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Abstract 

. . 

This report contains the result of an investigation of the higher- 

order TE, and TM, leaky modes in a finite-width, parallel-plate waveguide. 

The reflection coefficient at the side openings of the guide is derived 

under the approximation that the interaction between the two openings is 

negligible. The transverse resonance condition is applied to derive the 

characteristic equation for the leaky modes in the open waveguide structure. 

Special emphasis is given to the TEzo modes, which deominate the other 

leaky modes when the plate width is large. 
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SECTION I 

INTRODUCTION 

Consider an open waveguide formed by two infinitely long, perfectly 

conducting, parallel plates of finite width (fig. 1). The width of each 

plate is denoted by w and the distance separating the plates by 2h. A 

coordinate system is introduced such that the z-axis coincides with the 

axis of the waveguide and the xy-plane is the transverse plane of the 

waveguide with the x-axis parallel to the plates. For later convenience, 

the origin of coordinates is chosento coincide with one plate edge. 

A time convention [exp(-iwt)] is assumed. 

The guiding structure of figure 1 is an open structure since it does 

not possess walls completely impermeable to radiation and, therefore, 

power flow and stored energy are not confined to the inside of the 

guiding structure. The electromagnetic field is excited in this structure 

by a wave which is incident from the interior and propagates along its 

longitudinal (z) direction. As this wave propagates along the guide, a 

portion of the energy leaks out continuously through the side openings. 

Thus, a complete description of the electromagnetic field in the guide 

requires a superposition of the transverse electromagnetic (TEfl) mode, 

higher-order transverse electric (TE) and transverse magnetic (ai) leaky 

modes and, finally, a continuous spectrum. This structure supports a TEM 

mode at all frequencies. For low frequencies the TEM mode is dominant; 

however, at higher frequencies for which the free space wavelength is of Lb 

the same order as the cross-sectional dimensions of the guide, the TEM 

mode alone may not be the dominant part of the field. 

The properties of the TEM mode on the guiding structure of 

figure 1 have been investigated using conformal mapping techniques 

(ref. 1 through 4). The goal of this effort was to obtain the 
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a. Perspective view 

b. Transverse section 

Figure 1. 
Two Perfectly Conducting, Finite-Width Parallel Plates. 
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wave numbers and the associated field distributions for higher-order TE 

and TM leaky modes with the smallest axial attenuation, since it is these 

modes that are expected to contribute significantly to the total field. 

As is well known, the leaky mode expansion is an approximation to the 

exact continuous spectrum representation that is associated with open-region 

problems of the type investigated in this report. 

. The results obtained herein are expected to be useful in designing 

parallel-plate simulators for EMP studies. 
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SECTION II 

FIELD REPRESENTATION IN TERMS OF LEAKY MODES 

0 

4 - 

In contrast to open waveguides, a closed guiding structure possesses 

a finite cross section bounded by walls that are impermeable to radiation. 

Solutions to the time-harmonic source-free Maxwell's equations in such 

closed regions are called modes or eigenmodes. These modes are character- 

ized by an axial field variation of the form exp[i(ksz - wt)]? These 

modes individually satisfy all of the boundary conditions on the wave- 

guide walls. Furthermore, the modes in conventional lossless waveguides 

either propagate without attenuation (kz real) or decay exponentially 

without any phase variation (ks purely imaginary). These modes are also 

square integrable over the cross section of the waveguide (because they 

have finite energy), and they possess certain orthogonality and complete- 

ness properties which make it possible to represent an arbitrary field 

distribution in terms of a superposition of these modes. 

In contrast, the field representation in an open structure typically 

includes a discrete spectrum of leaky modes (ref. 5 to 7). In common with the 

conventional modes the leaky modes do satisfy the source-free field 

equations and the boundary conditions on the surface of the waveguide. 

However, these modes may grow without bounds at large distances away 

from the structure and, consequently,are not square integrable over the 

infinite cross section of the open waveguide. In general, these leaky 

modes are not members of a complete orthogonal set, and must be supple- 

mented by a continuous spectrum if a complete representation of the field 

is desired. 

*Throughout this report, w is assumed to be real, whereas k z can be complex. 
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. 

In the guiding structure offigure 1, the axial propagation constant 

ky of n lcaky mode is given by 

kZ = Bz + ia 8 > 0 CL > 0 z z z (1) 

which implies that the leaky modes decay as z + + ~0 . As a consequence 

(hrpendix A), these modes grow exponentially in the x-direction. In fact, 

k 
X’ 

the propagation constant in the x-direction, belongs to the improper 

Riemann sheet, i.e., the sheet in which the radiation condition is 

violated. 

In spite of the fact that the leaky modes are not proper solutions 

of Maxwell's equations in the entire space and do not in general form a 

complete set of orthogonal functions, they can nevertheless be employed 

to obtain convergent representations of a dominant portion of the source- 
-. 

excited field in certain regions in space (ref. 5 and 7) as, for example, 

in the region between the two parallel plates in Figure 1. 
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SECTION III 

NATURAL DECOMPOSITION OF THE FIELD 

The electromagnetic field on the uniform waveguide considered can be 

uniquely decomposed into two parts, one with a zero axial magnetic field 

(TM= field, E-waves) and the other with zero axial electric field (TEa 

field, H-waves). These two sets of fields are uncoupled. This fact is 

implicit in the derivations given in (ref. 8), and will be proved in 

section VII. 

In addition, the electromagnetic field inside the guide may be 

symmetric or antisymmetric in the direction perpendicular to the plates, 

i.e., with respect to the plane y = -h. Hence, the field can be decomposed 

into two sets that are even or odd in y. Those two sets of modes are 

also decoupled. This fact is demonstrated in section VI. 

So far the field is decomposed into four independent parts: even 

yz 9 odd TEs, even TMs and odd TMs modes. These parts will be referred to 

as the four basic mode types. 

A third field decomposition will be encountered when solving themodal 

equation of section IX. This will be according to the symmetry or 

antisymmetry of the field in the transverse direction parallel to the 

plates, i.e., x-direction. These three decompositions combine to 

yield eight different independent cases. 



SECTION IV 

THE SOLUTION OF AN AUXILIARY TWO-DIMENSIONAL PROBLEM 

Mittra and Lee (ref. 8) have considered the two-dimensional problem 

of an electromagnetic wave incident from the inside of a semi-infinite, 

parallel-plate waveguide (fig. 2). They used the Jones' version of the 

Wiener-Hopf technique to obtain the expression for the reflected field in 

the waveguide. They decomposed the fields in the guide into TM and 

TE fields with respect to x. Since the fields have no z-variation, 

the nonzero field components of the TMx fields are (HZ,Ex,Ey) and, 

consequently,these fields may also be considered as TE . 2 Likewise, the 

TEx fields (EZ,Hx,Hy) are also TMz. 

Consider a TEZ (nix) incident field 

HZ = $, = cos 

where f- I : 

ik x 
e m = 0,1,2,3,... (2) 

kxm= k'- @$-jl" (3) 

and k = WC is the free space wavenumber. 00 The reflected field is also 

TEZ (Wx). For even m it is given by 

9 = Sam e 
-ikx + y Snm cos (z y) esikxnx 

n=2 
n even 

where 
S Om = -C+(kxm)/G-(k) 

and 

(k 
S 

-+ k) (km + W 
= - nm ("k", $ km) km G+(km)G+(kxm) 

(4) 

(5) 

(6) 

for n # 0 
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Equations (5) and (6) can be combined into a single formula 

S (kxn + k) (km + k) 
= - 

nm (kxn + kxm) kxnsOn 
G+(kxn>C+(kxm) 

'On = 1 + bon, where Aon is the Kronecker delta 

c 1 for n = 0 
'On = 

0 for n # 0 

The G+ function in equation (7) is the plus function (ref. 8) 

obtained by the Wiener-Hopf factorization of the function 

G(n) = G+(n)G-(0) = ewyh shyhhYh 

where h2 _ k2)lj2 for n > k -f= - q2p2 for n < k 

For odd m, the reflected field is given by 

ICI= y Snm COs (E y) ewikxnx 

n=l 
n odd 

where 

s * (kxn I -1 
+ k)1'2(kxm + k)1'2 

nm h(km+km) k L+(k& L+(km) 

The L+ function is the plus function obtained by the Wiener-Hopf 

factorization of the function 

L(n) = L+(rl)L-(n) = e -yh cash yh 

(7) 

(8) 

(9) 

(10) 

(11) 

(12-l 

(13) 
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Explicit expressions for G+(n) and t+(n) are given in appendix B. 

Now, consider a TM z (TEx) incident field, given by 

E = 9, = sin 
ikxmx 

ZD 
m = 1,2,3,... 

The reflected field is also TMz (TEx). For even m it is given by 

0 = i 
n=2 

SW sin (z y) eWikxnx 

n even 
where 

S nm 
2 G+(km>G+(km) 

kxn(k xn + km) 

For odd m, the reflected field is given by 

-ik x 

n odd 

where 

S 
L+UQ L+UQ 

nm 
hkxn(kxn + km> (km + W 1'2 (km + k)1'2 

(14) 

(15) 

(16) 

(17) 

(18) 

Cbserve that S nm as defined by equations (7), (l.Z), (161, and (18) 

for even TEZ, odd TEZ , even TMz and odd TMz modes, respectively, can be 

interpreted as the reflection coefficient from the m th mode to the n tl-l mode 

(fig. 2) evaluated at the edge (x = 0, y = 0). 

The coupling effects are neglected between the two openings at x = 0 

and x = -w of the o2en waveguide of figure 1. This means that the 

reflection coefficient for this configuration also will be given by Snm. 

12 



SECTION V 

THE THREE-DIMENSIONAL, PROBLEM 

In the previous section a two-dimensional problem was considered, 

where the incident wave propagates in the transverse plane. Now, 

consider the same problem with an obliquely incident wave with an axial 

variation of exp[ikzz]. Since the structure of figure 1 is invariant 

under translation in the z-direction, the reflected wave has the same 

z-variation as the incident one. In view of this, the original three- 

dimensional problem can be reduced to an equivalent two-dimensional one. 

In fact, it turns out that the solution to the three-dimensional problem 

can be deduced from that of the two-dimensional problem discussed in the 

previous section. 

Each of the incident (Ei,Gi), reflected (Er,ir) or total (Et,Et> 

fields can be expressed as 

where E and z satisfy the homogeneous vector Helmholtz equation 

which, by virtue of equation (19), can be reduced to 

where 

02 z v2 _ 25 - a2 + ,2 

t 

az2 ax2 ay2 

(19) 

(20) 

(21) 

(22) 

13 



and 

kf = k2 - k2 (23) 
Z 

Thus,the conditions on the reflected field (Er,?) are that it satisfy: 

a. the two-dimensional Helmholtz equation (21); 

b. the boundary conditions on the two conducting plates, i.e., at 

y = O,-2h and -w < x -C 0. - - 

et X+ 8 and & [ii l y ]  = 0 

or equivalently, 

er -i xj,=-e *y (24) 

(7-S) 

C. the edge condition as (x2 + y2) + 0. 

In view of these conditions, it is clear that (Er ir) is precisely 

the solution of the two-dimensional problem discussed in the previous 

section, provided that a multiplicative constant of exp[ikzt] is inserted 

and k isrcplacedby kt. 

Thus, the reflection coefficient in the three-dimensional problem is 

given by the expressions of section IV once k is replaced by kt. 
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0 
SECTION VI 

RAY INTERPRETATION 

If the two side openings of the parallel-plate guiding structure of 

figure 1 are closed with conducting plates, one gets a conventional rectangular 

waveguide. The field inside this guide is composed of TEZ and TMz modes. 

Some insight into the behavior of these modes is obtained by decomposing 

them into plane TEM waves. The field of TEOn (or TMOn) modes can 

be decomposed into the sum of two plane TEM waves propagating along 

zigzag paths between the guide walls (fig. 3). Equivalently, this 

field can be pictured as produced by a plane wave reflecting back and 

forth between the guide walls. 

Actually, this field can be expressed as 

u = 
i 
eikynY + T e-ikynY eikznZ 

1 
where 

and 
k2 = k2 + k;, 

yn 

(26) 

(27) 

(28) 

th 
T represents the self-reflection coefficient of the On mode. For 

perfectly conducting plates there is no coupling upon reflection between 

different modes. The boundary conditions at the conducting plates y = 0 

and y = -2h require that k 
Y" 

take on discrete values 2h x where n is an 

integer. 

The two terms of equation (26) represent plane waves because they have plane 

wavefronts, i.e., plane surfaces of constant phase. The curves everywhere 

” 
3 
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wave 8 wave A 

Figure 3. 

Decomposition of TEOn Modes into Two Plane Waves in a 
Conventional Rectangular Waveguide. 
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orthogonal to these wavefronts (called rays) are straight lines along the 

direction of the propagation vectors 

ET = TkynG + kzn; 

= 7k sin 0, i + k cos +n i (29) 

where the angle $n is as defined in figure 3. 

The decomposition of TEOn modes into two plane waves may be 

extended into TEm and TM modes also. When m and n are both different 

from zero, four plane waves result (ref. 9). 

Now, if a similar decomposition is performea on the modes inside 

the open waveguide of figure 1, then one gets the four plane waves 

where 

LJ = exp[i(+kxx i kyy + kzz)] (30) 

k2 = k; + k; + k; (31) 

The propagation vectors 

i; = +kxx i kyj' + kzz (32) 

are now complex, and equation (30) is said to represent inhomogeneous plane waves 

or complex rays. These waves can be considered to reflect back and forth 

between the conducting plates at y = 0 and y = -2h with reflection 

coefficients -c as given by equation (27). The boundary conditions at the 

conducting plates require that k be real and is given by 
Y 

k =k =$ 
Y ym 

m = integer 

The wave having k = k 
P (which 

we called the m th 
Y 

mode) will have the 

corresponding kx denoted by kxm. 

17 
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The four-wave decomposition of equation (30) can be rearranged for 

the m th mode as 

c -kDx + z y+ 
( 1 

c 
-kwlx 

-( ) 
2 Y+ 

(34) 

which can be replaced by a two-wave decomposition 

IJ; = Ll; i- + Turn 

ikmx ikzz 
= 2 e e 

(35) 
u- = ?J; m + dJ,- 

-ikwl ikzz 
= 2 e e (36) 

The two plane waves equations (35) and (36) reflect back and forth between 

the openings x = 0 and x = -w. Since energy leakage takes place at these 

openings, we now expect the self-reflection coefficients to have magnitudes 

less than unity. Moreover, coupling takes place between different modes 

upon reflection. 

As before, S is defined as the reflection coefficient from the nm 

plane wave of the m th mode to that of the n th mode at one opening of an 

open-ended waveguide (fig. 2). 

18 



Lee [ref. lo] has derived an expression for S nm by considering the 

following ray picture. Let the ray M be incident on the edge (x = 0, y = 0) 

of the parallel-plate waveguide of figure 2. Let N be a ray scattered from 

the edge and let the ray I be an image to the ray M with respect to y = 0. 

The rays M and N correspond to appropriate plane wave components of the 

th and n th m modes referred to above. Specifically, M corresponds to 

Utt. m and N corresponds to LJi-. 

For the two-dimensional problems, i.e., no z-variation, the trans- 

verse propagation vectors Et, = km2 + kPG and ck, = -kxnG - kynG are 

real and represent the directions of the rays. In this case we define 

the angles em, en, $i, and qr as shown in figure 4. All of these angles 

are measured in a clockwise sense; thus, according to the usual convention, 

they will be negative. d 

qJi = -iT + (en - em> 

Jlr = Tr + (en + em> 

(37) 

(38) 

For rays incident from or reflected to the inside of the guide, we 

have 

-7f<e ~-5 i i = m,n (39) 

These angles are complex for the three-dimensional problem. In 

this case we define em and en by 

cos 8 = - - 
i = m,n 

sine =- 

(40) 

and we define JI1 and J, r in terms of em and en via equations (37) and (38). 

19 



Figure 4. 

A Real Ray Picture of the Two-Dimensional Problem. 



8 

The problem of figure 2 is now replaced by two equivalent problems 

for the determination of modes that are even or odd in y (fig. 5a and 5b, 

respectively). The validity of this replacement (ref. 8 and 10) is a ‘proof 

of the decoupling of modes even in y from those odd in y. 

The edge diffraction coefficient 6(en, em) from the ray M to the ray N 

is given by 

Nen,em) = D(en,em) f(en) fern) (41) 

The factor D(8,,8,) is known as the diffraction coefficient for a 

half plane and is given by 

D(en,em) = ?j 

This can be written as 

I I 

2i sin r% sin (3 for TE modes 2i sin r% sin (3 for TE modes cos e cos e + cos 8 + cos 8 Dypm> = Dypm> = ,, ,, cos e cos e + cos e + cos e 

for; llodes for; llodes 
n n m m (T f -1) (T f -1) 

or equivalently 

-i(kt + kxn) “‘(kt + kxm) “’ 

(kxn + km) for TEa modes 

D(en,em> = 

1 (kt - kxn)l”(kt - kw1)1’2 

(kxn + km) 
for TMa modes 

(42) 
. 

(43) 

(44) 

. d 21 



Perfect Electric 
Conductor (Pet) 

Figure 5a. 

A Problem Equivalent to that in figure 2 for Modes Even in y. 

Perfect Magnetic 
Conductor (Pmc) 

Figure 5b. 

A Problem Equivalent to that in figure 2 for Modes Odd in y. 
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In equation (41), D(Bn,em) is modified with f(an) f(em) in order to 

account for the interaction between the edge at (x = 0, y = 0) and the 

lower plate at y = -h (fig. 5a) along the shadow boundary at x = 0. 

[Zh(k, + kxi)I1" e 

f(6,) = I 
-j, E 

4 G+(kxi) 
even i (45) 

fi L+(kxi) odd i 

where the G+ and L+ functions are those previously mentioned in section IV. 

Now Snm is obtained by multiplying D(e ,6 n m ) by TC~ 

S nm = dnD(en,em) f (en) f(em> (46) 

where T is as defined in equation (27) and Cn is the ray-to-mode conversion 

factor, given by 

Cn = -[2sonkth cos en] -1 = [ZE Onkmh 1-l (47) 

It is evident from equation (46) that SNn # Smn for n # m. With the aid of 

equations (44)-(47) we can deduce the expressions for Snm for the four 

basic mode types. "Those expressions are the same as those given by 

equations (7), (12), (16) and (18) when k is replaced by kt. 

. 1 
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SECTION VII 

DECOUPLING OF TEs AND THs MODES 

Each of the incident, reflected or total fields referred to in 

section V can be decomposed in terms of TEs and mz modes, derivable 

from two scalar potentials hs and es, respectively. 

TEZ modes 

zz = a 

+iksz 
HZ = hz e a As 

% 

+iksz 
Vthz e 

% = +ziz x ii t 

where Z = - F is the wave impedance of a given TEs mode. 
z 

(48) 

TMz modes 

ii= = 'j 
+iksz n 

E =e e a z 2 z 

ik 
% 

+iksz 
= + 2 Vt es e 

t 

iit = -Yiz x Et 

where Y = - y is the wave admittance 
z 

If we introduce the quantities 

(49) 

of a certain TM= mode. 

l J 
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then from equations (48) and (49), 

If the incident ray M referred to in section VI is TEr or TM , z 

then it can be expressed in terms of equation (51) with 

u(x,y> = e 
i (km*kpy> 

which means that this ray M is represented by the field vector 

where 

and 

$-L 
m 

Similarly, if the diffracted ray N referred to in section VI is 

TEr or TM , 
z 

then it can be represented in terms of equation (51) with 

U(X,Y> = e 
-i(kxnx+kyny) 

which means that this ray N is represented by the field vector 

where 

"1, = -km; - kyny + kzi 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 
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and 
--- 
v kxnkz 

n 
-~+tY$q+; 

t t 

(59) 

We observe that the plane electromagnetic waves equations (53) 

and (57) satisfy the condition 

c*i; ==o m (60) 

--- vn l %‘=O n (61) 

Let a diffracted field vector due to the incident TE z ( or TM=) field 

vector equation (53) be 

--- --- w =W e 
iqr 

n n (42) 

Though the incident ray equation (53) is either TEZ or TM=, the 

diffracted ray equation (62) is assumed, for the moment, to be a combination 

thereof. However, since equation (62) represents a plane electromagnetic wave, 

--v 

W n - ":, = O (63) 

Similarly, a general incident plane electromagnetic wave may be given 

by 

i?* =P 
ii;;; 

e m m 
where 

wT*E =o m 

t!- Consider the decomposition of Wm into components in and normal 

to the edge fixed plane of incidence (EFPI) which is the plane of the 

diffracting edge and the wavevector c (fig. 6). Now introduce the m 

(64) 

(65) 



t 
Z 

Figure 6. 

P 

Pertaining to the Coordinate Triad (G, im, i). 
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orthonormal triad ((1,cm,8) such that a is a unit vector normal to EFPI, 
Em i P- Due to equation 

m Ii;,1 
and fi is a unit vector in EFPI normal to km. 

(651, $+ * has no km component, i.e., 

c 
I caa + W,l (66) 

The symbol - indicates that the vector components are referred to the 

(o,im,$) basis. 

The relation of the orthonormal triad (~,~m,~) to the orthonormal 

triad (x,9,;) is the well-known relation between a spherical coordinate 

system and a Cartesian system. Hence 

klankz ii=lci;- 
t t 

(67) 

The representation of the vector c with respect to the basis 
=+I- 

(;(,$,;) and its representation Wm with respect to the basis (;,;,,6) are 

related by the unitary transformations 

=i+- % = [Tr]c (68) 

c= [Tzf :r (69) 

where 
z-f+ z - 
wm = Wa,Wkm’$+ t (70) 

-++ 
wm = ~wx’wy,wzl (71) 
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and 

$+I = 

'k k 

-F kt 
0 

t 

1 t (72) 

[Trlt is the transpose (and also inverse) of [Tr]. 
Z m-w 

Similarly, the vector W n can have another representation Wi- with 

respect to an appropriate basis (a',ci,i'), with 

t-- 
'n = [T,-] fi;- 

and 
-- 
'n 

= [T,-f ;;- 

where 

D,-1 (km,kyn,kZ) = [T~lGkm.-kyn,kZ) 

Now, observe that substituting Vm + from equation (55) in place of 

in equation (68) yields 

;* = -- 
m " g 

(73) 

(74) 

(75) 

(76) 

Equation (76) is a special case of equation '(66). It indicates that E 

for a TMz incident field or 'i for a TEZ incident field is entirely along 
n 

the B-direction. Similarly 'E for a TMz diffracted field or i for a TEZ 
. 

diffracted field is entirely along the B' direction. 

The incident and diffracted rays equations (53) and (62) evaluated 

at ': = 8 are related 

(77) 
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If these rays are referred to the (a,irn,i) and (&‘,iA,i’) bases, 

respectively, then equation (77) takes the form 

, z-e 
W n = [i5,1 <; (78) 

Lee and Deschamps [ref. 111 have shown that the dyadic [Dnm] in 

equation (78) is diagonalized. Due to equations (63) and (76) the second 

diagonal element of ID,] is irrelevant and can be set arbitrarily to zero. 

(79) 

where D + and D are the so-called soft and hard diffraction coefficients. 

Making use of equations (74), (78) and (68)) we obtain 

‘j;- = IT,-] [finrnl [Trl c (80) 

Substituting for the quantities in the right-hand side from equations (75), 

(79, (72)) and (55), get 

--- 
‘n = D+ 

which, by virtue of equation (591, becomes 

--m 

'n = D+'i, 

(81) 

(82) 

Equation (82) simplifies the problem significantly, so a dyadic 

operation to express the diffracted field in terms of the incident field 

is no longer needed. Rahter, consider the incident field to be 

30 



TEz (TMs) derivable from a scalar potential h z (es) having a unit amplitude 

when evaluated at 'r = G. The diffracted field will also be TEs (nfz) 

derivable from a scalar potential hz(ez) having an amplitude equal to 

D, when evaluated at r = 'i. This procedure has already been utilized in 

section VI. 

Basically, the dyadic operation in equation (79) rotates the E E R 

triad about the plate edge [ref. 111. Obviously for a TEs (nfz) field where 

the EZ (Hz) component is zero, a rotation of the field about the edge 

(z-direction) cannot introduce an E z lHZ) component. This means that a 

TEs (TM=) incident ray gives rise only to a diffracted TEZ (TMs) ray, 

which again proves the decoupling of TEZ and TMs modes. 
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SECTION VIII 

TRANSVERSE RESONANCE CONDITION 

Consider the geometry in figure 7 and let a wave be incident between 

the plates from the left to the right. No generality is lost by restricting 

this wave to any of the four basic types of modes considered in section III. 

Let the scalar potential of the m th mode of this wave be 

ikxmx 
U =a e m m 

(83) 

where 

and 

urn -(~~~) for {2) modes (84) 

(85) 

0,2,4... 

1 

for the even TE set 2 
mz 2,4... for the even TMz set 

1,3,5... for the odd sets 

This incident wave will give rise to a reflected wave (belonging to 

the same set) whose n th mode is given by 

which, upon the change of coordinates x = -(x1 + w) [fig. 71, becomes 

ikmx' 
U n = bn 

32 
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c 
“) 

0 

Figure 7. 

Auxiliary Coordinates for the Structure in figure 1, Used to 
Illustrate the Derivation of the Transverse Resonance Condition. 
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where 
ikxnw 

(851 

Now, this wave reflected at the right opening x = 0 will be incident 

on the left opening x = -w (x' = 0), giving rise to a reflected wave whose 

& th mode is 

ve = 

The transverse resonance condition can now be written as 

ve(X' = - T) = umk = - r) bLm , for all m 

where 6 Ilm is the Kronecker delta defined by equation (8). Hence 

i(kxC+2kxn+kxm); 
a -a& for all m 

m m Ilm 

If we let 

R = Snm e 
i Ocxn’k,‘; 

nm 

(89) 

(90) 

(91) 

(92) 

then, by interchanging the order of summation in equation (91), one gets 

m n RQnRnm 
"P ) 

a m = 6!Lmam for all m (93) 

R can be interpreted as the reflection coefficient from the m th mode to 

t:z nth mode, evaluated at the center plane x = x' = - w , 2 

- 
0 i 
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The equation (93) can be combined in a compact matrix form 

[R][R] z = [I] x (94) 

where x is the modal amplitude vector (evaluated at the opening x = 0) 

with elements a at the m th 
m row, [R] is a square matrix with elements 

R at the n th th 
nm row and m column, and [I] is the identity matrix. 

Theoretically the dimensions of both x and [R] are infinite; 

however, they are truncated to some finite dimension N. 

If equation (94) is written as 

([R][R] - [I]] ‘A = G (95) 

then x has a nontrivial solution only if the determinant of the matrix 

between the curly brackets is zero, i.e., 

DetC[R][R] - [I]] = 0 

Making use of the identity 

Det{[Q,l [Q,1) = Det[Q,l Det[Q,l 

one can reduce equation (96) into the following two equations 

or 

Det([Rl - [I]] = 0 (98) 

Det([Rl + [I]] = 0 (99) 

which correspond, respectively, to the vector eigenvalue problems 

([RI - [I]) 7i = b 

(96) 

(97) 

(100) 

(101) 

and 

{[RI + [I]] E = b 
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These, when combined together, are equivalent to the original eigenvalue 

equation (95). 

Equations (98) and (99) are the modal equations for modes whose 

axial field components u= are respectively symmetrical and anti- 

symmetrical with respect to the center plane x = - w . 2 
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SECTION IX 

SOLUTION OF THE MODAL EQUATION 

For a specific mode type and physical dimensions, [RI is a function 

only of the transverse wavenumber k . t This means that kt is the unknown 

to be determined from our modal equations (98) and (99) . This procedure 

is similar to the one discussed in references 8 and 14. Once k, is known, -- .._ 
kz is readily obtained from the relationship kz = /p-I-yy 

t * 
The solution of the modal equations (98) and (99) amounts to finding 

the complex roots kz of complex transcendental functions. This type of 

problem has been discussed in references 12 and 13. In [ref. 121 Muller discusses 

an iterative method that has been programmed under the name ZANLYT for 

the DEC system 10 and CDC CYBER 175 FORTRAN VERSION 4 Compilers. The 

Muller method requires knowledge of the approximate root(s) of the complex 

function and it is unreliable for complex functions of exponential 

behavior. In [ref. 131 Cauchy's theorem is used to find the number and 

location of zeros of an analytic function in a given contour. The second 

was especially suitable for our purpose, since it allowed us to search 

for the zeros of the functions in (98) and (99) within a rectangular 

region of the first quadrant in the complex ks (= 8s + iaz) plane. The 

rectangle was defined by 

O<B/k 0 < aZ << k (102) 

The roots obtained by the SEARCH and HOMEIN subroutines of reference 13 

were improved further by the Muller method. The absolute value of the complex 

function was reduced to less than 10 -6 at the location of a root. 

Let kit and kzp, be the roots of the symmetrical equation (98) and 

the antisymmetrical equation (99), and let the corresponding kx be 
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denoted by kkll and k>,, respectively. Here 11 (= O,l,Z...) and m as given by 

equation (85) are the indices associated with the field variations in the 

two transverse directions x and y, respectively. An even (odd) e 

corresponds to a mode symmetrical (antisymmetrical) in X. The modal 

amplitudes vectors ? 11 and x; can now be obtained by solving 

tR - 

and 

(103) 

(104) 

To be specific, let us consider the solution of equation (103). 

The matrix [Bj = [R - I] k",e is an N x PI matrix with a zero 
. . 

determinant. If we assume that the order of'this zero is L where 1 < L < N, - - 

then the rank of the matrix [B] is (N - L). In this case, the equation 

[Bl x = 0 has L nontrivial, independent solutions for x. For low-order 

modes (low II) we do not expect multiple roots, i.e., L = 1, implying 

that there is a unique field distribution associated with a certain 

kS ZP, * For higher L, L can be greater than I, and a multiplicity of 

degenerate solutions may be associated with the same kzb. 

The solutions ii of equation (103) and At of equation (104) can thus 

be obtained numerically with minor modifications of a subroutine designed 

to calculate the generalized eigenvectors of a complex matrix. 
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SECTION X 

FIELD DISTRIBUTION OF THE MODES IN THE REGION BETWEEN THE PLATES 

The scalar potential u of any of the four basic mode sets is given by 

(105) 

a ik z 211 
(106) 

for sets symmetrical and antisymmetrical in x, respectively. 

The m th elements of vector matrices Ci and c; are, respectively, 

and 

.L 
2 

1 ikkex -ikk(x+w) 
2i - e 3 

TEZ for TM 
0 

modes 
z 

(107) 

(108) 

Using equations (107)and (108), the expressions for u can be simplified 
to 

u= 

c c a& 
Rm 

-ikk* F 
e (109) 
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It is noteworthy that once the eigenvector equations (103) and (104) 

are solved for iiPa, the parameters {aika : urn, are not all arbitrary, 

for they can be given in terms of a single arbitrary constant. With this 

in mind, and apart from differences of notation, we can observe that 

equations (109) and (110) are essentially the same as equations (87) and 

(84) of Marin reference 14. 

Now, equations (109) or (110) can be used together with equations (49) 

or (50) to yield the following field distribtuion of the modes in the region 

between the plates: 

- mn sin 2h 
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1 0 

-s 
Et 

I:) 

= -iwp 1 1 
'Ea Rm 

t 

f cos 
( 

E (113) 

TM- modes 

-S 

Et 

r\ 

=iCC 
-a 
Et 

Rm 

+!!E 
2h 

(114) 

3 

where 
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(117) 

In the special case of wide plates 

<=%<<1 (118) 

Then,out of the higher-order leaky modes, only the TEZ modes of order 

m = 0 have a significant contribution to the total field. For these 

modes the field components are given by 

(119) 

(120) 

where the parameters as OR and aGL in F;,(z) and Fte(z,) are obtained by 

solving the scalar eigenvalue problem that is obtained by truncating 

the dimensions of [R] and x (section VIII) of the even TE set to N = 1. 2 

In the following section, this problem will be considered further and an 

approximate solution for it will be developed which is valid for 

Ik xOe~l >> 1 and Ik xOQhl << 1 
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SECTION XI 

APPROXIMATE MODAL SOLUTION FOR SINGLE TEZ MODES WITH m = 0 

The self-reflection coefficient for the TEzO modes can be written 

from equation (5) as 

soo = -+kxo) (123) 

Boersma (ref. 15) and Weinstein (ref. 16) found that for small 

lkxOhl they could take equal to unity all multiple factors other than 

Be(kxO) in the expression (B.l) for G+(kxO), so that 

where C is the Euler constant 

C = Lim l+++ . . . ++- 
c 

Ln n 
3 

= 0.57716 
n-to) 

The transverse resonance condition for a single TEzO mode can be 

written as a special case of equation (91) as 
l 

where, as before, R is the index associated with the variations in the 

x direction. 

for modes symmetrical in x 

for modes antisymmetrical in x 

(126) 

(127) 
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Equation (126) can be rewritten as 

k 2kx0Rh 
xoll w+- A + (1 -c)+F= 

3 
(II + 1) 51 + 0 (128) 

If we let 

pOP, =k xOaW=I' Ie 
i90L 

OL 

then the solution of equation (128) is obtained as the zero for the 

function f(Pog) defined by 

f(Po2) = Pot + +PoEC[n(~)+ Cl- C> +?j 

- (L + 1) 'II + 0 P&2 
( ) 

where the logarithm in equation (130) is interpreted (appendix B) as 

(129) 

(130) 

(131) 

A solution POE of equation (130) is expected to be in the fourth quadrant 

i 
-;<$oll<o. 

) 
Due to the approximation in equation (124), our modal 

equation (130) is now not dependent on both h and w but rather on their 

ratio 5. Since Lim 5 log 5 = 0, one gets 
54 

Pop.+r(9,+1) as C-+0 (132) 

which could have been anticipated. 

Under the conditions (122), the root of (130) is obtained as 
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r) e 

A perturbational solution for PoL is obtained if we substitute (9, + 1) IT 

for it in the right-hand side of equation (133). 

Pea. = 1 
( ( 

-f59.n 

2 2 
+ 0 PO,6 + 

c ) 

c 3 (11 +21, 5 + (1 - C) + i 5 (L + 1) r 
>> 

W2) (134) 

For L = 0, the first of the conditions (122) is not quite satisfied, 

so poo obtained by equation (134) is not very accurate. 

If only the leading terms of the real and imaginary parts are retained 

in equation (134), then it is simplified to 

poll = (2 + 1) II [l - is] 14 << 1 (135) 

For the first few lower-order modes 

(k + 1) * << 1 
xi= kw (136) 

then the axial propagation constant kZ is given by equation (1). 

k ZOll 
=k 

(137) 

which has positive real and imaginary parts, in accordance with equation (1). 
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From equation (118), the transverse field distribution is given by 

where 

*1 =x+Jf 2 (139) 

which under the conditions (122) can be simplified with the aid of (135) to 

and 

(140) 

a 

(141) 

Marin [ref. 141 has considered a similar problem under the assumptions 

Ikch] << 1 and 5 << 1, which are identical to those employed in this 

section. After changing his notation as indicated below 

s + j,, P -+ -jkt, 2w -f w (142) 

46 



his equation (82) reads 

iktw - -g 
S e 00 (l+h 4 .!$ e 4, = -1 

where S 00 is given by the approximate formula (124) and the branch 

cut for the square root function is taken just above the positive real 

axis of the complex plane. 

Equation (143) which is the characteristic equation for antisymmetrical 

TE 
20 

modes differs from equation (126) by the factor 

-- ‘TI 
f 1 -1 h 4 2 eBix = - (144) 

The presence of the additional factor f was first noted in a recent work 

by Krichevsky and Mittra, where an explanation of its physical meaning 

was also given. However, under the assumption expressed in (122), which 

is valid for wide plates, the factor f in equation (144j becomes 

essentially equal to unity. Thus, the results reported here may be viewed 

as having negligible error. 

Table 1 compares some calculated values of the complex wavenumbers 

of the lowest-order TE ZOIl modes, using the approximate equation (130), 

the more exact equations ( 9S), ( 99>, and the perturbational formula (133). 

Corresponding field variations are plotted in Figs. 8 and 9. 
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Table 1 

THE WAVENUMBERS FOR A TEzOe MODE, OBTAINED BY (lm), (133)) and (98 1 OR (99 > 

I! 

0 

1 

/ : 

2 

3 

4 

5 

‘T 
I_. .._. I. _----. -- _ . . . .-.--. _.-.._.- S..~.. - ..-- _ 

5 = 0.01 I E = 0.01, I? = 5 I._. .I ^ -,.- - --.- -._-_..__. 
1 

.I ._--l----__ _. 
P = kxOw (133) P = kxOw (130) ] kz/k (1.30) 

~I ,_"- - -- . I - _ _ --+.-. _._- 1_ 

3.027 - 1.0314 

6.082 - 1.0628 

9.147 - i.0942 

12.220 - 1.1257 

15.297 - i.1571 

18.378 - 1.1885 

I 
j 

- 

I 
3.030 - 1.0294 ; .995 + i.907E - 4 

I 
6.086 - 1.0593 1 .981 + i.372E - 3 

9.153 - 1.0894 .956 + 1.867E - 3 

12.226 - 1.1197 .921 + 1.161~ - 2 

15.303 - 1.1500 .a73 + 1.266E - 2 

18.385 - 1.1804 .813 f 1.413E - 2 
1-1-.---__-_. I _ _ 

‘I- t 
1 

kz/k (98 ) or (99 ) 

.995 + i.874E - 4 

,982 + i.359E - 3 

.957 -I- 1.835E - 3 

.923 -I- 1.155E - 2 

.877 + i.256E - 2 

,816 -I- 1.397E - 2 
_-.. . -_ -- ..-.. ----- 



1.2 - 1.2 - I I I I I I I I 

T-1. T-1. 

‘\8\ \, '\8\ \, \ _ \ _ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 

O- O- \ \ \ \ \ \ \ \ I I 

L L 

-1.2 * -1.2 * I I I I I I I I 
-0.5 -0.5 0 0 ~- ~- 

- x/w - x/w 

0.08 I I I I 
1 

f- 
_Lj .__ I_- .-~ _~ --_ ---_ _ I 

I- 
/ 

I _ 
I 

-0.5 0 
--.- x/w 

Figure 8a 

The Normalized Longitudinal Magnetic Field of the Three Lowest 
Symmetric TEZOP, Modes ([ = 0.01). 

. 
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,- -0.5 3 

x/w 
0.04 1 - 

-0.09 I I I I I 
-0.5 0 

x/w 

Figure 8b. 
The Normalized Transverse Electric and Magnetic Fields of the 
Three Lowest. Symmetric TEZOp. Modes (< = 0.01). 
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’ Figure 9a. 

The Normalized Longitudinal Magnetic Field of the Three Lowest 
Antisymmetric TEZOI! Modes (5 - 0.01). 
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Figure 9b. 

The Normalized Transverse Electric and Magnetic Fields of the 
Three Lowest Antisymmetric TEzOL Modes (C,= 0.01). 
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APPENDIX A 

THE SQUARE ROOT FUNCTION FOR k 
X 

For a leaky mode with k = z , the wavenumber kx = Bx + iax 
Y 

(usually denoted kxm) is obtained from the square root function 

where 

k 
X 

= kx(kz) = k-i = /m (A. 1) 

km= /q (A. 2) 

The transverse wavenumber kt is a special case of (A.l) with m set 

equal to zero. Let 

(A.3) 

whence 

(A.4) 

It is evident from (A.3) that kx(kz) will not be uniquely defined unless 

arg(kz) = Q is specified. To obtain a one-to-one correspondence between 

the kx and kt planes, a two-sheeted k: plane is defined. This definition 

can be done in various ways. These are 

#o 2 f# < 2nf 0 0 (top sheet) 

2n + +. i+C4Tr+#l 0 (bottom sheet) 
(A. 5) 

where @o is arbitrary. 

These Riemann sheets have their branch cut in the kz plane along the 

straight line 0 = 0, or 0 = 27~ + $o. With the particular choice +. = 0, 

the entire top, or proper, sheet of the ki plane is characterized by 
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a = Im kx > 0 and the bottom, or improper, sheet by ax < 0. For a 
X 

given value of lci one has the relation 

top 
(A.61 

The two-sheeted kt plane maps into a two-sheeted kz plane, which in 

turn maps into a two-sheeted ka plane. This last mapping is shown in 

Fig. 10. 

Since k z is restricted to the first quadrant (l), kx can be only in 

the fourth quadrant (improper sheet) or in the second quadrant (proper 

sheet). In fact, if we define the real parameters Cl and'C2 

then we have 

which gives 

cl = 6; _ a2 = k2 - 
2 

X 
- B', + cl2 z 

C2 = Bzaz = -Bxax 

B4 2 
X - ClBx - Cf = 0 

Bx = $ (Cl + /qTgJi2 
and 

(A.7) 

(A. 8) 

(A.9) 

(A. 10) 

c2 0 =-- 
X 6 (A. 11) 

X 

. 

0 

The plus and minus signs in (A.ll) correspond to the improper and proper 

sheets, respectively. 

For a given k 2' if m in (A.7) is large enough, then Cl is negative 

and /Cl/ >> C2. In this case (12.9) has the solutions i3: = Cl and 
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7 //- ,// PX’O 
/ Pp ax=0 
/n_A7 &=o _rc em- ---- -knl 

~’ 

km /4 
sx<o A4 /; 

a. Top (proper) sheet a,>0 

P z 

cs x 
<o 

P X<O 

b. Bottom (improper) sheet a, <o 

Figure 10. Branch Cuts for kx(kz). 

w branch cut ax = o 
---- A =o 
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the second of which gives 

B S. 
X 

whence 

a =$ -c 
X /- 1 

(A.12) 

(A.13) 

Throughout this work, the value of kx is meant to be that of the improper 

sheet. 
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APPENDIX B 

FACTORIZATION FUNCTIONS G+ and L+ 

The reflection coefficient Rnm in equation (94) is expressed for 

even m,n in terms of G+(kxn)G+(kwl). 

(11.12d) of (ref. 81, and is repeated 

The G+ function is given in equation 

below 

G+(o) = G-(-n) = 

where 

Be(n) = exp {$!$- En (e-i- (I- C) + id) 

C(n) = exp [F Iln [v)] 

and 

PE(rl) f ,I, (l +t) exp [ %) 

. n even 

As indicated in section V, we replace every k by kt. y in (B.3) 

is given by (9) and nn in (B.4) is given by 

The G, function is defined in equation (B.l) in terms of some 

multivalued functions that need to be specified so that G+ becomes 

(B. 1) 

(B.2) 

(B.3) 

(R.4) 

uniquely defined. 

Since the factor rather than its square root appears in 

R nm' it represents no 

In Be(n), if we let kt = lkt\ exp (i arg kt), then the infinitely 

multiple-valued logarithmic function 
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in (6) = gn(G] - i(arg kt + 211n) a.61 

is specified to have the unique value corresponding to L = 0. This 

choice is in agreement with the definition of the log function in the 

real limit of kt, i.e., as arg k, + 0. 

In C(kxm) we have 

I -ik F 
whence 

03.7) 

C(kxm) = exp(T @ikmtikym[+ i&g (km+ ikP) - arg k$) (B.8) 

where 

-1 %I + kym 

i ! LII 
for a + k > 0 

Ym 

arg (km + ikP) = 

for awl + k < 0 
ym- 

(8.9) 

This specification of C(kwl) is in agreement with its definition for 

a = 0 and ensures its continuity as (axm + kym) changes. 

In PE(k,J it was observed that, for large n 

0, = -km = i E n large 

For small n (at least for n < m) 

nn = +kxn n small 

(B.lO) 

(B.ll) 

The transition of nn from +k to -kxn is determined according to the 

criterion 
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f 

+k xn if Re (k:) > ($$2 

xn if Re jk:) < (z)2 

(B.12) 

This criterion is analogous to that used in a two-dimensional problem 

where k, is real. 

If m and n are odd, then Rnm in equation (94) is expressed in terms of 

L+(kxn)L+(kxn), with the L+ function given by 

L+(Q) _ = L (-n) = (cos kth)l'*Bo(~),(~)Po(~) CD 

where 

B'(n) = exp(+ En (=)+ (1 - C) + i 3) 

P:(n) = E (l+$-) exp (iz) 
n=l 

n odd 

(B.13) 

(B.14) 

(B.15) 
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APPENDIX C 

TRUNCATION OF THE INFINITE PRODUCT 

To evaluate the G+ function, we need to evaluate the infinite 

product needs to be evaluated. 

P:(n) = ii (l+t)exp (is) 
m=2 

m even 

= ,2, b + t) exp ($) 

where 

In actual computation, this product is truncated to 

Pi(n) = il (1 + $) exp is) 

The relative error introduced due to this truncation is 

cc. 1) 

cc.21 

(C-3) 

(C.4) 
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For large m 

(l+++ (l-i$)~+i$+($+..j 

= ~++(g2+..J 

by neglecting terms whose order is smaller than 2 
0 

2 

but 

Therefore, 

=L rlh I I 
2 

EMhI 2M TI 

If Ed is specified to be less than some number zmax << 1, then 

This requires that /nhl be not too large; otherwise the convergence of 

P:(n) becomes prohibitively slow. 

For Emax 
-4 we took 

M min = 103 n2 + r12 
i ) 1 2 h2 

cc.51 

CC.61 

cc.71 

Cc.81 

cc.91 

(C.10) 
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where ‘I~, n2 are the real and imaginary parts of rl, respectively. 

A similar truncation is used for P:(q) while evaluating the L+ 

function. 
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