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Abstract

The extrapolation techniques outlined in Sensor and Simulation Note
222 are discussed. The metheds are applied to an infinite cylinder pro-
blem as well as a finite cylinder problem using theoretical models. The
effects of the angle of incidence is also examined using the infinite
cylinder model. Some conclusions about the utility of the methods in
error estimations are drawn based on these analytical investigations.
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SECTION I

AN INVESTIGATION OF THE METHOD OF USING EXTRAPOLATION FUNCTION
IN FINDING CRITERIA RESPONSE FROM SIMULATION RESPONSE

1.1 INTRODUCTION

In the analysis of the electromagnetic field problems, it is often
necessary to use the principle of electrodynamic similitude in the design
of apparatus. It has been shown using Maxwell's equations that, in order
that two electromagnetic boundary-value problems be similar, it is neces-
sary and sufficient that certain coefficients be identical in both (ref. 1).
This has always been the guide 1ine for designing experiments. However,
suppose that the true or criteria environment is so difficult to construct
so that the simulation environment is not quite similar to the criteria
environment, what is the remedy to extrapolate useful information from
the simulation response? In particular, consider the problem of finding
the EMP response in an electronic circuit inside an airplane in free space
due to a nuclear burst (Fig. la). Instead of simulating the awkward true
situation, measurements were made in an airplane near ground with a pulse
generator as shown in Figure 1b. Is it possible to find the criteria re-
sponse from the measured simulation response inside the airplane if the
scattered fields outside the airplane are given but the transfer functions
between these fields outside and the response inside are not known? It
has been proposed recently that this problem could be solved by making use
of certain "extrapolation functions" if some error bounds in the result
were allowed (ref. 2).

It is the purpose of this study to investigate this proposal by applying
the suggested method to a typical problem,
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1.2 NOTATIONS 4D DEFINITIONS (ref. 2)

Some notations and definitions used in this report will be summarized
briefly in this section. Consider the example in Figures la and Tb again.
Let the space be divided into three regions where region 1 is the interior
region inside the airplane with position yectqrr?], region 2 is the aircraft
surface region with the position vector ?2, and region 3 is the space exte-
rior to the aircraft with the position vector ?3. The voltage response
measured ihi?ﬁéiki?rcirpuit component in region 1 will be called V(?]k).

~ The curféntzhea§ﬁré§ig§ thé ith location of the aircraft surface (region 2)

will be ca]Ted’S(?z.). The electric field measured at jth Tocation in region
3 will be ca11ed7§(r3j). In order to distinguish the criteria situation

from the simulation situation, we associate the superscript "sim" with

the quantities in the simulation environment and "cri" with the quantities

in the criteria environment. Thus, for a measured voltage on the kN circuit

in region 1, in the,criferia environment, the notation is V<Cr])(?1k).

The field in region 1 is induced by the electromagnetic fields in
regions 2 and 3 through the port of entry. They are related by the trans-
fer functions T(?Zi,?]k), etc. The transfer functions relating fields
between regions 2 and 3 can be determined by solving the exterior problem
(refs. 3 and 4) and will not be discussed in this report.

Therefore, all the transfer functions considered here will be those
between region 1 and region 2 with the first position vector referring
to those in region 2 and the second position vector referring to those
in region 1. Note that the transfer functions are varied with frequencies

as well as positions. Thus, for measured quantities y(sim)

) and
3(sim) 1k

?21) in the frequency domain, we have

WGy =2 TR Foe) STy )

N
Yoy sw
Tk i=1



If we restrict the discussion of the transfer functions to those between

region 1 and 2, and note that the left hand member in equatio? (1) is always
sim)) .
is

always in region 2, we may simplify the notations by dropping the super-
script and write equation (1) as

N
TSRS PELUORAAIT (2)

i=]

in region 1, whereas the right hand response (in this case, J

where 1 and k are simpliified notations for v

.+
i and rk.

An equation similar to (2) can be written down for the criteria

situation,
cr1 :E: T(cr1 cr1)( ) o

.

We now make an assumption that the transfer functions in equations (2) and
(3) are the same so that

)+ 16 < 7y e

This assumption will be reasonable if the interior configuration as well
as the surface configuration remains unchanged in the criteria environ-
ment and the simulation environment, Using equation (4) in equations (2)
and (3) we have

N

v () - 21 T () 3™ ) (5)
']:

V(crw zz: T () 3! cr1)( ) (6)

14



$s1m)(m) and chr1)(w) can be calculated or measured from

the exterior,prop]eml,”Ihe,quéntity V£51m)(w) can be measured, and VEcri)(w)
is the unknown guantity that we are seeking. If the values of Tik(w) are
given, the problem can be easily solved. Difficulties arise in a real
situation where the point of entry and the transfer function is not known,

The quantities J

In;orderﬁto,circumyent this difficulty, a quantity called "extrap-
olation function" Ri(w) is introduced, where

chri)(w)
Ri(w) = JééiﬁjE;;‘ . (7)
Using this definition, equation (6) becomes,
N ,
o 3 T P R
i=1

In general, Ri(w) is a function of both frequency and the position and is
not a constant.

If there is only one port of entry, equation (8) reduces to

vty = 7,0 38 w) By (9)

and from equation (5)

;77yé5im)(w) - Tjk(m> J§51m)(w> (10)

so that
Vécri>(w) = VéSim>(w) R. (w) (1)

i

and Vﬁcri)(w) can be determined,

11



Another special case is when Ri(w) = C a constant, then equation (8)
becomes,

o) = o0 T oMWy = M) gy

i=

e

In particular, when C = 1, the two problems are entirely similar. It is
easy to see from equation (12) that, if Ri(w) is a constant, the criteria
response Vﬁch)(w) can be derived from the simulation response in a simple
manner. In general, if some constant (say, a number obtained by taking
the average of Ri(w) over all positions i) is used in replacing each indi-
vidual Ri(w)’ it will result in some error since Ri(w) is not a constant
under most circumstances. However, due to the simplicity of equation (12),
it is interesting to study the above procedure and the possible error bounds
more colsely. The error can be obtained roughly by examining the ratio
Ri(w)/F(w) as a function of frequency, where F{w) is a selected testing
function which is not a function of positions. In this study, we shall
select the following test function:

N
_ 1 . (13)
Fl(w) = EXPly D 109 Ry ()
i=1

1.3 A TYPICAL PROBLEM

Consider the problem of an infinite cylindrical conductor in the
presence of an incident plane wave with and without a ground plane as shown
in Figures 2a and 2b. Let the electric field component of the incident
plane wave be parallel to the axis of the cylinder, with the wave propagating
along positive x direction.

The coordinate systems are as shown in Figures 2a and 2b. Then, the
incident electric field can be written as

E; = E, e~dkx Hot . (14)

12



€1

(a)

Figure 2.

A

et

n
1
[

-
ari

infin
ne wa

ite cylindrical conductor

imarn

Y ot hnod A
V&, (a; witnoutc a

AN

Yruurniu

p

in
T A
1

-y Ei Z
' X
kx
0 -y
a
p
d
xL 2"} p(0,0)
|
77TV TTAT I T T
o, =TF0
Perfectly
Conducting
q pl Plane
01
0
Image
(b)
the presence of an incident
ma anrmd ThY iRkl A mnAren A ATana
1o anu \IJ} wiul Qa SIUUIIU PIUIIC-



To solve the problem shown in Figure 2a, equation (14) can be expanded in
the following form (refs. 1 and 5) with e+3wtsuppressed,

£ ing
- F ZJ plke) e . (15)

The scattered field can be assumed to be

"E Z i an (kp) e’ (16)

S =0

where Jn(kp) is the Bessel's function of order n, and ng)(kp) is the Hankel's
function of the second kind with order n, At p = a, the total field

t_ i s _

EZ = Ez + EZ 0, hence
Jn(ka)
a p——
N ngj(ka) - (17)
Using equations (17), (16) and (15), the total electric field can be
determined. The total magnetic field is given by

| 2
"o T T T - U18)

The current density on the cylinder is related to equation (18) by
JZ = H¢! at p = a. Combining the above results, it is easily found that
(refs. 5 and 6)

Z wwra Z— ( j(ka . ('!9)

To solve the problem shown in Figure 2b, it is necessary to assume
two more scattered fields due to the presence of the perfect conducting
ground plane. Thus we have (let Ry = -1)

14



i Z - ing
E, = E, J (ko) e (20a)
. . . N=-o0
r o .n -j2kd Jjno
E, = Ry EO E j e Jn(k ) e (20b)
S

rm
N O
1 :
m
O Il
M |
.
1
= .
jol)
=
T
—
N
S—
-
o
ko)
<
)
<
=
-©-
|

(20c)
jrsrﬁ_rw .-N (2) noy
EZ = R] EO E i a, Hn (kp]) e (20d)
n:..oo -
t i r S sSr
EZ = Ez + EZ + EZ + EZ (20e)

where E; is the incident field, E; is the reflected field due to the ground
plane, Ei is the scattered field due to the %ylinder, E;ris the scattered
field due to the image of the cylinder and EZ is the total field. The
origin 0 is taken to be the center of the cylinder and the ground plane

is located at a distance d away from the origin, The coordinates p, ¢, Py
and ¢15 6 are as shown in Figure 2b. To show that the boundary conditions
can be satisfied by these fields, note that equations (20a) and (20b) can
be written as (refs. 1 and 5) '

i -J kp cos¢ _ -Jkx

EZ = EO e Eoe (21a)
SR -j2kd _+jkx 5

E, =R E e e (21b)

15



For R] = =1 and X = +d, these lead to E; + E; = 0. Furthermore, for points
on the ground plane, ¢ = ¢ and p = Py SO that Ez + E§r= 0 from equation
(20c) and (20d). Hence, the boundary condition on the ground plane is
satisfied.

The second boundary condition is E; + E; + Ei + Ezr =0 at p = a.
To show this, it is convenient to express all fields in terms of the vari-
able o and ¢. This can be done by expanding equation (20d) in a different
form using the addition theorem of Bessel's function (ref. 1). Referring to
Figure 3, the additional theorem gives.

[o0]

12 (kry) 01 - Z 1 (k) 0, (kr) &7 TM(O-8) - 108 (pp)

m=-oo

In our case, 80 = 0, ro'= 2kd, ry = P1> T = Py 8 = ¢, e.i = ﬂ-¢1(see Figures
2b and 3}, from (20d) we have,

sr_ .-N (2) jn(m-01)
E RT E0 E e, Hn (kp]) e
n=-co
_ Z : N z : (2) -jné-jme
R1 Ey i a, Hm (2kd) Jn+m(kp) e
n==0 m:-oo
(23)
Applying the boundary condition at p = a,
E i Jn(ka) UL E Ry o~J2kd " Jn(ka) eINg
E : .~N (2) jno E : N E : (2) =ing-jmé _
+ i e, Hn (ka} e + RIJ a, Hm (2kd) Jn+m(ka) e 0
(24)

16



Figure 3.

Coordinate for Using Additional Theorem.
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Equation (24) determines the proper coefficients a, for this problem.
If we change the index in the last summation in (24), and collecting terms

associated with e3n¢, we have

iMa, Héz)(ka) + Ry i, Héz)(de) J_, (ka)

[ee] oo [ed

+ E R, 3™ (e (k) (ka) + E R, ™M KB (2ka) (1™ (ka)
m=1 m=1
= (370 + R1e-j2kdjn) Jn(ka), n= =0, ... s Oyeenn , oo . {(25)

This is a matrix equation with infinite elements. A complete deter-
mination of 2, from (25) is difficult. Various approximations can be used
in solving (25) depending on the accuracy of the result we are seeking. We
shall consider the following approximations: '

(1) A first approximation is to neglect the effects due to
the scattered field of the image cylinder so that the
terms with Héz)(de) Jn(ka) in equation (25) can be
omitted. This Jeads to

e YN -
a = — a
n j"n H‘r(]?)(ka) n

(2) The next simple case is to use the diagonal element in
the matrix in solving equation (25) (ref. 7)

(37" + Ry eI g (ka)

. (27)
% j'”[HEZ)(ka) + R HEET(de) J,,(ka)]

18



This reduces to equation (26) when Hég)(de) Jn(ka) is

neglected.

-(3) If great accuracy is desired, it is possible to solve equation

(25) for N finite modes.

For the present purpose, approximations (1) and (2) are sufficient. =
The current density is given as follows:

(1) Using equations (26), (20) and (18),

N . 9E
J _,H = =
) z ¢Ip=a Ju 90 |y
T i LU (28)
wme Lt ) (4

(2) Using equations (27), (20) and (18)

n:—OG
-J E = s .
—0 E R, e J2kd 5" 3 7 (ka) L
Clg < 1 n
=3 E = _ -
0 E i a 1B (ka) M
Cl, n
n=-w
-J E bt - _
0 N (2) cleay amd(mEn)d
o E Ry " a, E Ho "/ (2kd) J o (ka) e

19



In fact, Equation (29) is the general solution to this problem if
the correct an's are used. In the next section, we shall discuss the

application of extrapolation functions using the results derived in this
section.

1.4 APPLICATION OF THE EXTRAPCLATION FUNCTION TO THE ABOVE PROBLEM

To apply the extrapolation function concept to the above problem, we
make use of Equations (19) and (29) (or Eg. {28)), and derive the following
function from them

JéFF)(¢isw)
R.{w) = (30)
i (HPD)
JZ (¢i’w)
where JiFF)(¢1,w) is used to denote the current density obtained for

Figure 2a (Eq. (19)), and JéHPD)(¢i,m) is used to denote the current density

obtained for Figure 2b (Egs. (28) or (29)). Next, the average function
F1{w) is formulated according to Equation (13), that is,

N
Fl{w) = /R1(w)R2(w)R3(w) e RN(m)' . (31)

Then, the following ratio is calculated and plotted as a function of
frequency,

R1<w)
QTi(w) = oy . (32)
In Figure 4, the absolute value of JéFF) and JgHPD) is plotted as a function

of frequency with angle ¢ as parameters. Figure 4a is obtained using equa-
tion (19), Figure 4b is obtained using eguation (28), and Figure 4c is
obtained using equation (29). Note that, at low frequency range, the cur-

(HPD)

rent density JZ is not uniform whereas J;FF) is nearly uniform.

20
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The reason for this is that at low frequency, the first term in equa-
tion (19) dominates (which is a constant term) whereas the first term in
equation (28) tends to be zero due to the reflected wave so that the second
term dominates (which is proportional to cos ¢).

In Figure 5, the function Q11(w) is shown graphically for a cylinder
with radius a = 0.5 mand d = T m. The variation is almost a factor of
three in Figure 5a and a factor of five in Figure 5b.

In Figure 6, the function Q1i(w) is shown for the same cylinder at
a distance d = 5 m away from the ground plane. For certain frequencies
(e.g., 30 MHz, 60 MHz, 90 MHz), the incident and the reflected plane wave
cancels so that a null in the graph is observed. This makes the error
bounds difficult to estimate.

In Figure 7, an assumed relfected coefficient, REFL = -0.75, for an
imperfect ground plane is used. For the case of a = 0.5 m, d =1 m. The
overall shape still has a factor of three variation.

In Figure 8, a different normalization is used before forming the
ratio Ry(w). The quantities 3\ )(o.,u) are divided by £_e7IKPCOS? 4t

;
Tocation {a, ¢), and the quantities JéHPD)(¢1,m) are divided by the com-

bination of incident and reflected wave, Eo(e'JkpCOS¢-e'32kd e+3kpcos¢)’
at location (a, ¢1) and then the ratio Ri(w) is formed. The resulting
Q]i(w) seems to be worse than previous results if one Tooks at the varia-

tions.

A Tast example is to consider the ratio
) 2{FF) (g, )
et € =5 33
1 J FF (0°,0) f )
Z -

and calculate the function F1(w) and Q11(w) according to equation (31)
and (32). This is shown in Figure 9. This result indicates that the method
applied to a cylinder in free space with two different angles of incidence
will result in an error nearly a factor of three.
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1.5 CONCLUSION

According to the discussion in the Tast section, the method of using
an average extrapolation function F1{(w) to replace the individual extrapo-
Tation function Ri(w) will result in an error of at least three to five
times the correct results for that particular example. If the angle of
incidence is not known and the comparison is made by selecting one arbi-
trary angle as reference, then the result could be subjected to an error
as large as three times more. Since the example considered here is a simple
two dimensional case, the result may or may not hold for the real airplane
or three dimensional objects. However, it is hidhly unlikely that the
error will be less if the object becomes more complex. For example, for
a finite cylinder at resonance freguency, the currents near the center is
very much Targer than those near the ends. This brings in another error
which could be Tlarger than the variation as a function of angle. To esti-
mate these errors, one would have to solve the exterior problem for each
case and investigate the error bounds as illustrated in Section 1.4. It
seems that the procedure is not general enough to be able to extrapolate
information from one case to another unless one solves a similar problem.
In other words, the specific results depend on the particular example and
the boundary conditions used. This fact is not surprising since the prin-
ciple of electrodynamic similitude is not fully obeyed in this method.
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SECTION 2

AN APPLICATION OF THE-EXTRAPOLATION FUNCTION
TECHNIQUE TO THE FINITE CYLINDER PROBLEM

2.1 INTRODUCTION
In Section 1 the motivations and the definitions of the method using

extrapolation function in finding criteria response from simulation response

are given. The method is then applied to a typical two-dimensional case

of an infinite conducting cylinder in the presence of a plane incident

wave with and without a ground plane. The result in that study indicates

an error of a factor of nearly 3 to 5. In order to obtain a better esti-

mation of the error bound concerning three dimensional objects and aircraft

using this method, we extend the study to a cylinder with finite Tength in

the presence of a plane incident wave in this report. The analytical solu-

tion of a finite cylinder in the presence of an incident wave is not easily

available except when the cylinder is electrically thin (ref. 9). Numerical

results have been obtained in several reports (refs. 10, 11, 12 and 13).

The problem of a finite Tength cylinder with a ground plane in the presence

of an incident field has not been studied extensively. The available re-

sults are those due to finite difference technique (ref. 14). In the

next section, a brief summary of the numerical solutions of both problems

using three dimensional finite difference method is given. These results

are then used with the extrapolation function technique in the study of the

error estimation.

2.2 FORMULATION OF THE FINITE CYLINDER PROBLEM (ref. 14, 12)

Figure 10 shows the configuration of a finite cylindrical conductor
in the presence of an incident plane wave without a ground plane. The
conductor is selected to be rectangular for convenience. The origin is
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Figure 10. A finite cylindrical conductor in the presence
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the pipe center. An incident wave wjth an electric field E1 parallel to
the x-axis and a E—vectof forming a 45° angle with both y-axis andlg-axis
was selected for some practical reason. In the calculation, the length

of the pipe is 10 m and the width is 0.88 m as shown in Figure 10. The
corresponding configuration of a finite cylinder in the presence of an
incident plane wave with a ground plane is shown in Figure 11. The param-
eters of the ground are assumed to be €, = 10 and o = 0.02. The pipe is
located at a height d = 1 m above the ground in the sample calculation.

The incident plane wave is taken to be Einc(t) = 5.94><]04><[e_4'08x106t
- e-3.50x108t 7,

To use the finite difference method to solve for the electromagnetic
fields, the Maxwell equations are expressed in a three-dimensional finite
difference form. The scattered field caused by the pipe is found by solv-
ing these finite-difference equations subjéct to the boundary conditions3

‘The boundary conditions are (1) on the surface of the pipe, Escatt(t)

; : tan
= -E%Qﬁ(t), (2) inside the pipe, Escatt(t) = 0, (3) appropriate radiation

conditions are applied on the outer boundary of the space.

The induced surface current on the pipe is given by J = nxH, where
f= pscatt ﬁinc is the total magnetic field at the desired location.
A detajled discussion of the implementation of this method is gijven in
other reports (refs. 14 and 2) and will not be repeated here. It is noted
that, using this method, the response of the finite cylinder with a ground
plane can also be determined approximately if an assumed reflection coef-
ficient is used for the ground. Since the response is calculated in time
domain using this method, a Fourier transformation has to be used in Qrdef
to obtain the response as a function of frequency. In the following calcu-
lation, the reflection coefficient for the ground is assumed to be

Refl = -1 + 0.25 e~ 420051079 yith t in sec.
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2.3 APPLICATION OF THE EXTRAPOLATION FUNCTION TO THE
FINITE CYLINDER PROBLEM

Making use of the definitions and notations given in Section 1,

the following extrapolation function is obtained, C—

S(FVF) (d)'l ,U.))

1

where EiFF)(¢1,w) is the axial current density obtained for the case with-
out a ground plane (Figure 10) in frequency domain, and JX(ATH>(¢1,w)

is the axial current density obtained for the case with a ground plane
(Figure 11) in frequency domain. An average function F1(w) is formulated

as follows,

Fl(w) = v Ry (o) Ryla) Rgl) ... Ry (o) . (35)

Then, the following ratio is calculated and plotted as a function of
frequency,

IR ) a . (36)

In all the examples given below, N = 4 and i =1,2,3,4 corresponding to a
test point located at ¢1 = 0°, 90°, 180° and 270° (see Figure 10b) at the
position x respectively,

In Figure 12, the axial current density JiFF>(O°,t) is shown as a
function of time. The corresponding Fourier transformation is shown in
Figure 13. A "tail" has been added to the time-domain response from
550 nsec to 1000 nsec in order to minimize the resulting error in the
Fourier transform. Alsc, in Figure 12, the axial current density
JiFF)(9O°,t) is shown. The corresponding Fourier transform is shown in
Figure 13.
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Note that in the case of a cy11nder in free space, J( )(0°,t) =
JiFF)(27O°.t) and J(FF)(9O° t) = ( )(180°,t) due to the incident
field selected and the symmetry conf1gurat1on as shown in Figure 10.
(A11 the above curves are calculated at x = =3.125 m).

Next, let us consider the ratio,

3FF) (o, )

(FF)(CP + 9Q° 30.))

R.(w) =

; (37)

and calculate the function Fl{w} and Q1i(w) according to equation (35)

and equation (36). This equivalent to applying the extrapolation function
technique to a cylinder in free space for two pldne incident wave with
incident angles differing by 90°. The function |Q11(w)| is shown in

Figure 14. Note that Qli(m) = Q1i(w} = 1 due to symmetry. The function
Q]i(w) is the inverse of Q]i(w)’ which can be easily deduced from their
definitions. The combination of all these curves shows a variation of a
factor near 10. On the same graph, typical values obtained by using
Sancer's code (ref. 11) are also shown in open and closed dots. They

agree with the results of 3-D code. In using Sancer's code, the incident
wave is taken to be an 1impulse, and the cylinder in free space is a circular
cylinder with radius a = 0.5 m and length 10 m. This cylinder has the same
volume as that used in 3-D code. These two results are comparable since
the normalized quantities (i.e., the ratio of two responses) are used in
the calculation.

In Figure 15, the axial current density JiATH)(¢i,t) is. shown for
¢1 = 0°, 90°, 180°, 270° at x = ~3.125 m. The cor£$apond1ng Fourier
transforms are shown in Figure 16. The current JX (0°,t) is not equal
to JiATH)(270°, t), and J(ATH)(9O°;t) is not equal to JiATH)(18O°,t) be-
cause the presence of the ground plane disturbs the symmetry conditions.
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Figure 14b. The ratio |Qli(w)}| for a cylinder in free space for two
incident waves with incident angle different by 90°,
calculated using 3~D code.
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= - In Figure 8, the ratio

is used to calculate the function ]Q]i(w)l according to equation (35)
and equation (36). It is seen that the function ]Q11(w)} is not-a con-
stant at low frequency end, which is similar to the results obtained for
the infinite cylinder problem in reference 8. The total variation over
the frequency range from 1 MHz to 100 MHz is nearly a factor of 5 as
shown in Figure 17.

In Figure 18, the Fourier transforms }5§FF*(¢1,M)$ at x = 0 are shown,
and in Figure 19, the Fourier transforms ]JiATH>(¢1,w)I at x = 0 are shown.

The calculated |Q11(m)] using these curves and equations (34), (35) and
(36) is shown in Figure 20. The variation over the frequency range from
1 MHz to 100 MHz 1is roughly a factor of 6.

2.4 CONCLUSION

In conclusion, when the extrapolation concept is generalized and
applied to a cylinder in free space for two incident waves with 90° dif-
ference, it shows an error of about a factor of 10. When the method is
applied to compare the currents on the cylinder in free space and those
on the cylinder near a ground plane, it shows an error of nearly a factor
of 6. As pointed out in the concluding remarks in reference 8, this kind
of-error is due to the difference in the boundary condition and cannot be
removed effectively unless the boundary conditions are modified to be
similar to each other in the two problems.
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SECTION III

THE INFINITE CYLINDER PROBLEM IN THE PRESENCE OF
A PLANE WAVE WITH DIFFERENT INCIDENT ANGLE

3.1 SCATTERING OF AN INFINITE CONDUCTING CYLINDER FOR

AN INCIDENT WAVE WITH INCIDENT ANGLE B

Considering Figure 21, an infinite cylindrical conductor is 11lumi-
nated by a plane incident wave with incident angle 8 as shown. Let the
incident wave have its electric field component EZ parallel to the axis
of the cylinder (z-axis). Mathematically, the incident field can be
written as

E; = Eo e‘jkp cos (B-9) e+jwt . (39)

The scattered field E; due to the cylinder can be determined by expanding
the scattered and incident fields in terms of cylindrical wave functions

and using the boundary condition EEOta] = E; + Ei =0 at p = a. The re-
sult is (with etlut suppressed)
= J (ka) .
S _ n -, (2) -in(B-¢)
EZ = -EOZ m J Hn (kp) e . (40)
n=e ''n
The total magnetic field is then,
total
ptotal _ 1 o, (41)
¢ Juu 3p
The current density on the cylinder is given by
_ ytotal _
JZ = H¢ , at p = a . (42)
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Combining (39), (40), (41), and (42), it can be shown that

2E _o =3n{B-¢)
g, = 2 7" & (43)
Z  wuma J (2)
— Hy (ka)

3.2 AN INFINITE CONDUCTING CYLINDER WITH A PERFECT CONDUCTING

GROUND PLANE IN THE PRESENCE OF AN INCIDENT PLANE WAVE
WITH INCIDENT ANGLE 3

Considering Figure 22, an infinite cylindrical conductor with a

perfect conducting plane is illuminated by a plane incident wave with
incident angle B.

Let R1 be the reflection coefficient (R1 = -1 for perfect conductor),

and let

E; = E, :E:: 3" J, (ko) g~In(8-0) (44)
n:-oo
< Ry £y IO EY g () INED )
s _ n (2} +ing (46)
EZ—EOZ a, 37 H " (ko) e
n=-~co
=R By D a3 BB (akd) g (ko) €7
(47)
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total
z

E = E; + E; + Ei + Ezr (48)

total

where EZ is the total electric field in the space, E; is the plane

incident wave expanded in cylindrical wave functions, E; is the reflected
plane wave due to the ground expanded in cylindrical wave functions, E;
and Eir are scattered fields due to the cylinder and its image with the
unknown constant a_. It can be easily shown that, on the ground plane

(x = d), EEOtaT = 0 using (44), (45), (46), (47) and (48) and the addi-
tional theorem of Bessel's functions.

The constant a, can be determined by the following boundary condition,

total

E, = Q, at p = a . (49)

From (44) through (48) it is found that

foa]

35 g (k) T INEE) 4 g oI2kd 08 BN g (i) gtIn(EYE)

n=-o n=-c

[o.0]

+ E a i" Hr(‘z)(ka) gtind

= wco

+n (2) =ing-jme _
vRy Y. M D (k) 9 (k) e -0 )

n:-oo m:—m

Rearranging the last summation and collecting terms associated with e+jn¢
we find the following equation for determining 2,

¥
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-n _=jnB -j2kd cos B .+n_+jnp :
7 L ,,J:,,,,?e,:.,, 7 ) {n (ka) ) (5])

='(j € +R']e

For simplicity, we consider an approximation with Héz)(ZKd) Jn(ka) terms
neglected in (51). This is equivalent to neglect the effects due to the

" image cylinder. When this is done, one finds
) <j-ne-jn8 N R] e—Jde cos B j+ne+JnB>Jn(ka) o
a = - 52
n R Héz)(ka)

(41) and (42), the current density is given

Using (52),7(44) through (48),
by
S 250253 (j‘ﬁe-jﬁ(8-¢) 4+ R] e-j2kd cos B j+ne+dn(8+¢)) -
"z wuTa £ Héz)(ka) :

n=-oo

3.3 CONSIDER A SPECIAL CASE

Assuming that the infinite cylinder is an ideal version of certain
"two-dimensional airplane" so that, in Figure 21, the airplane is in the
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free space and in Figure 22 the airplane is near a ground plane. When

the "airplane" is illuminated by an incident EMP wave, the electromag-
netic energy can be coupled into the "airplane" body through the possible
port of entry. This coupling energy is related to the current density JZ
through some transfer functions. We shall consider a case where the inci-
dent wave can come from any angle B with -n/2 < B < n/2.

FF)( (HPD)<
z

Let Ji ¢j,Bk) be the current density given in (43) and J ¢j,6k)
be that given in (53), where ¢j is the Tocation of the current density on
the cylinder (with radius a), and Bk is the angle of incidence. Let a
maximum number be defined from a set of k numbers as follows:

Jz(¢ )max

Prax = M3, (08105 9,(0558,) s 30080} - (50)

At a particular angle ¢j’ we only select one current density,

Jz(¢j)max’ due to certain incident field among all the possible incident
waves, and assuming this quantity will dominate the coupling effect. For
j=1, ..., m, we obtained a set of numbers which contains the maximum
current density at each particular location when Bk is varied. Thus, from
JiHPD)(¢j,Bk) we have the following set

A= {JgHPD)(¢1)maxa JgHPD)(q’Z)max’ T JiHPD)(¢m)max}' (55)

Note that 8, can only be varied in -n/2 < By < m/2,

. from

(FF) Lriet
JZ (¢j’8k)' In order to make a fiar comparison, we restrict Bk in this
case also between -w/2 to +n/2. From the result of part one in this sec-
tion, it is not hard to see that the maximum current density for an infinite
cylinder iTluminated by a plane wave occurs at the illuminated side. For
exampie, when the wave is coming from ¢j = 180° with Bk = 0°, the maximum

current density is that Tocated at ¢j = 180°. Since we allow the incident

Similarly, we can construct a set of numbers JgFF)(¢
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fields to be varied from B =(;E§2 to +m/2, the maximum current density
will be a constant equal to JZ (180°,0°) for m/2 §_¢j < 3n/2. The

current density in the shadow side can also be determined easily. Thus,
the following set can be obtained from JiFF)(¢j,6k) for j=1,2, ..., m

ERRRNLICS

max® “z qbZ)max’ Tt Yz ¢m)max ) (56)

Using the numbers in set A and B, one is ready to apply the method

of“extrapolation function to obtain an error estimation.

3.4 APPLICATION OF THE EXTRAPOLATION FUNCTION TECHNIQUE
TO THE ABOVE PROBLEM

From (55) and (56), we construct the following extrapolation function

R1 (LU) s

(FF) -
Jz (¢1)max \
R, (w) = . (57}
z i’max
From (57) we obtain an average function F1(w) as follows:
- F(w) = NR; (@) Rylw) ... Ry(w) . (58)
Then the following ratio Q11(w) is calculated
. Ri(w)
}Q‘i(‘”)‘ Fla

(59)

In the examples given in Figures 23 and 24 only three angles of inci-

dence are used, i.e., Bk =n/4, 0, -n/4, in calculating JiATH)(¢1)max' On
the other hand, 1nciden% W§VES with Bk which varied from -w/2 to +w/2,
FF

are used to calculate J, (¢1)max' The function IQ]i(“)[ is plotted as
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a function fo frequency in Figure 23 for a cylinder withd =1 m, a = 0.5 m,
R = -1. The variation is only a factor near 2.

In Figure 24 the same calculation is applied to the cylinder, however,
with R] = -0.75 for an assumed imperfect ground reflection. The variation
is a factor of 2.5 for eight positions. This is a better error bound as
compared to those obtained for a single incident wave. However, these
conclusions are obtained under the assumption that the maximum current
density can be used in estimating the error.
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APPENDIX A
SUPPLEMENTAL RESULTS FOR THE

"PROBLEM IN SECTIONS 1.3 AND 1.4

In this appendix, additional data are presented which supplement
those presented in Sections 1.3 and 1.4.

In Figure A-1, the ratios ]Q](w){ at the angle ¢ = 0°, refl = -1.0,

=0.5m, d = 5m are compared using numerical solution of equation (25)

with N = 7 and two approximations. (The results using N = 7 differ less
than 0.1% as compared to those using N = 6. )

In Figure A-2, the ratios ]Q1 w)| at the angle ¢ = 0°, relf = -1.0,
= 0.5 mand d = 5m are compared using numerical solution of equation
(25) with N = 4 and two approximations. Note that the deep nulls shown
in previous approximations disappear. (The results using N = 4 differ
less than 0.1% as compared to those using N = 3.)

" In Figure A-3, the ratios lQi(w)‘ at different angles ¢. are calculated
using numerical solution of equation (25) with N = 7, refl = -1.0,

= 0.5mand d =1.m._ Comparing with figure 5 of section 1.4, this shows
an error bound sma]]er than prev1ous results.

-

i

In F1gure A 4, the ratios ]Q w)| at different angles ¢, are calculated
using numnerical solution of equation (25) with N = 4, refl = -1.0, a = 0.5 m
and d = 5 m. This also shows a smaller error bound than previous results.
The deep nulls and peaks shown in Figure 6 of Section 1.4 disappear here.

“In F1gure A-5, the rat1os |Q w)| at different angles b are ca]cu1ated
using numerical soTut1on of equation (25) with N = 7 and ref] = -0.75
for the ground, a = 0.5 m, d = 1 m. Comparing with Figure 7 of Section 1.¢,
this aiso shows an error bound smaller than previous results.
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Figure A-1. The ratio |Qi(w)] at the angle ¢ =
Smyd=1m.

coefficient Refl = -1.0, a = 0

using numerical solution of Eq. (25) with N = 7
—— using first approximate solution of Eqg. (25)
— — —using second approximate solution of Eq. (25)

(cf. Figure 5, Section 1.4}
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Figure A-2. The ratio |Qj(w)| at the angle ¢ = 0°, reflection
coefficient &efT = -1.0,a=0.5m, and d = 5 m.

using numerical solution of Eq. (25) with N = 4 ”

—-— using first approximate solution of Eq. (25) (see Eq. (26))

— — — ysing second approximate solution of Eq. (25) (see Eq. (27))
(cf. Figure 6, Section 1.4)



10

Figure A-3.
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The ratio |Q.(w)| at different angle ¢4 calculated

using numeridal solution of Eg. (25) with N = 7 and
a reflection coefficient Refl = -1.0 for the ground,
and a = 0.5 m, d = 1 m (cf, Figure 5, Section 1.4).
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Figure A-4. The ratio |Qi(w)| calculated using numerical solution

of Eq. (25) with N = 4 and a reflection coefficient of
Refl = -1.0 for the ground, a = 0.5 m, d = 5m (cf., Fig-
ure 6, Section 1.4).
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(cf. Figure 7, Section 1.4).
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The ratio |Qs(w)| at different angle ¢4 calculated using
numerical solution of Eq. (25) with N = 7 and a reflection
coefficient Refl = -0.75 for the ground, a = 0.5 m, d = T m.




