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I. Introduction—

In attempting to simulate the SGEMP effects on space-

(1)craft, a novel technique has been recently suggested by Baum .

The basic simulation scheme involves measuring a transfer

function between an infinitesimal currenti element outside

the system under test and a critical circuit element buried

within the system. Using a calculated SGEMP response for

the volume currents surrounding the system, the measured

system response can be treated as a Green’s function, such

that a weigh,ted integral over the volume currents in

the region surrounding the system yields the total SGEMP

response at the circuit level. This simulator concept, referred

to as DIES, is discussed in Ref. (2) . 0

This approach is particularly useful in view of the

present inability to model accurately the elect-rical behavior

of the interiors of large, complicated systems. The ex-

terior problem, on the other hand, is much more amenable

to analysis using present-day SGEW-- codes.

To design such a hybrid experimental program, a number-

of theoretical questions must be considered. In the actual

SGEMP problem, volume currents may surround the satellite

for some distance as well as occur within the satellite.

The simulation process~ however, may permit only a limitied

number of source locations, thereby introducing errors in
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the simulation. One important problem is to determine

how far away from the test object must the transfer function

measurements be made.

Clearly, if no SGEMP-produced currents flow within

a particular region of space, it is not necessary to

measure the system response due to a dipole source at that

position. Similarly, if it can be shown that the coupling

of energy from a source in the volume of space under con-

sideration to the system is very weak, no measurements

need be taken.

As an example of-this latter point, a study of the

coupling of energy from an infinitesimal current element

to the exterior of the satellite would be worthwhile. Instead

of computing the transient responses for surface currents

at various observation points as a function of source

location using a standard integral equation approach as

in Jones ‘3) and numerical Fourier transformation, the coupling

coefficients used in the’ singularity expansion method

(SEM) (4,5) can be examined. Their behavior, as a function

of distance between the satellite and dipole, leads to a

decision regarding the limits of the experimental transfer

function measur.ement.

The SEM conecpt as originally put forth by Baum (4)

describes the coupling of electromagnetic energy from a
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source to a scattering body in terms of poles of the response

function (such as the induced surface current-on the body)

which occur in the complex frequency plane associate-d with

the Laplace transform of the transient response.

Associated with each pole is a natural mode and a

coupling vector which are independent of the type of e~ci-

tation. The coupling vector and the incident field define

a coupling coefficient which does depend on such factors

as angle of incidence and polarization of the incident field.

With the pole locations, the natural modes and the coupling

coefficients, the delta functi-on time response of the

scatterer may be rapidly computed. More general waveforms

may then be treated by convolution techniques.

In addition to being able to easily compute the time

domain response of a scatterer, this method provides a

means to characterize the complete electromagnetic behavior

of the obstacle by a few numbers. Once the natural frequencies,

modes and coupling coefficients are known, a wide variety of

scattering problems can be rapidly determined without—

having to re-solve the boundary value problem. From this

standpoint, the singularity expansion method is clearly more

desirable than the conventional frequency domain or direct

time domain solutions.

IrI this study, we concentrate on the behavior of the

SEM coupling coefficients for a current element in the
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presence of a conducting sphere. Although the sphere may

not be an ideal electrical model for an actual satellite,

it will serve to illustrate the coupling coefficient behavic)r

for a body of finite extent and will point the way for

similar calculations involving a more realistic geometry.

II. SEM Background

The SEM representation for the surface current on a

(4,5,6,7)scattering body can be written as

I 0- (;).—
J(r,s) = na(s) s“_s + Re(:,s)

u u

Pole pairs

where the following definitions are used:

s = (o+i(lJ)

s(x

Ta (F)

T-la(s)

iiJG,s)

(1)

vector surface current on scatterer

vector from origin to observation point

on surface

complex frequency in Laplace domain

complex natural resonances of the scatterer,

occurring in complex conjugate pairs

the natural current distribution or mode

which exists at frequency sa

~thcoupling coefficient for mode

possible entire function of s existing

in expansion
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In this expression, the current modes, ~a , and

the natural frequencies, Sa , are independent of the

excitation of the problem. Only the coupling coefficient,

~a, will depend upon the details of the incident field which
\

excites t~e surface currents..T
\

Th~ transient response of the scatterer surface
i

currents can be obtained by taking the inverse Laplace

transform of Eq. (l). Noting that terms involving l/(s-sa)
sat

transform into e in the time domain, it is possible to

write the time domain counterpart of Eq. (1) as:

E sat
z(iT,t) = na(sa) Va(F)e u (t-to)

lx

Pole pairs

+ contribution at poles of na(s)

+ contribut~on from entire function .

(2)

Here U(t-to) is a unit step function which turns

on at an appropriate time to . If the delta function (in

time) response is desired, the coupling coefficient ?-la(s)

has no poles and, as a result, the second term in Eq. (2)

vanishes leaving only a temporal contribution from the

entire function.

As may be noted from Eq. (2) , each pole pair contri-

butes an exponentially damped sinusoidal term to the overall

●
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body current response. Previous investigations have shown

that for highly resonant structures, such as a thin wire,

only a few pole terms are needed to--accurately calculate the

(5)
current response . For fatter, less resonant structures,

such as a spheroid, it has been observed that usually more

pole terms are required for the same degree of convergence.

The coupling coefficient~ can be computed

using the formalism outlined in Ref. 7. As Baum discusses

in that report, the surface current, ~ , must be a solution

of an integral equation of the form

J .— .—
~(r,r’;s)$~(~’,s) dS = F(r,s)

s
(3)

where ~ is a dyadic kernel operator and relates the response

to a delta funct-ion excitat-i-on. The domain of integration

s is over the surface of the scattering body. The term

——
F(r,s) is the forcing function related to the incident

electromagnetic field.

If the integral equation is formulated using a mag-

netic field approach, the forcing term is then proportional

to the incident tangential magnetic field on the scatterer

surf-ace. On the other hand, an electric field formulation

of the integral equation yields a dif-ferent kernel F and

the forcing function ~ is then related to the tangential

incident electric field.
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The natural modes of the scatterer are defined as

those non-trivial solutions to the equation

J =——
K(r,r’;sa)o~a(~’) dS’= O . (4)

s

Notice that this last euqation also defines the natural

frequencies sa .

It is possible to define additional modes, Is(F) ,

as the forward modes, or “coupling vectors”, as

J ~a(+~(=,=’;Sa) dS = O .

s

.—.
With these definitions the coupling coefficient

can be written

l-la(s) =

as

—

(5)

●

(6)

(6)As noted by Marin , if the magnetic field integral

equation is used in Eq. (3), the modes Fa and Ta are

different. However, for symmetric kernels as encountered in

the electric field integral equation, these two modes are

.



identical. Thus, using the E-field formulation, the coupling

coefficient in Eq. (6) may be written as

T-@) = Ba s~a(r’)o~lnc (~,s) dS

s
(7)

where the..incident electric field is shown explicitly and

the denominator in Eq. (6) is represented simply by the

scalar term @a .

From this last equation, it is seen that the coupling

coefficient is proportional to the integral of the dot

product, the incident electric field, and the modal currents

over the surface of the scatterer.

III. SEM coupling Coefficients for a Perfectly Conducting Sphere—

As an example of how a point dipole couples electro-

magnetic energy to a sphere, consider the configuration

illustrated in Figure 1. A perfectly conducting sphere of

radius a is located at the origin of the (x,y,z) coordinal:e

sys tern. An infinitesimal current element of moment Id~

is located at a distance given by z along the i’
D

direction. A second rectangular coordinate system (x’,y’,z’)

is centered at the dipole position above the sphere. Relative

to this-primed coordinate system, the current element is

inclined with angles

—

‘D
and 0 .

D

9
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Observation
Point (a,&+)

x

z’

(e’,#)

x’

r

Figure 1. Geometry of the Problem
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For this geometry and source configuration, we would

like to calculate the coupling coefficients rIa at the

various natural resonances sa in order to study the coupling

of energy from the dipole source to the satellite model.

To accomplish this, the tangential electric field at the

sphere from the dipole and. the natural current modes are

required for use in Eq. (7) .

First, to evaluate the incident electric field,

consider an observation point on the sphere surface, given

by (ar8,@). From the geometry of the problem, it can be

easily shown that the distance, r, from the dipole to this

observation point is given by

r= ~az sinzo + (ZD- a COSf))z . (8)

In addition, the angles 6’ and 0’ can be defined

as

and

e’= arctan
(

a sin9
a cOse - ZD–)

(9a)

+’=0 . (9b)

The electric fields produced by an infinitesimal

current element Idl are discussed in Van Bladel
(9)

and

assume the following form in the complex frequency domain for
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an observation point at a distance r from the source:

z 2
Er = ~ ldL

()
~-sr/c s

[

1+1
2T (sr/c)

Cosy —
E sr/c

(sr/c) 2 I
(10)

and

z
E==

Idt e-sr/c
Y 4n (sr/c) ($ “ny[ ‘ + * + ,~;,c,, ] o ‘“)

In these equations

space and c is the speed

Z. is the

of light.

impedance of free

The angle y is

between the direction of the dipole moment and the radius

vector ~ , as is indicated in Figure 1. Similarlyr the

electric field component E is in the di~ection of the
7

increasing y angle .
0

Again, from elementary geometrical considerations,

the angle y between the dipole direction and observation

(lo)
point can be expressed as

[
Y = arccos cos@D CoSe’ + sin6D sinO’ COS(($)-QD) 1 (12)

and the unit vector $ can be written

1
?=- {[

~, cos@D sin6’ - sinOD cos6’ cos($’-
smy Q j

+ $’ [ 0)]}sinOD sin($’- ~ ● (13)
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With this last relation, it is possible to write the

dipole field components in the primed coordinate system as:

z
Er=~

Id ~ -sr/c
2n (sr\c) e ($ Cosy[+ + (s;c)z 1 (14a)

Z.
Id L

2
E

()[
e-sr/c s

e’ = TT (sr/c)
COSG

z
~ sine’ - sin~ ~ Cose’ cos(@-a’D)]

x

[

1+1
(sr/c) + ~sr~c)2 1

and

Z. IdQ
2

()[
e-sr/c s

‘o’ = ~ (sr/c) sin6
z

~ sin(+’ -oD)]

[

1 1

1
x 1 + (sr/c) + ~sr,c)2 “

(14b)

(14C)

To evaluate the coupling coefficients for the dipole

near the sphere via Eq. (7) , it is necessarv to determine

the tangential components of the dipole field on the sphere.

These may be found by first- convert-ing ?3r, Eo, and E +,

in Eqs. (14) to cartesian components at the sphere surface as

Ex = sin6’ COS$’ Er - sin$’ E $, -1-COS6’ COS$’ E6, (15a)

E = sin6’ COS$’ E + cos~’ E + coso’ sin@’ Eof
Y +’

(15b)
r

E= = COS8’ Er - sine’ E@, . (15C)



Then the electric field from the dipole may be re-

expressed in spherical coordinates centered about the

sphere as:

Ea = sine COS$ Ex + sin$ sin6 E + COS6 Ez
Y

(16a)

‘6 = Cose Cosfj Ex + cosO sin$ E
Y

- sin6 Ez (16b)

‘+ = -sin$ Ex + cos@ E
Y“

(16c)

The latter two terms, (16b) and (16c), will be the components

of the incident field used in evaluating Eq. (1).

In addition to the tangential incident electric

field on the sphere, it is necessary to determine the natural ●
modes for the sphere to determine the coupling coefficients.

The natural modes and natural frequencies of a sphere

have been studied in detail in Refs. (4,6 and8). It is

known that two types of natural modes exist. The first type

of mode has the property that the surface divergence of the

mode is zero, i.e., the mode has no surface charge associated

with it. The second class of modes does have a non-zero

divergence and corresponding surface charge. Baum(4 ) dis-

tinguishes between these classes of modes through the use

of an index q ~ with q = 1 referring to the modes with

no surface charge density and with q = 2 for the other

modes with a charge density.
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The natural frequencies for the sphere, Sa , have

been tabulated extensively in Ref. (8). The subscript a

actually represents a number of different subscripts which

serve to identify a particular natural mode or resonance.

Specifically, a can be written as (q~n,n’,m) where q

is discussed above, n varies from 1 to infinity and is

related to the order of the spherical Bessel function used

in the wave function representation of the total surface

current.

spherical

index m

The index n’ indicates which root of the nth

,
Bessel function is being considered, and the

represents the order of the @ variation of the

natural mode.

In Ref. (4) , the natural current modes T (e,$)
q,n,n’,m

shown to be

are

aP; (coSe) P: (coSe)
; (6,4) = e-im$ ~
2,n,n’,m ae ime-im$ $sin6 (17a)

forq=2, and

P: (coSe) ap; (coSe)
T (8,($) ime-im$ A
l,n,n’,m = - e- e-im$ A

sin6 8(3 @ (17b)

for q = 1. In these equations, P: is the associated

Legendre polynomial. Notice that the index n’ does not

occur in the right-hand side of these equations.
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With the previously derived electric field at the

sphere surface given in Equation (16) and the expression

for the natural current modes, the SEM coupling coef-

ficients can then be written as an integral over the

entire sphere surface as

‘IT 27r

n 6
l,n,n’,m = l,n,n’,m JJ

00

( P~(cos6) aP:(cos@
- imE6 (@,@) - E+(6,0)

)

e- im~
sin6 38

x sine de d$ (18a)

for the case q = 1 (no charge), and

‘n 2?T

‘2,n,n’,m = 62,n,n’,m 1s
00

(

aP:(cose) P:(coSe)
E6(e,4d

)

~-im$
38

- im E (6,$)
@ sine

x sin6 do do (18b)

for the case q = 2 (surface charge present) . Note that in

Equation (18) , the coefficients, ~a , are still not defined.

16



They could be evaluated in terms of the double integral

given in Equation (6) if exact numerical results are

desired. In the present study, however, we shall inves-

tigate only relative variations of the various coupling

coefficients , so that it will not be necessary to
.-

evaluate the 6 coefficients.

The natural frequencies for the sphere, s
q,n,n’ ‘

are illustrated in Figure 2. Only the up~er left-hand

portion of the complex plane is plotted, as there is complex

conjugate symmetry about the Qa/c axis. Notice that

the index m does not occur in Figure 2, signifying that

the natural resonances do not depend on this quantity.

Only the natural modes (and therefore the coupling coef-

‘@) ficients) will depend on the index m.

As has been noted in previous investigations, the

singularities nearest the jti axis are most important in

determining the transient-response for the surface currents.

Moreover, for EMP- excitation, the low frequency resonances

usually have the largest excit-ation. Thus , in looking

at-the excitation of the sphere by the dipole, only the

first-few poles in Figure 2 will suffice. We will consider

the behavior of the coupling coeff-icients for the first two

resonances in both the first and second layer. These are

the resonances with the values q=2, n = 1, n’ = 1 and

q= 1, n= 2, nl = 1 for the second layer poles. The possible

(01
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values o.f the index m will depend on the spatial behavior

o
of the. incident field..

As a first example of the sphere excitation, the case

of a radially directed dipole is considered. Since the

dipole is located along the z axis above the sphere and

has the orientation given by
‘D

= O and
‘D =

o, only

axially symmetric modes are excited. This implies that only

for m=O will the integral in Eq. (7) have a non.

vanishing result.

Figure 3 shows the behavior of the coupling coef-

ficients for the first two resonances in the first layer

closest to the ju axis (the q = 2 layer) . For convenience,

the coupling coefficient is normalized by a reference

coupling coefficient—arising from an identical point dipole

located at- z = 10a . In addition, a multiplicative term
szD/c

e has been included in the dipole fields of Eq. (14)

so as to locate the t = O reference point at the center

of the sphere. In this manner, the exact value of the

normalizing constant @a in Equations (7) and (18) , as well as the

value of the current moment Idk , are not important. Due

to the rapid growth of the magnitude of (na/n ) in the
aref

vicinity of—th-e sphere, it is best to plot=this quantity

on a logarithmic scale.

Also plotted in this figure is the magnitude of (zref/

2
ZD) (the dotted lines). In inspecting Eqs. (10) and

(11), the fields produced by the current element in the

y=’rr direction are observed to fall off- as l/r2. Thus ,

for the dipole in the radial direct-ion, it is to be expected

that the coupling coefficient varies as l/r2 for source

19
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locations far from the sphere. For

it may be observed that for sources

the first layer poles,

at a distance greater

than about 4a , the coupling is l/r2 in nature. At closer

distances, a l/rz variation of the coupling coefficient

tends to slightly overest-imate the coupling.

Figure 4 presents the same ratio of coupling

coefficients for the resonances in the q=l layer.

As before, only the m = O modes are excited due to the

source orientation. Notice, however, that the l/r2 curve

tends to substantially overestimate the coupling of the

fields.

The coupling coefficients for a current element in

the @D = 7r/2, @D = O direction are presented in Figures 5

and 6 for the q = 2 and q = 1 layers respectively. For

this type of excitation, the m = 1 modes are non-zero.

Moreover, because the fields of the current element fall

off as l/r in the y = lT/2 direction, the coupling coef-

ficients for this case can be expected to have a l/r

asymptotic behavior.

Figure 5 shows a very marked dip in the coupling

coefficient in the vicinity of ZD = 1.3a. It is interesting

to note that for the first resonance (n = 1, n’ = 1) the

coupling coefficient tends to increase less rapidly than

l/r. The second coefficient for (n=2, n’= 1) , however,

increases faster than l/r. The physical reason for these

effects is not yet understood, and bears more thought.
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In the previous cases, the strength of the current

element, Idi ,

was varied. If

manner which is

remained constant as the source position

the current is allowed to increase in a

proportional to the

field produced by the source in the

(y = T/2) becomes planar in nature

distance
‘D ‘

the

broadside direction

and approaches a constant

in magnitude. In the limit as the source goes to infinity,

the observed field is an incident plane wave.

InRef. (8), the excitation of a sphere by a plane

wave was considered in some detail. Moreover, actual

(un-normalized) coupling coefficients were presented. In

Figures 7 and 8, the coupling coefficient ratio

(Tla/na ) is plotted as a function of the source position,
pu

‘D ‘
for both the q = 1 and q = 2 modes. Here na

pu
is the coupling coefficient for the incident plane wave and

the set of paramet-ers given by a.

As in the previous case where the dipole was in the

tangential—direction (~ direction), only the m = 1

modes are excited.

is at the position

to that produced by

It is seen that by the time the source

‘D
= 10a , the coupling is almost identical

a plane wave.
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Iv. Conclusions

From the results presented here, a number of pre-

liminary conclusions can be drawn regarding the possibility

of simulating the SGEMP system response using this hybrid

method. It is apparent that as source locations approach

the surface of the sphere, the coupling of fields becomes

very efficient. For most cases, the coupling tends to

fall off by l\r or l/r2 (depending on the source orien-

tation) once the source is outside a radius of roughly six

times the sphere radius.

At this stage, it is not possible to define a precise

limit on the size of the necessary source region surrounding

the sphere, since this will depend on the magnitudes of the

volume currents flowing about the sphere. For example, if

there were an extremely. large current source at
‘D

= 12a ,

it could provide most of the surface current excitation even

though the coupling coefficient is a factor of 100 smaller

than for a source near the sphere surface. Thus , the curves

in Figures 5 through 8 must be used in conjunction with

knowledge of the behavior of the calculated SGEMP volume

currents.

Finally, from the studies of the coupling coefficients

for the plane wave, it is seen that for tangential sources

●

_o

farther away than about 10a, the coupling is very close to

28
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that of an incident plane wave. This would suggest the

possibility of using EMP simulator data to obtain the

required transfer functions as well as making measurements

for closer dipole sources.

.
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