q) “ S’
2% 1/2

R[c2(t - tl)z
- R2] 1t’=t-R/c (15)

-.
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If we compare equation 14

m

J
w

8G‘%-’=-% J-w -m

tc}equation 15 we see that

(t’ - t)(p’ - Q) 9 i’
~ dt’l/2 at’

R2[c2(t - t’)2 - R2]

If we now return to our system of

equation 16 to rewrite them as

equations

(16)

11, we can use

- aY
an’
-1

U[co(t - t’) - R]
z ds’ dt’

[
C:(t - tl)2 - R2r’

U[ci(t - t’) - R]

[

~
C:(t - tl)2-R

1

where R = ~’ - ~, R = Ip - p’1, c— -. 0

(17)

= (l.lo&o)-1/2, Ci = (pO&i)-’1/2
and fi’is the outward normal on C (fig. 2). The integrands

in the above system of integral equations appear singular whe:n

R= O and/or c(t - t’) = R. The R = O singularity is only

apparent–because it can be shown that R ● fi’behaves as Ra

where CX>2 when R + O. The c(t - t’) = R singularity—

. 21



is integrable because of the two-dimensional integration.

When R = 0 and c(t - t’) = R simultaneously, i.e., R = O,

t = t’, the factor t - t’ provides an extra zero and the

R= O singularity is still only apparent.

So far we have restricted our discussion to smooth

contours. In this report we are interested in the numerical

solution for the problem of scattering of an electromagnetic

pulse from an infinite dielectric cylinder of a rectangular

cross section. Thus the behavior of equations 17 in the

vicinity of sharp corners (edges) must be examined. When the

observation point p does not lie at a corner, equations 17 are

still true. This is so because it is well-known that Y is finite

at the edge and 3Y’/3nvaries.no.faster than s
-1/2, where s is the

distance from the edge; consequently the integrals involving

~Y/3n have an integrable singularity and are well behaved. When

the observation point ~ is allowed to approach a corner, the

factor that is extracted from the integral involving 3G/~n
.

is equal to t(!2/2Tr)Yrather than tl/2 (Q is the interior angle

shown in fig. 3) and consequently when ~ is at a corner

equations 11 and 17 have their left-hand sides equal to

(1 - fi/2T)Yo,i. Our numerical treatment for the pair of

integral ,equations17 will not allow p to lie at a corner

because all the reference points are chosen at the midpoints

of arc segments as we will explain in the next section. Thus

the facto~ to be extracted is il\2 and equations 17 are valid

for all observation points of interest.

Before we turn our attention to

should mention that in appendices A

equations 17 is tested analytically

problems whose solutions are known.

.

the next section we

and B the validity of

by solving two special

-.
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Figure 3. Geometry for the Definition of the Interior Angle Q
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SECTION 111

NUMERICAL TREATMENT OF INTEGRAL EQUATIONS

In this section we present the procedure that allows us to

numerically solve equations 17 for the problem of scattering of

an electromagnetic wave from an infinite dielectric cylinder of

a rectangular cross section (fig. 4) i.e., a rectangular slab.

The incident wave is E-polarized in the x direction and propagates

in the z direction. (Even though we focus our attention on the

numerical solution for a particular cross section the method

we employ is directly applicable to other crass sectional

geometries.) In order to cast equations 17 into a system of

algebraic equations which we can solve numerically, we

partition each of the four sides of the rectangle in figure 4

into equal-sized intervals As and the midpoint of each line

segment is chosen as the reference point for that interval.

(As may vary from side to side.) In order to effect a similar
.

partition for the t-integration we observe that the upper

limit in equations 17 can be replaced by t since there can

be no contribution to Y(~,t) later than t. Assuming that

the wavefront hits the front size of the rectangle at t = O

we can replace the lower limit of the t-integrations by zero..
If we set t = O in equations 17 we obtain (1/2)Yo(~,o) = Y1nc(~,o)

and Yi(~ro) = O. There is no contradiction because the incident.
wave has a smooth wavefront and Yznc(~,o) = O at all ~ on the

contour. If the latest time of interest t is called T then

we have a time interval (orT) that can be partitioned into

equal-sized intervals At.

. th
The reference point for the 3 time interval, bounded

by tj_l = (j - l)At and tj = jAt, is tj and not the midpoint

(j - l/2)At. The Cartesian product of the space and time

partitions produces a lattice of zones. The reference point

for the i,j zone is then (i - l/2)As, jAt, if for convenience

all line segments are of equal size. Before we transform

the pair of integral equations 17 into a system of

-.
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algebraic equations which

rewrite equations 17 in a

r“ t

can be solved numerically we

more convenient form

Y(Y,z,t) = S(y,z,t) -1!$[Kl(y,z,t; y’,z’,t’)~(y’,z’,t’)

Oc!

+ K2(y,z,t; y’,z’,tr )~(y’,z’,t’)1 ds’dt’

+
b

J+W(y,z,t) = [K3(y,z,t; y’,z’,t’)~(y’,z’,t’)

Oc

‘1 =

‘2 =

+ K4(y,z,t; y’,z’,t’ )!(y’,z’,t’)1 ds’dt’

c
o

F

c
o

T-

U[co(t - t’) - R]

[ 1
12

C:(t - ts)2 - R2 i ,

(g “ iht - t’)

‘3 = Kl(co +

Our method of

assume that ~ and

their values at a

U~co(t - t’) - R]

[

1/2
C:(t - tJ)2 - R2

1

‘4 = K2(c0 + ci).

(18)

(19)

solving the system of equations 18 is to

4 vary so slowly in space and time that

point defined by the midpoints of the arc

segment and time interval forming a zone provide a good

estimate for their values over the corresponding zone. The

singular nature of the kernels forbids us from making the

*
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same assumption about

of the contour C into

at t = t+ as

them. If we divide the circumference

N segments we can rewrite equations 18

J

r’

‘1-: :%-’”J ‘1 ‘S’dt ‘ %-1’2J ‘2= =
ds’dt

‘w‘k$L

ds’dt’

jk [
!2-1/2

‘k f
k=l 2=1 %

.

1ds’dt’

(20)

+ ;9-1/2
k f ‘4

‘la

radius vector to the midpointis the

of the m~LJarc segment, A,.flis the (k,L) zone in the s,t space

and K =
P

‘p(~i,tj; g’,t’)(p = 1,2,3,4).

The time derivative is defined as

@-1/2
k

‘-1)/At
‘k

/●1 2
Thus Yk = (Y: - Y~)/At = Y:/At

.
= o..

At j = 1 equations 20 give

ds’dt’#2
I ‘1

‘kl

N
*1 =
i

Y1 =i

-z
k=l

+ (Y:/At) ds’dt’‘2

I K4 ds’dt’.(Y:/At)ds’dt’ + (21)‘3

‘kl

27



.“ This is a system of 2N equations with 2N unknowns and can be

1 @~’2 (i=l,2,..solved to give Y’i, .,N) in terms of the known

quantities S~. If we write the system of equations 20 at

j = 2, we again obtain a system of 2N equations for 2N unknowns

1’2 (iyl,2,Y2 03’2 in terms of the known quantities S$, Y:, ~1-r.

.:.,N;. Thus we can march in time and solve for Y? and @~-1’2

for any i and j in terms of the known quantities s?, Y;
0g-1/2 (i=l,2,...,N; L = 1,2,...,1)l). Once we obt~in Y:i
~n~ ~;-1/2

1 we can return to integral relationships 9 and 10

and calculate Y off the surface of the cylinder.

Notice that so far no restriction has been placed on

the relative magnitude between At and R = IQ.’-d. Integrals

J K ds’dt’ in equation 20 represent the interaction between
Ak~ p
the various spatial segments and their importance depends on

the relative magnitude of At and R (the distance between points)

.

as we will explain shortly. To make this clear consider

equations 21 written for j = 1. In this equation Y;, i.e.,
.thY evaluated at the midpoint of the ~ line segment and at

t = At, depends on @ and Y at the midpoints of all other

line segments at t = At. A 2N x 2N matrix has to be inverted
1in order to evaluate Y’i. Howeverrit is possible to choose.

At such that Y~-and in general Y~ only d~pends on Y and @

evaluated at the various midpoints at earlier times without

inverting a 2N x 2N matrix, i.e., each pair of equations 20
‘-1/2

.
E @-1/2

will be solved for Y: and Q: in terms Of S~$ Yi i

(fi=l,2r....j-1) by inverting a 2 x 2 matrix. The restriction

to be imposed on At is At ~ As/2 where As the size of line

segments into which the sides of the rectangle have been

partitioned. (We assume that all line.segments are of equal

size; if not, As is the

restriction will now be

equation 21 for i = 2,

depicted in figure 5.

smallest line segment.)

illustrated. We proceed

where the line segment i

The above

by writing

=2is

28
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,; = +.. [+q K1 ds’dt’ + (Y;/At)
f

K2 ds’dt’

=
t ‘kl ‘kl 1

,; = q+nf K3 ds’dt’ + (Y;/At)
1 1K4 ds’dt’

k=l ‘kl ‘kl (22)

Let us consider in particular the interaction between line

segments 1 and 2. This interaction is represented by the

influence coefficient f K (~2,At;All p ~’,t’) ds’dt’ (P=1,2. ,4).

(Actually K2 = K4 = O if both the reference and integratic I

points lie on the same side of the rectangle since ~ ‘G = o.)

If we recall equations 19 we observe that K
P

contains the

step function U and the integration is to be performed over

that portion of All that make U = 1, i.e., c(t - t’) - R ~ O

or c(t- t’) -lz- z’l~o. This last inequality defines a

region of influence or a light “cone” in the ct’,z’ coordinate

system (fig. 6). The exact location of this light “cone”

depends on the values of z and t and in the present case

z = As/2 and t = At. In figure 7 we have plotted zone All

(defined by z’ = O, As and t = O, At) for coAt = Ls/2, As,

3As/2 in a cot’,z’ space. The case c = ci will be examined

shortly. Notice that for coAt > As/2 the influence coefficient

IAll .X1dz’dt! is nonzero, since the light “cane” intersects

part of All, i.e., the line segment 1 influences line segment

2 during the time interval At and consequently Y; in the
1/2, ice.; on ~ evaluated

first of equations 22 depends on @q

at a different

if caAt ~ As/2

= O since ciAt

1’2 (or Y;on @l

point but at the s~e time (j =1). However,

then I
All

Kl”dz’dt’ = O and also ~
All

K3 dzcdt’

< coAt and Y; in equations 22 does not depend

since K, = K4 = 0).
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Next consider the influence coefficient between line

segments 1 and N, i.e.l line segments not lying on the same

side of the rectangle (fig. 5) and write equation 21 for

i=N. Again WA examine the influence coefficients f K
All P

dz’dt’. If we &et-”U-“=__ly i.e., c(t-t’) -R~Clor

C(t - t’) - (z’2 + y2)l/2
~ O we find that the region of

influence or light “cone” is a branch of a hyperbola shown

in figure 8. In figure 9 we have plotted zone A11 (defined

,by Z = O, As and t =“O/-At) for coAt = As/2, As, 3As/2 in

the _cot’, z’ space. (Notice that y = - As/2.) These plots

exhibit similar features as those in figure 71 i.e., the

integral over All is zero’-ifcoAt ~ As/2. In general, the

presence of U dictates that the influence coefficientwill

be zero if t ~ t’ + R/c. When t = At this inequality is

satisfied for all t’ (O < t’ < At) if At < R/c. The smallest

R is As/2, since the reference point is located at the middle

9)

of a line segment, i.e., cAt ~ As/2. When t = nAt and (n - ‘L)

At < tt < nAt we again obtain the same criterion. Bearing—
the previous discussion in mind, we can rewrite equations 21 -

as

Y1= S1- (Kl)il 0:/2
i.* i-.

Y1 1/2
= (K3)il @i‘i

(21a)

where (Kp)k2 E f K ds’dt’. Notice that all influence
‘kQ P

coefficients are zero except the self-terms (~l)il and (K3)i1.

(The oti”ertwo self-terms (K2)il and (K4)i1 are zero because

of condition R ● ~’= 0.) It is shown at the end of this

section that the self-terms have a very simple form, i.e.?

(Kl)ij = coAt”l (K3)ij = ciAt independently of location and

time. Notice that the two indices correspond to those in

tie left-hand sides of equations 20. Thus equations 21a can

be solved to give

‘r -33



# inc J.

~1= ‘ 2(Y )i

i 1 + ;o/ci = 1 + Co/Ci

At the next time step, i.e., t = 2~ equations 20 can be

rewritten as

N

Y2 ~2
- (Kl)i2 @~i2 - Z[

“1/2~\2 + (K2)kl ‘k=
i i (Kl)k~ ‘$~ 1

k=l

N

Y2 = (K3)i2@:/2+ E[ “1/21\2 + (K4)k~‘k
i (K3)kl ‘k

k=l
1

where (Kl)i2 ~ CoAt, (K3)i2 = ciAt. From ~~/2 = {Y; - ‘+:)/At

all i;izare known since Y~ = O and Y$ are known from t = T.

Also all @:/2 are known from the t = T step and the above
2 3/2

system of equations can be solved for Yi{@i . In general
g j-1/2

by marching on in time we can evaluate Yi,$i in terms
. L-1/2 (k = 1,2

of s~,Y),ok ,...,N and I = 1,2,...,1)l) by

inverting a 2 x 2 matrix.

The success of the above procedure depends among other

factors on how well we can calculate the influence coeffic-

ients fAll Kp ds’dt’ (p = 1,2,3,4). Fortunately,

integrals can be performed explicitly in terms of

functions. From equations 19 we see that we have

of integrals,

these

simple

two types
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c ! U[c(t - t’) - R]
‘l=T

[

~ * ds’dt:

A c2(t - tI)2 - R2
f 1’

c
J

(~ “ ii’)(t- t’) U[c(t - t’) - R]
‘2=ir

R2
[ 1

1/2
A C2 (t - tl)z -R2

ds’dt’

(23)

where c is co or Ci and A is a zone in the sft space. As

we mentioned ealrier, the presence of the step function u

may

-R

the

and

alter the region of integration since U = 1 for c(t - t’)

~ O and U= O for c(t - t’) - R < 0. For example, on

same side of the rectangle, say y = O we have R = ~z-z’]

inequality c(t - t’) -\z- Z’ I ~ O represents the light

“cone’!in the z’,t’ coordinate system (fig. 6). Thus if a

zone intersects the light cone as shown in figure 10 the area

over which integrations 22 are to be performed is the shaded

part of A. As we indicated earlier, the light “cone” does not o
necessarily consist of straight lines. If, for example, the

.. .=—.
reference point lies on the y = O side and the-integration

points on the y = -d or z = O sides, then R=[(z - z’) 2 1/22+dl

or R=[z’2 + y211/2 respectively and inequality t - t’ ~ R

represents a region bounded by one branch of a hyperbola in

the z’,ct’ or y’,ctr coordinate systems respectively. These

are the light “cones” for these cases. Again if the zone

intersects the light “cone” (fig. 11, 12) only the shaded

part of zone A will contribute to the integration. No matter

what the relative position of the spatial reference and inte-

gration points is, inequality c(t - t’) ~ R represents a

light “cone” or a region of influence and in the appropriate

Sf,t’ coordinate system there are, in our case~ fifteen

possible diagrams for the relative positions of the light

40
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“cone” and a zone. In figure 13 only ten diagrams are

presented since intersections of the light “cone” with zones

occur symmetrically and only the right-hand off center ones.————.—————. —-.——..—
are displayed. ‘Also the light “cone” depicted can be hyper-

bolic ox straight or both depending on the diagram. Notice
.=.-.=.-e,. --— ... ,-’---- .. ...’

that for”~ach diagram the integration area is either a

rectangle or a triangular region or a combination of the two.

Thus we need only exhibit the results of integration for

diagrams VII and XI (fig. 14). First we recall that when

the reference and integration points lieon the same side—
of the rectangle the inner product ~ ● ~’is zero and I

1
defined i.n.e.quat~~n2_2_is zero. Next, for convenience but

without sacrificing generality we choose our integration

points on the y = O side and the reference point on the

z = O side, i.e., ~= z’ 2z + y ~y, R = (Z’ 2 1/2Z+y).

(If another combination is chosen; for example reference

point on z = - b)~zb side, then ~ = (z’ + y ;Yt

R= [(z’ - b)2 + y2]1/20 A simple change of variables, .b= 2:’-—... .—— .—.
= z“, can then reduce this case to the previous one by appropri-

ately changing the limits of the z’ integration. Similar

agruments hold true for all other combinations.) Referring

to figure 14”the following ~esults can be obtained.

ll-(VII)= ~
J

U[c(t - t’) - R]

[_ 1.

l/2
ds’dt’

A C2(t - tl)2 - R2

t* Z(t’)
= c

If

dz’dt’
T

[ 1

1/2

‘2-1 ‘k-l c2(t - t’)2 - 2’2 -y2

where z(t’) is obtained by setting c(t - t’) - R = O, i.e.,

Z(t’) =
[

2 1./2,t* = tc2(t - t’)2 -y
1

2 1/2- WC)(Z :-I + Y )

and

41
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11 (VII:

- ‘k-l

[

‘(t - tL_l)
2

-1
c (t

- ii-l - Y2

f
- tg-l)tan

‘k-1

log

- y tan-1

12 WII) = +-
1
A

(24)

R* ;(t - t’)
U[c!(t- t’} - R]. . ds’dt’

L/44

[c2(t - t’)2 - R2]

y(t - ts) dz’dt’
●L/A

(y2 + Z’z)[cz(t - @ - #2 - #]

where again z(t’) = [cz(t

6(2;-1 + yz)1/2 and

r
12(VII) = + C(t - tk-~.

L

-1 Cz(t - tk-l)z - 2;-1 - y2
- y tan

‘k-1 1 (25)

.

44.



Similarly,

‘i

f
c.

7’

%-l

ll(X1) = J dz’dt’
1/2

‘k-1 - tl)z - # - Y2]ic2(t

tan-1
1
7-

[

-C(t z’
t’)

i
2 ,2c2(t - t’) - z - ya

-t’)a-zlz-ya Iz’ log IC(t - t’)+

1
‘k ‘!+1

y :an--’-Y:~):z:-2:’2 - Y2

+

(26)I‘k-1

where

‘k ‘!2
f(z’,t’)

‘k-~ t~-1
f(zk,ti) - f(zk-llt~)

% ‘k
12(X1) = +

“J~

y(t - t’) dz’dt’
1/7

%-l z~-~ (zJ2 + ya)[cz(t- tl)z - 212 - Y2]

1
[
C(t - t’) tan-1‘v

C(t - tf) z’

2Z(t - t’) - y2 2- z’

%

%-l

1-

- y tan-1 z’

2*(t - t’) - y2 - z,2
1

‘k

‘k-1

(27)
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where again

f(z’,t’)
%
I

= f(zk,t~) - f(zk-~lt~)

‘k+ .

.

Finally we calculate, as promised? the self-terms

(KP)ij ‘~
J

U[c(t - t’) - R] ds~dtr (p=l, C=cof p=3, C=ci)

~[ C2 (t - tf)~ - R2]

where the reference point of zone A coincides with the apex of

the light cone. The calculation of the self-terms does not

depend on which side the line segment lies. Thus in figure 15

we have chosen side y = O and the above integral can be

rewritten as

cAt v

(Kp)ij = #
J100

where substitutions c(t - t~) =

dudv

(V2 - =2)1/2 = cAt

v, Zr - z = u have been made.

In order to test the validity of the numerical solution

obtained via the integral equation method, we calculated Y

at the middle of the front side of the rectangular slab as a

function of time and also Y on the top side of the slab as

a function of z at a particular instant and compared them to

solutions obtained with the finite difference method (FDM)

which was being studied simultaneously. The agreement was
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excellent and the relevant graphs (figs. 20 and 21) are

presented in section V where the numerical results are

discussed. At that time we had decided that the FDM was

preferable for the calculations of interest (section VI offers

a comparison of the two methods) and we proceeded to evaluate

Y at points on the surface of the slab using the FDM. As

additional debugging for the”FDM we calculated Y for the

problem of diffraction by a 90” perfectly conducting wedge

and compared our results to the known exact solution. The

agreement was again excellent and this spurred our curiosity

to test the FDM for a wedge with a zero angle, i.e., a per-

fectly conducting half-plane. Once more the agreement was

excellent and it suggested the very interesting possibility

of tackling open surfaces with the FDM. In the next section

we develop this

scattering from

method as applied to our two-dimensional

a dielectric rectangular slab.

.
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SECTION IV

FINITE DIFFERENCE METHOD

In order to--~pplya finite difference scheme to the

solution of our scattering problem we can either employ equa-

tions 2 and 3 for Ex, H Hz (option 1) or ~ equation for
Y’

Ex Z Y (option 2), namely equation 5. Option 1 allows us to

solve for all

only produces

equations 2.

that prompted

field components simultaneously whereas option i!

Ex and Hy, Hz must be obtained with the aid of

However, there is a clear advantage of option 2

us to choose it: We know that for a perfectly

conducting wedge (P.C.W.) Hy and Hz diverge at the edge wherea,s

Ex is zero. We want to use-the P.C.W. for debugging and con-

sequently we should use Ex alone which for our problem is alscl

finite at.the edge. Hy and Hz may or may not diverge for a

dielectric body but in-any case debugging with the aid of the

P.C.W. might not be reliable since the divergence of HY, Hz

could introduce significant errors. We could try to p~ovide

special treatment near the edges but option 2 makes this

unnecessary. In connection with the edge behavior one may

wonder whether Vd E in equation 5 diverges.yz x To answer this

we observe that this quantity is equal to (l/c*)(32Ex/~t2).
- e

Ex is finite for all times and therefore so is 3AEx/~t4--if
-

pathological functions are excluded. Thus V~zEx is indeed

finite. Notice that as we cross the bounda~, whether on the
2sides or at the corners, V E suffers a discontinuity since

* Yz X.2
c is discontinuous and 8 Ex/~t is continuous (due to the

continuity of Ex for all times) . The continuity of C2V2 Eyz x
will allow us, later on in this section, to determine the

proper finite difference scheme for this quantity as we cross

the boundary.

Next we proceed to apply the finite difference method to

equation 5 in a source-free region,

49



~2v2 32
Y(Qrt) = — Y(~,t),yz g&v

at2
(5)

with appropriate boundary and initia~ conditions. V stands

for the two-dimensional region bounded by a contour Cb

(fig. 16) and it is divided by the contour C into an exterior

region V. and an interior region Vi. If V were a homogeneous

region then the solution of equation 5 could be uniquely

determined at a given time t and position ~ if the initial

values of Y and ~ were known everywhere within V and Y on

Cb was known for all times up to t. To ensure uniqueness

of Y(p,t) in our case, the continuity of Y!and ~Y’/~nacross

the boundary C must be added to the boundary and initial

conditions above. One may wonder, however, what this condition

means when aY/h is evaluated at an edge where it may diverge.

To answer this we recall the system of integral equation 11

and observe that because the singularity of aY/~n is integrable.
we can remove the requirement of continuity of 3Y/h at the

four corners (i.e., four isolated points). We still obtain

a unique solution for Y(p_,t).

Equation 5 is a hyperbolic equation and its solution via

the method of finite differences has been extensively studied

when V is homogeneous (see for example references 2 and 3).

The method is stable and converges to the exact solution
I

.,

2.

3.

Forsythe, G. E. and W. R. Wasow, Finite-Difference Methods

for Partial Differential Equations, New York, John Wiley,

1960.

Fox, P., “The Solution of Hyperbolic Partial Differential

Equations by Difference Methods,” Mathematical Methods for

Digital Computers, Edited by A. Ralston and H. S. Wilf,

New York, John Wiley, 1964.
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when (cr/hv)2 + (c~/hz)2 < 1, where ‘cis the temporal step
.

size and h ,h are the grid step sizes in the y and z directionsyz
respectively. For our scattering problem the finite difference

method is still applicable provided the appropriate stability

and convergence criteria and boundary and initial conditions

are satisfied. In each region the stability and convergence

criteria are: (co~o/hoy)2 + (co~o/hoz)2 ~ 1 and (ci~i/hiy)2
-

+ (c~~i~hiz)’ ~ 1 outside and inside the rectangle respectively.

It is desirable to choose Ti = To and h. = hey, hiz = ho= in

which case both criteria are satisfied ~$ (co~o/hov)2 +*
(Co=o/hoz)d < 1 since Ci < Co. The boundary and i~itial

conditions are those we mentioned earlier in connection W. n

the uniqueness of the solution of equation 5. (To verify the

accuracy of the values at the interface C we compared the

fields calculated via the finite difference approach and the

integral equation method and the excellent agreement we obtained

strongly indicated that the values were indeed accurate.) In

the present case the incident plane wave pulse has a smooth 0

wavefront and is assumed to hit the front side of the rectangle

at t = 0. Thus Y and ~ at t = ,0are known everywhere within V.

Since derivatives are replaced by finite differences we write

!i(f@ = [Y{Q,O) - Y(&,-T)l/T and the initial conditions are

then translated into the statement “Y at t = 0,-T is known

everywhere within V.” As we shall see later the finite

difference method makes explicit use of this statement. The

importance 02 the boundary condition will become evident as

we transform equation 5 into a system of difference equations.

In order to accomplish this we first replace region V by an

orthogonal grid with grid sizes h
Y

and hz as shown in figure 17.

Notice that both Cb and C coincide with grid bars and the points

at which Y will be evaluated coincide with the intersections

of the grid bars. Next we introduce a temporal step size

equal to T and replace V2Y=yz (~2Y/~y2) + (32Y/~z2) and
\

.
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a2y/at2 by their appropriate differences in a region of

homogeneity,

.

-$ Y (Q,t) = [Y(y + hy,z,t) + y(y - hy,z,t)
ay

- 2Y(y,z,t)l/hj + O(hy)
.

32
-’Y(Q,t) = [Y(y,Z + hz,t) + Y(y,Z - hz,t)
az2

- 2Wy,z,t)l/h: + O(hz)

32
— Y (p_,t)= [Y(y,z,t + T) + Y(y,z,t - T)
at2

2Y(y,z,t)]/T2 + O(T). (28)

Equations 28 would be exact if Y(~,t) were a quadratic function

of y, z, and t. In our subsequent calculations we set h = hzY
= h because the back side of the rectangle (z = -b) will be

taken sufficiently far from the front side {z = 0) so it will

have no effect on our field calculations for the time periods

of interest. (Thus we define h by dividing the front side

into equal-sized segments and the top side is set equal to

an integer multiple of h.) The next two steps involve the

boundary conditions across C and specifying Y on Cb. The

boundary conditions across C require continuity of Y and

3Y/an. AS we observed earlier in this section c2V~zY is also

continuous. These three conditions will slow us to replace
~2v2YZY by a difference scheme for points on the sides of the

rectangle. We begin with point ~ on side y = O and for con-

venience we choose a coordinate system yz with origin at ~ and

set t = O. (This choice for t has nothing to do with previous

considerations and it is only a matter of convenience.
Our

results will be valid for any t.) We will assume as we did

.
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for the derivation of equations 28 that Y can be expanded in

a Maclaurin series about z = O, y = O.

>0

<o

(29) -

- “=2-+-~z2a “%-by“+-cz+“dy + fyZ + 0(h3)-Y. = Y

YZ +-0(h3) Y

_—=.= .

a’ + bty--+CIZ + dty–2- 2;-f+ e’zYi =

Y and ~Y/~n = ~Y/~y are continuous as we cross y = O, i.e.,

a =bt,= al, b -e.= e’! c = c’, f = f’._ To determine the

relationship between d and d! we recall that C2V2 Y is alsoyz
continuous as we cross y = O, i.e.,

~2v2
o yzyo = (2d + 2e)c~ = c~V~zYi = c~(2d’ + 2e’)

--”-d’ = (d

and

.

0
(30)+

c?1

for c2V YyzIn.order

aty=z

.

to determine the

=Ct= O we set

.

difference expression

CLV = ~ [AY(hrO,O) + BY(-h,O,O) + CY(O,O,O)]yzy h2

0,-h,O) “+ FY(O,O-,O)l

-.

+ + [DY(O,h,O) + EY
--hZ

= 2(d+e) c:. (31)

Using equations 29, equation 31 gives
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C2

HA(eii-bh +dh2)+Ba-bh +(d+e)~-ehz + Ca
Ci

-1-D(a + ch + ehz) + E(a - ch + eh2)
.

+ Fa = 2(d + e) c~hz. (32)

Setting the coefficients of a, b, c, d and e in equations 32

equal to zero we obtain

A+B+C+D+E+F =0

(A- B)h=O

(D- E)h=O

(A+Bi2c’)h2=0

i.e.,

A B E

c

h2=0

f

+

D

F
8c3

C2”
1+=

C2i

(33)

-.

56



4P

.

Thus the difference formula

boundaries of the rectangle

~.r..

for

is

~2v2 = ~2v2
o yzyo Y.on theiyzl

~2v2 ,2C:

o Yzyo
= C2V1 yzyi= ~ [

Y(y + h,z,t)
.C

1+=
C2i

+ Y(y - h,z,t)

. ..

“1+ ‘+’(Y,Z +h,t) 1-Y(y,z - h,t) -4Y(y,z,t) /h2 (34)

where y,z is-some point on the boundary C. Notice that our

boundary includes the four corners and the question arises
-“22as to what the difference formula for c V Y is at a corner.

22 yz
The_answer is that==s.in=cec V Y is continuous we can chooseyz
an extieriorpoint that is arbitrarily cl_oseto the corner.- .–-–
and use the first two of equations 28 with c = co.

.
We are now in a position to replace equation 5 by a system

of difference equations and examineithe boundary conditions

for Y on the outer boundary Cb. For a point away

boundaries equation 5 assumes the form

(c2(Y,z)~2/h2)l?Y(y+ h,z,t) + ‘+(y- h,z,t) + Y(y,z +

+ Y(y,z - hrt)

-1-Y(y,zrt - ~)

from the

h,t)

- ‘4Y(y,z,t)l= Y(y,z,t + -r)

- 2Y(y,z,t) (35)

where points (yt h,z) ? (y,zI h) lie in the same medium as

y,z. Notice that equation 35 allows the determination of Y

at ~,t + T in terms of the value of Y at ~ and neighboring

points at earlier times. For a point on the boundary C

equation 34 combined with the third.of equation 28 replaces

equation 5. Let us see how we can evaluate Y at a given

57
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point and time. For simplicity let us assume that the front

side of the rectangle extends to infinity~ i.e.r coincides *

with the z = O plane. This makes Y independent of y and the

problem becomes one-dimensional (3/3y = O). We define our

regibn of interest by drawing two boundary walls z = z1 > 0,

z = Z2 < 0 and specifying Y on them. Thus we set Y(zllto) = O

and Y(z2,to) = Yin=(z2,to). Obviously these conditions

cannot be valid for any to since the reflected and transmitted

waves will eventually reach the walls z = Z2 and z = Z1

respectively. Let us now select a point z < 0 and employ

equation 35

(c~T2/h2)[Y(z + h,t - T) + Y’(z- h,t - T) - 2Y(z,t - T)]

= ‘+(z,t)+ Y{z,t - 2~) - 2y(Z,t - T) (36)

. We observe that Y(z,t) depends on the value of Y!at neighboring

points at times less then t. Y at a neighboring point at

t- T can be similarly evaluated by writing equations analogous

to 36 and it too depends on the values of Y at neighboring

points at earlier times. This procedure shows that Y(z,t)

depends on Y(z2,t - n2~) and Y(zl,t - nl~) where IZ2 - ZI =

n2h and Z1 - z = nlh. Thus if the walls have not been reached

by the scattered waves at t - n2~ (for z = Z2) and t - nl~

(for z = 21), the boundary condition~ are valid and so is the

calculation of Y at z and t. Equation 36 shows that Y(z,t)—
not only depends on the value of Y at neighboring points at

t- T but also on the value at Y at z at t - T and t - 2T~

i.e., a knowledge of these values is required which in turn

depend on the value of Y at earlier times. This continues

until we reach the initial conditions. Thus the difference

scheme works as follows. First we write equations 36 and

34att=~

.

.

.-
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(c~T2/h2)[Y(z1,())+ Y(zl _ 2h,0) - 2Y(z1 - hrO]] = Y(z1 - h,T)

+ Y(z1 - h,+ - 2Y (Zl - h,O) Z =
‘l-h

(cfT2/h2)[Y(z + h,())‘+ Y(z - h,O) - 2’#(Z,O)] = ‘?(Z/T)

+-y~~,-:~)- 2Y(Z,0) 2>()

2C2T2

h2(1-fi2~2~[y(hIO) + Y(-h,O) - 2’#(0,0)]= ‘#(O,T)
.Oi..

2’?(0,0)+ y(o,-T)_- -- z = 0

(c~~2/h2)[Y(z+ h,O) + Y(z - h,O) - 2Y(Z,0)] = Y(Z,T)

. + Y(Z,-T) - 2y(Z,0) 2<0

0 (c~~2/h2)[Y(z2 + 2h,0) + Y(z2,0) - 2Y(z2 + h,O)l = Y(z2 + h,~)

+ Y(zq + h,-T) - 2Y(z_ + h,O)
&

z =
‘2 + h (37)

where z = z~ > 0 and z = zz < 0 are the two boundary walls

such that Y(zl,t) = O, Y(z2rt) = Yinc(z2t). Notice that

equations 37 show that Y(z,T), for any z (except at the

boundaries), depends on Y(z A h,O), Y(z,O) and Y(z,-T), i.e.,

on the initial values (t = 0,-T) of Y everywhere within V.

These values are known as we explained earlier, i.e., equa-

tions 37 allow the calculation of Y(z,T) everywhere. At

this point the boundary conditions are superseded by the

initial conditions but they will manifest themselves in the

next step which involves a set of equations similar to

equations 37 written at t = 2T rather than t = T. This

-.
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new set allows the

Y(Z f hrT), Y(Z,T)

and Y(z,O) that is

calculation of Y(z,2T) in terms of

that were calculated in the first step

known through the initial condition.

Notice that the first and last of equations 37 written at

t = 2T involve Y(Z1,T) and Y(Z2,T) respectively, i.e., the

values of Y at the boundaries. These values were not cal-

culated in the first step; they have to be specified. It

is clear now that we can march on in time in steps of T and

calculate Y(hnh,nT) for any m and n provided the boundary

conditions are not violated.

The simple one-dimensional scattering problem above, well

illustrates the mechanics of the difference equation method.

Our two-dimensional scattering problem can be solved similarly

subject to appropriate initial and boundary conditions.

The initial conditions still require knowledge of Y(Y,z,O)

and ~(y~z~-T) everywhere and the boundary conditions now
. involve four walls instead of two~ i.e.~ Y = Y1rY2 in

addition to z = Z1FZ2. The boundary conditions at z = Z1,Z2.
are still Y(zl,t) = O and Y(z2,t) = Y‘nc(zl,t). In the y

direction the symmetry about the y = ym < 0 plane, where ym

is the y coordinate of the middle of the front side, allowed

us to impose the condition Y(Ym - h~z~tl = Y(YM + h~z~t)~

where y = Ym - h is the boundary wall, and it works as follows.

The difference equation at ym,z,t is

Y [y(Ym + h,z,t - ~) + Y(ym - h,z,t - T) - 2Y(Ym#z~t - ~11

where y depends on z. Because of the boundary condition

Y (ym + h,z,t - T) = Y(YM - h,z~t - T)z Y(YmlZrt~ can be

calculated in terms of the value of Y evaluated at earlier

times. For example~ Y(Ym1Z~2T) is ~al~u~ated in terms of

Y(ym,Z,T) and Y(Ym + h,Z,T) which were evaluated in the

.

.

-.
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6P
first (t = T) step and Y(ym,z,O) which is known ~rough

the initial condition. Notice that the above boundary

condition is true _for.all t._imesin contradistinction to theQ==———=—.—.—.—-=-—=—-—.—-——-—-—-——------= ._-_..==.—...—
boundary conditions at z =

‘1’=2” Finally, the second

boundary condition in the y direction is imposed by assuming

that Y(yp + h,z,t) = Y(y’ - h,z,t) where y =
P

+ h is the
‘P— second boundary wall in the y direction and yn (as well as
.

Z1 and Z2) depends on the period of time over which we wish

to know Y. This condition means that our scattering configur-

ation is periodic in the y direction which of course is not

true. It is just a convenient condition and it will be

violated when the scattered wave reaches the wall. Again

the calculation of Y at y,z,t will depend on the value of Y

at the boundary at t - nh where y - y = (n - l)h.
P

The

violation of conditions Y(y,z2,t) = Y%yrz2,t) and

Y(yp+h,z,t) = Y(y - h,z,t) will not be readily noticed

. because the scatte~ed field has a smooth wavefront that

builds up slowly and at the time of the violation the

o —
incident field may have a high value. However, the violation

of condition Y(y,zl,t) = O corresponding to a perfectly con-

ducting wall at z = Z1 will be quickly felt in its vicinity.

We can easily keep track of these violati.ons.in the computer

printout and discard erroneous results.

As we explained at the end of section III we d~bugged the

finite difference method by (a) testing surface field calcula-

tions, for scattering by a dielectric rectangular slab,

obtained via this method against analogous calculations

obtained via the integral equation method and (b) by

comparing field calculations off the surface of a 90°

perfectly conducting wedge and a perfectly conducting half-

plane, both illuminated by a plane electromagnetic pulse,

with the known exact solutions. In allinsta~ces the agree-

ment was excellent. The relevant graphs are given in the

next section where all the numerical results are presented.

--
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Finally, we mention that the boundary condition given by

equation 34 was not critical in applying the finite difference

scheme to our problem. That is, by shifting the grid a little

so that a grid ba’rwas just in front of the interface and by

applying the difference scheme given by equation 28 we

obtained results of comparable accuracy to those obtained

with the application of boundary condition 34. The only

difference was that the interface could not be located to

within a grid step size but this uncertainty can be reduced

by making the step size smaller.

.

‘
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SECTION V

NUMERICAL RESULTS

In this section we present our numerical results in the

~ form of graphs for field calculations on and off the surface

of a rectangular dielectric slab illuminated by plane wave

electromagnetic pulses with smooth wavefronts (fig. 4). We”

also present graphs, used for debugging, that show the

. excellent agreement between calculations obtained via the

finite difference method and exact solutions for diffraction

by 0° and 90° perfectly conducting wedges. Finally, we

determine the time interval over which our slab results are

applicable to the ATLAS I trestle platform problem.

In order to apply the finite difference method to diffrac-

tion by a perfectly conducting wedge we employed the scheme

developed in the previous section and set ci = O, i.e.,

Zi/Co = ‘. This is tantamount to setting Y = O for all times

on the surface of the wedge. In order to test our numerical

results we employed the known exact solutions for illumination

by a plane wave step pulse and appropriately convolved these

solutions with an incident pulse of our choice, i.e. ,

inc “ 1600E_= Y1nc=— ~4 (Cot)z(cot - f3)2 U(cot) U(B - cot).

(38)

This pulse starts at t = O and terminates at t = @/c. with a

maximum of 100 (arbitrary units) at t = f3/2co. It has a

smooth wave.front.w~th 3Y‘nc/8t = O at t= O. A plot of the

incident pulse is given in figure 19 with 6 = 2.2 (arbitrary

units) . Figures 18 and 19 exhibit the excellent agreement

between the

spatial and

0.025~-both

numerical results and the exact solutions. The

temporal step sizes we used were h = 0.05, COT =

in the same arbitrary units as @. Notice that
-.
...
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the observation point {0.1,0.1) is only two spatial step

sizes (in both the y and z directions) away from the edge

but the agreement is still excellent.

II!henext twofgraphs present a comparison between the

integral equation method and the finite difference method.

In figure 20 we plotted the tota~ electric field at the

middle of the front side of the slab versus cot/d where d is

the thickness of the slab. The incident field is still given

by equation 38 with s = 2d and the slab has a dielectric

constant ‘i/&o = 4? i.e., Ci = co/2* For the integral equation

method we chose As = d/8 and coAt = h/2 and for the finite

difference method we chose h = d/21 and COT = h/2. We wanted

to make the finite difference method as accurate as possible

in order to compare it to the integral equation method and

this is why we chose a finer spatial division for the former

than the latter method. Figure 21 shows a comparison between

the two methods for the total field evaluated on the top side

(y = 0] of the slab versus z/d at an instant such that the

incident wavefront has just arrived at z = 4d. The incident

field is also plotted and occupies a length of two slab

thicknesses since (3= 2d. (For this case we”chose h = 2COT =

d/21 and As = 2coAt = d/6.) The agreement between the integral

equation method and the finite difference scheme is excellent

and this served as debugging for both approaches.

The subsequent graphs present field calculations via the

finite difference method at points off the surface of the

slab. It was determined that for these calculations the finite

difference

because of

tion Vi).

and slowly

method was superior to the integral equation method

a lesser use of computational resources (see ,sec-

T.heincident field was chosen as a fast rising

decaying pulse in order to emulate the electromag-

netic pulse arising from an

Such a pulse is appropriate

.

.

.

exoatmospheric nuclear detonation.

for studying the effect of the
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incident field has a value of 2.6, i.e., the effective wavefront

has already passed the point z = 5d for a length of time At = dice.

Graphs at points fqrther away from the edge also show the actual

times correspondi~g to the incident wave sweeping by. Thus a~

z = 15d we start at t = 16d/co and at z = 25d at t = 26d/co. To

obtain the results displayed on the graph through z = 25d we

pushed the memory requirements under CDC 7600 FTN4 to the limit

and therefore we were forced to use a relatively coarse grid size,

h= d/7. Thus we cannot guarantee the accuracy of-the results.

However, results for h = d/21 (at z = 5d) and h = d/n (at z = 15d)

were similar to those at h = d/7 over the common region in space

and time, the maximum deviation being 1 to 2 percent of the peak

incident field.

The plots show that the presence of the slab can distort Ehe

incident field significantly. On the top surface of the slab or

very close to it, the total field reaches a maximum Chat is

s’hiftedin time relative to the maximum of the incident field.

This maximum is also larger than the peak value of the incident

field. The behavior of the total.field can be qualitatively

understood if we take into account the secondary wave within the,
slab propagating with a speed c = Ci. The larger the dielectric

permittivity the slower the secondary wave is (i.e., smaller,ci)

and the total field reaches its peak later. This can be seen from

the graphs for Ei = 4s0 and &i = 8s.. As the observation point

moves upward the total field tends to exhibit two humps until it

is sufficiently high where, due to the diminishing influence of

the slab, resembles the incident field. As the observation point

rescinds from the edge the presence of the slab becomes more

pronounced and one must reach progressively higher observation

points (larger y/d) before the influence of the slab has diminished.

Thus at z = 5d> y = 6.5d (E. = 8s.) the field exhibits, in some

approximate manner, the sam~ distortion as the field at z = 25d,

y s 16.5d (ei = 8S0).

&

.
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1. THE ATLAS I TRESTLE PLATFORM

Our two-dimensional scattering from a rectangular dielectric

slab can serve as a.model for studying the influence of the wocld

support .structure..~.tgestle),of the ATLAS I simulator, on the

waveform of the-simulated EMP. We will only focus our attenticm

on the platform, i.e., ignore the rest of the support structure:.

(See references 6 and 7 for a study of the reflection of a plane

wave from the rest of the support structure.) This platform is

depicted in figure 28. First notice that the effective rise ti,me

of the incident pulse given by equation 39 is 6d and since the

platform thickness is approximately 2 feet this effective rise

time is translated into 12 nsec. Whereas tmax rise and t10-90 are

approximately equal to 6 nsec. Thus our pulse is faster rising;

(also faster decaying) than the actual pulse to be fired in the

ATLAS I simulator (see ref. 8 for the waveforms obtained in the

pulser test fixture (PTF) with the ATLAS prototype pulser module

and ref. 9 for a summary of the final results of all testing

performed on the ATLAS prototype pulser module in PTF and also the

influence of additional diffraction and reflection effects on the

waveform of the pulse:) This difference in the rise time and c~ther

pulse characteristics between our pulse and the one to be firecl

into the working volume of ATLAS I makes our quantitative resul,ts

6. Prather, W. D., The Reflection of Electromagnetic Waves frog

an Array of Electrically Small Metal Bolts<and Rings, ATLAS

Memo 15, Air Force Weapons Laboratory, September 1974.

7. Prather, W. D., Lt. J. Little, Maj. R. Blackburn and K. Chen,

The Reflection of Electromagnetic Waves from a Wooden Test Stand,

ATLAS Memo 16, Air Force Weapons Laboratory, November 1974.

8. Maxwell Laboratories, Inc,, TRESTLE Prototype Pulser Test Report,

Volumes I and II, Report MLR-483, November 1975.
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Figure 28. Geometry of the ATLAS I Trestle Platform
for the Calculation of “Clear” Time Interval

78

@



not directly applicable; our results, however, can still provide

information on the influence of the platform on the waveform of a

fast rising and slowly decaying pulse. Next we observe that our

two-dimensional study is valid as long as it is applied to obsema-

tion points that have not been reached by the diffracted waves clue

to the edges P’, P“. Choosing our observation points on the x =:O

plane the maximum or clear time interval over which our two- !
, dimensional model is valid is the time that elapses from the instant

the incident field reaches the observation point P until the instant

4 the diffracted fields from edges P’, P“ reach P (fig. 28), i.e.,

-–

coTmax/d =
~~ .[(ai+ ~:+y:)i’i--(z: + #’2]/~

For the trestle platform a~70’, d & 2’.

0 max/dCT

30

28

23
Q?
LA

18

16

zl,/d
——

5

5

1.5
lR

Thus

0.5

6.5

0.5

10.5

0.5

16.5

Thus , assuming that Si = 4s0 for the wood platform, cot/d in

figure 22 extends thr&ghou~ the indicated region, in figure 24

approximately throughout the indicated region and in figure 26 up

to an average of 26 + 17 = 43. In.any case the graphs show the

distortion of the incident waveform.due to the

platform, over a large portion of the incident

its rise time.

,.. .. ..

9. Baum, C. E., D. E. Higgins and D. V. Giri,

presence of the

pulse, well past

Pulser Test Results—
and Preliminary Estimation of Transient Electric Field Waveforms

in ATLAS I, ATLAS Memo 18, Air Force ‘WeaponsLaboratory, Oct. 1976,
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SECTION VI

COMPARISON OF THE I’NTEGRAQEQUATION AND FINITE” o
DIFFERENCE METHODS

~’

In this section a comparison is drawn between the integral

equation method and the finite difference scheme based on the

required computational resources and degree of overall sim-

plicity.

1. MEMORY REQUIREMENTS .

a. Finite Difference Scheme

In order to ensure that the imposed boundary conditions

discussed in section IV do not affect the accuracy of the

field strengths computed in the region outside the dielectric

body, it is necessary that the grid extend a distance COT in

the positive and negative z-directions and in the “distance above

the platform, where T is the length of the time from when the

incident field first hit the body until the latest time of

interest. (Due to symmetry about the plane y = ym < 0,

where ym is the y coordinate of the middle of the front

side, only the y > ym region need be considered.) If the

only fields of interest are those on or inside the body, the

grid need only be extended to a distance coT/2 instead of COT.

{This can be understood by recalling the influence of the

boundary conditions discussed in section IV.) Thus the grid

size must be 2coT~coT + dI’2)\h2in the former case and

CoT(coT/2 +d\2)\hL in the latter case where h is the grid

step size. The finite difference algorithm requires knowledge

of the fields at the present time step and the previous time

step in order to compute the fields at the next time step.

However, the field strength at a given grid point at the

previous time step is only needed to compute the value at

.

the next time step at the same grid point and consequently

it is only necessary to provide two storage locations for

each grid point.
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b. Integral Equation Method

The integral equation method permits a tradeoff in costs.

Instead of recomputing the influence coefficients, discussed

in section III, ‘for each time step, it is possible to store

them for future use and compute only those coefficients

,, relating the present time step to the first time step. We

can do this because the kernel of the integrals defining the

influence coefficients depends on t - t’ and not t or t’
!!

individually. Thus there is a tradeoff in that presumably

memory references are faster than evaluation of transcendental

functions (resulting from the explicit calculation of the

double integrals defining the influence coefficients) and

the logic required to determine whether or not a zone can

influence the reference point. Under the assumption that

this tra_deoffof_~emory for computer time will be used,

4N2(T\At) memory location are required to store the influence

coefficients where N is the number of line segments and At

is the time step size. This number of memory locations can

4) be reduced by implementing existing symmetry relations (e.g.,

interaction of neighboring line segments is independent of

location provided that the segments lie on the same side)

,,

.

but the .basicde_pendenc_e

noted here that, for the

field we are considering

the top and bottom sides

COT, N can be reduced to

rem_a_in_sunchanged. It should be ‘“

angle of incidence of the incident

in this report, if the length of

of the rectangle is greater than

ignore the region of the rectangle

that will no_t_beillumlnated by the incident field by time

COT. Thus for such cases the number of memory locations for

the influence coefficients depends on three additive terms
3proportional to T, T2 and T respectively, --andif the front

3
side is much smaller than COT, T dominates. In addition

the integral equation method requires knowledge of $ and O

for all previous times, i.e., 2N(T/At) memory locations

whether or not the influence coefficients are stored.
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2. COMPUTATION TIME

a. Finite Difference Scheme

Ignoring th~’boundary points which require special

treatment each grid point requires the same length of time

at each step. From the form of the difference scheme which

replaces the differential equation at each grid point we

can see that three multiplications, six additions and eight

array references are needed for the calculation of the field

strength at given grid point at the next time step. These

operations must be performed for each grid point for each

time step, i.e., COT2(COT + d\2)T~\h2 overall.computation

time is required over the time of interest T, where T& is

the time length of the operations indicated above. If

COT >> d\2’the time required is proportional to T3. This

result may be reduced by factor of three by recognizing

that in calculating the field strength at a grid point at

t the finite difference technique need not be applied to

points at a distance greater than cot from the body because

the scattered field has only traveled a distance cot and

the field strength at grid points outside this region is

that of the incident field. If the total period of interest

is ‘I’then the computation time is approximately c~T3T*\3h2

if COT ~> d\2. (The factor of three comes from fT t2dt =

T3~3 .)
o

b. Integral Equation Method

As we explained in our discussion of the computation

time for the finite difference scheme each grid point requires

the same length of time at each time step independently of

the parameters of the system, i.e., length of time the body

has been exposed to the incident field, size of body and

step size. Unlike the finite difference scheme the central

processor time for the integral equation method depends on

.

.

all those parameters. Assuming now that the influence
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the

3.

.-

coefficients have already been calculated and stored the

calculation of the fields at time t requires approximately

4N2(t/At) multiplcations_and_ additions: .Thusto extend the

caicula”tionto time T requires 2~2(T/At)2 multiplications

and additions, and if T~ is the time of one multiplication

plus one addition the computation time is 2N2(T/At)2T~.

The calculation of the influence coefficients requires the

calculation of 4N2(T/At) double integrals. Even though for

our geometry these integrals can be done analytically, the

necessary evaluation of the resulting transcendental functions

will contribute a significant amount to 2N2(T/At)2T~ unless

T/At is large. It should be noted that the above discussion

assumed that only the surface fields were of interest. For

points off the surface of the body the calculation of Y at

a given time t requires 2N(t - R/c)/At additional memory

locations for the influence coefficients and 2N(t - R/c)/At

additional multiplications and additions where R the average
. distance of the reference points on the surface of the body

to the observation point off the surface. (If Y at the

same point is desired for a series of equally spaced time

steps, the required number of integral evaluations will

depend only on the greatest time of interesk, not on

number of values wanted.)

CONCLUSIONS

As we mentioned in the beginning of this section the

comparison between the two methods will be based on the

degree of overall simplicity and the required computational

resources. With respect to deriving the necessary equations

and casting them into a form suitable for numerical calcula-

tion the finite difference scheme is much simpler than the

integral equation method and this simplicity is definitely

a great advantage. Both methods can be made comparable

in accuracy but the required computational resources for
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the two methods depend differently on the length of time.:
of interest and this factor influences the regions over

—

o
which one method can be superior to the other. To

understand this point recall &at the finite difference

method requires approximately 4c~T2/h2 memory locations

and c~3T~/3h2 computation time whereas the integral

equation method requires approximately 4N2(T/At) (or

T3/(At)3 if the incident wave has illuminated a length

COT of the body and COT >> d/2) memory locations and

2N2(T\At)2T: computation time. Thus assuming that 2coAt % h

we understand-that-when T,/At< N2 the finite difference

scheme is preferable. However, for large times, i.e.~

T/At > N2 the integral equation method requires fewer

computational resources and should be considered if the

simplicity of the difference equation scheme is overridden

by an appreciably smaller cost for the integral equation

method. If the field strength must be calculated at points

* far away from the body, the integral equation method is more

practical since the finite difference scheme requires propa-

gating the field from the body to the region of interest

whereas for the integral equation method the distance from

the body has no”effect on “the required resources.
,.

our conclusions about computer resources were based on

the two-dimensional model of the wave equation. For a

three-dimension~l mod@l the finite difference method yould

again be relatively insensitive to the dimensions of the

body . Memory requirements would vary as T3 hence total

time will vary ‘as T4. For’the ‘integral equation method

it is no longer necessary to store influence coefficients

and field strengthstior all time but only for rm/CiAt time

steps where rm is the maximum diameter of the body. The

number of patches will vary as L2/h2 where L and h are

characteristic dimensions of the”body and spatial step size,

*

t

*
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o hence the matrix of

the order of (L2/h2)

the number of field

influence coefficients requires of
e
4(rm/ciAt) memory locations. Similarly

strengths required is (L2/h2)(rm/ciAt).
6.

The time per pat’chper step varies as (L’\h’)(rm/ciAt) hence
.*

total time varies as (LA/h4)(rm/ciAt)T. From the above

brief discussion we understand that we can draw similar

conclus-ionsabout the relative merits of the two methods

as for the two-dimensional comparison.
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APPENDIX A

REFLECTION FROM A DIELECTRIC!KALF SPACE

We assume that the incident electric field has the form. . inc

:Z::s=a;;n:f:; ‘:;e y
= f(t - yljco) = f[t - Vco(y sin a - .

.
* . Thus at the boundary surface (Z = O)

Y
inc = f(t - Y/c. sin a] . It is reasonable to assume that

the total surface field Y and 3Y/~n’ will only depend on

t- y/c. sin ar i.e.l as the incident surface field propagates

to the right the total surface field keeps pace with it. By

noting that (~’ - p) ● Q = (y’ - y)~y ● ~z = ~1 equations can

be written as follows

w
. co H [m c1Co(t- t’) - IY’1] ~y

+ Y(o,t) = Y1nc - =

[ 1

1/2 z ‘y’dt’
-m -m C:(t - t?)z _ Y?2

m m
c.

lJ

[ IY 1]UCi(t- “) - ‘
+ y(o,t) = +

[ 1

1/2 % “’dt’
-m -co C:(t - t,)z _ Y12

(A-1)

.: Invoking causality we understand that the upper limit of the

t’ integration can be replaced by t. (The lower limit is of

no inte;est for the calculation in this appendix.} Setting

u= 1 we obtain y’ = ~c(t ~- t’) as the limits of the y’ inte-

gration. ●

Next we set t - t’ = ~ and the limits of the T and y’

integrations are (o,@) and (-c~,c~) respectively. Recalling

that aY/an only depends on t’ -’ (y’\co) sin a we make the ‘

following orthogonal transformation
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Figure Al. Geometry Depicting the Oblique Incidence of an Electromagnetic
Pulse onto an Infinite Dielectric Half Space



U,= T+: sin a
o

v= -’csin a,+&.
0.

Thus ~Y/~n is a function of t’ -(ya/co) sin a = t - T

sin a, i.e., a function of t - u which is independent

since t is just a constant. This will allow us to do

(A-2)

- (Y’/co)

of v

the

v-integration explicitly. Noting that dudv = I/co(l + sin2 a]

d~dy’ and referring to figure A2 we can rewrite equations A-1

as

.
; Y(o,t) = Y1nc (O,t) -

# ~d”j;u ‘v
o (A1V2 + BIV -t-~l)1i2

L;u

2a 22
‘1 = ‘Cos ‘2=7 sin a - 1

‘1 = -4 sin a ‘2 = -2(1 + y2) sin a

2
= Y2--

2
c1 = cos a C2 sin a.

(A-3)

f

-.
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If we perform the v-integration we obtain

~~(o,t) = Yinc(o,t) - ~ 1 I
cos a

+ Y(ort) = $ 1

(1- Y2sin2 a 1/2 (A-4)

a

where I =
I

ay du.
x

o

Solving Equation A-4 for Y(ort) we obtain

~= 2y cos a
c.

2PY=< (A-5)

%%) (y cos a + 1 - y2 2sin a)1/

i.e., the well-known result for the transmission coefficient.
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APPENDIX B

,[

1

.

0

REFLECTION FROM

To simplify our calculation

incidence, i.e., ~inc = ~inc ~
x

In appendix A the ~Y/3t term in

A DIELECTRIC SLAB

we will assume broadside

= f(t + z/co)~x (fig. Bl).

equations 17 was not considered

because (~’ - p) ● ~’ = O for the surface of an infinite half

space. In the present case p’ and ~ can belong to different—.—-—–-–—
surfaces and (~’ - p) ● ~’ is not necessarily zero. Thus in

this appendix we will check the validity of equations 17 when

both ~Y/at and ~Y/~n are retained whereas in appendix A only

aY/an was retained.

Due to the broadside intiidenceY, 3Y/~t and ~Y/~n are

independent of y. Thus the y’-integration can be performed

explicitly by setting U = 1 and determining the limits of the!

t’,y’ integrations and equations

t

+ Y(t,z=o) = Y=nc(t,z=o) - >
J

ay
-5

-m

17 reduce to

t-d/c.
c

dt’ - &
f

ay
K

2=0 -m

-1~ Y(t - d/co, Z = -d)

t’
c.

!
t-d/cic.

* Y(t,z=o) = + 8Y dt’ + -+
f

ay
-m x

-02 -OJ z=-d ‘t’
2=0

++Y(t- d/ci, Z = -d)

z=-d

-.
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t-d/c. t
. c

~ Y(t,z=-d) = Y1nc(t,z=-d) - -$
J

c

#
J

dt’-~~ dt ‘

-m -C9
! Z=o z==-d

+ Y(t,z=-d)

-1~Y(t -d/co, Z = O)

c t-d\ci.
=—

2=J-co

t

3Y Ci
E

dt’ + ~
I-w

Z=o ,

+*Y(t - d/ci, Z = O)

av
Fii

z=-d

Next we set

.t

A(t) = Y(2 = O,t), B(t) =
!

aY/3n 2=0 dt’

o

(
t

c(t) = !“(Z = -d,t), D(t) = 3Y/3n Z=-d dt’

‘o

(B-1)

and equations B-1 can be rewritten as

A(t) = 2f(t) - coB(t) - coD(t - d/co) - C(t - d/co)

A(t) = ciB(t) + ciD(t - d/ci) + C(t - d/ci)

c(t) = 2f(t - d\co) - coB(t - d\co) - coD(t) - A(t - dlco)

c (t) = ciB(t - d\ci) + ciD(t) + A(t - d/ci) (B-2:)
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In order to solve Equations B-2 we transform them into the

frequency domain:

ikod ikod
A(u) + B(o) + C(W) e - D(w) e = 2f(M}

ikid ikid
A(w) - ciB (u) - C(W) e + CiD(LJJ)e = o

ikod ikod
A(u) e

ikod
+ COB(W) e + c!(w)- COD(W) = 2f(LO)e

ikid ikid
-A(u) e - ciB(w) e + C(W) + ciD(@ = O (B-3)

Solving Equations B-3 for A(oJ)we obtain the well-known

result for the reflection coefficient R(u)

R(@) = A(u) - f(u) =
(1 - y?) i sin a

2y Cos a - i(l + y2) sin a

f

where y * ci/co = ko/ki.

t

t .+
.- .
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