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Abstract

The extrapolation techniques outlined in Sensor and Simulation Note
222 are discussed. “The methods are applied to an infinite cylinder pro-
blem as well as a finite cylinder problem using theoretical models. The
effects of the angle of incidence “isalso examined using the infinite
cylinder model. Some conclusions about the utility of the methods in
error estimations are drawn based on these analytical investigations.
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SECTION I

AN INVESTIGATION OF THE METHOD OF USING EXTRAPOLATION FUNCTION
IN FINDING CRITERIA RESPONSE FROM SIMULATION RESPONSE

1.1 INTRODUCTION

In the analysis of the electromagnetic field problems, it is often

necessary to use the principle of electrodynamicssimilitude in the design

of apparatus. It has been shown using Maxwell’s equations that, in order

that two electromagnetic boundary-value problems be similar, it is neces-

sary and sufficient that certain coefficients be identical in both (ref. 1).

This has always been the guide line for designing experiments. However,

suppose that the true or criteria environment is so difficult to construct

so that the simulation environment is not quite similar to the criteria

environment, what is the remedy to extrapolate useful information from

the simulation response? In particular, consider the problem of finding

the EMP response in an electronic circuit inside an airplane in free space

due to a nuclear burst (Fig. la). Instead of simulating the awkward true

situation, measurements were made in an airplane near ground with a pulse

generator as shown in Figure lb. Is it possible to find the criteria re-

sponse from the measured simulation response inside the airplane if the

scattered fields outside the airplane are given but the transfer functions

between these fields outside and the response inside are not known? It

has been proposed recently that this problem could be solved by making use

of certain ‘Extrapolation functions” if some error bounds in the result

were allowed (ref. 2).

It is the purpose of this study to investigate this proposal byapplyjng

the suggested method to a typical problem,

6
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1.2 NOTATIONS AND DEFINITIONS (ref; 2). .

Some notations and definitions used in this report will be summarized

briefly in this section, --Consider the example in Figures la and lb again,

Let the space be divided into three regions where region 1 is the interior

region inside the airplane with position vector~l, region 2 is the aircraft

surface region with the position vector ;9, and region 3 is the space exte-

rior to the aircraft with the position ve;tor ;3. The voltage response

measured in Me k[h circuit component in region 1 will be called V(;lk).

The current -rnea::::ed-atthe ith location of the aircraft surface (region 2)
.th

will be called J($21). The electric field measured at J location in region

3will be called=E(r3i), In order to distinguish the criteria situation

from the simulation s;tuation, we associate the superscript “sire”with

the quantities in the simulation environment and “cri” with the quantities

in the criteria environment. Thus, for a measured voltage on the kth circuit. .
in region 11 in the.c.riteriaenvironment, the notation is V(cri)(~lk),

The field in region 1 is induced by the electromagnetic fields in

regions 2 and 3 through the port of entry. They are related by the trans-

fer functions T(~2i,~lk)> etc. The transfer functions relating fields

between regions 2 and 3 can be determined by solving the exterior problem

(refs. 3 and 4) and will not be discussed in this report.

Therefore, all the transfer functions considered here will be those

between region 1 and region 2 with the first position vector referring

to those in region 2 and the second position vector referring to those

in region 1. Note that the transfer functions are varied with frequencies

‘sim)(~,k) andas well as positions. Thus, for measured quantities V

~(sim)(;2i) in the frequency domain, we have

N

E ~, J(sim)+
(r~i,~) . (1)

T(sim)(;2j, ‘lkY
V(sim)(;,k,ti)=

i=l

9
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If we restrict the discussion of the transfer functions to those between

region 1 and 2, and note that the left hand member in equation (1) is always

in region 1, whereas the right hand response (in this case, J(sire))is

always in region 2, we may simplify the notations by dropping the super-

script and write equation (1) as

N (sim)~ti)J~sim)(w)V~sim)(U) ‘~Tik

i=l

where i and k are simplified notations for ;i and ;k.

An equation similar to (2) can be written down for the criteria

situation,
N

V~cri)(w) = ~ T\;ri)(u) J$cri)(u)

i=l

(2)

● (3)

We now make an assumption that the transfer functions in equations (2) and

(3) are the same so that o

. (4)

This assumption will be reasonable if the interior configuration as well

as the surface configuration remains unchanged in the criteria environ-

ment and the simulation environment. Using equation (4) in equations (2)

and {3) we have

N
V[cri)(u) .~ Tik(u) J[cri)(ti)

i=l

(5)

. (6)



o \

‘cri)(uJ)can be calculated or measured from‘sim)((JJ)and JiThe quantities Ji
(sire)(w)can be measured, and V(cri)(LO)

the exterior problem.,.The q!antitY ‘k

is the unknown quantity that we are seeking. If the values of Tjk(Ol are

given, the problem can be easily solved. Difficulties arise in a real

situation where the point of entry and the transfer function is not known.

In_order.to circumvent this.difficulty, a quantity called “extrap-—
elation function” Ri(~) is introduced> where

J(cri )(u)

Ri(~) ‘~-
i

Using this definition, equation (6) becomes,

In general, Ri(w)

not a constant.

N

‘Sire)(u)Ri(w)V(cri)(u) =~Tik(~) Ji
k

● (7)

. (8)
i=l

is a function of both frequency and the position and is

—s--—

If there is only one port of entry, equation (8) reduces to

(Sire)(u)Ri(IJ)v(cri)(~) = Tik(~) Ji
k

(9)

and from equation (5)

(Sire)(u) (10)v(sim)(~)= Tjk(bJ)‘j
-k

so that

“~crf)(o) = “~‘ire)(u)Ri(u) (11)

and V\cri)(U) can be determined,

—.
11
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Another special case is when Ri(ti)= Ca constant, then equation (8)

becomes,
N

In particular, when C = 1, the two problems are entirely similar. It is

easy to see from equation (12) that, if Ri(u) is a constant, the criteria

‘Cri)(u) can be derived from the simulation response in a simpleresponse Vk

manner. In genera?, if some constant (say, a number obtained by taking

the average of Ri(w) over all positions i) is used in replacing each indi-

vidual Ri(~), it will result in some error since Ri(ti)is not a constant

under most circumstances. However, due to the simplicity of equation (12),

it is interesting to study the above procedure and the possible error bounds

more colsely. The error can be obtained roughly by examining the ratio

Ri(~)/F(ti)as a function of frequency, where F(M) is a selected testing

function which is not a function of positions. In this study, we shall

select the following test function:

($%logeRi(”)F1(uJ)= EXP1 ‘ (13)

1.3 ATYPICAL PROBLEM

Consider the problem of an infinite cylindrical conductor in the

presence of an incident plane wave with and without a ground plane as shown

in Figures 2a and 2b. Let the electric field component of the incident

plane wave be parallel to the axis of the cylinder, with the wave propagating

along positive x direction.

The coordinate systems are as shown in Figures 2a and 2b. Then, the

incident electric field can be written as

12

● (14)
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To solve the problem shown in Figure 2a, equation (14) can be expanded in

the following form (refs. 1 and 5) with e
+j~t

suppressed,

E:= E. ~ j-n Jn(kp) ejn$

-m
. (15)

The scattered field can be assumed to be

m

x “-n a ~~2)(kp) ejnoE; = E. Jn (16)
~._a.l

‘Z)(kp) is the Hankel’swhere Jn(kp) is the Bessells function of order n, and Hn

function of the second kind with order n. At p = a, the total field
Et = E: + E; = O, hence
z

Jm(ka)
a
n ‘-*,

Using equations (17), (16) and (15), the total electric field can be

determined. The total magnetic field is given by
+

. (17)

. (18)

The current density on the cylinder is related to equation (18) by

Jz = H@~ atp=a. Combining the above results, it is easily found that

(refs. 5 and 6)

2E0 m

z
.-n

ejn+
Jz=— u_q..rna ‘*n.-a

o

To solve the problem shown in Figure 2b, it is necessary to assume

two more scattered fields due to the presence of the perfect conducting

ground plane. Thus we have (let R, = -1)

14



m

E:=E.
x

“-n Jn(kp) ejn+J
n..02

03

‘: =‘1 ‘o..Zjn e‘.jzkd Jn(kp) e-jnq

n=-m

co

EEl = E. “-n an H!z)(kp) ejn$J
n.-m

—

w

sr
Ez

z

.-
H(2)(kp1) eJnann

jn$l
= ‘1 ‘o

.

E;= E;+E;+E:+E:r

(20a)

(20b)

(20C)

(20d)

(20e)

where E1 is the incident field, E; is the reflected field due to the ground

plane, ~~ is the scattered field due to the cylinder, E~ris the scattered

field due to the image of the cylinder and E; is the total field.
The

origin O is taken to be the center of the cylinder and the ground plane

is located at a distance d away from the origin. The coordinates p, $, PI
and $1, 0 are as shown in Figure 2b. To show that the boundary conditions
can be satisfied by these fields, note that equations (20a) and (20b) can

be written as (refs. 1 and 5)

E; = EO e-j ‘p Cos@ = E e-jkx
o

El = R, E. e-jzkd e+jkx

(21a)

. (21b)

15



For RI = -1 and X = +d, these lead to E; + E; = 0. Furthermore, for points

on the ground plane, @ = @l and p = P, so that E; i-E~r= O from equatfon

(20c) and (20d). Hence, the boundary condition on the ground plane is

satisfied.
.

The second boundary condition is E; + E; + E: + E~r = O at p = a.

To show this, it is convenient to express all fields in term of the vari-

able p and $. This can be done by expanding equation (20d) in a different

form using the addition theorem of Bessel’s function (ref. 1). Referring to

Figure 3, the additional theorem gives.
m

H(z)(krl) e-in6~ =
z

-im(@-6a) - ine .(22)
H(2)(kro) Jm+n(kr) en In

m. -m

In our case, 00 = O, ro”= 2kd, rl = p,, r= p, 6 =@, 01 = m-$l(see Figures

2b and 3), from (20d) we have,

co

sr

E
‘“nan H~2)(kP1) eEz jn(m-el)

= ‘1 ‘o J

n=-m

. (23)

Applying the boundary condition a-tp = a,

z “-n Jn(ka) ejn$ +J
E

RI e-j2kd jn Jn(ka) ejn$

n.-m n.--co

m

z (2)(ka) ejn@“-nan Hn
‘z@& m

El(2)(2kd)Jn+m(ka) e+ J
-jn$-jm@ .0

n.-~ n.-~ m.-m

o

0

. (24)

16
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Equation (24) determines the proper coefficients an for

If we change the index in the last summation in (24), and co’

associated with ejno, we have

this problem.

Iecting terms

H(2)(2kd) J-n(ka)(2~(ka) + R, j-na-n ~j-nan Hn

w 03

x+j-(n+m) a-(n+m)H$) (2kd)J-n(ka) +
z

H(2)(2kd)(-l)m-nJn(ka)+ Rljm-nam-n m

m=1 m=1

= -(j-n -f-R,e-j2kdjn)Jn(ka)s II = ‘mYCO”.*Yo~”””.”’ ‘m . (25)

This is a matrix equation with infinite elements. A complete deter-

mination of an from (25) is difficult. Various approximations can be used

in solving (25) depending on the accuracy of the result we are seeking. We

shall consider the following approximations:

(1) A first approximation is to neglect the effects due to

the scattered field of the image cylinder so that the

‘2)(2kd) Jn(ka) in equation (25) can beterms with Hm

omitted. This leads to

(j-n
~ ~1 e-j2kdjn)

a =
n H~2)(ka}

Jn(ka)
n .-

J
(26)

(2) The next simple case is to use the diagonal element in

the matrix in solving equation (25) (ref. 7)

(j-n+R1 e-j2kdjn) Jn(ka)
~

a . .
n j-n[H~2)(ka) + R, H\~)(2kd) Jn(ka)]

.

18
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This reduces to equation (26)

neglected.

(3) If-great_accuracy is desired,

(25) for N finite_rnode_s.

For the present purpose, approximations

The current density is given as follows:

(2)when H2n (2kd) Jn(ka) is

it is possible to solve equation

(1) Using equations (26), (20) and (18),

(1) and

.—. —

1
aE;

JZ=H
-$lp=a = -Jti~ ap p.a

2E0 m

____ x

(j-n + R, e-jzkdjn)

=—
~v~a

n..m tl~2)(ka)

(2) us ng equations (27), (20) and (18)

-j E. w
dz=———

z
“-n Jn”(ka) eJnO +

cPO J

n=-m

(2) are suff-icient. ,

X

-j E. m
R, e

-j2kd jn Jn’(ka) ejn$ +-

n.-m
W.

-j E.

-j E.

co

z#-H(2)’(ka) eJnann
jnb +

n.-m

cc

jn an
x

H(2)(2kd)
m

Jn+’(ka)

(28)

m. -m

e-j(m+n)$
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IIIfact, Equation (29) is the general solution to this problem if

the correct an’s are used. In the next section, we shall discuss the

application of extrapolation functions using the results der;ved in this

section.

1.4

make

APPLICATION OF THE EXTRAPOLATION FUNCTIONTO THE ABOVE PROBLEM

To apply the extrapolation function concept to the above problem, we

use of Equations (19) and (29)

function from them

J(FF)(@i,@
Ri(~) = ~~HpD

z ‘($i,”)

where J(FF)($.,u) is used to denote

Figure ;a (Eq~ (19)), and J$HPD)($i

(or Eq. (28)), and derive the following

(30)

the current density obtained for

,OJ)is used to denote the current density

obtained for Figure 2b (Eqs. (28) or (29)). next, the average function

Fl(u) is formulated according to Equation (13), that is,

.

N
F1(u) = ~R1(u)R2(w)R3(u) ... RN(u)’ . (31)

Then, the following ratio is calculated and plotted as a function of

frequency,

. -(32)

(FF) and ~:HpD)In Figure 4, the absolute value of Jz is plotted as a function

of frequency with angle o as parameters. Figure 4a is obtained using equa-

tion (19), Figure 4b is obtained using equation (28), and Figure 4C is

obtained using equation (29). Note that, at low frequency range, the cur-
(HpD)

rent density Jz
(FF)

is not uniform whereas Jz is nearly uniform.

2Q



co

o
.
x

-—

k
-N

7

0

10

I

z‘Q- (Y 0=
kx x

1-
1-

~~
o 10 20 30 40 50 60 70 80 90 100

Frequency (MHz)

Figure 4a. J(FF) as a function OF frequency at different angle @
fo; a cylinder with radius a = 0.5 m.

21



.

0
100 1 I t I I I I I -1

@q-
X

Frequency (MHZ)

)

J(HPD) as a function of frequency at different angle @Figure 4b. ~

for a cylinder with a = 0.5 m, d = 1 m, calculated using
first approximation.

22



100 I I I 1 I I I I i

H

P
4

k~ a ($=0

i-————d———+

F’ v

10 —

r

x—
~/x’-

U

/

x’

+
<

x

/
x

x— x/x
I

I
L

0.11 1 I I I I I \ 1
0 10 20 30 4CI 50 60 70 80 90

Frequency (MHz)

Figure 4c. J(HPD) as a function of frequency at different angle @ for a
‘ f’cy Inder with a = 0,5 m, d = 1 m, calculated using second
approx_imationt

—



.

The reason for this is that at low frequency, the first term in equa-

tion (19) dominates (which is a constant term) whereas the first term in

equation (28) tends to be zero due to the reflected wave so that the second

term dominates (which is proportional to cos o).

In Figure 5, the function Qli(ti)is shown graphically for a cylinder

with radius a =0.5mandd=lm. The variation is almost a factor of

three in Figure 5a and a factor of five in Figure 5b.

In Figure 6, the function Qli(u) is shown for the same cylinder at

a distance d = 5 m away from the ground plane. For certain frequencies

(e.g., 30 MHz, 60 MHz, 90 MHz), the incident and the reflected plane wave

cancels so that a null in the graph is observed. This makes the error

bounds difficult to estimate.

In Figure 7, an assumed relfected coefficient, REFL = -0.75, for an

imperfect ground plane is used. For the case of a = 0.5 m, d = 1 m. The

overall shape still has a factor of three variation.

In Figure 8, a different normalization is used before forming the

‘FF)($.,LO)are divided by E’oeratio Ri(w). The quantities Jz
-jkpcos$ at

1(HPD)($.,u) are divided by the col-location (a, $), and the quantities JA
l-jkpcos$-e

bination of incident and reflected wave, Eo(e
-j2kd ~+jkpcos$,

5

at location (a, @i) and then the ratio Ri(LO)is formed. The resulting

Qli(~) seems to be worse than previous results if one looks at the varia-

tions.

A last example is to consider the ratio

J(FF)(@i,LIJ)
Ri(~) =JZFF

: )(OO,W)
(33)

and calculate the function Fl(w) and Qli(u) according to equation (31)

and (32). This is shown in Figure 9. This result indicates that the method

applied to a cylinder in free space with two different angles of incidence

will result in an error nearly a factor of three.
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1.5 CONCLUSION

According to the discussion in the last section, the method of using

an average extrapolation function Fl(w) to replace the individual extrapo-

lation function Ri(w) will result in an error of at least three to five

times the correct results for that particular example. If the angle of

incidence is not known and the comparison is made by selecting one arbi-

trary angle as reference, then the result could be subjected to an error

as large as three times more, Since the example considered here is a simple

two dimensional case, the result may or may not hold for the real airplane

or three dimensional objects. However,”it is highly unlikely that the

error will be less if the object becomes more complex. For example, for

a finite cylinder at resonance frequency, the currents near the center is

very much larger than those near the ends. This brings in another error

which could be larger than the variation as a function of angle. To esti-

mate these errors, one would have to solve the exterior problem for each

case and investigate the error bounds as illustrated in Section 1.4. It

seems that the procedure is not general enough to be able to extrapolate

information from one case to another unless one solves a similar problem.

In other words, the specific results depend on the particular example and

the boundary conditions used. This fact is not surprising since the prin-

ciple of electrodynamicssimilitude is not fully obeyed in this method.
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SECTION 2

‘AN APPLICATION OF THE-EXTRAPOLATION FUNCTION
TECHNIQUE TO THE FINITE CYLINDER PROBLEM

2.1 INTRODUCTION

In Section 1 the motivations and the definitions of the method using

extrapolat-ionfunction in finding criteria response from simulation response

are given. The method is then applied to a typical two-dimensional case

of an infinite conducting cylinder in the presence of a plane incident

wave with and without a ground plane. The result in that study indicates

an error of a factor of nearly 3 to 5. In order to obtain a better esti-

mation of the error bound concerning three dimensional objects and aircraft

using this method, we extend the study to a cylinder with finite length in

the presence of a plane incident wave in this report. The analytical solu-

tion of a finite cylinder in the presence of an incident wave is not easily

o available except when the cylinder is electrically thin (ref. 9). Numerical

results have been obtained in several reports (refs. 10, 11, 12 and 13).

The problem of a finite length cylinder with a ground plane in the presence

of an incident field has not been studied extensively. The available re-

sults are those due to finite difference technique (ref. 14). In the

next-section, a brief summary of the numerical solutions of both problems

using three dimensional finite difference method is given. These results

are then used with the extrapolation function technique in the study of the

error estimation.

2.2 FORMULATION OF THE FINITE CYLINDER PROBLEM (ref. 14, 12)

Figure 10 shows the configuration of a finite cylindrical conductor

in the presence of an incident plane wave without a ground plane, The

conductor is selected to be rectangular for convenience. The origin is
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the pipe center. An incident wave with
A

the x-axis and a k-vector forming a 45°

was selected for some practical reason.

an electric field Ei parallel to

angle with both y-axis Rnd ~-axis

In the calculation, the length

of the pipe is 10 m and the width is 0.88 m as shown in Figure ~Q. The

corresponding configuration of a finite cylinder in the presence of an

incident plane wave with a ground plane is shown in Figure 11. The param.

eters of the ground are assumed to be c = 10 ando= 0.02, The pipe is

located at a height d = 1 m above the g;ound in the sample calculation.

The incident plane wave is taken to be E1nc(t) = 5.94X104x[e-4,08x10%

e-3.50X108t].

To use the finite difference method to solve for the electromgignetic

fields, the Maxwell equations are expressed in a three-dimensional finite

difference form. The scattered field caused by the pipe is found by solv-

ing these finite-difference equations subject to the boundary conditions.

‘Catt(t) ‘The boundary conditions are (1) on the surface of the pipe, Etan
= -E~!~(t), (2) inside the pipe, Escatt(t) = O, (3) appropriate radiation

conditions are applied on the outer boundary of-the space.

The induced surface current on the-pipe is given by ~ = fix?!, Where
~-= fiscatt+ ~inc is the total magnetic field at the desired location,

A detailed discussion of the implementation of this method is gjv?n In

other reports (refs. 14 and 2) and will not be repeated here, It Is noted

that, using this method, the response of the finite cylinder with a qrourlc!

plane can also be determined approximately if an assumed reflection coef-

ficient is used for the ground. Since the response is calculated in

domain using this method, a Fourier transformation has to be used in

to obtain the response as a function of frequency, In the following

Iation, the reflection coefficient for the ground is assumed to be

order

calcu-

Refl = -1 + 0.25 e
-ti200x10-g with t in sec.
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of the pipe are given in Figure 10.
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2,3 APPLICATION OF THE EXTRAPOLATION FUNCTION TO THE
FINITE CYLINDER PROBLEM” “-

Making use of the definitions and notations given in Section 1,

the following extrapolation function is obtained,

(34)

where ;(FF)(o.,w) is the axial current density obtained for the case with-
X 1

- (ATH)($i,@)out a ground plane (Figure 10) in frequency domain, and Jx

is the axial current density obtained for the case with a ground plane

(Figure 11) in frequency domain. An average function F1(u) is formulated

as follows,
,.

F1(u) = N~R,(w) R2(w) R3(u) ... RN(u) . (35)

Then, the following ratio is calculated and plotted as a function of

frequency,

Ri(u)
.Qli(w) = ~

(36)

In all the examples given below, N = 4 and i = 1,2,3,4 corresponding to a

test point located at @i = 0°, 90°, 180° and 270° (see Figure 10b) at the

position x respectively.

(FF)(OO,t) is shown as aIn Figure 12, the axial current density Jx

function of time. The corresponding Fourier transformation is shown in

F-igure13, A “tail” has been added to the time-domain response from

550 nsec to 1000 nsec in order to minimize the resulting error in the

Fourier transform. Also, in Figure 12, the axial current density

J(FF)(900,t) is shown. The corresponding Fourier transform is shown in

F;gure 13.
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Note that in the case of a cylinder in free space, J(~F)(oO,t) =

‘FF)(1800,t) due to th; incident
(FF)(900,t) = JxJ(FF)(2700.t), and Jx

f!eld selected and the symmetry configuration as shown in Figure 10.

(All the above curves are calculated at x = -3.125 m),

Next, let us consider the ratio,

(37)

and calculate the function Fl(m) and Qli(ti)according to equation (35)

and equation (36). This equivalent to applying the extrapolation function

technique to a cylinder in free space for two plane incident wave with

incident angles differing by 90°. The function lQli(w)l is shown in

Figure 14. Note that Qli(u) = Qli(w) = 1 due to symmetry, The function

Qli(u) is the inverse of Qli(w), which can be easily deduced from their

definitions. The combination of all these curves shows a variation of a

factor near 10. On the same graph, typical values obtained by using

Sancer’s code (ref. 11) are also shown in open and closed dots. They

agree with the results of 3-D code. In using Sancer’s code, the incident

wave is taken to be an impulse, and the cylinder in free space is a circular

cylinder with radius a = 0.5 m and length 10 m. This cylinder has the same

volume as that used in 3-D code. These two results are comparable since

the normalized quantities (i.e., the ratio of two responses) are used in

the calculation.

~ATH)($.,t) is shown forIn Figure 15, the axial current density Jx
1

@i = 0°, 90°, 180°, 270° at x = -3.125 m. The corresponding Fourier

‘ATH)(Oo,t) is not equaltransforms are shown in Figure 16. The current Jx
(ATH)(1800,t) be-(ATH)(gO”;t) is not equal to Jxto J(ATH)(2700,t), and Jx

x
cause the presence of the ground plane disturbs the symmetry conditions.
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In Figure 8, the ratio

(38)

is used to calculate the function lQli(u)l according to equation (35)

and equation_{36). It_is seen that ~he function lQli(w)l is not-a-con-

stant at low frequency end, which is similar to the results obtained for

the infinite cylinder problem in reference 8. The total variation over

the frequency range from 1 MHz to 100 MHz is nearly a factor of 5 as

shown in Figure 17.

‘(FF=)(~.,u)l at x = O are shown,In Figure 18, the Fourier transforms IJX 1
and in Figure 19, the Fourier transforms lJ~TH)($i,w)l at x = O are shown,

The calculated lQli(u)\ using these curves and equations (34), (35) and

(36) is shown in Figure 20. The variation over the frequency range from

1 MHz to 100 MHz is roughly a factor of 6.

2.4 CONCLUSION

In conclusion, when

applied to a cylinder in

the extrapolation concept is generalized and

free space for two incident waves with 90° dif-

ference, it shows an error of about a-factor of 10. When the method is

applied to compare the currents on the cylinder in free space and those

on the cylinder near a ground plane, it shows an error of nearly a factor

of 6. As pointed out in the concluding remarks in reference 8, this kind

of–error is due to the difference in the boundary condjtjon and cannot be

removed effectively unless the boundary conditions are modified to be

similar to each other in the two problems.
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SECTION 111

THE INFINITE CYLINDER PROBLEM IN THE PRESENCE OF
A PLANE WAVE NITH DIFFERENT INCIDENT ANGLE

3.1 SCATTERING OF AN INFINITE CONDUCTING CYLINDER FOR
AN INCIDENT WAVE WITH INCIDENT ANGLE (3

Considering Figure 21, an infinite cylindrical conductor is illumi-

nated by a plane incident wave with incident angle B as shown. Let the

incident wave have its electric field component.Ez parallel to the axis

of the cylinder (z-axis), Mathematically, the incident field can be

written as

The scattered

the scattered

and using the

suit is (with

E:= E. e-jkPCos (6+$) e+jut . (39)

field E; due to the cylinder can be determined by expanding

and incident fields in terms of cylindrical wave functions
totalboundary condition E7 =E:+E:= O at p = a. The re-
i. L L

e‘JWt suppressed)

co

E
Jn(ka)

E; = -E. ‘-n H~2)(kp) e
n=m= J

-jn(6-@)

The total magnetic field is then,

~Etotal
~total 1 z=-
+ JUP ap .

The current density on the cylinder is given by

Jz=H~otal ,atp=a .

(40)

(41)

(42)
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Combining (39), (40), (41), and (42), it can be shown that

(43)

3.2 AN INFINITE CONDUCTING CYLINDER WITH A PERFECT CONDUCTING
GROUND PLANE IN THE PRESENCE OF AN INCIDENT PLANE WAVE
WITH INCIDENT ANGLE 6

Considering Figure 22, an infinite cylindrical conductor with a

perfect conducting plane is illuminated by a plane incident wave with

incident angle (3.

Let R, be the reflection coefficient (R, = -1 for perfect conductor),

and let

02

E: = E.
x

“-n Jn(kp) eJ
-jn(&@)

n=-cu

(44)

m

~~ = I+ E. ~-jzk~ Cos 6 z ‘*n Jn(kp) e
-!-jn(~+-@)

J (45)

n=-m

co

E; = E. ~ an j-n H~2)(kP) ~+Jn@
(46)

n.-ca

Sk-
Ez = ‘1 ‘o ~ an j+n~ H~2)(2kd) Jn+m(kp) {.jn$-jm$

n=-m m=.m

(47}

.
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~total =E:+E; +~; +E;r
z

where E~tal
.

is the total electric field in the space, E;

incident wave expanded in cylindrical wave functions, E; “

plane wave due to the ground expanded in cylindrical wave

and E~r are scattered fields due to the cylinder and its

unknown constant a.. It can be easily shown that, on the

(x= d), E;Otal =

tional theorem of

The constant

; using (44), (45), (46), (47) and (48)

Bessel’s functions.

(48)

is the plane

s the reflected

functions, E;

mage with the

ground plane

and the addi-

an can be determined by the following boundary condition,

Etotal = ~,
z

atp=a (49)

From (44) through (48) it is found that

w

-1-x nH(2)(ka) ean j- n
+jn@

m

z .+n x~ ~(2)(2kd) Jn+m
+ RI J an (ka) e-jn$-jm$ = O S(50)

m

Rearranging the last summation and collecting terms associated with e+Jn@,

we find the following equat”on for determining an,

54



H(2)(2kd) J-n(ka)
.-
n a H~2)(ka) + R, j-n a-n ~Jn

a

x RI j-(n+m)a H(2)(2kd)J-n(ka)+–
-(n+m) m

m=1

m

.-x H(2)(2kd)(-l)m-nJn(ka)+ R, jm-nam-n m

=-
—

,-
Jne

-jn~ + R, e-j2kd Cos B j+ne+Jn6) Jn(ka) .
(5”)

For simplicity, we consider an approximation with

neglected in (51). This is equivalent to neglect

H(2)(2kd) Jn(ka) termsm
the effects due

image cylinder.
\

Using (52), (44

by

When this is done, one finds

(j-ne-jn~ + R )-j2kd cos B j+ne+jnflJn(ka)
le
,-
J n H~2)(ka)

) through (48), (41) and (42), the current density

w (j-n”e-jri(~-$) + R, e -j2kd cos 6 j+ne+jtl(6+$))

Jz &--

n.-w H:*‘(ka)

(52)

is given

(53)

3.3 CONSIDER A SPECIAL CASE

Assuming that the infinite cylinder is an ideal version of certain ...

“two-dirnenijonala~rplane” so_that, in Figure 21, the airplane is in the

.—
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free space and in Figure 22 the airplane is near a ground plane. When

the “airplane” is illuminated by an incident EMP wave, the electromag-

netic energy can be coupled into the “airplane” body through the possible

port of entry, This coupling energy is related to the current density Jz

through some transfer functions. We shall consider a case where the inci-

dent wave can come from any angle Bwith -m/2 ~@~m/2.

Let J~FF)(Oj,Bk) be the current density given in (43) and J~HpD)(@j,Bk)

be that given in (53), where $j is the location of the current density on

the cylinder (with radius a), and Bk is the angle of incidence. Let a

maximum number be defined from a set of k numbers as follows:

Jz($j)max = { }
max Jz(@j>61)* Jz(@j~B2), .... Jz($j38k) . (54)

At a particular angle @j, we only select one current density,

Jz(@j)nlax~ due to certain incident field among all the possible incident

waves, and assuming this quantity will dominate the coupling effect. For

j=l, .... m, we obtained a set of numbers which contains the maximum

current density at each particular location when b,,is varied. Thus, from

J(HpD)($j,Bk) we have the following
z

K

set

{
J(HPD)$2)max, .... J:HpD)(@mmax .A= J$HpD)($l)max, z

}
(55)

Note that 13kcan only be varied in -m/2 ~ 13k~m/2,

(FF)(@j)max fromSimilarly, we can construct a set of numbers Jz

J(FF)(@j,Bk). In order to make a fiar comparison, we restrict Bk in this

c;se also between -Tr/2to +m/2. From the result of Dart one in this sec-

tion, it is not hard to see that the maximum current density for an infinite

cylinder illuminated by a plane wave occurs at the illuminated side. For

example, when the wave is coming from @j = 180° with 13k= 0°, the maximum

current density is that located at @j = 180°. Since we allow the incident

o
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Figure 24. The ratio IQ1.(u)I at different angle $i with a = 0.5 m,
d = 1 m, R] =T-0.75 and @ = -n/4, O, m/4.
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fields to be varied from Bk = -Tr/2to +Tr/2,the maximum current density

‘FF)(180”,00) for n/2 ~ @,i~ 3Tr/2. Thewill be a constant equal to Jz

current density in the shadow side can also be determined easily, Thus,

‘FF)(@j>fi~)for.~ = 1, 2, ,.., mthe following set can be obtained from Jz

‘-”-”\B =- J~FF)($l)max, J:FF)(02)max, .... J$FF)($ )
Im max q (56)

Using the numbers in set A and B, one is ready to apply the method

of-extrapolation function to obtain an error estimation.

3.4 APPLICATION OF THE EXTRAPOLATION FUNCTION TECHNIQUE
TO THE ABOVE PROBLEM

From (55) and (56), we construct the following extrapolation function

J(FF)($i)max
Ri(~) = JZATH

z ‘($i)max
(57;

Fror (57) we obtain an average function Fl(u) as follows:

F1(cIJ)= ~R,(d R2(LII) . . . RN(u) (58;1

Then the fcllowing ratio Qli(LU)is calculated

R.(w)
Qli(u) = ~ (59)

In the examples given in Figures 23 and 24 only three angles of inci-
(ATH)(~i)max. Ondence are used, i.e., Pk = Tr/4,o, -IT/4,in calculating Jz

the other hand, incident waves with Bk which varied from -Tr/2to +7r/2,

‘FF)(Oi)max.are used to calculate Jz The function lQli(u)l is plotted as
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a function fo frequency in Figure 23 for a cylinder with d = 1 in,a = 0.5 m,

R=-l. The variation is only a factor near 2.

In Figure 24 the same calculation is applied to the cylinder, however,

with Rl = -0.75 for an assumed imperfect ground reflection. The variation

is a factor of 2.5 for eight positions. This is a better error bound as

compared to those obtained for a single incident wave. However, these

conclusions are obtained under the assumption that the maximum current

density can be used in estimating the error.
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APPENDIX A

SUPPLEMENTAL RESU~TS FOB THE_
PROBLEM IN SECTIONS 1.3 AND 1.4

In this appendix, additional data are presented which supplement

those presented in Sections 1.3 and 1.4.

In Figure A-1, the ratios lQ,(u)\ at the angle $ = 0°, refl = -1.0,

a = 0.5 m, d = 5 m are compared using numerical solution of equat-ion(25-)

with N = 7 and two approximations. (The results using N = 7 differ less

than 0.1% as compared to those using N = 6.)

In Figure A-2, the ratios IQ,(u)] at the angle $ = 0°, relf = -1.0,

a = 0.5 m and d = 5 m are compared using numerical solution of equation

(25) with N = 4 and two approximations. Note that the deep nulls shown

in previous approximations disappear. (The results using N = 4 differ

less than 0.1% as compared to those using N = 3.)

In Figure A-3, the ratios \Qi(~)lat different angles ~i are calculated

using numerical solution of equation (25) with N = 7, refl = -1.0,

a = 0.5 m and..d= 1 _rn_._-.Comparingwith figure 5 of section 1.4, this shows

an error bound smaller than previous results.
-—=— —

In Figure A-4, the ratios lQi(m)l at different angles @i are calculated

using numerical solution of equation (25) with N = 4, refl = -1.0, a = 0,5”m

andd=5m. This also shows asrnaller error bound than previous results.

The deep nulls and peaks shown in Figure 6 of Section 1.4 disappear here.

In Figure A-5, the ratios lQi(~)\ at different a“ngles$i are calculated

using numer!cal solution of equation (25-)with N = 7 and refl = -0.75

for the ground, a = 0.5 rn,d = l_rn. Comparing with Figure 7 of Section l.~,

this also shows an error bound smaller than previous results.
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Frequency (MHz)

Figure A-1. The ratio lQ~(w)l at the angle @ = 0°, reflection
coefficient Refl = -l.O, a=0.5m, d=lm.

—using numerical solution of Eq. (25) with N = 7
—“—using first approximate solution of Eq. (25)
–––using second approximate solution of Eq. (25)

(cf. Figure 5, Section 1.4)
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Figure A-2. The ratio IQ (u)I at the angle @ = 0°, reflection
Acoefficient efl = -1.0, a = 0.5 m, and d = 5 m.

using numerical solut-ionof Eq. (25) with N =
—“—using first approximate solution of Eq. (25)
— ––using second approximate solution of Eq, (25)

(cf. Figure 6, Section 1.4)
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Figure A-3. The ratio IQ.(w)I at different angle @i calculated
using numeri~al solution of Eq. (25) with N = 7 and
a reflection coefficient Refl = -1,0 for the ground,
and a = 0.5 m, d = 1 m (cf, Figure 5, Section 1.4).
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Figure A-4.
!

The ratio Qi(~)l calculated using numerical solution
of Eq. (25 with N = 4 and a reflection coefficient of
Refl = -1,0 for the ground, a = 0.5 m, d = 5m (cf., Fig-

–ure 6, Section 1.4).
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Figure A-5. The ratio lQi(~)~ at different angle $j calculated using
numerical solution of Eq. (25) with N = 7 and a reflection
coefficient Refl = -0.75 for the ground, a = 0.5 m, d = 1 m.
(cf. Figure 7, Section 1.4).
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