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— SECTION I

INTRODUCTION

A fullfledged test of the electromagnetic pulse (El.?)hardness of

military systems such as the E-4, E-3A, EC-135 or the Minuteman in a large

EMP simulator is a very time consuming and costly procedure. These tests are,

however, necessary to find all the ways through which electromagnetic energy

can penetrate into the system. Once the various ports of entry (POE’s) of

electromagnetic (EM) energy have been found, means of eliminating them can

be deviced. Some of the devices used in eliminating the POE’s (usually

referred to as hardening fixes) may degrade during the life span of the

system. This in turn implies that a presumably “fiw hard” system may not

be as hard as initially intended. For reasons cited above, it is important

to have simple, inexpensive ways (that can be used in the field) of testing

the E3fPhardness of a particular system.

One important type of POE on aircraft is an aperture. Apertures can be

either hatched ones (occuring around various doors, figure la) or simple ones

such as windows (figure lb). The hatched apertures can be electromagnetically

sealed by covering them with a conducting gasket (figure lc). The EMT energy

that penetrates through windows can be considerably diminished by placing a

mesh of conducting wires over the window (figure id).

Most apertures on aircraft are electrically small implying that the

electric and magnetic field penetrations can be separated and simulated incle-

pcndently. In this report we will limit ourselves to the simulation of

electric-field penetration into an aperture. The magnetic-field penetration

will be left to a future effort.

One way of simulating the electric-field penetration through an aperture

is shown in figure 2, where a disk is placed above the aperture. Since we

are considering a quasi-electrostatic situation, the time history of the

simulated aperture field is proportional to the disk voltage V(t) . This

time history should of course equal the time history of the charge density

on the aircraft at the location of the aperture when it is covered (short

circuited) and the aircraft is subject to an incident EMP. T%US, the

5
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figure Ic, hatched aperture
with conducting gasket

figure Id, window with a
mesh of conducting wires

Figure 1. Common Apertures in Aircraft.
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generatorshown in figure 2 must be designed so that the voltage V has the

required time history. To do that it is necessary to know the capacitance C

between the simulator disk and the aircraft in the presence of the aperture.

We will determine this capacitance in the present report for a particular

simulator-aperture geometry.

The interaction between the disk (simulator) and the aperture (test

object) implies that the s~mulated field distribution in the aperture is

different from the actual EMl?-inducedone. As a measure of this interaction

we use the normalized dipole moment (or polarizability) of the aperture.

Consequently, we determine the polarizability of the aperture both in the

presence and in the absence of the disk. The aperture dipole moment is

also proportional to the excitation of the aperture (e.g. the field strength

at the aperture’s midpoint). The simulator’s effective height, equivalent

area, and equivalent volume are also considered.

To obtain a problem

aperture is circular and

with the aperture. This

integral equation of the

that is amenable to analysis we assume that the

that the simulator disk is also circul?r ZP4 coaxial

problem is reduced to the solution of a Fredholm

second kind by using Whittaker’s solution of Laplace!s

equation for rotationally symmetric objects. The integral equation is solved

analytically in some limi~ing cases and numerically in the general case. The

results of this veport can be used for noncircular apertures and disks provided

chat the respec~ive areas are equated.

It should be pointed out that the simulator discussed in this report is

of the FINES type. The general aspects of the FINES-type simulator are

discussed in references 1,2, and 10.

.
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— SECTION II

FORMULATION OF THE

Consider the problem of figure 3 where

potential V. versus the perforated ground

PROBLEM

a circular disk is kept at the

plane. The aperture in the

ground plane is circular and coaxial with the disk. Based on Whittaker’s

solution of Laplace’s equation (ref. 3) we will formulate in this section

an integral equation for the problem at hand. The solution of this

integral equation will yield all the desired information sought, i.e., the

capacitance between the simulator disk and the ground plane as well as the

simulator’s effective height, equivalent area, and equivalent volume.

1. AN INTEGRAL EXPRESSION FOR THE ELECTROSTATIC POTENTIAL

From Whittaker’s solution of the rotationally symmetric potential

problem (refs. 3, 4 and 5), the off-axis potential $(p,z) can be expressed

in terus of the on-axis potential 4(0,z) in the following manner:

\

11
O(p,z) =+ O(O,Z + ip cos $)d$

o
(,1)

The on-axis potential is simply given by

\

b od(p’)p’dp’

/

m $(p’)p’dp’
0(0,2) =*

~O~+~a%-
(2)

= @d(z) + 4P(Z)

where ad(p’) and Op(p’) are, respectively, the charge distribution on

the disk and the ground plane. The expression (2) for @d(z) and @p(z)

has been derived from Coulomb’s law under the assumption that z is a

real-valued variable. This expression can, hovever, be analytically continu?d

9
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Figure 3S An Electric-Field Simulator Consisting of a Circular Disk

Located Above a Circular Aperture in a Ground Plane.
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.— to complex values of z . To determine the analytical properties of @(O,z)

in the complex z-plane we study @d(z) and 4P(z) ‘separately.

From the integral expression for @d(z) , it is observed that this

function has a branch

can be represented in

cut between z=h+ib and z =h-ib. Thus, @d(Z)

the following manner by using the Cauchy theorem:

v

I
h+ib fd(C.)

od(z) = -~ — d~
G -z

h-ib

(3)

-b

Since Od(z) is a real-valued function for real values of z , gal(n) must

satisfy the following condition:

gd (-n) = g;(n) (4)

where the asterj;k denotes complex conjugation.

The function @p(z) has two branch cuts: one between . im and - ia

and the other bucween +ia and +i= . Thus, from Cauchy’s integration

theorem we have

(5)

v-
0

f[

g;(n) b’;(-n)=.—
11 iq-z- ill+z1dqa

11



To get some conditionsfrom which co determine g~(~) we observe that

4P(z) is the potentialalong the z-axis in figure,3due to the charge

density UP(Q) on the ground plane. The physics of the problem immediately

implies that d4P/dz vanishes for z= O and that QP(z) is real-valued

for real values of z . For these two conditions to be satisfied it is

required that

g;(n)=- 8;(+ = -igp(rl)

To sum up, we have

0(z) = od{z) +@P(z)

vOb

H

gal(n) + g:(n)
~-—

IT h+i~-z 1h.~n-z‘n0

(6)

(7)

V. ~ ‘ “J[- g(n)

1

~++ dn_—
ni

a

and.*,

\

T
4{p,z) =+ $(z+ipcos $)d$

o

VOLHTH[ gd (~) g: (n)
. -—

h+in-z-ipcos$+ 1d~ dn
2

T
h-iq-z-i.pcos.$

00

V. b

1[

gd(n) g;(n)
z—

IT + 1dq

0 ~(h+iv-z)2 +P2 ti(h-in-z)2 +p2

12
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v’=
+--Q

~ [~

1 1
gp(ll)

-1 “’1dq
ni

a (iq-z)z +pz -irl-z)2 +p2

(8)

The branches of the square roots in (8) are chosen so as to make their real

parts positive for large values of P and z . It can be shown that this

choice of branches for the square roots make their real parts positive for

all values of p and z .

To obtain the desired integral representation for 13(P,z) we only have

to make one more observation. The function $d(p,z) is tilepotential due

to the charge density crd(p) on the disk. This fact inunediatelyimplies

that a@d/az must vanish for z=h and p > a , from which one can show

that gal(n) has to be pureiy real, i.e.,

E@) = gal(n)

With (9) at hand we arrive at the followi

for O(p,z) :

2VOb
o(p,z) =—

n J
gal(n)Re

o

(9)

g desired integral representation

1
3

~(h+iq-z)z + p2

2V “a
++

I

Id I

1
.gP(n)Im dn

a (in-z)2 + p2

(1.0)

2. FORMULATION OF AN INTEGRAL EQUATION

To formulate integral equations for gd(ri) and gp(n) we invoke the

boundary conditions on the disk and the ground plane, namely that

13



O(p,z) = V. , Z=h , Ocpcb (disk)”

(11)

O(p,z) = o , Z=o , a<p<w (ground plane)

The boundary conditions (11) imply that gal(n) and gp(n) must satisfY

the following set of coupled integral equations:

dn , ()<p<b

(12)

rm

By changing p to l/p in the second equation in (12) and ~ to l/rI in

~b~ secnn~ integral in both equ~c~c:~ L: (12) one obtains the foll;ziag set

of integral equations:

(P \

l/a
n—.
2

0 ‘d(”) &dn+o ‘p(n)’”

I
b

0= gd(n)Re
o {d 1 \l P

d~ +

l-p2(Il+iki)2 o

{

1 ‘1dn , O<p<b

14$2- (l+ihn)2

(13)

‘p(n) &d”’ ‘<p<”a

where

hp(n) = gp(lh)h

The set of integral equations (13) is of the first kind and thus not suitable

for numerical solution. To obtain a se~ of Fredholm integral equations of the

second kind which are amenable to numerical solution and for which an asymptotic

solution can be found in some limiting cases we proceed as follows. First, we

observe that the Abel integral equation

14
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has the following solution (ref. 6)

1
n P f2(P)

fl(?l)= ;% dP

O-

Second, we consider momentarily hp(q) to be known in

in (13) and gd(~) to be known in the second equation

aid of the solution (15) of (14)

equations (13) of the first kind

equations of the second kind:

(l/a

we can then transform

(14)

(15)

the first equation

in (13). With the

the set of integral

into the following set of Fredholm integral

where

gd(d + Jn 5 (wn’)hp(n’hh’ = 1 , O<~<b

\

b
bp(q) + K2(q,n’)gd(r#)dn’ = O > 0 < rI< l/a

o

~

2d n
K1(n,TI’)‘;=

P Im

Id

1

1}

do

O- ,2 2
nP -(l+ ih~’)2

1

{

1+~1-1’=— + l-rlrl’

T (l+~#)2+h2n’2 (1-+)2+h2n’2 }

and

1

{

1+~~’ l-qll’.—
T

+

(l+nq’)z+hzqz (1-~~’)2+h2q2 }

15
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The set of coupled integral equations (16) can be reduced to one single

integralequation for gal(n)

I
b

E@ - K(n,n’)gd(n’)dn’= I , O<~<b

o

where

(17)

~

I/a
K(n,n’) = ~(n,#)K2(~’’,q’)dn”

o

1 1[(r@n’)2+2h2 (r$-~)2+2h2

](
~n (a+n)2+h2=—

2
IT 2(q+q’)[(q+q’)2+4h2j 2(#-q)[ (rf-q)2+4h2] (a-n)2+h2 )

+

[

(q+n’)2+2h2 + {il’-n)2+2h2
](

~n (a+n’)2+h2

2(~+~’)((q+~’)2+4h2] 2(~’-n)((n’-@2+4h21 (a-q’)2+h2 )

[

h-’r -i-
(~-~’)2+4h2

!2 2] [ta~’k2’i+an}ta~’(J’f -a’)
(@tI’) +4h

o

(
+ tan-l “2+~~+an’)+ tan-’~’’+~a”a”’

]~

The function hp(n) is then readily obtained from the following integral

expression:

The two equations (17) and (18) are the desired integral equations for

%(n) and hp(q) . In the general case it is not possible to find a closed-

form solution of (17). One thereforehas to resort to numericalmeans of

“solving” (17). This will be done in section V. Before going on to do so

we will, however, find asymptoticsolutions OF (17) for some Ii.mitingcaSeS

in section IV. In section 111 we will see how the solution of (17) can be

used to find the capacitance between the disk and the ground plane. we will

16
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also see in section 111 how the solutions of (17) and (18)”can be used to

find the dipole moment of the aperture and the effective height, equivalent

area, and equivalent volume of the disk simulator.



SECTION 111

CHARACTERISTICQUANTITIESOF SIMULATOR

In this sectionwe will see how the solution of (17) and (18) can be

used co find the followingcharacteristicquantitiesof the simulator:

(1) capacitance between the disk and the perforated ground plane, (2) the

dipole moment of the aperture, and (3) the simulator’s effective height,

equivalent area, and equivalent volume.

1. CAPACITANCE BETWEEN DISK AND PERFORATED GROUND PLANE

To find the desired capacitance we only have to determine the total

charge Qd on the disk. The approach we use here to determine Qd follows

closely with that used by Love in reference 5. For that reason we observe

(8) that the potential @d(P,Z) from the charges on the disk is given by

V. b

1

gd(1-l)
@di9,zj =7 dn

-b ~(h+iq-z)z+pz

For large values of r = -&? , one has

Qd
+d(P,z) = ~+ 0(r-2)

o

where Qd is the total charge on the disk. Thus ,

[~

/

b gd(n)dn
Qd = 4COV0 Lim r

r- 2
-b rz+(h+ in) -2z(h+ in)

1

from

(19)

(20)

(21)

18
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— From (21) it follows immediately that

the ground plane is given by

Q.

the capacitance C between the disk and

(b
C vu 8C=—x

o J
gd(n)dn (22)

o 0

Thus, once (17) is solved to yield gal(n) then the capacitance can be found

from a simple integral of this solution.

2. DIPOLE MOMENT OF APERTURE

To calculate the dipole moment of the circular aperture, we first observe

that it can be expressed in terms of the aperture potential O(p,o)

@p(P,0) in the following way (ref. 7):

p=c J@(p,O)dS
o

[

a
= Znco p @(p,O)dp

o

= f$d(o,o) +

(23)

Inserting the expression (8) for
,.

o(P,O) into (23) results in the following

expression:

a

II

b

P = 4EOV0 pdp

o 0 { }‘d(’)Re * ‘“

a

\I

m

+ 4COV0 pdp

o a
‘p(’) & ‘n

b
= 4EOV0

mi
Re a2+ (h+i~) 2

‘} 1
- h gd(nkh

o

19



b

I[li
a2i-(h+i~)

2=4EV Re
00 ‘1 ]

- h gd(n)dn

o

+ ‘Eovora[’-mlhJn)’n2dn
(24)

Therefore, the dipole moment can be calculated from (24) once gal(n) and I]P(n)

are determinedfrom (17) and (18).

3. SIMULATOR’S EFFECTIVE HEIGHT

The effective height of the simulator is defined from the problem depicted

in figure 4a, where a uniform static field E. is applied to the disk-ground-

plane configuration. With the total charge on the disk being zero and its

potential being
‘1

the effective height h “
eff ‘s

relationship

VI = heffEo

Although heff ;S defined from a diEferent problem

and p we will now see how the Lorentz reciprocity

relate heff ‘
r and C .

defined from the

(25)

than the one that yields C

theorem can be used to

\

Consider first the problem of figure 4a. The potential Ql(p,z) must

satisfy the following conditions:

V%l = o off disk and ground plane (26)

01(0,2) =

O,onS (ground plane)

v
l’on

s: (disk)

Eoz = Eor cos 0 , on S~ (r= 4-’+., .>,) ’27)

O(r-2) , on S= (r = ~+., z.o)

20
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Figure 4. The Receiving Problem (a) and the Capacitance Problem (b)

Used in the Lorentz Reciprocity Theorem.
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Next, consider the problem of figure 4b. This is the problem considered

in section 11. It is easy to see that the potential $(P,z) of

satisfies the followingconditions:

V2L$= o off disk and ground plane

(
O,onS

P
V. , on Sd

\

(hQd+P)cOs B on S+
O(p,z) =

2~Eor2 ‘ -

::L now apply the Lorentz reciprocitytheorem to Lhe region
+

‘d ‘ ‘p ‘ and ‘~ “ This results in che followingexpression:

VIQd

I

n/2 3E0
=-—+2TE ~ (Qdh+p)cos20 sin 0 dO

o 0 0

Vlqd (Qdh+ p)
=- —+ E.

E c
0 0

this problem

(28)

(29)

V bounded by

(30)

22
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where ; is the unit outward normal vector of the surface Sp+Sd+S~+S- Cl)’

Furthermore, we have used the fact that the discontinuity of V$ across
‘d

is equal to c~lad . Thus, (30) results in the following expression for the

effective height:

h
‘1

eff=%=

4. SIMULATOR’S EQIJIVA.LEUTAREA AND

h+++++
d o

VOLUME

(31)

The equivalent area of the simulator is determined from the problem of

figure 5. In this problem, the disk and the ground plane are held at the

same potential (disk short circuited to ground plane). The equivalent area

A is defined through the relationship (ref. 8):
eq

Q2 = AeqcoEo (32)

‘Fzrelate A to the other characteristic quantities of the simulator we
eq

usc antenna theory. Define a port A,B where A is a point on the disk

and B is a point on the ground plane (figure 5). We then have the Th6venin

and No;ton equivalent circuits of figure 6. In these circuits the parameters

are defined by

Y
in

= juC

v . h
Oc effEo

I
Sc

= jwQ2 ‘jwAcE
eqoo

But it is also well-known that

I = Yinvoc
Sc

from which it follows that

(33)

(34)

A =h effclco
eq

(35)
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figure 5

Figure 5. The Simulator Problem Defining the Equivalent Area.
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Figure 6. The Low Frequency Th&venin and Nortcn Equivalent Circuits

of the Simulator.
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The equivalentvolume V is given by (ref. 8):
eq

V =h = h~ffC/co
eq effAeq

26
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— SECTION IV

SOME LIMITING CASES

In this section we will find asymptotic solutions of (17) and (18) in

some limiting cases. These solutions

expressions for C , P 7 ~eff ~ *eq ‘

1. THE CASE h >> a , h>>b

will then be used to find asymptotic

and V in certain limiting cases.
eq

In this case, the interaction between the disk and the ground plane is

weak. Consequently the solution for gd(~) is very close to the case of a

disk in free space. An asymptotic solution of (17) and (18) results in

the following expressions:

gal(n)= l+b/(nh) -t-0(b2/h2) + 0(a2/h2) + O(ab/h2)

hp(~) = -$
b

(1 + #+ 0(b2/h2) + 0(~/h2) + 0(ab/h2)
l+h2r12 ‘

The solution to the problem of a disk in free space is given by gal(q)= 1 .

From (22), (24), (31), (35), (36) and (37), one obtains the following

asymptotic rep?zsentations:

c = 8cobtl+b/(mh)l

P= ~+(,+g)

(

3
v =8bh2 l+$+@--
eq

3rh3
)

(

3
h =h 1+~
eff

3nh3 )

(

3
A =8bh 1+
eq

$+L
3nh3 )

27
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2. THE CASE b -=

In this case,

integral equations

a

the kernels Kl(rI,n’) and

(16) can be approximatedby

Kl(n,n’) = ;
1
2,2’

for Ocq
l+h I-I

K2(n,11’)=:
1

for O<q

l+h2~2 ‘

●
✎

KJn,n’) in the set of

the following expressions:

<b, f)< ~$ c I/a

(39)

With these simplified expressions the following closed-form solution of (16)

is f~und:

@-1) =[ , -~(m-l(!y/:h2)]”’

tip(n) s -: b2* gal(n)
I+hq

The solution (40) results in the following expressions for C , p , and

x

28
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— We observe that the above results for C , p and heff reduce to those of

Case 1 when h >> a . Furthermore, the expressions for C and A =h
eq effC/’O

reduce to those presented in reference 9 for the case where h=O .

3. THE CASE a=O

By putting a=O in (17), one obtains the following integral equation

for gal(n):

\

b gd(n)dn’

@l) -$ = 1 (42)
_~ (r-l-~’)2+4h2

Tl\isis the same equation as that derived in reference 4 for two coaxial

disks of equal but opposite charge (or,equivalently, one charged disk above

a ground plane). This equation has been studied extensively in references 4

and 5.

4. THE CASE h=O , a~~

In this case, the kernels K(q,q’) and K2(q,~’) in (17) and (18)

reduce to the f?llowing expressions:

(43)

K2(n,TP) ‘: 1
~ ~2n,2

These kernels are still too complicated to allow us to obtain analytic solutions

for gal(n) and hp(n’) . However, this case has been treated in reference 9,

and so it serves as a useful case for checking the results of the numerical

solution.
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SECTION V

NUMERICAL CALCULATIONS

e
.

In this section we will first “solve” (17)

numerical solutions of gd(~) and hp(n) will

and (18) numerically. The

then be used to find C , p ,

h A
eff ‘ eq ‘

and V
eq -

1. APPROXIMATION OF (17) BY A MATRIX EQUATION

The integral equation (17) can not be solved analytically for arbitrary

values of a , b , and h . One therefore has to use numerical means of

“solving” the equation. Since the kernel K(~,n’) is well behaved the

numerical procedures we use are straightforward. ‘Tnetrapezoidal rule

of evaluating the integral (17) leads us to the following matrix

equation:

b ~ ajK(vi,nj)gd~~j) = ~ ,@?i) - ~ i= O, 1, ?, . . . , N

j=o

where

I

1/2 , -j=o,N
a=
jl

3 otherwise

ni = ib/N

(44)

(ni+nj)2+2h2

(

[(a+ qi)2+h2] [(ai-rl.)2+h2]
K(ni,nj) = ~ { I.rl

m 2(qf+qj) [(qi+~j)2+4h2~ [(a- ~i)2+h2J [(a- ~j)2+h2~
‘)

(n. -~i)2+2h2

(’

[(a+n, )2+h2)((a-ni)2+h21
+ P,ll

2(11j -ni)[(nj -qi)2+4h21 [(a- nj)2+h21[ (a+ni)2+h2J
)
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[

h h 1[ (-1
~~+hz+a~i

+ + x tan

(nj 2 + 4h2
)

(nj-i-@2+4h2
ah

- rli)

(_l n~+h2-ari
+ tan

ah ‘)+ ‘an-’( ‘;+~~anj) + ‘an-’(n;+{h-a” ]~

for ni + qj

and

1

[[

a--n. a+n

K(ni,ni) = —
1

+
i

2?T2 (a-qi)2-t-h2 (a+ni)2+h2 1

( h 1
)[ (

-1
n~+h2 + ani

)

-1
(

~~+h2 - aqi
+

+ K can
+ tan

q;+h2 ah ah )]

2Q; + h2

[ II

(a+ni)2+h2 “
+ kn

2~i(q; +h2) (a-~i)2+h2

Once the function values gd(ni) have been found, the quantities hp(nj) .

c 9P are simply given by the following expressions:

hP(m;) = -; f aiK2(n~>Qi)gd(ni)> j=0,1,2, . . ..M
‘=0

N
c = 8C0 ; 1 aig~(’li)

‘=0

P = 4COV0 ; [ {~f aj Re
2

a2+ (h+i~j)
‘} 1-hgd(~j)

j=o

+ 4COV0 +
[ 1~cijl-mhP(n;)/n:2

j=o J J

(45)
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where

{

l+r)!rl l-n’?li

K2(~;j~i) = ~
Ji

+
2 ,2

(1+ @)2 + Ilzn;z ‘1- ‘Jni)2+h ‘j I

2. ACCURACY OF NUMERICAL SOLUTION

Equations (44) and (45) contain the two integers M and N . The

integer N determines the size of the matrix in (44) and thus the accuracy

with which we determine gal(n) ●
To determine this accuracy we solve (44)

for two different values of N , namely N=Nl and N=2N
1“

For each of

these cases we calculate the norm of gd(~) , defined by

The value of N1 is then determined such that

I
Iigdii - bdi] < ‘iigdll

2N1
‘1 ‘1

(46)

(47)

It was found that 2N1=64 always result in c c 5x10 ‘3 (except when h/a

and

our

wa3

a/b are both very small). We considered this accuracy sufficient for

purposes an$.so (44) was solved using the value N=64 . Similarly, it

found that M=64 results in sufficiently accurate values for hp(q) .

To gain some more confidence in the numerical solution we consider the

special case where h=O and a>b. This case has been

in reference 9. In table 1 we compare the capacitance and

as obtained from the numerical calculations of this report

reference 9. We consider the agreement very good.

treated in detail

equivalent area

and those of

s
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BETWEEN THE

Table 1

COMPARISONS OF THE CAPACITANCE AND EQUIVALENT AREA

PRESENT RESULTS AND THOSE OF LATHAM AND LEE GIVEN IN REFERENCE 5

bla

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Latham and Lee

1.04234

1.08908

1.14172

1.20244

1.27463

1.36404

1.48155

1.65203

1.95649

Present Results

1.04234

1,08908

1.14172

1.20244

1.27465

1.36407

1.48164

1.65231

1.95800

Aea/(mab)
.

Latham and Lee

0.842066

0.870903

0,897127

0.920746

0.941726

0.959985

0.975367

0.987607

0.996221

Present Results

0.841611

0.870418

0.896602

0.920162

0.941070

.0.959222

0.~74438

‘0.986375

,0.995240;. I. I
.,

3. A’UMERICAL RESULTS FOR C , p ~ heff J Aeq ~ ‘ND Veq

The results of the numerical calculations are shown in figures 7 through 12,

All results for C , h A and V
eff ‘ eq ‘ eq

presented in figures 8, 10, 11,

and 12 have been normalized with respect to the values of the corresponding

quantity in the case where the aperture is absent (a=O). Figure 7 shows the

variation of C with h/b when a=O . In this graph we have normalized, C

with respect to (i) the capacitance of one disk in free space, 8~ob , and

(ii) the limiting value of the capacitance between a disk and a ground plane

when h << b , this value being Eonb2/h . The broken lines in figure 7

correspond to the asymptotic results (38). Furthermore, heff=h and p=O

in tl~ecase where a=O . Thus, Aeq=hC/co and Veq=h = hzC/ceffAeq o
when a=O and so both A and V are proportional to

eq eq C in this case.
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Figure 7. Capacitance, Equivalent Area, and Equivalent Volume of a

Circular Disk Above a Ground Plane. The Broken Curves

Correspond to the Asymptotic Results of Equation (38).
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Figure 8. Variation of Simulator Capacitance with Position of Disk and

Size of Aperture. The Values are Normalized with Respect to

the Capacitance in the Absence of the Aperture. The Broken

Curves Correspond to the Asymptotic Results of Equation (38).
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Figure 9. Variatton of the Aperture Dipole Moment with Position and Size of Simulator Disk.

(a) The Values are Normalized with Respect to the Dipole Moment of the Aperture

when Subject to a Uniform, Normal Electric Field Strength Vo/h.

(b) The Values are Normalized with Respect to the LLmiting Value of the Dipole

Moment as hfa c< 1 and bja >> 1 .

The BrolcenCurves Correspond to the Asymptotic Results of Equation (41).
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Figure 10. Variation of Simulator Effective Height with Position of

Disk and Size of Aperture. The Broken Curves Correspond

to the AsymptoticResults of Equation (41).
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alb

Figure 11. Variation of Stmulator Equivalent Area with Position of

Disk and Size of Aperture. The Values are Normalized with

Respect to the Equivalent Area in the Absence of the Aperture.

The Broken Curves Correspond to the Asymptotic Results of

Equation (41).
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Figure 12. Variation of Simulator Equivalent Volume with Position of Disk

and Size of Aperture. The Values are Normalized with Respect

to the Equivalent Volume in the Absence of the Aperture, Tl}e

Broken Curves Correspond to the Asymptotic Results Of Equation (61),
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The variation of the capacitancebetween the disk and the ground plane

as the hole size varies is shown in ftgure 8 for various separationsbetween “

the disk and the ground plane. The broken curves in figure 8 correspond to

the asymptoticresults (41).

Figures 9a and 9b display the variation of the aperture dipole moment

p with respect to bla and h/a . In figure 9a we have normalized p with

respect to (2coa3/3)(Vo/h) which is the dipole moment of a circularhole

in an infinite ground plane subject to a uniform,normal electric field of

strength Vo/h . The results of figure 9a show that for fixed values of

Vo/h then the interaction between the simulator and the test object decreases

the excitation of the aperture. These results also show that the interaction

only decreases the dipole moment with approximately 5% when hfa=l and

b/a>2. The simulator-aperture interaction is stronger for h/a < 1

thus decreasing the dipole moment even further. Figure 9b shows the

dipole moment normalized with respect to cowa2Vo .

The effective hei.ghL

in figure 10. The broken

We observe from figure 10

h/b > 0.5 and a/b > 1.5

h nor~zlized with respect to L is shown
eff

curves represent the asymptotic results (41).

that the results (41) are valid within 10% for

.

The simulator’s equivalent

and 12 versus alb for various

the asymptotic results (41).

area and volume are graphed in figures 11

values of h/b . The broken curves represent

●

I
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