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SECTION I

INTRODUCTION

A fullfledged test of the electromagnetic pulse (EMP) hardness of
military systems such as the E-4, E-3A, EC-135 or the Minuteman in a large
EMP simulator is a very time consuming and costly procedure. These tests are,
however, necessary to find all the ways through which electromagnetic energy
can penetrate into the system. Once the various ports of entry (POE's) of
electromagnetic (EM) energy have been found, means of eliminating them can
be deviced. Some of the devices used in eliminating the POE's (usually
referred to as hardening fixes) may degrade during the life span of the
system. This in turn implies that a presumably "EMP hard" system may not
be as hard as initially intended. For reasons cited above, it is important

to have simple, inexpensive ways (that can be used in the field) of testing

the EMP hardness of a particular system.

One important type of POE on aircraft is an aperture. Apertures can be
either hatched ones (occuring around various doors, figure la) or simple ones
such as windows (figure 1b). The hatched apertures can be electromagnetically
sealed by covering them with a conducting gasket (figure lc). The EMP energy
that penetrates through windows can be considerably diminished by plaéing a

mesh of conducting wires over the window (figure 1d).

Most apertures on aircraft are electrically small implying that the
electric and magnetic field penetrations can be separated and simulated inde-
pendently. In this report we will limit ourselves to the simulation of
electric-field penetration into an aperture. The magnetic-field penetration
will be left to a future effort.

One way of simulating the electric-field penetration through an aperture
is shown in figure 2, where a disk is placed above the aperture. Since we
are considering a quasi-electrostatic situation, the time history of the
simulated aperture field is proportional to the disk voltage V(t) . This
time history should of course equal the time history of the charge density
on the aircraft at the location of the aperture when it is covered (short

circuited) and the aircraft is subject to an incident EMP, Thus, the




figure Ib, window

figure la, hatched aperture
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generator shown in figure 2 must be designed so that the voltage V has the
required time history. To do that it is necessary to know the capacitance C
between the simulator disk and the aircraft in the presence of the aperture,
We will determine this capacitance in the present report for a particular

simulator-aperture geometry,

The interaction between the disk (simulator) and the aperture (test
object) implies that the simulated field distribution in the aperture is
different from the actual EMP-induced one. As a measure of this interaction
we use the normalized dipole moment (or polarizability) of the aperture.
Consequently, we determine the polarizability of the aperture both in the
presence and in the absence of the disk. The aperture dipole moment is
also proportional to the excitation of the aperture (e.g. the field strength
at the aperture's midpoint). The simulator’s effective height, equivalent

area, and equivalent volume are also considered.

To obtain a problem that is amenable to analysis we assume that the
aperture is circular and that the simulator disk is also circuler 2nd coaxial
with the aperture. This problem is reduced to the solution of a Fredholm
integral equation of the second kind by using Whittaker's solution of Laplace's
equation for rotationally symmetric objects. The integral equation is solved
analytically in some limiting cases and numerically in the general case. The
results of this veport can be used for noncircular apertures and disks provided

that the respective areas are equated.

It should be pointed out that the simulator discussed in this report is

of the FINES type. The general aspects of the FINES-type simulator are

discussed in references 1,2, and 10.




SECTION II

FORMULATION OF THE PROBLEM

Consider the problem of figure 3 where a circular disk is kept at the
potential V0 versus the perforated ground plane. The aperture in the
ground plane is circular and coaxial with the disk. Based on Whittaker's
solution of Laplace's equation (ref. 3) we will formulate in this section
an integral equation for the problem at hand. The solution of this
integral equation will yield all the desired information sought, i.e., the
capacitance between the simulator disk and the ground plane as well as the

simulator's effective height, equivalent area, and equivalent volume.

1. AN INTEGRAL EXPRESSION FOR THE ELECTROSTATIC POTENTIAL

From Whittaker's solution of the rotationally symmetric potential
problem (refs. 3, 4 and 5), the off-axis potential &(p,z) can be expressed

in terms of the on-axis potential ¢(0,z) in the following manner:

T
®(p,z) = %-[ $(0,z + ip cos ¢)dé (1)
0

The on-axis potential is simply given by

] [} t o 1 1 1
L Od(o Yp'dp L1 OR(p Yp'dp

2¢e 2¢
© OWN2+(2—M2 ca N2+22

$(0,z)

(2)

L1}

¢d(z) + ¢p(z)

where Gd(p') and Op(p') are, respectively, the charge distribution on
the disk and the ground plane. The expression (2) for ¢d(z) and ¢p(z)
has been derived from Coulomb's law under the assumption that 2z 1is a

real-valued variable. This expression can, however, be analytically continunrd
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to complex values of z . To determine the analytical properties of ¢(0,z)

in the complex z-planec we study @d(z) and d>p(z) ' separately.

From the integral expression for ¢d(z) , 1t is observed that this
function has a branch cut between 2z = h+ib and z = h-ib . Thus, ¢d(z)

can be represented in the following manner by using the Cauchy theorem:

4>d(2) = - dg

V ¢h+ib fd(c)
i J

(o]
L -z
h ~1ib
(3)

dn

]

) 29_ b gd(n)
T h+in-2z
-b

Since @d(z) is a real-valued function for real values of z , gd(n) must

where the asterisk denotes complex conjugation.

The function ¢p(z) has two branch cuts: one between =-i® and - ia
and the other bicween +3ia and +i» . Thus, from Cauchy's integration

theorem we have

-~ +
vV ¢-ia £ (7) V_ rie £ (T)
=...-£- ...._9- .__E.__.‘
ép(z) TT:'LJ. C—zd; 'n'iJ C—z'c
~iw i
V0 -a g (n) Vo o g (n)
=-?J in—zdn-—ﬂ—i in-—zdn (5)

+ P
\Y ® -
Y% %p(n)_gp(n)d
T in-2 in+z n
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To get some conditions from which to determine gi (n) we observe that
4>p(z) is the potential along the =z-axis in figure 3 gue to the charge
density cp(p) on the ground plane. The physics of the problem immediately
implies that d@p/dz vanishes for z=90 and that tbp(z) is real-valued
for real values of =z . For these two conditions to be satisfied it is

required that

g;(ro = - g (-n) = ~1g () (6)

To sum up, we have

¥(z) = ¢ (2) + @p(z)
Vb T g * ()
g,\n g.{n
_ o d d
='?L Lh+in~z+h—-in—z]dn ™

© -, FAERN
_ -V_O_ 5P\|w . gp(n) an
i Lin—z intz

and

B

1 ("
d(p,z) = —T;J &(z+ip cos o)dd

*
Vg g4(m) . g4 (n) .
2 A h+in~-z~1ip cos ¢ h—-in-z-4p cos ¢ n

V0 © i 1 1
T2, J gp(n) J in-z-1ip cosrb-—in-—z-ip cos & d¢ dn
V b *
o g4 (") 84{m
" 9

+
0 V(h+in—z)2+p2 \/(h—in—z)2+p2

12




. Vo r® 1 1
p—y 8p(n) > 2‘" . - dn
a \/(in-Z) +p '\/(-in-Z) +p
= ¢y(p,2) + ép(o,Z) (8)

The branches of the square roots in (8) are chosen so as to make their real
parts positive for large values of p and 2z . It can be shown that this
choice of branches for the square roots make their real parts positive for

all values of p and =z .

To obtain the desired integral representation for ¢(p,z) we only have
to make one more observation. The function ¢d(p,z) is the potential due
to the charge density Ud(p) on the disk. This fact immediately implies
that 3¢d/32 must vanish for z=h and o > a , from which one can show

that gd(n) has to be pureiy real, i.e.,

g1 (n) = g,(n) (9

With (9) at hand we arrive at the following desired integral representation
for &(p,z)

2V b
2(p,2) =—;°-J gq (M) Re - an
0 \/2;4'in-2)2 + oz‘
(10)
2Vo - 1
+TJ gp(n) Im - 5 dn
a (in=-2z) +p

2. FORMULATION OF AN INTEGRAL EQUATION

To formulate integral equations for gd(n) and gp(n) we invoke the

boundary conditions on the disk and the ground plane, namely that

13




$(p,z) = Vo , z=h , 0<p<hb (disk)
(11)
${p,z) =0 , z=0 , a<p<e (ground plane)

The boundary conditions (11) imply that gd(n) and gp(n) must satisfy

the following set of coupled integral equations:

ME

b o .
1 1
I g(n)RE{———}dn-*J g(n)Im{ }dn, 0<p<b
d P
0 Vo? - n? a Vo? - (n+ in) 2

(12)

o
i

b o
1 1 .
= J gd(n)Re{ } dn + j gp(n)Im{ }dn , a<p<w
0 Vo? - (n+ iy’ a Vol -’

By changing p to 1/p 1in the second equation in (12) and n to 1/n 1in
the secrnd integral in both equatisnc in (12) one obtains the following set

of integral equations:

7 ? 1/a 1
5=( gd(n) dn+f h_(n)Im pdn 0<p=<b
o ) A P V2.2 N2
p”-n np - (1+1ihn)
(13)
b 1 P 1
0= gd(n)Re dn + hp(n) ————dn, 0 <p <1l/a
2 2
0 1-0?(n+1r)> 0 p"-n
where

hp(n) = gp(lln) /n

The set of integral equations (13) is of the first kind and thus not suitable
for numerical solution. To obtain a set of Fredholm integral equations of the
second kind which are amenable to numerical solution and for which an asymptotic
solution can be found in some limiting cases we proceed as follows., First, we

cbserve that the Abel integral equation

14




p fl(n)
J ————dn = £,(p) (14)
0 2 2
p M
has the following solution (ref. 6)
n p £,(p)
2 4 2
£.(n) = =~ — ——— dp (15)
1 7 dn 5 5
0 -
n p

Second, we consider momentarily hp(n) to be known in the first equation
in (13) and gd(n) to be known in the second equation in (13). With the
aid of the solution (15) of (14) we can then transform the set of integral
equations (13) of the first kind into the following set of Fredholm integral

equations of the second kind:

1/a
gd(n) + f Kl(n,n')hp(n')dn' =1, 0<n<b

n

(16)
b
hp(n) + J Ky(n,n")gy(n')dn' =0, 0 <n<l/a
A )
where
n
K, (n,n') =24 —f— In 1 do
1 ™ dn 22 7 2 2
O Vp®-p n'p° - (1+ihn")
=l{ 1+nn' + 1-nn' }
T (14-nn')24-h2n’2 (l-nn’)24'h2n'2
and

Kz(n,n')

n
% gn f ’f—“‘Re{ - 'ﬂ}dp
2 2 2 2
0 N4 -p 1-p (n'+1ih)

R

1+nn' + 1-nn'
2.2 2 2. .22
(L+nn') " +h'n (1-nn") " +h™n

15




The set of coupled integral equations {16) can be reduced tc one single

integral equation for gd(n)

b
gd(n) - J K(n,n')gd(n')dn' =1, 0<n<b (17
]
where
1/a
X(n,n") = J K, (n,n")K, (n",n")dn"
0
Y [ (") + 20  'em)Pean’ ] ((a+n) +n’ )
w2 | L 2y [tn )2 #4021 2(n'-m) ((n'=n) 2 + 407 | M(a-m)? +h?
[ {ntn' )2*'2h2 + (n'~n)24-2h2 ] ((a+n ) 4-h2>
20 [ (ntn )2+ 6071 2(n'-n) [(n'-n)° + 4h7] (a-n")% +1n°
2. .2 r 22
[ 7+ hz 2] [ta“_l(n“ +‘2'h'+' aj‘)* can” (7 +'2h' - an)
{n-n ) + 4h (nin')" +4h

2 2 2 2
+ tan 1(2———ll——jEL)+ tan 101———EL——EE~)
ah ah

The function hp(n) is then readily obtained from the following integral

expression:

b
hp(n) = - L Kz(n,n')gd(n')dn' 0 <n<l/a (18)

The two equations (17) and (18) are the desired integral equations for
gd(n) and hp(n) . In the general case it is not possible to find a closed-
form solution of (17). One therefore has to resort to numerical means of
"solving" (17). This will be done in section V. Before going on to do so
we will, however, find asymptotic solutions of (17) for some limiting cases
in section IV. 1In section III we will see how the solution of {17) can be

used to find the capacitance between the disk and the ground plane. We will

16




also see in section III how the sclutions of (17) and (18) can be used to
find the dipole moment of the aperture and the effective height, equivalent

area, and equivalent volume of the disk simulator,

17



SECTION IIX

CHARACTERISTIC QUANTITIES OF SIMULATOR

In this section we will see how the solution of (17) and (18) can be
used to find the following characteristic quantities of the simulator:
(1) capacitance between the disk and the perforated ground plane, (2) the
dipole moment of the aperture, and (3) the simulator's effective height,

equivalent area, and equivalent volume,

1. CAPACITANCE BETWEEN DISK AND PERFORATED GROUND PLANE

To find the desired capacitance we only have to determine the total
charge Qd on the disk. The apprrach we use here to determine Qd follows
closely with that used by Love in reference 5. For that reason we observe from

{(8) that the potential ¢d(p,z) from the charges on the disk is given by

V (b 8d(n)

¢dlp,2} =0 A‘dn (19)

-b %h+in—z)2+pz

For large values of r = Vp2-+z2 , one has

@d(p,z) = Z;E;;'+ O(Y—Z) (20)

vwhere Qd is the total charge on the disk. Thus,

b gd(n)dn
Qd = 4EOVO Lim|r -

2ad BRSRVAIN (h+in)2 - 2z(h+in)
b

= 4e V, J g4(n)dn (21)
-b
b

= BEOVO Io gd(n)dﬂ

18




From (21) it follows immediately that the capacitance C between the disk and
the ground plane is given by

<{.O
o

b
= 8¢, J g;(n)dn (22)
0 0

Thus, once (17) is solved to yield gd(n) then the capacitance can be found

from a simple integral of this solution.

2. DIPOLE MOMENT OF APERTURE

To calculate the dipole moment of the circular aperture, we first observe
that it can be expressed in terms of the aperture potential ¢(p,0) = @d(p,O) +
¢p(p,0) in the following way (ref. 7):

]
I

€ J $(p,0)ds
(23)

a
2me [ p ¢(p,0)dp
0

Inserting the éxpression (8) for &(p,0) into (23) results in the Ebllowing

expression:

a b 1
p= 4e0V0 f pdp J gd(n)Re% }dn
x/2 2}
0 0 p + (h+in)

a ©
+ AeOVO J pdp J g_(n) —i dn
P 2 2
0 a n -p

b V52 A
= Asovo [ Re a”+ (h+1in) - h gd(n)dﬂ

0
+ bde V, J [n-Vnz-az]gp(n)dn
a

19




b A2 2
- 45°V° J Re g a + (h+1in) E— h gd(n)dn
0

1/a
+ he v j [1-v1—n2a2 :Ihp(n)/nzdn (24)

0

Therefore, the dipole moment can be calculated from (24) once gd(n) and hp(n)
are determined from (17) and (18).

3. SIMULATOR'S EFFECTIVE HEIGHT

The effective height of the simulator is defined from the problem depicted
in figure 4a, where a uniform static field Eo is applied to the disk-ground-
plane configuration. With the total charge on the disk being zero and its

potential being Vl the effective height heff is defined from the

relationship

vl = hefon (25)

Although heff s defined from a different problem than the cne that yields C
and p we will now see how the Lorentz reciprocity theorem can be used to

relate h and C . N

eff ? r

Consider first the problem of figure 4a. The potential él(p,z) must
satisfy the following conditions:

Ve, = 0 off disk and ground plane {26)

, on Sp (ground plane)
Vl , on Sd (disk)

¢, (p,2z) = e (27)
1 Eoz = Eor cos 8 , on S: (r= 024-22 +o oz >0)

-2 - A/ 2 ]
O0(r ) on 3 (r=VYp +z * =

s P ’

z < 0)

20




Figure 4. The Receiving Problem (a) and the Capacitance Problem (b)

Used in the Lorentz Reciprocity Theorem.
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Next, consider the problem of figure 4b. This is the problem considered
in section II, It is easy to see that the potential ¢(p,z) of this problem
satisfies the following conditions:

9°¢ =0 off disk and ground plane (28)

0, on S
P

vV , on 8§

0 d

(th4-p)cos 3]
b(p,z) = 5 , on S (29)
Zneor

p cos © , on S~
<

27¢e r2
o)

Yo now apply the Lorentz reciprocity theorem to the region V bounded by

Sd s Sp , and Si . This results in the following expression:

o
0

2 2
L @V ¢1— ®1V &)dV

- 96 - &_Y9)+n
= f ¢ Ql @1 $)+n 4S
s +s .+stys”
P d = o
v.Q
=14y (676, - & V)R dS
€ 1 1
o +
S:o
v.Q n/2 3E
174 o 2
= - e + ZFJ e (thﬂ-p)cos 8 sin 8 de
t] o]
V.0 {(Q.h+p)
= - 1d+ Qd P E (30)
E € o]
o )
22




d
Furthermore, we have used the fact that the discontinuity of V¢ across 3§

where n 1is the unit outward normal vector of the surface Sp+—S ﬁ-SZ%—S; .

d
is equal to s;lod . Thus, (30) results in the following expression for the

effective height:

- P . B
hogp = E h+Qd b+ op (31)

4. SIMULATOR'S EQUIVALENT AREA AND VOLUME

The equivalent area of the simulator is determined from the problem of
figure 5. In this problem, the disk and the ground plane are held at the
same potential (disk short circuited to ground plane). The equivalent area
Aeq is defined through the relationship (ref. 8):

Q2 = AquoEo (32)
Tc relate Aeq to the other charzacteristic quantities of the simulator we
use antenna theory. Define a port A,B where A is a point on the disk
and B i1is a point on the ground plane (figure 3). We then have the Thévenin

and Norton equivalent circuits of figure 6. In these circuits the parametfers

are defiped by

Yin = jwC
Voc = hefon (33)
1 = ijZ = jwA € E

sc eq 0 ©

But it is also well-known that

Isc - Yinvoc (34)

from which it follows that

Aeq = heffC/eo (35)

23
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figure 5

Figure 5. The Simulator Problem Defining the Equivalent Area.
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figure ©

Figure 6. The Low Frequehcy Thévenin and Norten Equivalent Circuits

of the Simulator.
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The equivalent volume Veq is given by (ref. 8):

2

veq = heffAeq - heffclso (36)

26




SECTION IV

SOME LIMITING CASES

In this section we will find asymptotic solutions of (17) and (18) in
some limiting cases., These solutions will then be used to find asymptotic

expressions for C , p , heff s Aeq , and Veq in certain limiting cases.

l. THE CASE h »>> a , h > b

In this case, the interaction between the disk and the ground plane is
weak. Consequently the solution for gd(n) is very close to the case of a

disk in free space. An asymptotic solution of (17) and (18) results in

the following expressiouns:

gy(n) = 1+ b/(vh) + 0(6%/n%) + 0(a’/n’) + O(ab/u’)
37
2, 2 2
hon) = -2—2 (1424 00?/m2) + oa®/n?) + o(ab/nd)
P LEBTFERUIRSRY why
TOnn
The solution to the problem of a disk in free space is given by gd(n) =1,
From (22), (24), (31), (35), (36) and (37), one obtains the following
asymptotic reprz2sentations:
C = 8€°b[1+-b/(ﬂh)]
_ 8V ab (1 + il_)
P = T3y hZ rh
3
v =8bh2(l b o4 28 )
eq wh 31Th3
a3
h .. =h (1 + )
eff 3nh3
b a3
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2, THE CASE b << a

In this case, the kernels Kl(n,n’) and Kz(n,n') in the set of

integral equations (16) can be approximated by the following expressions:

Kl(n,n') = %‘*——-%f—ff , for O<n<b, 0<n'<l/a
1+hn!
(39)
1 ~2 l 1
KZ‘(n’n)--x;———i—_Z_’ for O<n<1/a, 0 <n'<hb
1+hn

With these simplified expressions the following closed-form solution of (16)

is fnund:

H
"
st
]
N':;g
T
rt
)
o
]
et
Eaama ™
Ry
3]
)
o
3
S
—_
|
I—-l

(40)

hp(n)

©
1
= o
(3%}
N
Q
[a N
~~
el
p g

The solution {40) results in the following expressions for C , p , and

heff :
2b ( -1(h)+ ah -1
C=8bh ~ —— | tan — )
0 1T2h a azi_hz
-1
p = 4e bV |1 - ————2; (tan—l(.l-1->+ 2ah 2):! (41)
° T h a a“"+h
5\
x {(Va?+n? - n) +——[1 -%(1+3‘—2~) + Bt R
a
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We observe that the above results for C , p and heff reduce to those of
Case 1 when h >> a ., Furthermore, the expressions for C and A =h _.C/e
eq eff o)

reduce to those presented in reference 9 for the case where h=0 .,

3. THE CASE a=20

By putting a=0 in (17), one obtains the following integral equation
for g,(n):

=1 (42)

o [P Bg(mdn’

2 2
b (n-n'")" +4h

This is the same equation as that derived in reference 4 for two coaxial
disks of equal but opposite charge (or,equivalently, one charged disk above
a ground plane). This equation has been studied extensively in references &
and 5.

4, THE CASE h=0 , a - o

In this case, the kernels K(n,n') and Kz(n,n') in (17) and (18)

reduce to the frllowing expressions:

' =£_ ] a'*'ﬂ' _ a+n 1
K(n,n") 5 %n 2n<a—n') n 2n(a__n> 72
-2 1
Kplmym'y = 77
l-nn

These kernels are still too complicated to allow us to obtain analytic solutioms
for gd(n) and hp(n‘) . However, this case has been treated in reference 9,

and so it serves as a useful case for checking the results of the numerical

solution.
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SECTION V

NUMERICAL CALCULATIONS

In this section we will first "solve' (17) and (18) numerically, The

numerical solutions of gd(n) and hp(n) will then be used to find C , p ,
Ragr » Aoq » 204 Voo -

1. APPROXIMATION OF (17) BY A MATRIX EQUATION

The integral equation (17) can not be solved analytically for arbitrary
values of a , b, and h . One therefore has to use numerical means of
"solving" the equation. Since the kernel K{(n,n') is well behaved the
numerical procedures we use are straightforward. The trapezoidal rule

of evaluating the integral (17) leads us to the following matrix

equation:
b N

- = = { = 2
gq(ny) - jZO ajK(ni,nj)gd(nj) 1, i=0,1,2, .. .,N
where

1/2 j=0,N
a, = (44)
J 1 , otherwise
n. = ib/N

2 2

(ng 0% 2n (atn)?+n?](atn ) +07)

K(gnp) = 2 7 2" 7.2 77
AN EXCTEE BIICIE L IPRE S B U CEL DR IICER PRE L

(“j'“1)2+2h2 [(a+nj)2+h2}[(a-—ni)2+h2]

+ ¢n

Z(nj - ni){(nj —ni)2+4h2] {(a—nj)2+h2][(a+ni)2+h2]
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2 2
_ n, +h +an
+ h2 7+ h2 z}x[ta“ l( : ah '—i)
(nj-ni) +4h (n +ni) +4h

3

2
-1 \‘12.+1'12-ani -1 n§+h2+an. -1 n,+h2-—an,

and

1 a—,‘ni a-i-ni
K(n;,n.) = +
B 2'rr2 (a—ni)2+h2 (a+ni)2+h2

2 2 2

n,+h +an, n.+h2—an.

h 1 -1 i i -1 i i

+ + = )|tan ———— + tan —
2 2 h ah ah
ni+h

+

2n? 4 1° [(a+n )2+h2:]
i i
in

2 .2 7 .2
Zni(ni+h) (a-ni) +h

Once the function values gd(ni) have been found, the quantities hp(nj)

C , p are simply given by the following expressions:

b

N
hp(nJ'.) = -3 ZO “iKz(“J"’”i)gd(”i) , 3j=0,1,2, ...,M
i=

(@]
[

o N

N
8¢ b z
i=0

(45)

N —
2 L2
jzo aj [Re {% + (h+ mj) } - h] gd(nj)

M 5
+4e v L 1« [1- 1-n!%a? ]h (n!)/n!?
o o aM h p 33

3=0 3
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where

' N |

l-l"njni 1 njni
72t P

n ng

1 < L
Ky(ngany) = 1[{ 7 .2

2 2
+n! + !
¢! njni) +h ni) h nj

2. ACCURACY OF NUMERICAL SOLUTION

Equations (44) and (45) contain the two integers M and N . The
integer N determines the size of the matrix in (44) and thus the accuracy
with which we determine gd(n) . To determine this accuracy we solve (44)
for two different values of N , namely N=N., and N=2N. . For each of

1 1
these cases we calculate the norm of gd(n) , defined by

el =<ie 3 le,mol?
Bally T L) 1B (46)

The value of Nl is then determined such that

”gduznl - HgdllNl < elle, ”N]_ (47

It was found that 2Nl==64 always result in e < leO—3 (except when h/a
and a/b are both very small). We considered this accuracy sufficient for
aour purposes and so (44) was solved using the value N=64 . Similarly, it

was found that M=64 results in sufficiently accurate values for hp(n) .

To gain some more confidence in the numerical solution we consider the
special case where h=0 and a > b . This case has been treated in detail
in reference 9. In table 1 we compare the capacitance and equivalent area
as obtained from the numerical calculations of this report and those of

reference 9. We consider the agreement very good.
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Table 1

COMPARISONS OF THE CAPACITANCE AND EQUIVALENT AREA
BETWEEN THE PRESENT RESULTS AND THOSE OF LATHAM AND LEE GIVEN IN REFERENCE 5

b/a C/(8€ob) Aeq/(nab)
Latham and Lee Present Results Latham and Lee Present Results

0.1 1.04234 1.04234 0.842066 0.841611
0.2 1.08908 1.08908 0.870903 0.870418
0.3 1.14172 1.14172 0.897127 0.896602
0.4 1.20244 1.20244 0.920746 0.920162
0.5 1.27463 1.27465 0.941726 . 0.941070
0.6 1.36404 1.36407 0.959985 7'6.259222
0.7 1.48155 1.48164 0.975367 v;0.974438
0.8 1.65203 1.65231 0,987607 ;0.986375
0.9 1.95649 1.95800 0.996221 ; ;0.955240
3. NUMERICAL RESULTS FOR C , p , heff , Aeq , AND Veq

The results of the numerical calculations are shown in figures 7 through 12,
All results for C , heff , Aeq , and Veq presented in figures 8, 10, 11,
and 12 have been normalized with respect to the values of the corresponding
quantity in the case where the aperture is absent (a=0). Figure 7 shows the
variation of C with h/b when a=0 . 1In this graph we have normalized ¢
with respect to (i) the capacitance of one disk in free space, 8eob , and
(1i) the limiting value of the capacitance between a disk and a ground plane
when h << b , this value being eowbzlh . The broken lines in figure 7
correspond to the asymptotic results (38). Furtheremore, heff==h2 and p=0
=hC/e_ and Veq=h A _=h C/e0

Aeq effeq
when a=0 and so both Aeq and Veq are proportional to C in this casec.

in the case where a=0 . Thus,
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Figure 7. Capacitance, Equivalent Area, and Equivalent Volume of a

Circular Disk Above a Ground Plane. The Broken Curves

Correspond to the Asymptotic Results of Equation {38).
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Figure 8.
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Variation of Simulator Capacitance with Position of Disk and
Size of Aperture. The Values are Normalized with Respect to
the Capacitance in the Absence of the Aperture. The Broken

Curves Correspond to the Asymptotic Results of Equation (38).
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Figure 9. Vardiation of the Aperture Dipole Moment with Position and Size of Simulator Disk,

(a) The Values are Normalized with Respect to the Dipole Moment of the Aperture
when Subject to a Uniform, Normal Electric Fleld Strength V_/h.

(b) The Values are Normalized with Respect to the Limiting Valuevof the Dipole
Moment as h/a << 1 and b/a >> 1 .

The Broken Curves Correspond to the Asymptotic Results of Equation (41).




@

Figure 10.

Variation of Simulator Effective Height with Position of

Disk and Size of Aperture. The Broken Curves Correspond

to the Asymptotic Results of Equation (4.
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Figure 11.

Variation of Simulator Equivalent Area with Position of
Disk and Size of Aperture. The Values are Normalized with
Respect to the Equivalent Area in the Absence of the Aperture.

The Broken Curves Correspond to the Asymptotic Results of
Equation (41).
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Veq /Veq (O

Figure 12. Variation of Simulator Equivalent Volume with Position of Disk
and Size of Aperture. The Values are Normalized with Respect
to the Equivalent Volume in the Absence of the Aperture. The

Broken Curves Correspond to the Asymptotic Results of Equation (41).
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The variation of the capacitance between the disk and the ground plane
as the hole size varies is shown in figure 8 for various separations between
the disk and the ground plane. The broken curves in figure 8 correspond to
the asymptotic results (41).

Figures 9a and 9b display the variation of the aperture dipole moment
p with respect to b/a and h/a . In figure 9a we have normalized p with
respect to (250a3/3)(vo/h) which is the dipole moment of a circular hole
in an infinite ground plane subject to a uniform, normal electric field of
strength Vo/h . The results of figure 9a show that for fixed values of
Vo/h then the interaction between the simulator and the test object decreases
the excitation of the aperture., These results also show that the interaction
only decreases the dipole moment with approximately 5% when h/a=1 and
b/a > 2 . The simulator-aperture interaction is stronger for h/a <1
thus decreasing the dipole moment even further. Figure 9b shows the

. . : 2
dipole moment normalized with respect to e ma Vo .

The effective height heff noruzlized with respect to . 1is shown
in figure 10. The broken curves represent the asymptotic results (41).
We observe from figure 10 that the results (41) are valid within 10% for
h/b > 0.5 and a/b > 1.5 .

The simulator's equivalent area and volume are graphed in figures 11
and 12 versus a/b for various values of h/b . The broken curves represent

the asymptotic results (41).
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