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Abstract

Performance parameters assbciatéd with the FINES (Finite

Intermediate Nuclear EMP Simulator) type of small simulator are

studied in detail. FINES is a type of simulator which is
intended to illuminate electrically small objects (such as

antennas) or apertures on conducting surfaces by means of a
locally placed simulator which produces the desired local surface
current and/or charge densities. In general, there are four

basic designing factors considered in this note: the response

sensitivity of the simulated field to the input current or volt-

age, the uniformity of the simulated fields, the simmlator’'s

efficiency, and the simulator/test-object interaction; these can
Examples
in the use of the performance parameters to quantify some impor-

be used to characterize the performance of the FINES.

tant geometries pertinent to FINES published in the literature
are given in two parts. First, for the canonical problems of

unperturbed fields (i.e., simulators with all penetration being

short-circuited and objects removed), one can define
field deviation as the deviation of the field within
working volume from the field measured at the center
ground plane. Second, for the simulator/penetration
canonical problems, one considers the changes in the

rent and charge densities on the test object to be the important
measure of the interaction. Other simulator/penetration inter-
action-parameters, such as the change of the simulator impedance,

the relative
a desired

of the

interaction

surface cur-~

the change of the impedance and the open-circuit voltage (or

short-circuit current) at the terminals of antennas and the
change of the polarizabilities of apertures, are zlso .discussed.
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I. Introduction

The Fihite Intermediate Nuclear EMP Simulator (FINES) is cne
type of the conceptually simple, inexpensive small electromagnetic
pulse (EMP) simulators for testing the EMP hardness of military
systems, in this case by individually exciting the electricallyikw
small penetrations. The FINES is intended to illuminate a portion
of the sysfem of interest (eig., the deliberate antennas or the
inadvertent apertures aboard an aeronautlcal system) to create a
surface current j and/erra surface charge p locally over the
penetration region which would be modeled from an incident nuclear
EMP.

Since a FINES is appropriate for driving (electrically) small
penetrations (small antennas and apertures) on high conducting sur-
faces of larger systems, a FINES can be designed which is also
electrically small and produces approximately locally uniform

electric and/or magnetic fields. Here, only the electric field

normal to the system surface and the magnetic field parallel to the

sYsteﬁmeurfeeemarergf Ehiefeeé;" Thus, this type of simuiator can
be con81dered as a statlc (qua81 -static) 51mulator and can also be

termed zero- dlmen81ona1 or point simulator which has been exten—

sively discussed in reference 1. The basic limitation of a static

1. C. E. Baum, "EMP Simulators for Various Types of Nuclear EMP
Environments: An Interim Categorization,'" Sensor and Simula-
tion Note 151, 13 July 1972, AFWL. Also adapted for Special
Joint Issue on the Nuclear Electromagnetic Pulse, IEEE Trans.
Antennas and Propagation, January 1978, and IEEE Trans.
Electromagnetic Compatibility, February 1978.



(quasi-static) simulator is that the frequencies of interest are

sufficiently low or the corresponding radian wavelengths are large

compared to the simulator structure so that the low-frequency or
quasi-static form of the fields is applicable.

Generally, there are three kinds of designs for this class
of simulators which are illustratéd in figure 1. Figure 1l(a) shows -
a loop type of simulator above the ground plane. The simulator is
quasi-statically equivalent to a simple inductor driven by a con-
stant current source and generates a uniform magnetic field near
the (closed) penetration. Similarly, figure 1(b) shows a voltage
source connected between the simulator plate and the ground plane;
the platerand ground plane can be simply characterized by a capaci-
tor driven by a constant voltage source to generate a uniform _
electric field near the (closed) penetration. Figure 1(c) shows a

combined version of the electric and magnetic types of simulator

described by figures 1(a) and 1(b); note that a maximum of two com-
ponents ofthe magnetic field can be combined with one of the
electric field. The conversion of input sources to fields of the
FINES is just opposite to the conceptof an electrically small EMP
sensor (to be seen as an electric or a magnetic dipole) which
induces an open-circuit V&ltage or a short-circuit current at its
terminals by picking up the local electric or magnetic fields inci- .

dent to the sensor; this is a form of reciprocity (ref. 2).

2. C. E. Baum, E. L. Breen, J. C. Giles, J. O'Neill, and G. D.
Sower, '"Sensors for Electromagnetic Pulse Measurement Both
Inside and Away from Nuclear Source Regions,'" Special Joint
Issue on Nuclear Electromagnetic Pulse, IEEE Trans. Antennas
and Propagation, January 1978, and IEEE Trans. Electromagnetic
Compatibility, February 1978.




Simulator

o I S , ~_Penetration (Small
a Antenna or Aperture)
a. Magnetic-field or Surface=Current-
Density Type ofFINES

Simulator Plate

Ground Plane

Penetration (Small
Antenna or Aperture)

b. Electric-field or Surface-Charge-
Density Type of FINES

E-field Simulator

H-field Simulator

Penetration
(Small Antenna
or Aperture)

c. Combined Electric and Magnetic Fields (or Charge and
Current Densities) Type of FINES

Figure 1. Configurations of the FINES-type Simulators
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In designing a proper FINES, one studies the conversion of—
the input sources V and I by an appropriate constant to Og and js’
respectively, on the surface of the system with the penetration
short-circuited (i.e., a smooth conducting surface). From the
study one predicts the simulator pgrformance gqualities which
include the field spatial uniformity, the useful energy
(efficiency), etc. However, in practice the simulator will be
placed near the penetration and the interaction between them
should also be taken inté account.

In general, there are four basic factors that can be used
to characterize the performance of FINES:

(1) The response sensitivity ofthe simulated fields to
the input current {(or voltage).

(2) The uniformity of the simulated field in the neighbor-
hood of the test object with the test object removed (or surface
short-circuited, i.e., a smooth conducting surféce).

. (8) The simulator's figures of merit and efficiencies
relating fields and field energies to voltage or current and
energy delivered to the simulator.

(4) The interaction between the simulator and the penetra-
tion being ekcited.

In this report we will define these performance parameters
and utilize them to quantify various canonical problems via the
review of the previous work published in the literature (particu-
larly, Sensor and Simulation Notes). Our analysis in this report

is limited to the quasi-static solution, i.e., all radian

o



wavelengths of interest are sufficiently large compared to the
simulator dimensions. Other important considerations related
to the design of the FINES, such as the type of input sources
and the feeding network to be used, will not be covered here.

Future studies should be extended to these areas.



II. Performance Parameters of FINES

A, Conversion Lengths

The conversion lengths are used to quantify the simulator's
sensitivity of the simulated fields to the input sources. In
general, there are three types of simulatoré according to the
fields they generate, the E-field, the H-field and the combined-
fields simulators. The fields which they generate can be expressed

in terms of the conversion lengths RC defined by
m

H-Field Simulator

> -+ -1

H =1 ¢ I ,m=1 or 2
o m ¢ m
m
(1)
E-Field Simulator
-1
E =1 2 " v, m = 3
(o] 3

Here, ﬁo and ﬁo are the fields measured at the center of the

ground plane where a test object or aperture is to be placed, V

and Im are the voltage and current sources applied to the simulator,
and im(m=1,2,3) denote mutually orthogonal unit-vectors tangential
and normal to the ground plane in a right-handed system (see fig. 2).
Alternatively, we can express unit-—vectors il’ iz (or IT , IT ) as
orthogonal unit vectors tangential to the ground surface S, and

IS (or TS) as unit outward pointing vector normal to the ground
surface S. Their orthogonal relations are



Simulator Volume

Ground Plane

" ////7//////\/_/// 77777

Center of Ground Plane, o= 6

- Figure 1. Unit Vectors for FINES Description



(2)

Combined Fields Simulator

This type of simulator is able to generate the E-~field and
H-field, either an individual component or in various combina-
tions, and can be driven by a single source or a set of indepen-
dent sources. If the interaction between the different desired
field components of the simulator is negligibly small (by symmetry
in the design) and all radian wavelengths of interest are suffi-
ciently large compared to the simulator dimensions (quasi-static
approximation), then we are able to consider that the E-field is
generated via a constant voltage source and the H-field is gen-
erated via a constant current source. Under these restrictions,
the same relations given by (1) can be used to guantify the sen-

sitivity of the combined fields type of FINES simulator.

10



B. Field Uniformity

To describe the field quality of a simulator, we can define
a maximum allowable volume, namely the working volume, inside
which the field is uniform everywhere within a certain percentage
deviation from the field at the center of the ground plane. For
convenience, a hemisphere with é radius aW (fig. 3) is chosen to

be an E-field simulator's working volume with volume Vw as

_ 2
A = 'S"Wa (3)

The maximum allowable radius a, for a given electric field
variation is determined by the inequality—
N -
|5(T) - fol
IRE
o]

- >
< bfor all r €V, (r Ir] < ay)

(4)
T = B

O

where A denotésrfhe relafive deviation from the field at the cen-

ter of fhe grdund piane énd is less than 1; Ideally, for a simu-
lator of good field guality, A is much less than 1 (i.e.,
A << 1) for a given working volume radius ag,-

In addition, by examining the derivatives of the field at
the center of the ground plane and by making more higher order
derivatives vanish, sometimes we can obtain an optimal field uni-
formity if some geometrical constraints to the simulator are
given.

In general, the gepm?trigal symmetryiof a simulator can be

used to make at least the ;}rst derivative7(usually the derivatives
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Working Volume and Simulator Volume
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of all odd orders) of the field components (with respect to x, vy,

and z) vanish at the center (? = 3) which is by definition on the

ground plane (an equivalent symmetry plane by image theory).
- To complement the working-volume concept we can define g

. . . >
simulator volume as a hemisphere of radius ag centered on r = 3

(with surface r = |7| = ag) with volume
2 3 .
V. = £ Ta - - , (5)

_ Here, aS is defined as the minimum r such that VS contains at

least the basic simulator conductors, dielectrics, etc., (perhaps
excluding peripheral hardware such as connectors, transformers,

etc.). TFor example, as is found to be the radius of a sphere cir-

camécribednfé tﬁé actdél simulator plate as shown in figure 3.

If the penetration (e.g., a long slit) to be excited has
much larger longitudinal dimension than its transverse dimensions
and if the FINES has a two-dimensional configuration such as a

plate-ground-plane transmission-line simulator, it is more con-

venient to use the hemi-cylinders to characterize the simulator
and wbrkiﬁéﬂvblumeéfinSEééd bf ﬁéing the hemispheres. Therefore,

a  and a& can be denoted as the radii of the cylindrical simulator

and working volumes, respectively.

13



C. Figure of Merit and Efficiency
One possible definition of the figure of merit of a simula-
tor can be constructed by maximizing the working-volume radius

to conversion-length ratio
- w :
ggl :i—— , M = 1,2,3 ' (6)

where Ez is a function of the field deviation A. For a given
allowable field deviation, one would like the simulator to have
a large working volume but a small conversion length.

Another definition of the figure of merit based on energy
considerations can be expressed in the form of the simulator's
efficiency

ideal total energy enclosed within the working volume (UW)

£ =

total energyrdélivére& to the simulator (Uin)
(7)

If the field ﬁ or ﬁ is uniform inside a simulator working

volume Vw, the total energy inside the volume is given by

1 2 . .
5 uofﬁol Vv, for the H~field simulator
U = (8)
N L |E |2 V_ for the E~field simulator ’
2 "o'7o w € 1
€y = permittivity of free space
U, = permeability of free space

where ﬁo and ﬁo are the field measured at the center of the ground

plane enclosed by the working volume. This is taken as a

14
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definition of the ideal working-volume energy (i.e., fields are : =

assumed uniform throughout VW).

If the E-field simulator is assumed to be open-circuited

(a capacitor) and the H-field simulator is assumed to be short-

circuited (an inductor), we define the input energy by

DNf gt

in

pl- |

2

LI for the H-field simulator

(9)
2

Cv for the E-field simulator

By using the linearity relation between the input source

and the simulated fields given by (1), we can rewrite the input-

energy as (quasi

-static assumption)

—»,2

% in lHO , m= 1,2 for the H-field simulator
m
Uin = (10)
% cs? |E lz, m = 3 for the E-field simulator
Lz Cg' O
Inserting (8) and (10) into (7), the efficiency of such a

simulator can be

H-field Simulato

expressed as

&y =

r (m=1,2):

1 2

7 Mo H | VW Uovw
1 > 2 2 2
= LIH |7 ¢ L%
2 o Co Cn




E-field Simulator (m = 3): (11)

DO} | D b
M
— |0

From this we define an equivalent .volume Veq for the simulator
from

V'

- _W - _ W

€y F , e 7 (12)
eq eq

which implies a definition

éi Ri , m= 1,2 for the H-field simulator
. o} m
Veq = , (13)
C £2 . . ,
= cq , for the E-field simulator -
o] '

This energy-efficiency figure of merit Eh or Ee is relatable
to the working-volume radius to conversion-length figure of merit

Eg in (6) as

H-field Simulator (m = 1,2)
M a3 u U 3
- 027 w _ 27T "0 2 _ 2T ‘o
‘W TT 32 3 L %be T 3 L ngER (14)
Cm
F-field Simulator {m = 3)
£ 3.3 g €
. o021 “w _ 21 "o 2 _ 21 "o 3
5T 3 2 T3 T WeT 3 T Yoy e (15)
€3

Note that expressions (14) and (15) are derived by assuming that

the working volume is a hemisphere of radius I

16
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D. Two-Dimensional FINES

For simulators with twondimensioﬁal configurations (e.g.,
a plate-ground-plane transmission-line simulator), their induc- .
tance and capacitance are more conveniently expressed in per-
unit-length form and thus expressions (13), (14), and (15) can
be modified as follows.

For the H-field simulator, the equivalent volume is given

by
L'g 2 _ %c a4 .2
Vea =7 *e, Tt
! Ho 1 Mo 1
= f £ Ri for m =1 (m = 2 being irrelevant)
& 1 (16)
- 1 .
c = = gpeed of light
Yu e
i}
Mo
ZO = [— = wave impedance of free space
o)

where L' denotes the inductance per unit length, £ is the length
of the simulator, and ZC is the transmission-line characteristic
impedance. Here, the simulator's geometrical impedance factor

is defined by

simuldator's characteristic impedance Z

= c (
fg B medium (free space) impedance ZO (17)

The simulator's efficiency Eh can be written as

.3
VW Zﬂaw/S

3
h ™ Vg g 2



2ﬂai/3
= - (18)

% f
cqy '8

%

-~ &

Ay h
Note that Eh is normalized to ay because ay is the given dimension
of the desired working wvolume.

Similarly, for the E-field simulators‘Ve is expressed as

q
c'y .2 1 g .2
vV = = ¢ = ~ &
eq €, ©3 £,%, © cg
g 3

where C' is the capacitance per unit length of the simulator.

The efficiency Ee is given by

3
. VW _ 2ﬁaw/3
€ Veq 2 £i /fg
5 O (20)
Loy o 2lB
a e 2
w kcg/fg

Note that for a two-dimensional geometry (as above) the efficiency
Ee is inversely proportional to the length of the‘simulatqr (as
expected).

The conversion lengths Rcl and 203 and simulator's effi-
ciencies Eh and Ee of the H-field and E-field, respectively, for
the two-~dimensional simulator (TEM) are related to each other.
From (1) the conversion lengths can be expressed in terms of thg
ratio of the input current and voltage to the simulated magnetic

and electric field, respectively, as

18
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1t

e
HO

A
E
o

(21)

(22)

By taking the ratio of (22) to (21), the geometrical impedance

factor ig is given by

EORC Qc
K:Z = f 7 = 3:2____3
I c g o H ZC 0 20
o S | 1
2c ‘
B
g Cl

Thus, the expression (16) or (19) of the equivalent volume Veq can

be rewritten as

(23)

(24)

Now substituting (23) for fg back into the efficiency expressions

(18) and (20), we obtain

2ﬂa3/3
2 R P
1 3
_'g'_ E = Z“aw
a 3 4 20
w Cl 3

19
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E. Interaction of Test Object with Simulator

One of the more important simulator design questions is
what one refers to as the simulator/object interaction. The
object inside a simulator scatters fields which in turn are re-
scattered from the simulator back to the test object, thereby
changing the ultimate response of the test object. This process
can be viewed as a change in the kernel (Green's function) of an
appropriate integfal equation for currents or charges on the test
object or as an infinité multiple-scattering sequence.

We would like to quantify the effects of this process so .
that the resulting errors can be kept down to an acceptable liﬁit
by making the simulator structure sufficiently distantly spaced
from the test object. TFor the present discussion, changes in
surface current and charge densities (for H-field and E-field
types, respectively) on the test object will be considered as
the important measure of this error. However, depending on the
specific shape and function of the test object, there are other
parameters one might consider as well. Examples are inductance
or capacitance changes in the test object—and mutual inductances
and capacitances to the simulator where appropriate for certain
types of antennas; for sucﬂ anténnas one might also consider
changes in open-circuit voltage and/or short-circuit current at
their terminals. For aperturés on the other hand, one might
consider changes in the equivalent.dipole moments (magnetic
(m = 1,2) and electric (m = 3) as subscripts) due to the

simulator/aperture interaction mechanism.

20
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Other kinds of changes associated with this effect are also
observable at the driving terminals of the simulator. Specifi-
cally, the inductance of an H-field type gnd the capacitance of
an E~field type of simulator will be changed by the presence-of
the object, and so parameters such as these should be considered.

a. H-field Simulator/Object Interaction

7 The pg?a@e%ersru§édrt8”quant}fyVthgﬂ?nteraction

between the H-field simulator and the object are:

(1)"%% as a function of the object and simulator

geometry parameters. Here, L is the inductance of the simulator
and AL is the change in simulator's inductance associated with the

presence of the object (or aperture).

|83 ()]
(2) —5—5— as a function of the object and simu-
ENEd)
lator geometry parameters. Here, js(;) is the surface current

density along the conducting object in the simulator (or perhaps

some equivalent current in an aperture) and Ajs(?) is the change

of’the’sﬁrface current aéﬂéity:on the'abjectrsurféce inside a
simulator compared to the '"free field" solution. By 'free field"
solution, we mean that a iﬁ§?) is found from ﬁf(?) definéd as
the actual field (for a given I) in the simulator with object
removed (i.e., ground plane shorted), and using ﬁf(;) as an inci-
dent magnetic field on the object, but with the simulator removed

Hence we have

Ajs(r)

jsf(ﬁ) - 38(?) (26)

21



Define
, - max |Ajs(;)] o
so i-’evw lij’sf(?)l (27) .
with the object within Vw' By constraining Aso as some dimension-
less number (ideally Aso << 1) one can find a maximum allowable
object radius for given simulator dimensional parameters
(as,ﬂcm (m = 1,2), etc.), for which a desired Aso is achieved.
b. E-field Simulator/Object Interaction
Similarly, the important parameters which can be used
to quantify the extent of the interaction between the E-field
simulator and the object are
(1) %g as a function of the object and simulator
geometry parameters. Here, C denotes the capacitance of the simu-
lator without the presence of the object and AC is the change in

simulator's capacitange with the presence of object (or aperture).

bp _(T) ' .
(2) —5_" s a function of the object and simulator

P (F)
geometry parameters. Here, ps(?) is the surface charge density
along the conducting object in the simulator (or perhaps some
equivalent charge density in an aperture) and Aps(;) is the change
of the surface charge density induced on the object surface inside
a simulator compared to the "free field" solution. Again, the
“"free field" solution is found to be the surface charge density -
psf(§) by using ﬁf(§) as an incident electric field on the object
with the simulator removed (i.e., no interaction of the simulator
with the scattered field). E,(¥) is the actual field (for a given

V) in the simulator with the object removed (i.e., ground plane

shorted). Hence we have

22 ‘I'



(28)

1t
©
7~
H
~
I
©
~
>
~

Aos(?)
Define for the object within VW

_ max IAQS(§)I (29)

A
SO -> s
rev, Ipsf(;r) i

By constraining Aso as some dimensionless number (ideally

Aso << 1), one can find a maximum allowable object radius (it
may be the radius of a sphere circumscribing the actual object
surface, i.e., the worst case is considered) for given simulator

dimensional parameters (as,zcs, etc.), for which a desired Aso

is achieved.




ITI. Canonical Problems for Unperturbed Fields

A, Finite-Width Plate Above Ground Plane
The geometrical impedance factor fg of a finite-width plate

above ground plane (fig. 4) is given by

Simulator Plate

N oo

T Ground Plane
b

VAN A A A A e > X

Figure 4. Configuration of Finite=Width Plate Simulator

= 1 -

where m is related to the simulator's width-to-height ratio (a/b)

from eguations:

: 2
& = 2 [K(m) E(¢,/m) ~ E(m) F(¢_/m)]
1 E(m) :
. |1 _ m
sin ¢ o <1 K(m))} (31)
F(¢O/m) = incomplete elliptic integral of the first kind
E(¢O/m) = incomplete elliptic integral of the second kind

24



K(m)

complete elliptic integral of the first kind

E(m) complete elliptic integral of the second kind

The numerical values of fg are tabulated in table 1 (ref. 3).

Note that the—geometrical impedance factor fg of a plate above

the ground plane is equal to one half the value of a two-parallel-

plate transmission line.

The conversion length QC or QC can be obtained by
1 3

-1 i -1
2.7 b = = E (0,0) = (&, £_) D (32)
cg = 2K(my) E(m) Vi 18

where Eyrél(x,y) is the imaginary component of the complex elec-
tric field Erel(z) defined by

E (z) = E (x,y) - J E (x,y) - (33)
rel Xrel yrel

z = X + jy = complex coordinates

The numerical values of Qc /b can be found in table 1.
3
The complex electric field of a finite-sized plate above

the ground plane can be expressed as

E (z) = E (x,y) - J E (x,2z) =
rel*": Xiel ) Yrel K(m

(34)

-

=t = 2 (k) EGw/my) + wIEm) - K]}

oiN
i

3. C. E. Baum, D. V. Giri, and R. D. Gonzalez, "Electromagnetic
Field Distribution of the TEM Mode in a Symmetrical Two-
Parallel-Plate Transmission Line," Sensor and Simulation
Note 219, 1 April 1976.



GEOMETRICAL IMPEDANCE, CONVERSION LENGTH AND EQUIVALENT VOLUME

Table 1

FOR THE FINITE-WIDTH-PLATE SIMULATOR

g bt Veq(gbz)—l -
b/a 2Zc (ohms) fg Cqy (20 b—1)2 fél
3
0.16670 50.240 0.06668 1.0000 14.9970
0.40679 99.961 0.13267 1.0003 7.5420
0.5 115.439 0.15321 1.0014 6.5453
0.6 130.397 0.17307 1.0041 5.8258
0.7 143.927 0.19102 1.0089 5.3284
0.8 158.266 0.20740 1.0155 4,9727
0.9 167.595 0.22244 1.0243 4.7166
1.0 178.058 0.23632 1.0346 4.5280
1.2 196.824 0.26123 1.0591 4.2940
1.23526 199.896 0.26531 1.0639 4.26867
1.4 213.262 0.28305 1.0870 4.1742
1.6 227 .859 0.30242 1.1166 4.1226
1.8 240.966 0.31981 1.1468 4.1122
2.0 252.848 0.33558 1.1769 -4.1274
2.5 278.407 0.36951 1.2494 4.2244
3.0 289.593 0.39763 1.3163 4.3575
6.99200 399.722 0.53052 1.6835 5.3423

26




" b %‘% = Qzl [le(m) snz(w/ml) - E(m)]-1

w = u + jv = complex potential
sn = Jacobian elliptic function
The field deviation A from the field at the center of the

ground plane is defined as

3
e, x,9)12 + = y - E. (0,072
i Erel(z) - Erel(o) - I[ Zrel =Y ] [ yrel(x’y Yrel ’ ] S
E_.7(0) E (0,0)
rel i Ypel
= A___ _for b/a as the parameter (35)

The field deviation contour plots of various values of A can be
found in figures 4.2 through 4.18 of reference 1, if desired.
Presently only maximum deviations are used as shown in table 2.
. For a given A, we choose the working volume radius &y where
‘I' a, = |z| is the maximum radius of a circle inscribed inside the
field deviation contour and we constrain a, < b. The maximum
field deviation for a given ratio aw/b is given in table 2 with
b/a as a parameter; it is plotted as a function of b/a for vari-
L ous aW/b in figure 5.

The simulator's efficiency & is defined by

2
Vv ' a 3 2 2
eq W ¢y Cg
(36)

_2_.3 _ . .
VW =z Ta, , 2y working volume radius
\% = equivalent volume of the simulator = 24 2%

eq C1 ©3
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MAXIMUM FIELD DEVIATION 102 Amax

FOR THE FINITE-WIDTH-PLATE SIMULATOR

Table 2

aw/b

b/a 0.110.210.3} 0.4 0.5 0.6 } 0.7 0.8 0.9 1.0

0.16670 1 0.00 [0.00 [ 0.0C | 0.00 | 0.00 | 0.00| 0.00 0.00 0.00 O:OO
0.40679 {0.01 10.071 |0.02 y 0.03 % 0.06| 0.08} 0.13 0.18 0.26 0.36
0.5 0.01 }0.03 0.07 | 0.13 | 0.22 ) 0.34 | 0.5] 0.74 1.06 1.49
0.6 .02 |0.09 |0.20 { 0.37 | 0.61 | 0.95| 1.43 2.06 2.90 4.05
0.7 0.04 10.17 {0.40 | 0.76 } 1.26 | 1.96} 2.90 4.14 5.75 7.81
0.8 0.08 |0.30 {0.71 | 1.31 ] 2.16 | 3.32 | 4.84 6.80 9.27 | 12.28
0.9 0.11 |0.46 |1.07 | 1.97 | 3.22| 4.89 | 7.04 9.73 ] 12.99 | 16.82
1.0 0.17 |0.64 {1.47 | 2.69 | 4.38} 6.57 | 9.32 | 12.67 | 16.59 21;03
1.2 0.25 |1.02 {2.32 | 4.19 | 6.69 | 9.84 {13.62 | 17.97 | 22.80| 27.94
1.23526 {0.27 |1.07 {2.46 | 4.45 ¢ 7.09 {10.37 {14.30| 18.80 | 23.74| 28.95
1.4 0.351.38 [3.13 | 5.60 ] 8.80112.7017.21 | 22.21 | 27.28| 32.96
1.6 0.42 [1.71 {3.85| 6.82 }10.59|15.04 |20.05 ! 25.44 | 31.00}| 36.55
1.8 0.50 12.02 |4.54 | 8.08 |12.58 {17.83 {23.42 | 28.59 | 33.58| 39.15
2.0 0.56 |2.28 {5.18 | 9.30 {14.64 | 21.05 {28.10 | 34.87 | 39.96| 41.86
2.5 0.69 |2.79 {6.42 | 11.73 {18.92 { 28.07 | 38.94 | 50.37 | 59.72 | 63.44
3.0 0.78 {3.15(7.27 113.45 | 22.07 | 33.61 {48.22 | 64.89 | 79.82} 86.14
6.9900 |0.96 |3.94 19.31|17.78 | 30.64 {50.34 | 81.58 | 133.42 | 216.06 | 279.12
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-Figure 5. Maximum Field Deviationm A .. versus b/a for the Finite-Width-Plate Simulator ‘ﬂ,



where 2 is the length of the simulator. gz/aw versus b/a for field
deviation A = 0.05, 0.1, 0.2, 0.3 is shown in figure 6. From

this we see that bfa = 1.2 for A = 0.3 gives the best energy
efficiency (Zc roughly equal to 100 ohms) by the foregoing defini-

tions. Note that the answer is also dependent on A.
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B. Cylindrical Plate Above Ground Plane

The geometrical impedance factor J’:‘g of a curved plate above .

ground plane (fig. 7)

b/

Simulator\Piate T\ )

b Ground Plane

/AR G A S S Sy e oy R R S et S B A S S Ry B R ey » X

Figure 7. Configuration of Cylindrical Plate Simulator

can be expressed as (ref. 4)

- K(m)
e T K(my)
) (87) @
tan (a) = l-:1§—
2m*

The value of fg is tabulated in table 3 and is also plotted in
figure 8. Note that the geometrical impedance factor of a curved
plate above the ground plane is equal to one-half of the impedance

factor of a cylindrical two-curved~plate transmission line.

4. Tom K. Liu, "Impedances and Field Distribution of Curved
Parallel-Plate Transmission-Line Simulators,' Sensor and
Simulation Note 170, February 1973.
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Table 3
GEOMETRIC IMPEDANCE FACTOR fg
FOR THE CYLINDRICAL PLATE SIMULATOR

a

£ a f o -
(degree) g (degree) g (degree) g

0 ® 30 0.31982 60 0.19543
1 0.86493 31 0.31433 61 0.19203
2 0.75460 32 0.30900 62 0.18865
3 0.69005 33 0.30381 63 0.18528
4 0.64423 34 0.29875 64 0.18192
5 0.60868 35 0.29383 65 0.17856
3] 0.57962 36 0.28902 66 0.17520
7 0.55503 37 0.28432 67 ‘0.17184
8 0.53372 38 0.27972 68 0.16848
9 0.51491 39 0.27523 69 0.16510
10 0.49806 40 0.27082 70 0.16171
11 0.48281 41 0.26651 71 0.15830
12 0.46886 42 0.26227 72 0.15486
13 0.45602 43 0.25811 73 0.15140
14 0.44412 44 0.25402 74 0.14789
15 0.43302 45 '~ 0.25000 75 0.14434
16 0.42262 46 0.24605 76 0.14073
17 0.41283 47 0.24215 77 0.13706
18 0.40359 48 0.23831 78 0.13330
19 0.39483 49 0.23452 79 0.12946
20 0.38650 50 0.23078 80 0.12549
21 0.37856 51 0.22709 81 0.12138
22 0.37088 52 0.22344 82 0.11711
23 0.36371. 53 0.21983 83 0.11261
24 0.35674 54 0.21626. 84 0.10783
25 0.35003 55 0.21272 85 0.10268
26 0.34357 56 0.20921 86 0.09702
- 27 0.33733 57 0.20573 87 0.09058
28 0.33131 58 0.20227 88 0.08283
29 0.32547 59 0.19884 89 0.07226

30 0.31982 60 0.19543 90 0.

33




Plate Simulator

34

.8
6

l4——'

2

0 o} Eo lo lo ' o o

0 15 30 45 60 75 90
o
Figure 8. Geometric Factor Veréus o for the Cylindrical




(il
-

The

are

the

By definition, the conversion length Qc or Qc is given by
1 3

-1 2 -1
2l = - f_ = (8 % b 38)
Cg K(m)(1 + m®) E ( Cy g) (

numerical value of Qc /b is given in table 4 and fE and QC /b
3
plotted in figure 9 as a function of a.

To quantify the field uniformity of a simulator, we obtain

complex electric field inside the simulator to be (ref. 4)

2 -3
1
Erel(z) _ Z 4 afl -~ m® z 2
5oy - |(8) * 2|2 ) |(B) -1 (39)
rel 1 + m®
The working volume radiuS'aw is determined from
Ere1(2) = E . 1(0) _
5 o) A (40)
rel
A is the field deviation and A << 1 is desirable. Here, we
choose a, = lz] to be the radiﬁé ofra éirclériﬁécribed to'the

field deviation contour for a given A.

of E

From the symmetry of the problem, all the odd derivatives

rel(z) at z = 0 vanish. If we let the second derivative of

Erel(z) at z = 0 be zero, we obtain the maximum field uniformity

for

o = 45°, TFor o = 45° the maximum\allowable working volume

radius ay for a given field deviation A is given in table 5

(ref. 4). However, the maximum field deviation Ama

% for a given

ratio aw/b is tabulated in table 6 with the simulator's half-span

angle o as a parameter. The efficiency ¢ of a simulator can be

defined by
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VALUES OF CONVERSION LENGTH Rc

Table 4

3
(degiee) teg b~ (deéiee) feg b~ (deéiee) feg b~
0 0. 30 1.07826 60 0.84287
1 2.71747 31 1.06486 61 0.83887
2 2.37135 32 1.05233 62 0.83503
3 2.16934 33 1.04018 63 0.83136
4 2.02638 34 1.02853 64 0.82785
5 1.91586 35 1.01736 65 0.82450
6 1.82592 36 1.00663 66 0.82130
7 1.75021 37 0.99633 67 0.81826
8 1.68492 38 0.98644 68 0.81536
1 1.62766 39 0.876953 6% 0.81262
10 1.57669 40 0.86779 70 0.81001
11 1.53085 41 0.95900 71 0.80755
12 1.48929 42 0.95054 72 0.80522
13 1.45127 43 0.84240 73 0.80304
14 1.41633 44 . 0.93457 74 0.80089
15 1.38403 45 0.92703 75 0.79907
i6 1.35404 46 0.91979 76 0.79728
17 1.32607 47 0.91280 77 0.79563
18 1.20992 48 0.90608 78 0.79410
19 1.27536 49 0.89961 79 0.79269
20 1.25227 50 0.89338 80 0.79142
21 1.23050 51 0.88739 81 0.78027
22 1.20982 52 0.88162 82 0.78924
23 1.18043 53 0.87609. 83 0.78834
24 1.17195 54 0.87075 84 0.78756
25 1.15439 a5 0.86562 85 0.78689
26 1.13766 56 0.86070 86 0.78636
27 1.12177 57 0.85596 87 0.78593
28 1.10660 - 58 0.85142 88 0.785664
29 1.00211 59 0.84706 89 0.78546
30 1.07826 60 0.84287 20 0.738540
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Figure 9. f. and fcq b1 or 201fg b™! versus a for a
Cylindrical Plate Simulator
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Table 5

PERFORMANCE PARAMETERS

FOR
THE CYLINDRICAL PLATE SIMULATOR AT o = 45°
A iﬂ EE YEE (23
b b b3 Lw
0.01 0.35 0.090 3.44 0.075
0.02 0.45 0.191 3.44 0.123
0.05 0.55 0.348 3.44 0.184
0.10 0.65 0.575 3.44 0.257
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Table 6

MAXIMUM FIELD DEVIATION 102 B

X

FOR THE CYLINDRICAL PLATE SIMULATOR

aw/b
N 0.110.210.3} 0.4 0.5 0.6 0.7 0.8 0.9
(degree)

’ 5 0.9914.101]9.71{18.64132.44154.20/90.70[159.02]308.85
10 0.9513.90(9.18(17.45129.90{48.5777.00[119.901173.39
15 0.87|3.57,8.32]15.59]26.04{40.57]59.84| 82.24| 98.76
20 0.7713.12)7.20(13.19{21.31{31.53[42.95| 52.66| 55.21
25 0.6412.59(5.86110.4416.16/22.46(28.02: 33.07] 39.11
30 0.50{2.02|4.57{ 8.1612.71|18.07,23.97{ 30.15; 36.32
35 0.35(1.42(3.31| 6.14| 9.96/14.75|20.33| 26.43| 32.74
40 0.18(0.77]1.91| 3.83] 6.72{10.72|15.79| 21.72| 28.16 .
45 0.00(0.08}0.40| 1.25]| 2.98! 5.91110.20| 15.77| 22.29 -
50 0.18]0.77{1.91| 3.83| 6.72;10.72[15.79| 21.72 28.16f

Q' 55 0.35]1.4213.31| 6.14} 9.96114.75{20.30| 26.43] 32.74
60 0.5012.02|4.57| 8.156{12.71(18.02{23.97| 30.15| 36.32
65 0.64(2.59/5.86]10.44(16.16{22.46{28.02, 33.07| 39.11
70 0.7713.12]7.20[13.19|21.31|31.53[42.95]| 52.66| 55.21
75 0.8713.57(8.32115.59(26.04140.57[59.84| 82.24| 98.76
80 0.95(3.90({9.18[17.45[29.90(48.57/77.00[119.90/173.39
85 0.99(4.10/9.71(18.64{32.44|54.20[90.70|159.02,305.85
90 1.01{4.17(9.89{19.05(33.33]56.25[{96.08{177.78|526.32
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2
v 2ﬂaw

= W Lo W
E=5 v a & T 3T %
eq w cq Cg
22?
T
Ve = equivalent volume = 2?— zi = 3 3 - L8

4 lo] 3 g
V.= working volume = 2 ﬂa3
w 3 w

(41)

where C' denotes the capacitance-per unit length of the simulator

and £ is the length of the simulator. For o = 450

£&/b is tabulated in table 5.

40

, the efficiehcy




C. Hemlholtz Coils
" The Helmholtz coils consist of a pair of N-turn coaxial
circular coils separated by a distance equal to their radii
(a = radius of each coil = spacing between coils) as shown in
figure 10,
The magnetic field insidé Helmholtz coils can be expressed

in terms of the elliptic integrals and the normalized cylindri-

cal coordinates (R,Z), where R = ¥/a and Z = z/a, by (ref. 5)

H(R,Z) = Hy(R,Z) Ty + H,(R,Z) IZ (42)

Furthermore, the radial and axial field components H, and H,6 are

¥
given by the sum of the fields due to two coils located at
Z = x0.5. If each coil is wound with N turns and carries a

current I in each turn, we have

" Hy(R,Z) = oo [hW(R,Z) - hq,(R,—Z)]
H (R,Z) = —n [h (R,Z) + h (R,—ZJ
E s |z B (R (43)
, _ 2(2-0.5) 1 + R% + (3-0.5)2
Py (B8 = ST T? + (2o0.5)2 )8 luK(m) T Lm? + (2.0.5)2 E(m)}

2 2
h_(R,2) 2 _ {K(m) Pl E - (2:0.5)° E(m)]
- [(1+R)“ + (2-0.5)7]* (1-R)® + (2-0.5)

1
4R 2

m(zZ) =
[(1+R)2 + (z-o.5>2}

5. K. D. Granzow, "Homogeneity of the Magnetic Field of a
Helmholtz Coil,' SCR-193, Sandia Corporation Monograph,
July 1960',,,WW,,ﬁ~
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a. Helmholtz Coil Simulator

a = tan

(2)

b. Helmholtz Coils Arrangement

Figure 10. Geometrical Configuration of Helmholtz Coils
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where K(m) and E(m) are the complete elliptic integrals of the

first and second kind, respectively. The magnetic field at the- - -

center (R,Z) = (0,0) of Helmholtz coils is readily obtained fron
(43) to be

8.992N1 (44)

H,(0,0) = [H(0,0)] = ==

For thé numericalwéaicﬁlations, if'is more convenient to
express the field as a power series summation in Legendre poly-
nomials. For simplicity, we only consider the z-component R
magnetic field Hz(r,e) in terms of the spherical coordinates

(r,8) in figure 10(b), by using B = V¢m, to give (ref. 6)

. ad 9

_ sin® “"m m)

Hz(r,e) = % 3§ -~ cos (THT

= n-1
= - e
Zn A r P 4 (cosé) (45)
1
¢m = magnetostatic potential

- - n“ ,
= é; Anr Pn (cosb)

Because of the symmetry about the equatorial plane, the terms in

odd powers of r are zero and (45) can be rewritten as

B < 2%
Hy(r,8) = Aj + D (22 + 1) Ay, 17" P, (cosh)
1
= A; (1 +4) for 2=1,2,3,... (46)

6. J. C. Maxwell, Electricity and Magnetism, Chapter XV,
Volume Two, Dover Publications, Inc., New York, 1954.

43




>
i

field deviation from the field measured at the
center of Helmholtz coils

o A
Y5 (2e + 1) 2L 22 (coso)
1 1

Note that, in general, the field deviation A can be expressed in

terms of the magnetic field as

_ |H(r,8) - #(0,0)

A
fi(0,0)

(47)

Assuming that each coil contains N turns and carries a

current I, the coefficients Al and A22+1 are given by

_  8NI
1 5/5 a

= HZ(O,O) = field at the center

2NISin2(a}

P (u)
22+1 (20 + 1)b22+1 28+1

(48)

=
]

Poo4p (W) = é% Pgg+1(H) for u = cos(a)

For Helmholtz arrangements b and o are given by (fig. 10)

Y5 a
2

S 3k

sin(a) (49)

cos(a)

Near the center of Helmholtz coils, the first significant

term of A is A5 and thus A can be expressed as
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4
1.152(2) P, (n) +

>
]

(50)

4

1 3
Pyu) = (35" - 30u

+3) ,

cos(9)

Since Ph(cose) < 1 and Pn(l) = 1 for © Oo, each term in the
power series of A is greatest on the axis. Define a working
volume radius 2y to quantify the field uniformity of Helmholtz

coils. For a given working volume radius a,, Wwe have the maxi-

mum field deviation Amax to be- (near the center of Helmholtz
coils)
2 2 %
{[Hz(r}e) - HZ(O,O)] + H\y(r;e)}
bmax ~ H,(0,0)

on the axis
(51)

The numerical values of Amax can be found in table 7 (ref.~7) with

working-volume-to-loop radii ratio as a parameter.

The conversion length of the Helmholtz coils type of the

H-field simulator can be obtained readily from (48) to be

. = “input current I _ 5/5 a (52)

Chn magnetic field at the center H (0,0) 8N

Subscript m, m = 1 or 2, indicates the conversion length having
two degrees of freedom corresponding to the orientztions of
Helmholtz coil, i.e., the axis of the coils can be along two
orthogonal vectors tangential to the ground plane.

The inductance of Helmholtz coils can be expressed as the

sum of the self-inductance L and mutual inductance M of the

self

constituent-current loops to give

7. J. E. Everett and J. E. Osemeikhian, '"Spherical Coils for
Uniform Magnetic Fields," J. Sci. Instrum, Vol. 43, pp. 470~
474, 1966, :
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MAXIMUM FIELD DEVIATION

THE HEILMHOLTZ-COILS SIMULATOR

Table 7

OoF

a,/a 10° 8 a_/a 10° 8
0 0
0.01 0.01 0.10 0.11
0.02 0.18 0.15 0.57
0.03 0.83 0.20 1.8
0.04 2.9 0.25 4.2
0.06 15 0.30 8.4
0.08 47 0.40 25
0.50 54
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L = Lself + M

Here, the self and mutual inductances of the (half) circular loops

can be found in referece 8 to be

2 8
Ligie = Ma N [1n(r—a) - 2] (53)
w .
uaN2 3 2
i K(m) - VY5 E(m)| = 0.47251 paN® ,
-~ |V/5
2
m et ——
4

where T is approximately the radius of the bundle of N wires
(assumed closely packed) in each coil and K(m) and E(m) are com-
plete elliptic integrals of the first and second kinds, respectively.

The efficiency of the Helmholtz-coils simulator can be writténr

as
\% 2wa2
h L 22 ’ m 3
Cm
or
L aw 3
5 Eh = 0.268 (:;) (54)
4N ua

The coil inductance L and the simulator's conversion length 20

m
are obtained from (53) and (52). Some numerical values of
EhL/(4N2ua) are tabulated in table 8. The normalization constant

L/(4N2ua) is a function of a/rW and can be evaluated by

~

L/(4N2ua) = 0.25 ln(8a/rw) - 0.38187 = 1.46 for a/rW = 200

8. W. R. Smythe, Static and Dynamic Electricity, Chapter VIII,
3rd ed., McGraw-Hill Book Co., New York, 1968.
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Table 8

VALUES OF SIMULATOR'S EFFICIENCY &g
FOR HELMHOLTZ COILS

By 102 L . .
a 4N"ua “h
0.15 0.09 0.00057
0.20 0.21 0.0018
0.25 0.42 0.0042
0.30 0.72 0.0084
0.40 1.72 0.025
0.50 3.35 0.054
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D. Maxwell Coils

Maxwell coils consist of three circular coils wound on a
spherical surface of radius b as shown in figure 11. If the coii§
are connected in series and carry current I in each turn, a typiecal
number N1 of windings in the center coil (large coil) is 64 and the
number N2 of windings in each of the other two coils is 49. The
radius of each of the smaller coils is v4/7 b and the distance of

either of them from the plane of the center coil is V/3/6 b (ref. 6).

The magnetostatic potential ¢m of Maxwell coils is given

by, similar to (45),

¢ = -Z Anrn P (cos8) (55)
1

The magnetic field component in the z-axis is obtained

from (55) to be

T T
sin® m m
HZ(r,e) T 55 cosb B3
=Y n a1 e (cost) (56)
n n-1
1 -

Again, because of the symmetry of the problem, the terms in the

odd power of r vanish and (56) is reduced to

[e0]
24
AL+ Z (22 + 1) Ag, 477 Py, (cosh)
1

Hz(r,e)

L]

Ay(1 + 8) for 2 =1,2,3,... (57)
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a. Maxwell Coils Simulator

T a=49.10° sin(a) = v477
V377

cos(a)

Maxwell Coils

b. Maxwell Coils Arrangement

Figure 11. Geometrical Configuration of Maxwell Coils
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" where A is the field deviation given by
A22+1 2%

A = ; (2% + 1) x r“" Py, (cosb) (58)

The coefficients A1 and A22+1 gre found to be

N,T  2N,I sin®(a)

N
Ay =3 b
_ 21 3---(20 - 1)
Aoper = NTCD T 5y Phpa () (59)

d
Pogs1(¥) = g7 Poger (W), u = cos(a)

Let the Maxwell coils arrangement be

Nl = 64, N2 = 49, sin(a) = v4/7 and cos(a) = V3/7 (60)
" the first several significant terms in (57) are
_ 1201 _
A1 =S5 = HZ(O,O)
A3 = A5 =0
(61)
A7 - 2.033 Al
7o
“ Ag - 2.8;8 Al
9b

Therefore, the field deviation can be expressed as a sum of power

series:

A = -2.043(5)6 Ps(coso) + 2.878(%)8 Pg(cosd) - - (62)



s=(231.% - 315u% + 1080 - B) , u = cos(e)

it

Pﬁ(u)

Pg(u) = L (6435,8 - 12012,° + 6930u% - 126012

128

+ 35)

By using the same argument given in the previous subsection,

the maximum field deviation Amax is calculated on the axis for a

given working volume radius ay to be (near the center of coils)

_ 18 (r,®) - H_(0,0) '
A = z z (63)
max HZ(O,O)

on the axis

2.043(2 ° Z8
043(2) - 2.878(%)° +

The numerical values of Amax are given in table 9 for
varying aw/b. |
The conversion length of the Maxwell coils simulator can be

obtained from (52) to be

P S
e T H (0,0
= b= BB b, m=lor2 (64)
N1 + 2N2sin (o) 1 2

The inductance of Maxwell coils is given by the summation

of the self and mutual inductance of the coils:

L= Logis * M
L = gelf-inductance of the coils
self
= L1 + 2L2
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Table 9

MAXIMUM FIELD DEVIATION
OFr
THE MAXWELL-COILS SIMULATOR

a /b 10° B a/b 10° A
0 0 0.10 0.20
0.01 0.002 0.15 2.25
0.02 0.13 0.20 12.34
0.03 1.49 0.25 45.49
0.04 8.35 0.30 130
0.06 94.83 0.40 648
0.08 530.73 0.50 2068
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mutual inductance of the coils

2M

12

+ M

22

From reference 8, the self and mutual inductances of the (half)

circular loops are given by,

for N1

64 and N

2

49,

UubN ’ -
. 8b _ 8b
Ll i [1n(——-r ) - ] = 2048 ub[ln(—r )—2
Y1 Wy J
L, = ubXN, sin(a)l:ln(gb—iiw) - 2] = 2401 ub 1n(;8£) - 2.28]
Yo L\ ¥
1 + sin(a)]? 1
= L F sin(a) I S - =
My, = ub[ > ] NlNz[1 ey KO E(m)] 1398.37 ub,
) m= K2
_ 211 + cos (o) = =
M22 = ubN2[ 5 K(m) - E(m)] = 818.35 b, m = Koo
3 3 (65)
€ig = (___12+S;2£<8)) = [ 2v4/7 ) = 0.92790
1+ V477
Koo = sin(a) = V4/7 = 0.75593
T =~ radius of bundles of Ny wires and N2 wires (assumed
Wi Wy closely packed) in each coil

The efficiency of the Maxwell-coils simulator is defined by

g = }.1_ _‘i
h ™ L2
C
m
a
L g, = 1.149 (-5“1)3 (66)

(v, + 28)% ub

The numerical values of &hL/[(N1+2N2)2ub] are given in table 10 and

the normalization constant L/[(N1+2N2)2ub] can be expressed as,

54




Table 10

VALUES OF SIMULATOR'S EFFICIENCY Sh

FOR MAXWELL COILS

iﬂ 102 L2 ~h 105 A

b (N1+2N9) ub max
0.10 0.11 0.20
0.15 0.39 2.25
0.20 0.92 12.34
0.25 1.80 45.49
0.30 3.10 130
0.40 7.35 648
0.50 14.36 2068
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for N, = 64 and N, = 49

1 2
L - 0.07804[1n(§_b-) - 2]
[(Nl + 2N,) ub] Wy
8b
+ 0.18298[1n(;———) - 2.28] + 0.13775
. v
Iffr, = r, = r, and b/rw = 200, we obtain
1 2
- L 5 = 0.26102 1n(§°—) - 0.43552 £ 1.49
[(N1 + 2N2) ub} w

Comparing tables 8 and 10, we see that the Maxwell-coils
simulator produces much more uniform field near the center than
the Helmholtz-coils simulator. Also, if we assume the normaliza-
tion constants L/{(2N)2ua] = 1.46 for a/rW = 200 and
L/{(N1+2N2)2ub] = 1,49 for b/rW = 200 to be approximately equal,

then the Maxwell-coils simulator has four times better efficiency

than the Helmholtz~coils simulator.
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figure 13 (ref. 8),

IvV. Simulator/Object Interaction Canonical Problems

A, Half Cylinder Between Infinite Large Plate and Ground Plane

The-change of the admittance of a large plate simulator
above the ground plane due to the presence of a cylindrical test
object of radius d, as shown in figure 12, inside the simulator

is given by

AY 2
L _ (i) c (67)
Y 2b 1

pof =

Yo = characteristic admittance of medium (or free space)

The Fourier coefficients C2n—1 (C1 = CZn—l for n = 1) for
the calculation of the surface charge density induced on the

cylinder can be expressed as (n > 0)

>\ /4 2(m+n-1) {2m+2m-1 o
Cope1 = Sp.1 * 2 Z (EB) o z(2n + 2m) Cp o (68)
m=1 n-

where 7(z) is the Riemann zeta function and the numerical values
of 02n~1 are given by table 11 (ref. 9).
The increment of the simulator's admittance due to the pres-

ence of the half cylinder inside the simulator is plotted in

9. R. W. Latham, "Interaction Between a Cylindrical Test Body
and a Parallel Plate Simulator,'" Sensor and Simulation Note
55, May 1968.
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Figure 12. A Half Cylinder Inside an Infinite Large
Plate Simulator and the Ground Plane
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Table 11

FOURIER COEFFICIENTS FOR-CALCULATION
OF THE CYLINDER SURFACE CHARGE DENSITY o(¢)

WHERE o(¢) = -2eE (C; sin¢ + Cg sin3¢ + Cg sin5¢ + - )
Coeff.

a/b 1 C3 5 7 9 11
0.00 1.000
0.04 1.001
0.08 1.005
0.12 1.012
0.16 1.022
0.20 1.034 0.001
0.24 1.050 0.001
0.28 1.069 0.003
0.32 1.092 0.005
0.36 1.119 0.008
0.40 1.152 0.012 0.001
0.44 1.190 0.018 0.001
0.48 1.234 0.027 0.002
0.52 1.287 0.038 0.004
0.56 1.349 0.054 0.007 0.001
0.60 1.423 0.076 0.011 0.001
0.64 1.512 0.105 0.017 0.003
0.68 1.621 0.145 0.027 0.005 0.001
0.72 1.756 0.201 0.043 0.008 0.001
0.76 1.930 0.280 0.069 0.015 0.003 0.001
0.80 2.160 0.365 0.112 0.029 0.007 0.001
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The change of the surface charge density on the cylinder
with respect to the charge density induced on the same cylinder

immersed in a uniform electric field Eo can be expressed by

a(¢) - o, (¢)
ASO(¢) - Om(¢)
o0 7!,
a(¢) = —2€Eo E CZn~1 sinf(2n - 1)¢] (69)
n=1
o (¢) = o(o) = charge induced on the cylinder
b>e when the cylinder is immersed
Eo=constant in a uniform electric field Eo‘
= —ZeEO sin ¢
Vo
EO =5 = electric field at the center of the ground

plane with the test object removed (i.e.,
a smooth conducting ground plane)

The increment of the charge density ASO(¢) for ¢ = 300, 600, 90°
are given by table 12with d/b as the parameter. However, the

maximum increment of the charge density is evaluated at ¢ = 900.

B. Half Cylinder Between a Finite-Width Plate and Ground
Plane S

The change of the geometrical impedance factor of the
finite-width-plate simulator above ground plane (figure 14) due

to the presence of the cylinder can be given by

AT fg
_g-f = 5= -1 (70)
gO gO

Here, fg denotes the geometrical impedance factor of the
o

simulator without the presence of the circular cylinder.
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Table 12

INCREMENT OF SURFACE CHARGE DENSITY A_ (¢), ¢ = 30%,60°, 90°
ON A HALF CYLINDER INSIDE LARGE PLATE SIMULATOR

4/ ¢ 30° 60° 90°
0.04 0.002 0.001 0.001
0.08 0.006 0.006 0.005
0.12 0.012 0.012 0.012
0.16 0.020 0.022 0.022
0.20 0.032 0.033 0.035
0.24 0.046 0.050 0.051
0.28 0.064 0.069 0.072
0.32 0.082 0.092 0.097
0.36 0.104 0.119 0.127
0.40 0.128 0.151 0.164
0.44 0.154 0.188 0.209
0.48 0.184 0.231 0.263
0.52 0.214 0.282 0.329
0.56 0.248 0.341 0.411
0.60 0.282 0.410 0.511
0.64 0.320 0.492 0.637
0.68 0.360 0.589 0.799
0.72 0.404 0.706 1.011
0.76 0.448 0.846 1.208
0.80 0.498 1.022 1.705
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The numerical values of*Afg/f’g are tabulated in table 13
o
and are also shown in figure 15 (ref. 10). From table 13, it shows

that for agiven d/b, Afg/fg is not sensitive to the variation of
e}

the simulator width-to-height ratio, a/b. For a/b greater than

one, values of Afg/fg can be thought of in the context of the

o
infinite plate case.

The change of the surface charge density on the cylinder
compared to the induced surface charge density on the same

cylinder immersed in a uniform electric field Eo can be given by

o(¢) - o _(9)
BsolP) = 0,(¢)
0(9) = 2meE, (b/a)z Agy 1 sin[(2k - 1)¢] (71)
k=1
B _ sin ¢
o (6) = a(d) - = -2mek, 2K(m,) E(m)

Eo=constant

where Eo is the electric field at the center of the ground plane
without the presence of the cylinder.

The Fourier ¢Coefficients A2k—1(k > 0) are given by table 14
and the increment of the charge density ASO(¢) along the surface

of the cylinder is given by table 15 (ref. 9).

10. Soon K. Cho and Chiao-Min Chu, "A Parametric Study of a
Circular Cylinder within Two Parallel Plates of Finite
Width," Sensor and Simulation Note 174, January 1973.
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INCREMENT OF GEOMETRICAL IMPEDANCE at /[t

Table 13

O

OF A FINITE-WIDTH SIMULATOR DUE TO THE HALF CYLINDER

INSIDE THE SIMULATOR WITH d/b and a/b AS PARAMETERS

a/b

a/n 0.1 0.2 0.5 1.0
0.1 -0.00537 -0.00641 -0.00761 -0.00694
0.2 ~0.02147 -0.02565 -0.03047 -0.02899
0.3 -0.04841 -0.05781 -0.06867 -0.06311
0.4 ~-0.08654 -0.10329 ~-0.02250 -0.11323
0.5 -0.13688 -0.16308 -0.19258 -0.17915
0.6 -0.20169 -0.23947 -0.28022 -0.26437
0.7 -0.28601 -0.33722 -0.38799 -0.36495
0.8 ~0.40151 -0.46635 -0.52101 -0.49195
0.9 -0.58110 -0.65042 -0.69112 -0.65589
0.99 -0.92472 -0.92978 -0.92334 -0.90017
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OF THE SURFACE CHARGE DENSITY o(¢) ON THE CYLINDER

Table 14

FOURIER COEFFICIENTS An FOR CALCULATION

WHERE §%é§; 0(¢) = (A; sing + Ay sin3¢ + Ag sinbp + )
A A A A A A A
1 3 5 7 9 11
d/b
a/b =| 0 |-0.0172
0.1 V9.1 | -0.0172
0 | -0.0418
a/b =14 1 | -0.0418
0.2
0.2 | -0.0427
0 | -0.1352
/b =| 0.2 | -0.140
0.5 [ 0.5 | -0.168 0.006
0.99 | -0.452 0.077 | -0.01
0 | -0.3077
0.1 | -0.31
0.2 | -0.318
2/ "lo0.4 | -0.354 | o.0018
0.6 | -0.438 0.015
0.8 | -0.667 | 0.1 ~0.01 0.022
0.9 | -1.03 0.32 -0.085 | 0.029 | -0.011| 0.003
0 | -0.637
0.08 | -0.640
0.16 | -0.651
0.24 | —0.668
0.32 | -0.695 0.003
a/P =1 0.40|-0.733 | 0.008
0.48 | -0.786 0.017
0.56 | -0.859 | 0.034 | -0.004 | 0.001
0.64 | -0.963 0.067 | -0.011 | 0.002
0.72 | -1.118 0.128 | -0.027 | 0.005}| -0.002| 0.001
0.80| -1.375 | 0.251 |-0.071] 0.008| -0.007| 0.001




Table 15

INCREMENT OF SURFACE CHARGE DENSITY A__(¢) for ¢ = 30°,60°,90°
DUE TO A HALF CYLINDER INSIDE THE FINITE-WIDTH-PLATE SIMULATOR

asm ¢ 30° 60° 90°
a/b = 0.1 0.1 0.0 0.0 0.0
0.1 0.0 0.0 0.0
a/b = 0.2 0.2 0.0215 0.0215 0.0215
0.2 0.0355 0.0355 0.0355
a/b = 0.5 0.5 0.154 0.243 0.287
0.99 1.278 2.269 9.987
0.1 0.0075 0.0075 0.0075
0.2 0.0335 0.0335 0.0335
0.4 0.139 0.151 0.156
a/b = 1.0 0.6 0.326 0.423 0.472
0.8 0.622 1.063 1.597
0.9 0.577 1.987 3.803
0.08 0.005 0.005 0.005
0.16 0.022 0.022 0.022
0.24 0.049 0.049 0.049
0.32 0.083 0.091 0.096
0.40 0.127 0.151 0.163
a/b = 2.0 0.48 0.181 0.234 0.261
0.56 0.250 0.341 0.410
0.64 0.322 0.492 0.637
0.72 0.404 0.706 1.006
0.80 0.498 1.022 1.705
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For a/b greater than one, A2k-1 can be approximated by
using the simple relation
- a/b .
|%2x-1| = 7% Cax-1 (72)
Here, C2k—1 is Fourier coefficients of infinite plate case and
is tabulated in table 11. If (72) is used to calculate A2k—1
for a/b = 1, the error of the leading term coefficient A1 of
charge deﬁsity 0(¢) is found to be less than 0.04. In table 15
the increment of charge density Aso for a/b = 2.0 is calculated

by using (72).
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C. Prolate Hemispheroid Inside a Half Circular Loop

The test object inside a current loop simulator is a per-
fectly conducting prolate hemispheroid of major and minor axes
24 and 2b (d > b), respectively, situated on a perfectly con-
ducting ground plane (fig. 16). The spheroidal coordinates
£, n, ¢ of figure 17 are used to define the circular loop by
no=ng and £ = 0 and the test body by n = Ny (ref. 11).

The change of the magnetic field (equivalent to the skin
current on the spheroid) on the surface of the spheroid compareéd

to the induced magnetic field on the surface of the same test

body immersed in a uniform magnetic field HO can be given by

B(E,n1) - Ho(8,n4)
Aso = Hm(g’nl) —| on the surface of the spheroid
2 1
H n. -1 e (n )
2n+1
H(E,nq) = ° , E TOETY Pl (0)PL(E) %—
/(a/0)?- (nl—l)/n n=odd Q,(ny)
H (&,n,) = H(E,n ) = induced field on spheroid when
o 1 1 . . . .
n the spheroid is immersed in a
homogeneous magnetic field HO
Ho=constant (73)
1
_ -H_ Py (&)
1
2 .2 2
(n2-£?y(n%-1) &My
HO = ﬁL-=—field at the center of the current loop without

the presence of the spheroid (a smooth conduct-
ing plane)

11. A. D. Varvatsis and M. I. Sancer, '"Low-Frequency Magnetic
Field Interaction of a Half Toroid Simulator with a Per-
fectly Conducting Half Prolate Spheroid,' Sensor and
Simulation Note 131, June 1971,
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Figure 16.

Half Prolate Spheroid Inside a Current Loop

Figure 17.

Spheroidal Coordinates
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2

where a/b = (no

- 1)%/(n§ - 1)%, and Pi(g) for £ < 1 and Qi(n)
for 1 £ n < = are the associated Legendre functions of the first
and second kind.

For a fixed finite value of-a (a equal to the current loop
radius) the limiting cases b/d -+ 1 and b/d + 0 correspond to the

problems of a sphere and an infinitely long cylinder.

The plots of*AS versus z/d and z/a (2 being the symmetrical

(0]

axis of the prolate hemispheroid and the circular loop) of a

spherical test object (b/d = 1) and of an infinitely long cylinder

(b/d = 0), respectively, inside the current loop are shown in
figures 18 and 19 with b/a as the parameter. However, the maxi-
mum value of Aso is shown in figure 20. ©Note that the maximum

deviation Ama for b/a £ 0.5, in general, is not at the 1ocatién

X

z = 0 of the nearest distance between loop and cbject.
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Figure 18.

Increment of the Magnetic Field (Equal to Skin Current) on a

Conducting Sphere (d/b

1) due to the Simulator/Object Interaction
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Figure 19. Increment of the Magnetic Field Density Along an
Infinitely Long Cylinder (d/b -+ =) due to the
Simulator/Object Interaction
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D. Charged Filament Above an Earthed Slotted Sheet

A filament of charge per unit length denoted by g is situ-

ated at a distance d in front of the center of a slit of width
2b in the ground plane, as shown in figure 21.
By using the conformal mapping technigues, the complex

potential function w can be found'to be (ref. 12)

w = u 4 3 - q Z + ¥ ( + ¥ d2+b2) -
= v = grg n S (74)

B E i/ il = /a21m2)
Z = X + jy = complex coordinate

If the imaginary part—of the square root in equation (74)
is always taken positive, then we use the upper sign (positive
sign) for y > 0 and lower sign for y < O.

The complex electric field E(z) can be obtained by differ-

entiating the potential function with respect to z to give

av g 2301 ¢ z//e202)la & /a%4b2)

-9, - - L 5 (75)
y s Va2 p2) 4 (g« /a2l

I+

E(z) =

E
X

I+

If we let b = 0 and z = 0, we obtain the short-circuit
field at the center of the ground plane. Thus, equation (75)
reduces to

Esc(o)

i

= jE
© (76) .

the short-circuit electric field at the
center of the ground plane

J 5as

oA R]

E
o

i2. W. R. Smythe, Static and Dynamic Electricity, Chapter IV,
3rd ed., McGraw-Hill Book Co., New York, 1968.
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Inserting Eo into equation (75) and taking the upper sign

only, we rewrite equation (75) by

E(z) = jE (1 + z//zz—bg)[l + /1 + (b/d)ZJ 7
' ° [(z + /zz—bz)/d]z + [1 + /1 + (b/d)z]z

However, if the slotted ground plane is illuminated by a

(77)

homogeneous electric field Eo, the resultant field can be

expressed by

d-row

E_(z) = E(2) = —§9~<1 +}———2L———) (78)
22 b2

E =constant
o

Again, we define a parameter Aso’ where Aso denotes the
change of the aperture electric field (equivalent to the ficti-
tious aperture magnetic current) associated with the simulator, to

characterize the interaction between the simulator and aperture

by
E(z) - E_(2)

so E_(2)

aperture

2
(x + /o2 R2) *b°
— 3
(x + 5/0222) + la + /d2+b2)2

at aperture z:=x
and |x|<b

(79)

The numerical values of Aso are given in table 16.
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DEVIATION OF THE APERTURE ELECTRIC FIELD lO2 A

Table 16

SO

DUE TO THE INTERACTION BETWEEN SIMULATOR AND APERTURE

b/z/b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1 ] 0.050|0.100| 0.150| 0.199| 0.249| 0.299{ 0.348] 0.398] 0.447} 0.496
0.2 | 0.198] 0.396 0.593| 0.790| 0.985| 1.180| 1.373] 1.564] 1.754| 1.942
0.3 | 0.440| 0.879| 1.316| 1.750{ 2.177| 2.600| 3.016] 3.425| 3.826| 4.217
0.4 | 0.770] 1.536{ 2.295| 3.043| 3.777 4.494| 5.193] 5.869, 6.523| 7.152
0.5 | 1.179] 2.349| 3.502| 4.630] 5.725| 6.783| 7.799] 8.767; 9.687|10.56
0.6 | 1.659| 3.300{ 4.907 | 6.464| 7.959| 9.382{10.73 {11.99 {13.76 [14.25
0.7 | 2.201| 4.370| 6.478| 8.499(10.41 |12.21 [13.87 |15.40 {16.80 |18.08
0.8 | 2.797| 5.542| 8.186(10.69 [13.03 {15.18 [17.14 [18.91 |20.50 |21.91
0.9 | 3.440| 6.798{10.000(13.00 |15.75 |18.23 |20.45 {22.42 |24.15 |25.67
1.0 | 4.122|8.123|11.90 |15.38 |18.52 |21.31 |23.75 |25.88 |27.71 {29.29
1.2 | 5.580(10.93 |15.86 [20.27 [24.10 [27.37 |30.13 |32.44 |34.37 |35.98
1.4 | 7.135{13.88 {19.93 |25.14 [29.57 |{33.10 |36.02 {38.39 {40.31 [41.88
1.6 | 8.757(16.89 |23.98 |29.88 |34.62 [38.38 |41.34 |43.68 |45.52 |47.00
1.8 | 10.42 {19.93 {27.96 {34.38 |39.36 |43.17 [46.09 |48.33 |50.07 |51.44
2.0 112.12 |22.95 {31.80 |38.61 |43.70 [47.48 [50.29 [52.41 |54.03 |55.28
3.0 120.71 (37.08 |48.22 {55.37 |59.97 |63.01 [65.07 |66.53 |67.59 |68.38
4.0129.00 |48.77 |{59.98 |66.21 |69.83 |72.07 |73.53 |74.52 |75.23 {75.75
5.0 | 36.66 (57.97 |68.21 |73.33 |76.12 |77.77 |78.83 |79.53 |80.03 |80.39

10.0 | 63.99 [80.94 |85.85 {87.80 88;74 89.27 [89.59 |89.80 [89.95 [90.05




E. Large Plat Above Slotted Plane

Figure 22 schematically shows a large plate simulator in .

front of a slotted plane which is maintained at potential V = -1,
The slit has width 2b and is located at a distance h from the top
plate. By utilizing the conformal mapping method, the complex
coordinate z can be expressed in terms of the complex potential

function w by (ref. 12)

i 2 2

2 -
z - jh =28 [——i——~ tanh(%g) + EE]
l =}

z = X + Jjy CSO)

w(z) = w(x,y) + jv(x,y)

where u(x,y) 1s the stream function and v(x,y) is the potential

function.

The above equation can be rewritten in two equations which

correspond to the real and imaginary parts of (80):

i 2

% = 2h a sinh(mTu) 4 Tu
L az cosh(mu) + cos(mv) 2
(81)
.2 . i
- h = 2h a sin(nv) + TV
y N a2 cosh(mu) + cos(mv) 2

Here, a is a parameter and is related to the slit width 2b by

b = %? (tanh—la + ——jL—g) for a < 1 (82)

1 - a

The complex electric field E(z) is obtained by taking the

derivative of (80) to give
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Figure 22.
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Large Plate in Front of a Slotted Sheet
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dw

E(z) = Ey(x,y) T IE(x,y) = 55
- E
= o]
. 2 (83)
1+ —& sech2(ﬁﬁ)
1 2 2
- a
EO = ghort-circuit electric field = - %

In the previous subsection, it has been shown that the- field of
a slotted plane immersed in a uniform electric field EO is given

by (for the region y > 0)

~

¥

E
E,(2) = 3 (1 ¥ 77‘2—};2) (84)
Z -

.

Here, imaginary part of the square root is always taken positive,
i.e., Im(%zz - b2) >0

Similarly, the field deviation Aso at the aperture is defined

by
. E(z) - E_(=2)
so =
Em(z) aperture (85)
82 2 rw.]"1 ix -1
= 2[1 + —%—5 sech (—9:-)] [1 - ——J——-—] -1
1 - a 2 X2

at aper-
ture z=x
and
|x|<b

Letting z = x, the complex potential w is determined from (80)

and (82) which reduce to —

2
.. _ 2h a W W
X - jh = —_n_—[;-——g tanh(—z—) + Z:I
- a
2 1 (86)
p =20 [tannhta + —2 for a < 1
L 1 - a2
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It is of interest to examine the field function (83) by
taking the limit h » « and (83) should be reduced to (84). As
one can see, if'the'topfpla§§ Y”§ Ciéfrfiguré722rapproaches to
infinity, the field near the aperture is small and the potential
near the aperture will be very close to the potential of the

slotted plane V = -1. Then we can express the potential function

was‘
we-=j+8 , §<<1 (87)

where § denotes the stream function near the aperture and § is

small.

As h » ®, from (82) we find the parameter a to be

~ T b

AN

By utilizing expressions (87) and (88), from (80), we obtain

2
§2 -2 s+ P __
h il
(89)
or
5= 2 + 22 - b2
°h

Note that the positive sign in front of the square root is used
here. Thus, the denominator of the field function (83) is

reduced to

2 2
_ a 2 [Tw) . me z . 8
D=1+ 1—*——2- sech (—2—) 1 + (-—2—) (—H—g - 1) {] csch ("2—>:I

(90)

i
N
i
N
N B
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Inserting (90) into (83), we have

E
E =70|:1+-——-§———}=Em (91)
2 .2
z - b

ho>o

Eo=constant

The field deviation Aso in the aperture due to the interaction

of simulator plate and aperture is tabulated in table 17,
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Table 17

2

' DUE TO THE INTERACTION BETWEEN SIMULATOR AND APERTURE

Xx/b

0.0 { 0.1 0.2 | 0.3 0.4 0.5 | 0.6 0.7 0.8 0.9

b/d

0.2 0.808} 0.847{ 0.845| 0.835| 0.819] 0.800f 0.784| 0.788| 0.830; 0.833
0.3 1.791} 1.810f 1.811] 1.809| 1.804| 1.798| 1.794| 1.793| 1.788| 1.795
0.4 3.122} 3.132) 1.132| 3.128] 3.121} 3.113| 3.103} 3.093| 3.053| 3.057
0.5 4.757| 4.758| 4.753| 4.743| 4.727| 4.707| 4.682| 4.652| 4.595| 4.5/0
0.6 6.641| 6.637| 6.625| 6.603| 6.571| 6.530| 6.481| 6.421| 6.334| 6.2/0
0.7 8.729) 8.718| 8.695| 8.656{ 8.601, 8.531| 8.446| 8.330] 8.215; 8.099
0.8 10.97 [10.95 {10.92 | 10.86 |10.77 |10.66 |10.53 [10.36 | 10.19 |10.07
0.9 13.32 {13.30 |13.25 | 13.16 |13.03 {12.88 {12.69 [12.46 | 12.21 |11.95
1.0 15.74 115.72 |15.64 | 15.52 {15.35 {15.14 |14.89 |14.58 | 14.25 }13.90
1.1 18.20 {18.17 [18.07 | 17.92 {17.70 [17.42 {17.10 {16.71 16.29 |15.83
1.2 20.67 {20.63 {20.51 | 20.32 [20.05 {19.70 {19.29 [18.81 | 18.29 {17.73
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V. Summary

Analysis of-other important geometries pertinent to FINES
has appeared in the literature and is not included in this report.
Those-geometries are a circular disk (ref. 13), a spherical cap
(ref. 14) above the ground plane for the E-field simqlators, the
multiloops wound on a hemi-cylindrical surface (ref. 15), and a
hemispherical surface (ref. 7) above the ground plane for the H-
field simulators. For simulator/object interaction problems, éne
of the important generic studies concerning a circularrdisk in
front of a circular aperture in the ground plane has been solved
by reference 16, and a cylindrical post sited on the ground plane
below a large simulator plate can be found in references 17, 18,

and 19 where the static solution is of interest. Solutions to

13. C. E. Baum, "The Circular Parallel-Plate Dipole," Sensor and
Simulation Note 80, March 1869.

14. C. E. Baum, "The Single-Gap Hollow Spherical Dipole in Non-
Conducting Media," Sensor and Simulation Note 91, July 1969.

15. C. E. Baum, '"Some Considerations for Electrically-Small
Multi-Turn Cylindrical Loops,' Sensor and Simulation Nate 55,
May 31, 1967.

16. F. C. Yéng and L. Marin, "An Electrical-Field-Penetration
Simulator for Apertures,'" Sensor and Simulation Note (to be
published).

17. Clayborn D. Taylor, George A. Steigerwald, "On the Pulse
- Excitation of a Cylinder in a Parallel Plate Waveguide,"
Sensor and Simulation Note 99, March 1970.

18. R. W. Latham and K.S.H. Lee, "Electromagnetic Interaction
Between a Cylindrical Post—and a Two-Parallel-Plate Simulator,"
Sensor and Simulation Note 111, July 1870.

19. Lennart Marin, "A Cylindrical Post Above a Perfectly Conduct-
ing Plate; I (Static Case)," Sensor and Simulation Note 134,
July 1971.
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these problems éfé considérably di}%ibuitifo 6btaiﬁir Fufﬁfe
studies are suggested to choose one or two configurations from the
above canonical problems for—detailed consideration.

One of the simple driving networks for single- and
multiple-field-component FINES can be shown schematically in
figure 23 in which a circular disk simulator is driven by gener-
ators spaced in quadrants along its circumference. If the simu-
lator is driven by a source pair of opposite polarities, as
shown in figure 23(a) of the source pair 1 and 3 and also in
figure 23(b) of the source pair 2 and 4, the simulator becomes
the H-field type. From the directions of current flow as indi-

cated in figures 23(a) and (b), the fields . and ﬁz generated

1
by the simulator are orthogonal. However, if all the sources

are dldentical (including the connecting cables between the source
and simulator)'and are in the samé pblariﬁy, éérshown inrfigure
23(c), the simulator becomes the E-field type. The possible
network in feeding this simulator is shown in figure 24. Here,
two independent current sources are used to drive the transformer
pairs A and C, and B and D to generate the magnetic fields ﬁl and
ﬁz, respectively. A single voltage source is cqnnected in such

a way to generate only the electric field. Note that the trans-
former pair A and C is not coupled to thé transformer pair B and
D. To achieve mutual coupling between A and C a bifilar (or

trifilar or quadrafilar) winding is used, and similarly for B and

D. The details of such a design need study.
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a. H-field Type

b. H-field Type

Figure 23.

¢. E-field Type

Simulator with the Sources Spaced in Quadrants
Along the Disk's Rim
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Figure 24.
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Feeding Network for the Multiple-Field-Component FINES
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Another possible combined fields simulator, as shown in
figure 25, is the combination of an H-field simulator consisting
of some current loops such as the Helmholtz coils and an E-field
simulator such as a circular disk above the ground plane. It is
desired that the E-field simulator be driven by a voltage source
and the H-field be driven by a current source. An exact analyti-
cal soclution to the combined structures by solving a rather com-
plicated boundary-value problem may be difficult to obtain. »
However, by symmetry in design, we are able to keep the coupling
between the multiple field components negligibly small. Hence,
the problem of a composite structure can be resolved into two
rather simple canonical problems where the analytical solutions
are possible. Other engineering problems in the design of a
FINES, such as the choices of the sources and the matching net-
works which will directly affect the desired waveform and power

efficiency, should also be included for future consideration.
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