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ABSTRACT

A system of time dependent integral equations are derived and
then are analytically demonstrated to be capable of treating
scattering by a dielectric interface. A finite difference method
is demonstrated to be capable of determining the fields scattered
by an obstacle having an edge, by comparing a numerical solution
to.a canonical solution for scattering by a perfectly conducting

- wedge. Both methods are applied to the dielectric platform model

whlch has both a dielectric interface as well as an edge. The
results obtained are in close agreement and we choose to generate
production data for ATLAS 1 related parameters by employing the
finite difference method; however, this should not be taken as

an endorsement that this method is always preferable. As part

of the investigation we identify problems for which either method
would be preferred. Finally, we present time dependent plots of
the electric field at points in the working volume that show the
amount of distortion caused by the platform model.
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SECTION I

INTRODUCTION AND SUMMARY

The primary issue that pervaded this investigation was
the question of how to achieve copfidencerin the numerical
data that ﬁoﬁidrbé géﬂéfgféé: The approachwused was to
compare the results obtained by two dissimilar calculational
procedures after each was demonstrated to be capable of
yielding results known to be valid for separate canonical
problems. The two approaches are a coupled system of time
dependent intégral'equéﬁioﬁs and an apprbpriate finite
difference method.

The concern about the validity of the results is due to the
fact that theréiéte model of the ATLAS I trestle platform requires
the proper numerical treatment of a dielectric interface as
well as an edge. The vast majority of numerical time
dependent scattering calculations deal with scattering by a
perfectly conducting obstacle and few of those studies focus
on the effect of singularities caused in the solution due to
an edge. We are not aware of any previous solution in the
literature of the coupled system of integral equations that
we derive, and numerically solve. The finite difference
method that we employ has been previously used by Page and
Peterson (ref. 1) for a dielectric interface; however, the
procedure they employ at the interface is different from our
procedure. This difference in the procedures does not appear
to have serious consequence since numerical testiqg indicated
that both procedures yield similar results for sufficiently
small grid step size.

1. Page, W. E. and D. H. Peterson, A Numerical Method for

Computing the Propagation of an Electromagnetic Pulse
Guided Over a Material Interface, Sensor and Simulation

Note 96, Air Force Weapons Laboratory, 1970.




The canonical problems used to test the system of
integral equations are the problem of scattering by a
dielectric half space and the problem of scattering by an
infinite dielectric slab. For these problems, we analytically
solve our system of integral equations and obtain the known
solutions.

Our testing of the finite difference method was considerably
more involved and a consequence of this testing has the
potential for yielding significant side benefits. We utilize
the known canonical solution for scattering of a plane wave
step function by a perfectly conducting wedge. This solution
was convolved with the function of time that we intended *
choose for an incident plane wave pulse that would be con: 1~
ient for us to treat by the finite difference method. The
result of this convolution describes the scattering of a plane
wave, having the desirable time dependence, by the perfectly
conducting wedge. It is a simple matter to test that the
results obtained by the convolution procedure are accurate
to any prespecified number of significant figures. The test
consists of increasing the number of points in the convolution
integration procedure. We compared the results obtained by
the finite difference method with the results of known accuracy
obtained by the convolution approach and determined that the
finite difference approach could also yield solutions to any
prespecified number of significant figures by decreasing the

finite difference grid step size.

The side benefit of this testing of the finite difference
method was that we were able to show that the convolution
solution and the finite difference solution were still in
agreement when we let the wedge angle approach zero. This
demonstrated that a particular finite difference method was
capable of determining the field scattered by a particular
perfectly conducting open surface (the semi-infinite half
plane). This identifies an area of investigation that has
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the potential to satisfy a long standing need in the area of
EMP interaction and coupling. The question of whether an
appropriate finite difference method is capable of determining
the fields scattered by a nonplanar open surface merits a
thorough investigation. This capability is necessary to
guantify errors introduced by the many approximations
currently employed to calculate the currents and voltages at
the inputs of subsystems contained within metallic

enclosures (missiles, aircraft, tanks, ships, etc.).

Returning to the question of confidence in the numerical

data we present for the model of the ATLAS I trestle platform, we
have explained how we concluded that the integral equation approach

was capable of treating the dielectric interface problem and
our finite difference method was capable of treating the

edge problem. Our final test was to apply both methods to
the dielectric plate, of finite extent and thickness, which
has both an edge and a dielectric interface. The results
obtained by the two methods were in agreement and we chose to
use the finite difference method to generate the production
runs that had parameters choseﬁ to study the effect of the
trestle's platform. For this particular problem, the finite
difference method was chosen due to computer memory consider-
ations; however, this should not be taken as_an endorsement
that this method is always preferable to use. As part

our inve§tigation we have identified problems for which
either method would be preferred.

The results of our production runs show that, according
to our simplified model of the platform, the fields in the
ATLAS T working volume are clearly distorted by the platform.
This distortion occurs to the pulse shape as well as to its
amplitude., As the observation point is chosen further in
from the leading edge of the platform, the distortion persists
for larger distances above the platform. Our present study
is limited to a distance from the leading edge that corresponds



to 25 platform thicknesses. The observation distance is
fundamentally limited by our two-dimensional modeling of

a three-dimensional platform. The deeper in and higher up
we choose to observe, the sconer we sense the effects of

the sides of the platform that are not included in the two-
dimensional model. Even with this limitation, our data is
applicable for times longer than the time the incident field
requires to achieve its maximum amplitude.

We view the amount of distortion exhibited by our model
and calculations as demonstrating a need for further investi-
gations, both theoretical and experimental, in order to asse<s
and assist the threat relatability of tests that will be p« -
formed in ATLAS I. These investigations should include a n re
detailed model of the entire support structure as well as
interactions with test objects and other portions of the

simulator.

10
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o ~  SECTION II

FORMULATION OF THE INTEGRAL EQUATION METHOD

In this section we derive the system of integral equations
for the problem of scattering from a dielectric cylinder of
infinite length and arbitrary cross section. The configura-
tion of interest is depiétédrin figures la and 1lb. The
incident electrdﬁégnefiéufieid”is giveﬁrby 7

ginc - E, £(t . z2'/c )e,
E{_inc - H;n? éy + Hi.nc éz
"H;nc = E—Oz—os—e £(t - 2'/c.), H;'nc = - EO—Zii-E £(t - z'/c)
o c o
z' = (z - zo) cos B + (y - yo) sin B (1)
where gx' éy, éz are unit vectors, B is the angle defined in ~ o

figures la and 1lb, ZO is the free-space characteristic
impedance, S is the speed of light in free space and Xor Yor
z, are the coordinates of a point“'Po on the surface of the
cylinders, that is swept by the incident wavefront at t = 0

(xo = 0).

The dielectric cylinder is homogeneous with a dielectric
pefmittivity € and a magnetic permeability uihequal to the
vacuum permeability M, Our problem is clearly two-dimensional,
i.e., all the physical quantities of interest are independent
of x. Under these circumstances one can show that the
scattered electric field will only have an x-component whereas
the scattered magnetic field will lie entirely in the yz
plane. Maxwell's equations for the total field, incident
plus scattered, are then reduced to

11
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Figures 1. Three- and Two-Dimensional Geometries for the Scattering
of an Electromagnetic Pulse from an Infinite
Dielectric Cylinder
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oE oH °E 9H
_—x. = __.i —2.{. = - _X
) oy Yo 3T ¢ 3z Yo 3t (2)
3E 0H_ . 3H
- x_ Tz zZ _
£3E T oy T az - Tolvezt) (3)

where e is equal to € outside the bo@y and equal to €4 inside
the body and Jo(y,z,t) is the source of the incident field
located far away from the scattering volume. (When ¢ = ey

the source term in Equation 3 should be set equal to zero.)
The boundary conditions across the surface of the cylinder
are: Ex and H - s continuous, i.e., total tangential electric
and magnetic fields should be continuous (fig. 2). 1If the
incident wavefront has a sharp front, i.e., the fields are
nonzero there, then at t = 0 there is a discontinuity of the
fields across the boundary. We will assume that f(u) is a
smooth function of u and define it more precisely as we treat
our equations numerically in subsequent sections. For the

derivation of the system of integral eguations we need, as we

shall see, continuity of Ex and BEX/Bn where n is the outward
normal on the surface of the cylinder. Continuity of BEX/Bn
is -inferred by-noting—that (fig: 2)

°E 3E ?E
X - e n = —X 4 X 1
on '“,VyzEx n 3y Dy t 5z Py
3E o 7 oE
= — X fugi X
= =55 (-sin 8) + 5z (Cos 8)
oE 9E
= X (5 _ % oa
3 PN A P A
= "My 3¢ (Hy s, ¢ Hy sy) = -u, 3g H + s

- (4)
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Geometry Depicting Certain Quantities Relevant to the Integral Equation Method
for Solving the Scattering Problem
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where the penultimate step employed'equations 2. Since H - s
is continuous across the boundary for all times we understand
that so are 9/3t(H - S) and BEX/an. (We exclude pathological
functions.)

Next we proceed to derive the system of integral equations
that solves our two-dimensicnal scattering problem, i.e., it
allows the calculation of the scattered fields inside and
outside the dielectric body. We begin with the wave equation
satisfied by E, that can be derived by manipulating eguations
2 and 3:

2 1 a2
(Vy.z. - —7-——77)W(g',t') = F(p',t") ] (5)
c” 9t

= vy z’
(p',t') = total electric field
-1/2

1/2

where p' = y'e_ + z'e
E

k4
X

c Co = (uoeb) outside the cylinder and

c=c, = (uoei)— inside the cylinder,

i
F(p',t') = uo(BJO/Bt) outside the cylinder and

F(p',t") = 0 inside the cylinder.

Next, we introduce the two-dimensional Green's function G

satisfying
2

(\72. c - S 2)etet,er £,E) = 800" - p) S(E' - t)
¥y 2 c” at’

(6)

G(p',p; t',t) is defined in an infinite free-Space or an
infinite dielectric medium depending on whether ¢ = ¢, or

c=cy. The solution to equation 6 is

15



t}[ic(t‘ -t) - |p' - 3]]
2 2]1/2

(7)

G(p',pi: t',t) = - -291;

[c2<t' -t)% -~ (p' - p)

where U(x) = 1 for x > 0 and U(x) = 0 for x < 0. The plus

sign in equation 7 corresponds to the retarded solution, i.e.,
an observer at p' senses at t' a disturbance caused by a

source at p fired at the retarded time t = t' - [p' - p|/c.

The minus sign in equation 7 corresponds to the advanced solu-
tion, i.e., an observer at p' senses at t' a disturbance caused
by a source at p fired at the advanced time t = t' + [p' - pl/c.
This solution violates causality. Notice, however, that if

we switch the observation and source space-time points the
advanced solution of equation 7 becomes the retarded solution
for the problem of a disturbance observed at (p,t) and caused

by a source at p' fired at t' =t - |[p' - gl/c. This observation
will be utilized later on when we derive our integral relationshps.

fgﬁ [‘Y(g',t') sor Gy (p' 0 T, E)
1.2

-G (p',pi £, E) 5%7 Y(g',t')] ds'dt’

ﬂJh‘

8\-_\8

m\-.\
?f‘i!(ﬂ

' 3
[GO(_Q_l Q7 t',t) LY .‘Y(P_'rt')

~¥(p',t") =2+ G _(p',pi t',t)}dA'dt' = ¢, 1) - ¥(p,t)

(8)

16



where C is the contour shown in figure 2, n' is the outward

“normal (fig. 2), S, is the region bounded by the circle at

infinity and C and yIPC js the incident electric field.

The derivation of equation 8 assumes that the contour
integral at infinity (resulting from Green's identity) has
been set equal to zero. The reason is that ¥ and 9Y/on'
in the integrals can be replaced by the scattered fields
(one can see this by applying equation 8 for V¥ = winc) and,
for any finite t' or -«, they are zero. Thus the integration
in t' is over one instant only (t' = +x) and it can be shown
to have zero contribution. The t'-integration in the second
integral in equation 8 can be performed explicitly. At t' = ==
the scattered fields are zero throughout region S_ and at '
t' = » have gone to zero smoothly to assure that the integral

over S is zero. Thus equation 8 can be rewritten as

- yinc - LR 9 ' . '
W(Q_It) =Y (Q_,t) f¢[¥(£ t') T GO(E p; t /t)

- 00 (‘
’

- Go(g',g; t',t) g%;W(g',t'ﬂ ds'dt'. (9)
As we can see from equation 9 the scattered field at p and

t is due to contributions from points p' on the contour
firing at t'. Thus t' must be less than t and if we recall !
equation 7 we understand that G(p',p; t',t) must be taken
with the minus sign in front of c(t' - t), i.e., it is the

advanced solution of equation 6 with c = Cy-

For the region inside the contour C we can'apply a similar

‘procedure and arrive at the following equation

17



¥(p.t) =f ¢ ¥(p',t) —g—%rei(g',g; t',t)
o C
- G, (p',p; £',t) =or ¥(p" t')] ds'dt’ (10)
it rEr Il 3n F

. « I £ o .
where C is the same contour as in equation 9, n' is the out-
ward normal and the Green's function Gi is the advanced solution

of equation 6 with ¢ = cy -

In order to obtain our system of integral eguations
we let the observation point p approach the contour C. If
the contour C is smooth then the singularity due to 3G/dn-
at p' = p results in a term *(1/2)¥(p.t) (plus for the ins. le
and minus for the outside) and equations 9 and 10 give

~ 3G BY
v (o, 1) - /‘é(o =% = Gy zav )ds'dt'

I

LYO (EI t)

il

“Pi(_g_rt)

[ F ]

BWi
f¢ Gi U ds'dt' (11)

where we have used the subscripts "o" and "i" to denote the
outside and inside of the cylinder respectively. One can
show that a principal value integration over C (resulting
from the limiting process p + p' from the outside) is not
necessary because the kernel in the integral is not singular
as p' + p when both p and p' lie on the contour. (A contour
with sharp corners is discussed at the end of this section.)

If we recall the continuity of ¥ and 93¥/3n as we cross

the boundary contour we understand that Y, = ¥; = ¥(p,t) and

18
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awo/an = BWi/an £ 9¥/9n where p is on the contour C. Thus
equations 11 represent a system of integral equations which
allow the determination of ¥ and 3¥/3n on the boundary contour
C. Once these qﬁantltles are known one can employ equations

9 and 10 to determlne Y outside the body and inside the body

respectlvely Then Maxwell s equations 2 allow the determina-
tion of H everywhere.

In order to cast our system of equations into a form
amenable to numerical treatment we employ the explicit form of

G given by equation 7 and manipulate the resulting integrals

to eliminate the apparent singular behavior that results from
the differentiation of G. We have,

3G _ . Ny _ 0G . 21— 9G . =
-gﬁ—r = V'G n'.- "FR— VE_'R n' = R -'——-—-—-R n' (12)
where R = |p' - p]
G _ _ ¢ { Sfc(t = t') - R]
3R 27T 1/2
e - 2 - 82
R '
+ Ule(t - t') - R]
[ 2 2 2]3/2
c(t - t")" - R (13)
rIf we combine equations 12 and 13 we can write
; R R 20 I VL N L
.[ - | 2 _2]%/? R
- [c (t-t")" - R ] t'=t-R/C
. o W(E'lt')(ﬁ' - p) - At ' '
-0 [ (t - t")° - R ]
© (14)

19



Recalling that

Jf dat" _ t - ¢
3/2 1/2
[e?(t - )2 - 8% RZ[c?(t - £')2 - R%)

we can rewrite the integral on the right-hand side of
equation 14 as

o ~ ¥(p',t') (p' - p) * ' ' '
- = ; 372 Ulec(t - £') - R] dt
]

o [c2(t - t1)2 - R

co

é%J( Y(p',£')(p' = p) - n' Ulc(t - t")

OO

t - t! '
at
1/2}
[Rz[cz(t - t12 - Y

[
Z
ot
G

o (-t ¥(p',t") Ule(t - ') - Rl (o' - p) * 0
T 2w 172

Rz[cz(t - t')2 - Rzl

-0

~

(-t () -
c =1 =~ vy oY
tan 172 {U[c‘t - D) - Rl g

2

Lo Re[cZ(t - £')2 - R%]

- c¥éfc(t = &'} - R]} dat'

[+5) (t' - t) (E_l - E) -« ﬁ! 3‘{1
= - S Ulc({t = £') = R] — dt'
2T 2 2 5 5 172 . 9t
-o R°[c“(t - t")° - R]
L [¥er -t - -8
T 27 1/2
R[c2(t - £')% - R?) t' = £ - R/c (15)

20
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If we compare equation 14 to equation 15 we see that

5 ~—s

an' 2 1/2 3t?

f(E =8 (p' = p) = a'
v 28 g = - gi./~ - oF L at
o B[ (¢ - £1)? - B?)

(16)

If we now return to our system of equations 11, we can use
equation 16 to rewrite them as

C
B’t) + 9

inc(
T

N

W(th) =Y

§ s

(R - n )(t' - t) 3y
[$
C

3y } U[co(t - t') - R]
E

Ao ; 173 ds' 4t’
_Rz]

2 '
olt - t")

o

c. £ f[(R*n )(t' - t)
—l ‘P(E_lt) = = ?‘%fﬁ[ aat\l" - asn‘yl]

Ule.(t - £') - R]
1 ds' at' (17)

[ci(t -2 -

wherf R=p'=-p, R=|p=p'|, c, = (uogo)'l/2, c, = (uoei)
and n' is the outward normal on C (fig. 2). The integrands
in the above system of integral equations appear singular when
R =0 and/or c(t - t') = R. The R = 0 singularity is only
apparent because it can be shown that R - n' behaves as R®

where o > 2 when R » 0. The c(t - t') R singularity

-1/2



is integrable because of the two-dimensional integration.
When R = 0 and c(t - t') = R simultaneously, i.e., R = 0,
t = t', the factor t - t' provides an extra zeroc and the
R = 0 singularity is still only apparent.

8o far we have restricted our discussion to smooth
contours. In this report we are interested in the numerical
solution for the problem of scattering of an electromagnetic
pulse from an infinite dielectric cylinder of a rectangular
cross section. Thus the behavior of eguations 17 in the
vicinity of sharp corners (edges) must be examined. When the
observation point p does not lie at a corner, equations 17 are
still true. This is so because it is well-known that ¥ is finite

—1/2, where s is the

at the edge and 9¥/3n varies_no. faster than s
distance from the edge; consegquently the integrals involving
3¥/3n have an integrable singularity and are well behaved. When
the observation point p is allowed to approach a corner, the
factor that is extracted from the integral involving 3G/9n

is equal to *(Q/27m)¥ rather than 21/2 (@ is the interior angle
shown in fig. 3) and consequently when p is at a corner
equations 11 and 17 have their left-hand sides equal to

(L - Q/ZW)Wo,i'
integral equations 17 will not allow p to lie at a corner

Our numerical treatment for the pair of

because all the reference points are chosen at the midpoints

of arc segments as we will explain in the next section. Thus
the factor to be extracted is *1/2 and equations 17 are valid
for all observation points of interest.

Before we turn our attention to the next section we
should mention that in appendices A and B the validity of
equations 17 is tested analytically by solving two special
problems whose solutions are known.

22
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Figure 3. Geometry for the Definition of the Interior Angle @



SECTION III

NUMERICAL TREATMENT OF INTEGRAL EQUATIONS

In this section we present the procedure that allows us to
numerically solve equations 17 for the problem of scattering of
an electromagnetic wave from an infinite dielectric cylinder of
a rectangular cross section (fig. 4) i.e., a rectangular slab.

The incident wave is E-polarized in the x direction and propagates
in the z direction. (Even though we focus our attention on the
numerical solution for a particular cross section the method

we employ is directly applicable to other cross sectional
geometries.) In order to cast equations 17 into a system of
algebraic equations which we can solve numerically, we

partition each of the four sides of the rectangle in figure 4

into equal-sized intervals As and the midpoint of each line
segment is chosen as the reference point for that interval.

(As may vary from side to side.) 1In order to effect a similar
partition for the t-integration we observe that the upper

limit in eguations 17 can be replaced by t since there can .
be no contribution to ¥(p,t) later than t. Assuming that

the wavefront hits the front size of the rectangle at t = 0

we can replace the: lower limit of the t-integrations by zero.

If we set t = 0 in equations 17 we obtain (1/2)Wo(g,o) = Winc(g,o)

0. There is no contradiction because the incident
inc

il

and Wi(g,o)
wave has a smooth wavefront and VY (p,o) = 0 at all p on the
contour. If the latest time of interest t is called T then
we have a time interval (o,T) that can be partitioned into
equal-sized intervals At.

h time interval, bounded

The reference point for the jt
by tj_l = (j - 1)At and tj = jAt, is tj and not the midpoint
(j — 1/2)At. The Cartesian product of the space and time

partitions produces a lattice of zones. The reference point

for the i,j zone is then (i - 1/2)As, jAt, if for convenience

all line segments are of equal size. Before we transform
the pair of integral equations 17 into a system of

24 T



H'lﬂC
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Cross Section
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algebraic equations which can be solved numerically we
rewrite equations 17 in a more convenient form

r £
y{y,z,t) = 8(y,z,t) -f¢ [Kl(y,z,t; y',z', e )e(y',2',t")
o “C
+ Ky (y,z,t; y',2',e")¥(y",2"',t")] ds'dt’
t
Hy,z,t) = J/'gg [Kyly,z,t; y',2", 2" ) ely" 2", ")
o “C
+ K, {y,z,t; y',z', eyt ,z,t")] ds'dt (18)

where ¢ = 3¥/3m, ¥ = 9¥/5¢, Sz 2¢i0C

Ule (£ - ') = R]

[cg(t - £9? - Rz]l/z

CO
K = =
m

o L% B n)t - t')  g[eglt - t') - R]
2 - T 2 1/2
R 2 2 _ o2
[co(t-t) R}
K3 = Kl(co > ci) K4 = Kz(co -+ ci)- (19)

Our method of solving the system of equations 18 is to
assume that ¥ and ¢ vary so slowly in space and time that
their values at a point defined by the midpoints of the arc
segment and time interval forming a zone provide a good
estimate for their values over the corresponding zone. The
singular nature of the kernels forbids us from making the
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same assumpticn about them. If we divide the circumference

" of the contour C into N segments we can rewrite equations 18
at t = tj as

! ' 3
‘i’J:.’_ = s3'i - Z Z @1’:'1/2 / R, ds'dt' + \I’ﬁ'l/z / K, ds'dt'
| =)

k=1 2=1| Akﬂ,

5 _ 2-1/2 L oAm1/2 f e
Wi—Equk f Ky ds'dt' + ¥ K, ds'dt

N3
k=1 %=1 A, Ay (20)

where FII:I = F(gm, nAt), [ is the radius vector to the midpoint
of the mth arc segment, Akz is the (k,%) zone in the s,t space

and Kp Kp(_gi,tj; ') (p = 1,2,3,4).

The time derivative is defined as

.’ \;,2,-1/2 2

_ _ Li-l
. = (v = %) /At

+1/2 1 1 . 0
Thus ‘i’k/ = (‘Pk - ‘i’g)/i\t = ‘Pk/At since ‘i’k = 0.

At j = 1 equations 20 give

N
1
WJiL = si - Z @i/z f K, ds'dt' + (¥ /At) / K, ds'dt'
k=1 Akl Akl |
N
1 1/2 1 o
vi = Z 3y f Ky ds'dt' + (¥;/t) f K, ds'dt’. (21)
k=1 Ay Ap1

27



This is a system of 2N eguations with 2N unknowns and can be

solved to give Wi, @1/2

quantities Si If we write the system of eguations 20 at

(i=1,2,...,N} in terms of the known

j = 2, we again obtain a system of 2N equations for 2N unknowns

?i, ¢3/2 in terms of the known quantities S2 Ti, @%/2 (ifl,z,
...,N) Thus we can march in time and solve for ?i and @3_1/2
for any i and j in terms of the known quantities SJ Wi
q»i'l/"f (3=1,2,...,N: & = 1,2,...,5-1). Once we obtain wj

and @i-l/z we can return to integral relationships 9 and 10

and calculate ¥ off the surface of the cylinder.

Notice that so far no restriction has been placed on
the relative magnitude between At and R = Ig‘ - gl. Integrals
fAk2 Kp ds'dt' in equation 20 represent the interaction between
the various spatial segments and their importance depends on
the relative magnitude of At and R (the distance between points)
as we will explain shortly. To make this clear consider
equations 21 written for j = 1. In this equation Ti, i.e.,
¥ evaluated at the midpoint of the ith line segment and at
t = At, depends on ¢ and ¥ at the midpoints of all other
line segments at t = At. A 2N x 2N matrix has to be inverted
in order to evaluate ?i. HoWeve;,»it is possible to choocse
At such that ?i"and in general Wi only dépends on ¥ and ¢
evaluated at the various midpoints at earlier times without
inverting a 2N x 2N matrlx, i.e., each pair of equatlons 20
will be solved for WJ and @3 1/2 in terms of Sj; W ®2 ~1/2
{(2=1,2,...,3-1) by 1nvert1ng a 2 x 2 matrix. The restriction
to be imposed on At is At < As/2 where As the size of line
segments into which the sides of the rectangle have been
partitioned. (We assume that all line. segments are of equal
size; if not, As is the smallest line segment.) The above
restriction will now be illustrated. We proceed by writing
equation 21 for i = 2, where the line segment i = 2 is
depicted in figure 5.
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Figure 5.

Partition of the Perimeter of the Rectangular Cross

Section into N Equal-Sized Segments



N
1 1 1/2 1
Y5 = S5 —Z [cbk/ / Kq ds'dt' + (wk/At) f K, ds‘dt‘]

k=1 A1 By

1 1/2 .
¥, = Z{@k/ f Ky ds'dt’ + (‘yi/m:)f R, ds'dt'}

N
k=1 Ar1 Ay (22)

Let us consider in particular the interaction between line
segments 1 and 2. This interaction is represented by the
influence coefficient fAll Kp(gz,At; g',t') ds'dt' (p=l,z -,4).
{(Actually K2 = K4 = 0 if both the reference and integratic -
points lie on the same side of the rectangle since R ° n=0.)
If we recall equations 19 we observe that Kp contains the

step function U and the integration is to be performed over
that portion of A,, that make U = 1, i.e., c{t - t'y ~R>0
or c(t - &£') = |z - z'| > 0. This last inequality defines a
region of influence or a light "cone" in the ct',z' cocordinate
system (fig. 6). The exact location of this light "cone"

depends on the values of z and t and in the present case

z = As/2 and t = At. In figure 7 we have plotted zone All
(defined by z' = 0, As and t = 0, At) for coAt = As/2, As,
3As/2 in a cot’,z' space. The case ¢ = ¢y will be examined
shortly. Notice that for coAt > As/2 the influence coefficient
IAll.Kl dz'dt' is nonzero, since the light "cone" intersects
part of All' i.e., the line segment 1 influences line segment

2 during the time interval At and consequently Wé in the

1/2 '
l/ ’
at a different point but at the same time (j = 1l}. However,

£irst of egquations 22 depends on ¢ i.e., on ¢ evaluated

if ¢ At < As/2 then [ K, dz'dt' = 0 and also [ K, dz'4t’
o - Azl ll A1 3

= 0 since c.At < ¢_At and Wz in equations 22 does not depend
1/2 .

on ¢l (or Yl since K2 = K4 = 0).

30



ct!

T T T T T T ct' =ct - (2' - 2)

ct' =ct+2z' -2 !
/ ! N\
P | N\
yd | \
ct < |
|
|
|
l
0 | )
C - >

N

Figure 6. The Shaded Area Represents the Light "Cone" or Region of
Influence for the Interaction Between Points Lying on the
Same Side of the Rectangular Cross Section
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Figure 7. Diagrams Showing the Dependence of Influence Coefficients, for the Interaction of Line
Segment 1 and Midpoint of Line Segment 2 (fig. 5), on the Temporal Step Size At




Next consider the influence coefficient between line
segments 1 and N, i.e., line segments not lying on the same
side of the rectangle (fig. 5) and write equation 21 for

i = N. Again wé examine the influence coefficients fA Kp
dz'dt'. If we set U =1, i.e., c(t - t') - R >0 or 11
c(t - t') - (z'2 + y2)1/2 > 0 we find that the region of

‘influence or light "cone" is a branch of a hyperbola shown

in figure 8. In figure 9 we have plotted zone All (defined

by z = 0, 4s and t = 0, At) for c_ At = 4s/2, As, 34s/2 in

the cot', z' space. (Notice that y = = As/2.) These plots
exhibit similar features as those in figure 7, i.e., the
integral over All is zero if coA£'§ As/2. In general, the
presence of U dictates that the influence coefficent will

be zero if t < t' + R/c. When t = At this inequality is
satlsfled for all t' (0 <t < At) if At < R/c. The smallest
'R is As/2, since £ﬁé reference p01nt is located at the middle
of a llne segment, i.e., cAt < As/2. When t = nAt and (n - 1)
At < ¢! < nAt we agaln obtain the ‘same criterion. Bearing

the previous discussion in mlnd, we can rewrite equations 21

“as
1_ o1 1/2
i LT T S 7 (Bydyy 9
1l _ 1/2

where (K ) = f KP ds'dt'. Notice that all influence

k&
)
coeff1c1ents are zero except the self-terms (K ) and (K3)il.

(The other two self terms (Kz) i1
of condltlon R . n' 0.) It is shown at the end of this

and (K ) are zero because

section that the self-terms have a very simple form, i.e.,
(Kl)ij = coAt, (K3)ij
time. Notice that the two indices correspond to those in

= ciAt independently of location and

the left~hand sides of equations 20. Thus equations 2la can

be solved to give



(2]
=
|
n
-
|
[

®1/2 - 1 1
i c.At i

At the next time step, i.e., t = 2T equations 20 can be
rewritten as

o
N

N
- - 3/2 1/2 1/2
¥y = 5 = (Kp)y, 9377 - ZE:[}Kl)kl kot (K)yy ¥y ]
k=1

N
= 3/2 p1/2 y1/2
Pyo= (Kglyp 8377 + :E: BK3)kl ot Ky Yy ]
k=1

_ _ *1/2 _ 1,0
wherelﬁgl)iz = coAt, (K3)i2 = ciAt. lFrom ¥k = (Wk Wk)/At
all ?k are known since Wg = 0 and Tk are known from t = T.
Also all @;/2 are known from the ¢t = 71 step and the above

system of equations can be solved for T @i/z. In general

by marchlng on in time we can evaluate Wi,@i~l/2 in terms
of 53, wk,¢i'l/2 (k= 1,2,...,Nand 2 = 1,2,...,5-1) by

lnvertlng a 2 x 2 matrix.

The success of the above procedure depends among other
factors on how well we can calculate the influence coeffic-
ients fAll Kp ds'dt' (p = 1,2,3,4). Fortunately, these
integrals can be performed explicitly in terms of simple
functions. From equations 19 we see that we have two types

of integrals,
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on the y=0 Side on Those on the z=0 Side of the Rectangular Cross Section (fig. 4)
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Figure 10. Geometry Illustrating the Influence of Line Segments of a Side (here
~ the y=0 Side) on a Point on the Same Side. The Influence
Coefficients are Zero if the Corresponding Zone
Lies Entirely Qutside the Light "Cone"
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Figure 11. Geometry ITlustrating the Influence of Line Segments of the z=0
Side on a Point on the y=0 Side. The Influence Coefficients
are Zero if the Corresponding Zone Lies Entirely.
Qutside the Light "“Cone" '
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- C Ulc(t - £') - R] '
Il_"‘f[z 5 21/2 ds'dt?
A ?.(t -£')" - R ]

ds'dt’
R2 2 2112

1 -_s-'_f @ - 2E €D yle(e - ) - ®]
T
2
A [c (t - t")" - R (23)

where ¢ is ¢, or ¢; and A is a zone in the s,t space. &s
we mentioned ealrier, the presence of the step function U

may alter the region of integration since U =1 for c(t - t')
~R>0and U =0 for c¢{t - t') - R < 0. For example, on

the same side of the rectangle, say vy = 0 we have R = |z - z']|
and inequality c(t = t') - |z - z'| > 0 represents the light
"cone" in the z',t' coordinate system (fig. 6). Thus if a
zone intersects the light cone as shown in figure 10 the area
over which integrations 22 are to be performed is the shaded
part of A. As we indicated earlier, the light "cone" does not
necessarily consist of straight lines. If, for example, the
reference point lies on the yw;%Bwsiderana ﬁhé_integrétioﬁ

points on the y = -4 or z = 0 sides, then R=[(z - z')2 + 62]
2, y211/2

1/2

or R=[z' respectively and inequality t - t' > R
represents a region bounded by one branch of a hyperbola in
the z',ct' or y',ct' coordinate systems respectively. These
are the light "cones" for these cases. Again if the zone
intersects the light "cone" (fig. 11, 12} only the shaded
part of zone A will contribute to the integration. No matter
what the relative position of the spatial reference and inte-
~gration points is, inequality c(t - t') > R represents a
light "cone" or a region of influence and in the appropriate
s',t' coordinate system there are, in our case, fifteen

possible diagrams for the relative positions of the light
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"cone" and a zone. In figure 13 only ten diagrams are
presented since intersections of the light "cone" with zones
~occur symmetrlcally ‘and only the right-hand off center ones
“are dlsplayed. 'Also the light "cone" depicted can be hyper—
bolic or straight or both dependlng on the dlagram.‘ Notice
that for each dlagram the 1ntegratlon ‘area is either e
rectangle or a triangular region or a combination of the two.
Thus we need only exhibit the results of integration for
.diagrams VII and XI (fig. 1l4). First we recall that when
the reference and 1ntegratlon ‘points lle ‘on the same side

of the rectangle the inner product R °* n is zero and Il

defined in equation 22 is zero. Next, for convenience but

w1tho£t7eacr1f1c1ng generallty we choose our integration
points on the y = 0 side and the reference p01nt on the
2 +y )1/2

(If another comblnatlon 1s chosen,rfor example reference

z =0 side, i.e., R = 2' é + vy éy; R = (2

point on z = b 51de, then R = (z2' - b)e + vy ey,

R= [(g' - b)2 + y ]l/z. A s1mple change of varlables, p = z'

= z", can then reduce this case to the previous one by approprl-

ately changing the limits of the 2z' integration. Similar
agruments hold true for all other comblnatlons ) Referring
to figure 14 the follow1ng results can be obtalned.

. . . . r 7 - ] _;
I, (ViI) = < f Ule(e = t1) = Rl _ g5rger
1 ™ 2 5 2 1/2
c“(t - ") - R ] 7
: C ok z{t")
- = S dz'dt'
T 1/2
where z(t') is obtained by setting c(t - t') - R =0, i.e.,
ze)) = [Pt - €02 - 92 | M2 er 2k - e 2]+ vDY2

and
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Figure 13. Diagrams ITlustrating the Various Light "Cone"~Zone Intersections
For .Zones OFf Center and Because of Symmetry Only the Right-Hand
Intersections are Displayed
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2 2 2 2
_4c(t-t_)-z_‘y
1, vin) = & lete - ¢, )tan” -1 k-l
T -1 z
’ - k-1
212<-1 + y2
-z log -
k-1 2 2 2 2
clt =ty 4} = Vet =ty )" =z ) - ¥
3 2 2 2
-y tanl Y& T T s N { (24)
clt - £y 1) Zpg
R - n(t - t') _ _
I.(vizy = < | = Ule(t = &') = Rl _ 4qvaer
2 o =2 5 5 5 172
A [c?(t - £)}% - RY]
£* z(e") :
- :2:/" ./” y(t - ') dz'dt’ ®
T 1/2
2
N A e I CR G I L o
where againlz(t') = [c?(t - £ 2 - Y2]1/2' t* = £ - (1/)
2 2.1/2
'(zk_l + v7) / and
1 vyt gy -2, -y
I.{VII) = — lc(t - t } tan
2 TC =1
el = t9) 2y
p) 2 3 3
- ‘ﬁ: (t -t )t -2, . =Y
~ y tan 1 -1 k-1 (25)
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Similarly,

Il(XI) dz'dt'

172
2 1 02 2

i
dlo
) P
—
=

2=l k-1 [c®(t - t')

1l z!

l -
- -c(t - t') tan

2 2

202 _

+2' log|e(t - £') - yoXt - £)

T Zr (Ta+1

) -— - ¥ ]

+ v tan 1 c(t t') 2z
)2

2 2

-y cg(t - t! -2'" -y

,Zk& t% (26)

where

4 t

k 2
Zx-1]%g-1 :

- Elzaty g) + £z g0ty 4)

IZ(XI)

z, o | |
y(t - £') dz'dt’
1/2

ot

= S
" f 2 . .2 2
t zZ; (2'"7 +y Me2(t - £")° - z2°

=1

2 . 2

1l c{t - t') 2!

2 2

c(t = t') tan
gyt - 12 - y% - 2

Tc

1 z'
‘/cz(t m )2 - g2 o g2

- y tan
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where again
£(z',t") i = f(zk,tz) - f(zk—l’tz)

- £zt )+ E(Z 30t )

Finally we calculate, as promised, the self-terms

- ¢ | Ulett - £') - RI et =1, c=c_; p=3, c=
(KP)ij T !r[CZ(t - t')2 _ R2] ds'dt (p=l, c=c,i P 3, ¢ ci)

where the reference point of zone A coincides with the apex of
the light cone. The calculation of the self-terms does not
depend on which side the line segment lies. Thus in figure 15
we have chosen side y = 0 and the above integral can be
rewritten as

cAt W
2 dudv
cK)..=—ff = cbt
p'ij ki 2 _ .2,1/2
o %o (v u)
where substitutions c(t - t') = v, z! - z = u have been made.

In order to test the validity of the numerical solution
obtained via the integral equation method, we calculated ¥
at the middle of the front side of the rectangular slab as a
function of time and also ¥ on the top side of the slab as
a function of z at a particular instant and compared them to
solutions obtained with the finite difference method (FDM)
which was being studied simultaneously. The agreement was
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excellent and the relevant graphs (figs. 20 and 21) are
presented in section V where the numerical results are
discussed. At that time we had decided that the FDM was
preferable for the calculations of interest (section VI offers
a comparison of the two methods) and we proceeded to evaluate
¥ at points on the surface of the slab using the FDM. As
additional debugging for the FDM we calculated ¥ for the
problem of diffraction by a 90° perfectly conducting wedge
and compared our results to the known exact solution. The
agreement was again excellent and this spurred our curiosity
to test the FDM for a wedge with a zero angle, i.e., a per-
fectly conducting half-plane. Once more the agreement was
excellent and it suggested the very interesting possibility
of tackling open surfaces with the FDM. In the next section
we develop this method as applied to our two-dimensional
scattering from a dielectric rectangular slab.
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SECTION IV

FINITE DIFFERENCE METHOD

In order to apply a finite dlfference scheme to the

solution of our scattering problem we can either employ equa-

tions 2 and 3 for EX, Hy, Hz

EX = ¥ (option 2), namely equation 5.
solve for all field components simultaneously whereas option 2

(option 1) or one equation for

Option 1 allows us to

)

only produces EX and H_, Hz must be obtained with the aid of

Y
equations 2.

However, there is a clear advantage of option 2

that prompted us to choose it: We know that forva perfectly

conducting wedge (P C.W. ) Hy and

H, dlverge at the edge whereas

E_ is zero. We want to use the P.C.W. for debugging and con-

X

sequently we should use E, alone which for our problem is also

finite at the edge. H_, and H, may or may not diverge for a

Yy

dielectric body but in any case debugging with the aid of the

P.C.W. might not be reliable since the divergence of H, H,

y

could introduce significant errors. We could try to provide

special treatment near the edges

In connection with

wonder whether VszEx in equation

unnecessary.

we observe that this quantity is

E, is finite for all times and therefore so is 3 E /Bt

X

pathological functions are excluded.

finite, Notice that as we cross

sides or at the corners
o Yz Xy

but option 2 makes this

the edge behavior one may

5 diverges. To answer this
equal to (l/c )(8 E /Bt ).
2—-1f
Thus szEx is indeed

the boundary, whether on the

suffers a discontinuity since

¢ is discontinuous and 3°E /at is continuous (due to the

continuity of Ey for all tlmes).

The continuity of czvj

will allow us, later on in this section, to determine the

proper finite difference scheme for this gquantity as we cross

the boundary.

Next we proceed to apply the

finite difference method to

equation 5 in a source-free region,
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v w(p,t) = 2o viet), pev (5)
vz 3t2 =

with appropriate boundary and initial conditions. V stands

for the two-dimensional region bounded by a contour C,

(fig. 16) and it is divided by the contour C into an exterior
region V, and an interior region v,. 1If V were a homogeneous
region then the solution of equation 5 could be uniquely
determined at a given time t and position p if the initial
values of ¥ and ¥ were known everywhere within V and ¥ on

Cb was known for all times up to t. To ensure unigueness

of ¥(p,t) in our case, the continuity of ¥ and 3%¥/3n across

the boundary C must be added to the boundary and initial
conditions above. One may wonder, however, what this condition
means when 9¥/%n is evaluated at an edge where it may diverge.
To answer this we recall the system of integral equation 11

and observe that because the singularity of 3¥/9n is integrable
we can remove the requirement of continuity of 3¥/3%n at the
four corners (i.e., four isolated points). We still obtain

a unique solution for Y(p,t).

Equation 5 is a hyperbolic equation and its solution via
the method of finite differences has been extensively studied
when V is homogeneous (see for example references 2 and 3).

The method is stable and converges to the exact solution
1

2. Forsythe, G. E. and W. R. Wasow, Finite~-Difference Methods

for Partial Differential Equations, New York, John Wiley,
1960.

3. Fox, P., "The Solution of Hyperbolic Partial Differential
Equations by Difference Methods," Mathematical Methods for
Digital Computers, Edited by A. Ralston and H. S. Wilf,
New York, John Wiley, 1964.
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when (c*c/hy)2 + (cr/hz)2 < 1, where t is the temporal step

size and hy'hz are the grid step sizes in the y and z directions
respectively. For our scattering problem the finite difference
method is still applicable provided the appropriate stability
and convergence criteria and boundary and initial conditions

are satisfied. 1In each regilon the stability and convergence
criteria are: (coTo/hoy)2 + (coto/hoz)2 < 1 and (ciri/hiy)2

+ Cciri/hizjz < 1 outside and inside the rectangle respectively.

It is desirable to choose Ty T 7o and hiy = hoy' hi22= hoz in
which case both criteria are satisfied if‘(coto/hoy) +

2 . : P
(cofo/hoz) < 1 since ¢c; < cg. The boundary and initial

conditions are those we mentioned earlier in connection w. n
the uniqueness of the solution of equation 5. (To verify the
accuracy of the values at the interface C we compared the
fields calculated via the finite difference approcach and the
integral equation method and the excellent agreement we obtained
strongly indicated that the values were indeed accurate.) In
the present case the incident plane wave pulse has a smooth
wavefront and is assumed to hit the front side of the rectangle
at t = 0. Thus ¥ and @ at £t = 0 are known everywhere within V.
Since derivatives are replaced by finite differences we write
@(grol = [¥(g,0} = ¥(p,~t)]1/7 and the initial conditions are
then translated into the statement "¥ at t = 0,-t is known
everywhere within V." As we shall see later the finite
difference method makes explicit use of this statement. The
importance of the boundary condition will become evident as

we transform equation 5 into a system of difference equations.
In order to accomplish this we first replace region V by an
orthogonal grid with grid sizes hy and hz as shown in figure 17.
Notice that both Cy and C coincide with grid bars and the points
at which Y will be evaluated coincide with the intersections

of the grid bars. Next we introduce a temporal step size

2 y = (5%2y/3y2) + (3%v/322%) and

equal to t and replace Vyz
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32W/3t2 by their appropriate differences in a region of

homogeneity,
32
— ¥ (p,t) = [¥ + h t) + -
ayz (p ) ¥ (y yrzr ) ‘i‘(y hyrzrt)
2
- 2¥%(v,z,t h® +
(v,z,t)1/ v O(hy)
82
5 ¥(p,t) = [¥(y,z + hz,t) + ¥(y,z - h_,t)
9z z
- 2
ZT(y,z,t)]/hz + O(hz)
a2
S—E—‘P(p.t) = [¥(y,z,t + 1) + ¥(y,2,t - 1)

~ 2¥(y,z,£)1/7% + O(1). | (28)

Equations 28 would be exact if ¥(p,t) were a quadratic function
of y, z, and t. In our subsequent calculations we set hy = hz
= h because the back side of the rectangle (z = -b) will be
taken sufficiently far from the front side (z = 0) so it will
have no effect on our field calculations for the time periods
of interest. (Thus we define h by dividing the front side
into equal-sized segments and the top side is set equal to

an integer multiple of h.) The next two steps involve the
boundary conditions across C and specifying ¥ on C. The
boundary conditions across C require continuity of ¥ and
a¥/9n. As we observed earlier in this section czvy ¥ is also
continuous. These three conditions will alow us to replace
CZV Y by a difference scheme for points on the sides of the
rectangle. We begin with point p on side v = 0 and for con-
venience we choose a coordinate system yz with origin at p and
set £ = 0. (This choice for t has nothing to do with previous
considerations and it is only a matter of convenience. Our
results will be valid for any t.)} We will assume as we did
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for the derivation of equations 28 that ¥ can be expanded in

a Maclaurin series about z = 0, y = 0.

¥ = a* by ¥cz ¥ dy? + ez® + fyz + 0(h°) y >0
_ _ "{ff’;f' ff%fi;ifffidgiz' ';:sz %a%";; o 3 '
Wi = a' + b'y + c'z + d'y® + e'2” 4+ f'yz + O(h™) y <0

(29)

¥ and 3¥/9n = 3¥/3y are continuous as we cross y = 0, i.e.,

a=a',b=Db',e=¢e', c=c¢c', £ =1£f'. To determine the

2.2

relationship between d and 4' we recall that c Vyzw is also

continuous as we cross y = 0, i.e.,

2.2 _ 2 _ 2.2 = a2(0q0 '
covyzwo = (24 + 2e)co = civyzwi ‘ci(2d + 2e')
and _ ' L
2
. o
gt = (d + e) — ~ e (30)

Cl
i

In order to determine the difference expression for CZVYZW
at y = 2z = ct = 0 we set

c?y v =L [Av(h,0,0) + BY(-h,0,0) + C¥(0,0,0)]
vz h2

IR T

[D¥(0,h,0) + E¥(0,-h,0) + F¥(0,0,0)]

T RZ

+

It

2(d + e) cg. | (31)

Using equations 29, equation 31 gives



A(a + bh + ah%) + Bla - bh + [}d + e) é]hz + Ca

ko™
1

+ D{(a + ch + eh2) + E{(a - ch + ehz)

+ Fa = 2(d + e) cghz. (32)

Setting the coefficients of a, b, ¢, d and e in equations 32
equal to zero we obtain

A+B+C+D+E+F=20

(A - BYh = 0
(b - EYh = 0
o2
A+B-—‘2’--2c2h2=0
Ci
c2
o _ o 2 _
D+E+B;7 1 2¢  th 0
i
i.e.,
2c
e o
A=B=E=D-= >
cO
1+ —
“i
8c§
C+F =~ —p. (33)
C
1+ —%
Ci
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Thus the difference formula for cgv

2
i
boundaries of the rectangle is

2 2
yzwo = C§ yz\yi on the

2 .
Vyz‘yoz civyzlyi: 3 [‘P(Y + h,z,t) + ¥(y - h,z,t)
- o (o]

+ wy z - h, ) -4w(y.z £) ]/h (34)

Notlce that our
boundary includes the four corners and the question arises

as to what the difference formula for czvz W is at a corner.

2
The answer is that since ¢ V; Y is contlnuous we can choose

an exterior point that is arbitrarily close to the corner
and use the first two of equations 28 with c

Co.

We are now in a position to replace equation 5 by a system
of difference equations and examine: the boundary conditions

for ¥ on the outer boundary Cp. For a point away from the
boundaries equation 5 assumes the form

(®(y,2)t2/m2) ty(y + h,z,t) + ¥(y - h,z,t) + ¥(y,z + h,t)

| + ¥(y,z - h,t) - 4¥(y,z,t)] = ¥(y,z,t + T)
o+ ¥(y,z,t - 1) - 2¥(y,z,t) (35)
where points (y*h,z), (y,z*h) lie in the same medium as
Y,z. Notice that equation 35 allows the determination of ¥
at p,t + 1 in terms of the value of ¥ at p and neighboring
points at earlier times. For a point on the boundary C
equation 34 combined with the third of equation 28 replaces

equation 5. Let us see how we can evaluate ¥ at a given

57



point and time. For simplicity let us assume that the front

side of the rectangle extends to infinity, i.e., coincides
with the z = 0 plane. This makes ¥ independent of y and the
problem becomes one-dimensional (3/3y = 0). We define our
regibn of interest by drawing two boundary walls z = z; > 0,

z =z, < 0 and sgecifying ¥ on them. Thus we set ?(zl,to) = 0
and T(zz,to) = yihc
cannot be valid for any to since the reflected and transmitted

(zz,to). Obviously these conditions
waves will eventually reach the walls z = z, and z = zq

respectively. Let us now select a point z < 0 and employ
equation 35

(cgrz/hz)[\l‘(z + ht-1) +¥(z - h,t -1) - 2%(z,t = 1)]

= ¥(z,t) + ¥(z,t - 21) - 2¥(z,t - 1) (36)

We observe that ¥(z,t) depends on the value of ¥ at neighboring
points at times less then t. V¥ at a neighboring point at .

t - T can be similarly evaluated by writing equations analogous
to 36 and it too depends on the values of ¥ at neighboring
points at earlier times. This procedure shows that ¥ (z,t)
depends on ¥(z,,t - n,7) and ¥(z;,t - nyT) where [zz - z| =

n2h and zy —z = nlh. Thus if the walls have not been reached
by the scattered waves at t - n,T (f?r z = z,) and t - n,T
(for z = zl), the boundary conditions are valid and so is the
calculation of ¥ at z and t. Equation 36 shows that ¥(z,t)
not only depends on the value of ¥ at neighboring points at
t - T but also on the value at ¥ at z at £ - T and t - 21,
i.e., a knowledge of these values is required which in turn
depend on the value of ¥ at earlier times. This continues
until we reach the initial conditions. Thus the difference
scheme works as follows. First we write equations 36 and

34 at t ==
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0, 22,2
‘. (ci'r /h )[‘1’(21,0) + ‘i’(z:L - 2h,0) - 2‘{f(z:L - h,0)] = ‘}‘(zl - h,1)

+ ‘P(zl - h,+T) - 2?(21 - h,0) z = zl - h

2
({e*/n?)[¥(z + 1,00 + ¥(z = h,0) - 2¢(2,0)] = ¥(z,7)

+ ¥(z,-1) - 2¥(z,0) =z >0

2.2
2cTT

2)[‘l’(h,O) + ¥(-h,0) - 2¥(0,0)] = ¥(0,1)
i’ e

n*1+ oi/e
+ ‘}’(Q;-T) - 2‘?77(70,0) o z =0

(c2t?/®)¥(z + 1,0) + ¥(z - h,0) - 2¥(2,0)] = ¥(z,7)

) o 4 ¥(z,-1) - 2¥(z,0) z <0
o (c2t2/m2) ¥ (2, + 2h,0) + ¥(z.,0) - 2¥(z. + h,0)] = ¥(z. + h,T)
o 2 ’ 27 2 P0) ] = ¥(z, '
+ ‘P(z2 + h,-1) - 2\F(z2 + h,0) z = 2, + h (37)

where QTQFZii;Wb”éha QWQ;;é <<07argrthertw6 boundary walls
such that ¥(z;,t) = 0, ¥(z,,t) = ¥""°(z,t). Notice that
equations 37 show that ¥(z,7), for any z (except at the
boundaries), depends on ¥(z * h,0), ¥(z,0) and ¥(z,~-1), i.e.,
on the initial values (t = 0,-1) of ¥ everywhere within V.
These values are known as we explained earlier, i.e., equa-
tions 37 allow the calculation of ¥(z,T) everywhere. At
this point ths boundary conditions are superseded by the
initial conditions but they will manifest themselves in the
nekt step which involves a set of equations similar to
equations 37 written at t = 21 rather than t = 1. This
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new set allows the calculation of ¥(z,2t) in terms of

¥(z + h,Tt), ¥(z,t) that were calculated in the first step
and Y(z,0) that is known through the initial condition.
Notice that the first and last of equations 37 written at

t = 2t involve W(zl,T) and T(ZZ,T) respectively, i.e., the
values of ¥ at the boundaries. These values were not cal-
culated in the first step; they have to be specified. It
is clear now that we can march on in time in steps of v and
calculate Y (+xmh,nt) for any m and n provided the boundary
conditions are not violated.

The simple one-dimensional scattering problem above, well
illustrates the mechanics of the difference equation method.
Our two-dimensional scattering problem can be solved similarly

subject to appropriate initial and boundary conditions.
The initial conditions still require knowledge of Y¥(y,z,0)
and ¥(y,z,-T) everywhere and the boundary conditions now
involve four walls instead of two, i.e., ¥ = Yy1:¥y in
addition to z = Zy1Zg- The boundary gonditions at z = Z4:2,
are still W(zl,t) = 0 and W(zz,t) = Tlnc(zl,t). In the y
direction the symmetry about the y = Y < 0 plane, where Y

is the y coordinate of the middle of the front side, allowed
us to impose the condition W(ym - h,z,t) = W(ym + h,z,t),
where y = Yy ~ h is the boundary wall, and it works as follows.
The difference eguation at ym,z,t is

Y[‘i‘(_‘{m + h,Z,t - T) + ‘P(Ym - h,Z,t - T) - 2‘¥(ym,z,_t - T)]
= ‘F(lezlt) + ‘y(ymlzlt - 2t} - 2W(Ym,21t - T)
where vy depends on z. Because of the boundary condition
W(ym + h,z,t = 1) = \lf(ym - h,z,t - 1), W(ym,z,t) can be
calculated in terms of the value of ¥ evaluated at earlier

times. For example, ?(ym,z,ZT) is calculated in terms of
W(ym,z,T) and ‘F(ym + h,z,T) which were evaluated in the
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first (t = 1) step and ¥(y,,2,0) which is known through
the initial condition. Notice that the above boundary
condition is true for all times in contradistinction to the

Sgﬁﬁggf§m;bnditions at z = Zy125. Finally, the second
boundary condition in the y direction is imposed by assuming
that ‘P(yp + h,z,t) = W(yé - h,z,t) where y = yp + h is the
second boundary wall in the y direction and yp (as well as

zq andﬁzz) depends on the period of time over which we wish

to know ¥. This condition means that our scattering configur-
ation is periodic in the y direction which of course is not

true. It is just a convenient condition and it will be

.violated when the scattered wave reaches the wall. Again

the calculation of ¥ at y,z,t will depend on the value of ¥

at the boundary at t - nh where y_ - y = (n - 1)h. The
violation of conditions W(y,zz,t) = Wléc(y,zz,t) and
W(yp+ h,z,t) = ‘i’(yp ~ h,z,t) will not be readily noticed
because the scattered field has a smooth wavefront that
builds up slowly and at the time of the violation the

incident field may have a high value. However, the violation

of condition W(y,zl,t) = 0 corresponding to a perfectly con-

"ducting wall at z = zq will be quickly felt in its vicinity.
We can easily keep track of these violations in the computer

printout and discard erroneous results.

As we explained at the end of section III we debugged the
finite difference method by (a) testing surface field calcula-
tions, for scattering by a dielectric rectangular slab,
obtained‘Qia”this method against analogous calculations
obtained via the integral equation method and (b) by
comparing field calculations off the surface of a 90°
7perféctly cbhduétihg wédgé andraubéffectly conducting half-
plane, both illuminated by a plane electromagnetic pulse,
with the known exact solutions. In all instances the agree-
meht Qéé excellent. The relevant graphs are given in the
next section where all the numerical results are presented.

61



Finally, we mention that the boundary condition given by

equation 34 was not critical in applying the finite difference 'I'
scheme to our problem. That is, by shifting the grid a little

so that a grid bar was just in front of the interface and by

applying the difference scheme given by equation 28 we

obtained results of comparable accuracy to those obtained

with the application of boundary condition 34. The only

difference was that the interface could not be located to

within a grid step size but this uncertainty can be reduced

by making the step size smaller.
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SECTION V

NUMERICAL RESULTS

In this section'we present our numerical results in the
form of graphs for field calculatlons on and off the surface B
of a rectangular dlelectrlc slab lllumlnated by plane wave
electromagnetlc pulses with smooth wavefronts (fig. 4). We
also present graphs, usea'for debugglng, that show the
excellent agreement between calculations obtained via the
finite difference method and exact solutions for diffraction
by 0° and 90° perfectly conducting wedges. Finally, we
determine the time interval over which our slab results are
applicable to the ATLAS I trestle platform problem.

 In order to apply the finite difference method to diffrac-
tion byia perfectiy oohductihg wedge &é employed the scheme
developed in the previous section and set'ci =0, i.e.,

,ei/so = o, This is tantamount to setting ¥ = 0 for all times

on the surface of the wedge. In order to test our numerical
results we employed the known exact solutions for illumination
by a plane wave step pulse and appropriately convolved these
solutions with an incident pulse of our choice, i.e.,

inc _ yinec _ 1600 2 - 2 _
| E ,;—VW = = (c t) " (ct = B)” Ulc,t) U(B - c t).

8 (38)

This pulse starts at t = 0 and terminates at t = B/co with a
maximum of 100 (arbitrary units) at t = B/2co. It has a
ln?/at = 0 at £t = 0. A plot of the
incident pulse is given in figure 19 with B = 2.2 (arbitrary

smooth wavefront with 3V

units). Figures 18 and 19 exhibit the excellent agreement
between the numerical results and the exact solutions. The

.Spatial and temporal step sizes we used were h = 0.05, c T = -

SR s , , o
0.025, both in the same arbitrary units as B. Notice that
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the observation point (0.1,0.1l) is only two spatial step
sizes (in both the y and z directions) away from the edge
but the agreement is still excellent.

The next two’graphs present a comparison between the
integral equation method and the finite difference method.
In figure 20 we plotted the total electric field at the
middle of the front side of the slab versus cot/d where 4 is
the thickness of the slab. The incident field is still given
by equation 38 with B = 2d and the slab has a dielectric
constant si/so = 4, i.e., c; = co/2. For the integral equation
method we chose As = 4/8 and cOAt = h/2 and for the finite
difference method we chose h = 4/21 and CoT = h/2. We wanted
to make the finite difference method as accurate as possible
in order to compare it to the integral equation method and
this is why we chose a finer spatial division for the former
than the latter method. Figure 21 shows a comparison between
the two methods for the total field evaluated on the top side
(y = 0) of the slab versus z/d at an instant such that the
. incident wavefront has just arrived at z = 4d. The incident
field is also plotted and occupies a length of two slab

thicknesses since 8 = 2d. (For this case we chose h = ZCOT
d/21 and As = ZCOAt d/6.) The agreement between the integral
equation method and the finite difference scheme is excellent

and this served as debugging for both approaches.

The subseguent graphs present field calculations via the
finite difference method at points off the surface of the
slab. It was determined that for these calculations the finite
difference method was superior to the integral equation method
because of a lesser use of computational resources (see sec~
tion VI). The incident field was chosen as a fast rising
and slowly decaying pulse in order to emulate the electromag-
netic pulse arising from an exoatmospheric nuclear detonation.
Such a pulse is appropriate for studying the effect of the
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incident field has a value of 2.6, i.e., the effective wavefront

has already passed the point z = 5d for a length of time At = d/c
Graphs at points further away from the edge also show the actual

o°

times correspondiﬁg to the incident wave sweeping by. Thus at

z = 15d we start at t = 16d/c_ and at z = 25d at t = 26d/c . To
obtain the results displayed on the graph through z = 25d we
pushed the memory requirements under CDC 7600 FTN4 to the limit
and therefore we were forced to use a relatively coarse grid size,
h = d/7. Thus we cannot guarantee the accuracy of the results.
However, results for h = d/21 (at z = 5d) and h = d/11 (at z = 15d)
were similar to those at h = d/7 over the common region in space
and time, the maximum deviation being 1 to 2 percent of the peak
incident field.

The plots show that the presence of the slab can distort the
incident field significantly. On the top surface of the slab or
very close to it, the total field reaches a maximum that is
shifted in time relative to the maximum of the incident field.
This maximum is élso larger than the peak value of the incident

field. The behavior of the total field can be qualitatively
understood if we take into account the secondary wave within the
slab propagating with a speed ¢ = c; - The larger the dielectric
permittivity the slower the secondary wave is (i.e., smaller c

)
and the total field reaches its peak later. This can be seen %rom
the graphs for ey = Aeo and gy = 8e,. As the observation point
moves upward the total field tends to exhibit two humps until it
is sufficiently high where, due to the diminishing influence of
the slab, resembles the incident field. As the observation point
rescinds from the edge the presence of the slab becomes more
pronounced and one must reach progressively higher observation
'points (larger y/d) before the influence of the slab has diminished.
Thus at z = 54, y = 6.5d (ei = 850) the field exhibirs, in some
approximate manner, the same distortion as the field at z = 25d,

y = 16.5d (si = 850).
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1. THE ATLAS I TRESTLE PLATFORM

Our two-dimensional scattering from a rectangular dielectric
slab can serve as a -model for studying the influence of the wocd

- support structure (trestle), of the ATLAS I simulator, on the
- waveform of the simulated EMP. We will only focus our attenticn

on the platform i.e. 1gnore the rest of the support structure.
(See references 6 and 7 for a study of the reflection of a plane
wave from the rest of the support structure.) This platform is
depicted in figure 28. First notice that the effective rise time
of the incident pulse given by equation 39 is 6d and since the
platform thickness is approximately 2 feet this effective rise
time is translated into 12 mnsec. Whereas t and t

max rise 10-90
approximately equal to 6 nsec. Thus our pulse is faster rising

are

(also faster decaying) than the actual pulse to be fired in the
ATLAS I simulator (see ref. 8 for the waveforms obtained in the
pulser test fixture (PTF) with the ATLAS prototype pulser module
and ref. 9 for a summary of the final results of all testing
performed on the ATLAS prototype pulser module in PTF and also the
influence of additional diffraction and reflection effects on the
waveform of the pulse.) This difference in the rise time and other
pulse characteristics between our pulse and the one to be fired
into the working volume of ATLAS I makes our quantitative results

6. Prather, W: D.; Thé Réflection of Eleétromagnetic Waves from
an _Array of Electrically Small Metal Bolts and Rings, ATLAS
Memo 15, Air Force Weapons Laboratory, September 1974,

7. Prather, W. D., Lt. J. Little, Maj. R. Blackburn and K. Chen,
The Reflection of Electromagnetic Waves from a Wooden Test Stand,
ATLAS Memo 16, Air Force Weapons Laboratory, November 1974.

8. Maxwelluiéborétories,Wiﬁé., TRESTLE Prototype Pulser Test Report,
Volumes I and II, Report MLR-483, November 1975.
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Figure 28. Geometry of the ATLAS I Trestle Platform
for the Calculation of "Clear" Time Interval
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not directly applicable; our results, however, can still provide
informatiqn”onzgﬁe,influence,bf the platfdrm on the waveform of a
fast rising and slowly decaying pulse. Next we observe that our
two-dimensional stﬁdy is valid as long as it is applied to observa-
tion points that have not been reached by the diffracted waves due
to the edges P', P'". Choosing our observation points on the x = 0
Plane the maximum or clear time interval over which our two-
dimensional model is valid is the time that elapses from the instant
the incident field reaches the observation point P until the instant
the diffracted fields from edges P', P" reach P (fig. 28), i.e.,

= = R < 3

(2, 2. .2 2, 2
®oTnax/d = [(a T T YP) - (ZP * YP> J/d

For the trestle platform af 70", d & 2'. Thus -

conax/d fgif yP/d

30 5 0.5

28 5 6.5

23 15 0.5

21 15 - 10.5

18 25 0.5

16 25 16.5

Thus, assuming that g = 480 for the wood platform, cot/d in
figure 22 extends throughout the indicated region, in figure 24
approximately throughout the indicated region and in figure 26 up
to an average of 26 + 17 = 43. 1In. any case the graphs show the
distortion of the incident waveform due to the presence of the
platform, over a large portion of the inpi§§ntrpulse; well past
its rise time. ' ; '

9. Baum, C. E., D. E. Higgins and D. V. Giri, Pulser Test Results

and Preliminary Estimation of Tramsient Electric Field Waveforms
in ATLAS T, ATLAS Memo 18, Air Force Weapons Laboratory, Oct. 1976.
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SECTION VI

COMPARISON OF THE INTEGRAL EQUATION AND FINITE
DIFFERENCE METHODS

,
In this section a comparison is drawn between the integral
equation method and the finite difference scheme based on the

reguired computational resources and degree of overall sim-
plicity.

1. MEMORY REQUIREMENTS
a. Finite Difference Scheme

In order to ensure that the imposed boundary conditions
discussed in section IV do not affect the accuracy of the
field strengths computed in the region outside the dielectric
body, it is necessary that the grid extend a distance coT in
the positive and negative z-directions and in the distance above
the platform, where T is the length of the time from when the
incident field first hit the body until the latest time of
interest. (Due to symmetry about the plane y = Y < ¢,
where Y is the y coordinate of the middle of the front
side, only the y > Yo region need be considered.) If the
only fields of interest are those on or inside the body, the
grid need only be extended to a distance coT/2 instead of_coT.
(This can be understood by recalling the influence of the
boundary conditions discussed in section IV.) Thus the grid
size must be 2c T(c T + d’2)/h in the former case and
c T(c T/2 +d/2)/h in the latter case where h is the grid
step size. The finite difference algorithm requires knowledge

of the fields at the present time step and the previous time

step in order to compute the fields at the next time step. .
However, the field strength at a given grid point at the

previous time step is only needed to compute the value at

the next time step at the same grid point and consequently

it is only necessary to provide two storage locations for

each grid point.
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b. Integral Equation Method

The integral equation method permits a tradeoff in costs.
Instead of recomputing the influence coefficients, discussed
in section III,/for each time step, it is possible to store
them for future use and compute only those coefficients
relating the present time step to the first time step. We

can do this because the kernel of the integrals defining the

influence coefficients depends on t - t' and not t or t'
individually. Thus there is a tradeoff in that presumably
memory references are faster than evaluation of transcendental

functions (resulting from the explicit calculation of the

double integrals defining the influence coefficients) and
the logic required to determine whether or not a zone can
influence the reference point. Under the assumption that

- this tradeoff of memory for computer time will be used,

4N2(T/At) memory location are required to store the influence
coefficients where N is the number of line segments and At

is the time stép size. This number of:mémory locations can
be reduced by implementing existing symmetry relations (e.g.,
interaction of neighboring line segments is independent of
location provided that the segments lie on the same side)
but the basic dependence remains unchanged. It should be
noted here that, for the angle of incidence of the incident
field we are considering in this report, if the length of
the top and botﬁém“sides of £he'rectangle is greater than

c T, N can be reduced to ignore the region of the rectangle
that will not be illuminated by the incident field by time
cOT. Thus for such cases the number of memory locations for
the influence coefficients depends on three additive terms

proportional to T, T2 and T3

respectively;,—and if the front
side is much smaller than coT, T3 dominates. In addition
the integral equation method requires knowledge of ? and ¢
for all previous times, i.e., 2N(T/At) memory locations
whether or not the influence coefficients are stored.
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2. COMPUTATION TIME
a. FPinite Difference Scheme

Ignoring the boundary points which require special
treatment each grid point requires the same length of time
at each step. From the form of the difference scheme which
replaces the differential equation at each grid point we
can see that three multiplications, six additions and eight
array references are needed for the calculation of the field
strength at given grid point at the next time step. These
operations must be performed for each grid point for each
time step, i.e., coTz(cOT + d/Z)Ti/h2 overall computation
time is required over the time of interest T, where Ti is
the time length of the operations indicated above. If
c,T >> d/2 the time required is proportional to 73, This
result may be reduced by factor of three by recognizing
that in calculating the field strength at a grid point at
t the finite difference technique need not be applied to
points at a distance greater than cot from the body because
the scattered field has only traveled a distance cdt and
the field strength at grid points outside this region is
that of the incident field. If the total period of interest
is T then the computation time is approximately c§T3T*/3h2
if c T >> d/2. (The factor of three comes from éT tzdt =
73/3.)

b. Integral Equation Method

As we explained in our discussion of the computation
time for the finite difference scheme each grid point regquires
the same length of time at each time step independently of
the parameters of the system, i.e., length of time the body
has been exposed to the incident field, size of body and
step size. Unlike the finite difference scheme the central
processor time for the integral equation method depends on
all those parameters. Assuming now that the influence
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coefficients have already been calculated and stored the
calculation of the fields at time t requires approximately
4N (t/At) multlplcatlons and addltlons. Thus,to extend the

calculation to time T requires 2N (T/At) multiplications

and additions, and if T% is the time of one multiplication

plus one addition the cgmputation time is 2N2(T/At)2T§.

The calculation of the influence coefficients requires the
calculation of 4N2(T/At) double integrals. Even though for
our geometry these integrals can be done analytically, the
necessary evaluation of the resulting transcendental functions
will contribute a significant amount to 2N2(T/At)2T§ unless
T/At is large. It should be noted that the above discussion
assumed that only the surface fields were of interest. For
points off the surface of the body the calculation of ¥ at

a given time t requires 2N(t - R/c)/At additional memory
locations for the influence coefficients and 2N(t - R/c)/At
additional multiplications and additions where R the average
distance of the reference points on the surface of the body
to the observation point off the surface. (If Y at the

same point is desired for a series of equally spaced time
steps, the required number of integral evaluations will
depend only on the greatest time of interest, not on

the number of values wanted.)

3. CONCLUSIONS

As we mentioned in the beginning of this section the
compariSon/between the two methods wili be based on the
degree of overall simplicity and the required computational
resources. With.respecﬁ to deriving the necessary equations

and casting them into a form suitable for numerical calcula-
tion the finite difference scheme is much simpler than the
integral equatlon method and this simplicity is definitely

a great advantage. Both methods can be made comparable

in accuracy but the required computational resources for
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the two methods depend differently on the length of time
of interest and this factor influences the regions over
which one method can be superior to the other. To
understand this point recall that the finite difference

method requires approximately 4c2

T /h memory locations
and c2T3T1/3h2 compuatation time whereas the integral
equatlon method requires approximately 4N (T/At) (or
T /(At) if the incident wave has illuminated a length
c, T of the body and c T >> d4/2) memory locations and
2N (T/At) T computatlon time. Thus assuming that 2c At ¥ h
we~understand-that-when T/At < Nz
scheme is preferable. However, for large times, i.e.,
T/At > N2
computational resources and should be considered if the

the finite dlfference
the integral equation method requires fewer

simplicity of the difference equation scheme is overridden
by an appreciably smallef cost for the integral equation
method. If the field strength must be calculated at points
far away from the body, the integral equation method is more
practical since the finite difference scheme requires propa-
gating the field from the body to the region of interest
whereas for the integral equation method the distance from
the body has no effect on ‘the required resources.

our concluSLOns about computer resources were based on

the two-dimensional model of the wave equation. For a
three-dimensionel model the finite difference method would
again be relatively insensitive to the dimensions of the
body. Memory requirements would vary as T3 hence total
time will vary as T4. For the integral eguation method

it is no longer necessary to store influence coefficients
and field strengths for all time but only for r /c.At time
steps where r is the maximum dlameter of the body. The
number of patches will vary as L /h where L and h are
characteristic dimensions of the body and spatial step size,



@

hence the matrix of influence coefficients requires of

the order of (Lz/h2) (r /c At) memory locatlons. Similarly
the number of field strengths required 1s (L /h Y (r /c At).
The time per patch per step varies as (L /h ) (r /c At) hence
total time varies as (L /h ) (x /c At)T. From the above
brief discussion we undersLand that we can draw similar
conclusions about the relative merits of the two methods

as for the two-dimensional comparison.
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APPENDIX A

REFLECTION FROM A DIELECTRIC HALF SPACE

_ We assume that the.incident electric field has the form
g'7C = ¢17C g where ¥'"C = £(t - y;/c)) = £lt - 1/c_(y sin o -
z cos o)] (fig. Al). Thus at the boundary surface (z = 0)
i C y/co sin «a). It is reasonable to assume that
the total surface field ¥ and 3¥/3n' will only depend on '
t - y/co sin o, i.e., as the incident surface field propagates
to the right the total surface field keeps pace with it. By
noting that (p' - p) -* n= (y'- Y)gy . éz = 0, equations - can
be written as follows ’

. c. ( f° Ule (t-t") - |y']
s [ [
o Yew [co(t -t ° -y ]
. N R R T
—w T-e [ci(t -thT -y ]

(A-1)

Invoking causality we understand that the upper limit of the
t' integration can be replaced by t. (The lower limit is of

no interest for the calculation in this appendix.) Setting
§

U = 1 we obtain y*' = zc(t - t') as the limits of the y' inte-
gration. " .
Next we set t - t* = 7 and the limits of the t and y'

integrations are (o,®) and (-cT,cT) respectively. Recalling -
that 8¥/9n only depends on t' —'(y'/co) sin o we make the ‘
following orthogonal transformation
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Figure Al.

Geometry Depicting the Oblique Incidence of an Electromagnetic
Pu]sg onto an Infinite Dielectric Half Space
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L]
u =T+ - sin o
o

L]
v = -T sin o + ., (A-2)
o

Thus 3¥/9n is a function of t' —(y'/co) sina=%t -1~ (y'/co)
sin a, i.e., a function of t -~ u which is independent of v
since t is just a constant. This will allow us to do the
v-integration explicitly. Noting that dudv = 1/co(l + gin? q)
dtdy' and referring to figure A2 we can rewrite equations A-1

as
o Llu
1 inc 1 oV ' dv
5 Y(o,t) = V¥ {o,t) - —_llr du
2 2T on (Av2+Bv+C)l/2
(o) - 1 1 1
3 Liu
1 Y ¥ dv
5 Y(o,t) = ——f == du (A~3)
2 m A & - (szz + Bzv + Cz)l/2
L,u
2
+ 1 7 sin o
where Ly " Ssino =1
¥ Y F sin o - Si
2 yYsinaz1"' Y o
Al = —0052 o Az = YZ sin2 o - 1
By = -4 sin o B, = -2(1 + 72) sin o
a 2 e w2 _ cin2
C1 = cos” d C2 = ¥ .= Sin  G.

88



68

®»

~
[~

4

-y Lsina
1-sina

v=
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Figure A2. Coordinate Transformation Relevant to the Evaluation of an Integral
‘ in Appendix A




If we perform the v-integration we obtain

Yyo,t) = ¥1%0,0) - gt —1
1 _ 1
z tlort) = % (l - Y2 sin2 a)l/z t (A=4)

o
where I = f % du.
o

Solving Equation A-4 for ¥Y(o,t) we obtain

Q

Y{o,t) _ 2y cos a y = _i (A=5)
inc - 2 . 2 1/2 ' T c
w(o,t) Y cos o + (l - ¥~ 8in a) o

i.e., the well-known result for the transmission coefficient.
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APPENDIX B

REFLECTION FROM A DIELECTRIC SLAB

To simplify our calculation we will assume broadside
incidence, i.e., glnc = y1nc éx = £(t + z/co)éX (fig. Bl).
In appendix A the 3¥/3t term in equations 17 was not considered

because (p' - p) - n' = 0 for the surface of an infinite half

surfaces and (p' - p) - n' is not necessarily zero. Thus in
this appendix we will check the validity of equations 17 when
both 3¥/3t and 3¥/9n are retained whereas in appendix A only
o¥/9n was retained.

Due to the broadside incidence ¥, 9¥/9t and 3¥/dn are
independent of y. Thus the y'-integration can be performed
explicitly by setting U = 1 and determining the limits of the
t',y' integrations and equations 17 reduce to

on

c t c t-d/cO
¥ (t,2z=0) = ¥'PC(t,z=0) - —29/ LA at' - —§-f % dat"
- Co z=0 -0 z

1 = -

t-d/c.
C. C. 1
_ _ i R4 i R4
¥(t,2=0) = = f m at' + & n ger
-0 -0 z=-=d

z=0

1 ., o
+ 5 ¥(t - d/ci, z = =d)
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Figure BIl.

maj Incidence of an E?ectromagnetfc Pulse Onto
an Inﬁ'nite Die?ectr‘ic Slab of Thickness d
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T

¥Y(t,z==d)

Y(t,z==4d)

-+

Next we set

A(t)

C(t)

1
5 ¥(t - d/co, z = 0)

t-d/c.
%1 by
2 an

z=0

1l
3 Y(t

d/ci, z = 0)

]
it

¥(z o,t),

\y(z _d't),

B(t)

D(t)

(B-1)

T

= f 3¥/%n

o

t
= f 3¥/9n

(o]

at!

z=0

at!

z=-d

and eguations B~1 can be rewritten as

,A(t,

i

A(t)

C(t)

C(t)

2f(t) - coB(t) - cOD(t - d/co) - C(t -~ d/co)

,ciB(#) +7ciD(F7fwd/ci) + C(# - d/ci)

2f(t - d/co) - coB(t - d/co) - cOD(t) - A(t - d/co)

ciB(t - d/ci) + ciD(t) + A(t - d/ci)
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In order to solve Equations B-~2 we transform them into the
frequency domain:

ikod ik d
A(w) + B(w) + C(w) e - D(w) e = 2f (w)
ik;d ik.d

A(w) - ¢;B(w) - C(w) e +c.D(w) e 1 =0

ik d ik d ik d
Alw) e + c_B(w) e ° + Cclw) - c D(w) = 2£(w) e

ik;d ik.d
-A(w) e - ¢;B(w) e 14 c(u) + c;D(w) = 0 (B-3)

Solving Equations B-3 for A(w) we obtain the well-known
result for the reflection coefficient R{w)

(1 - v%) i sin «

R(w) = A(w) - £(w) = 3
2y cos o - i(l + y7) sin o

where y = ci/co = ko/ki'
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