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SECTION I

INTRODUCTION

1, SMALL EMP SIMULATORS

Various types of large simulators have been built and

operated to provide approximate simulations of nuclear EhlP

(electromagnetic pulse) environment. These simulators are large

in that they are intended to provide a uniform illumination of

EMP onto test objects such as aircraft or missiles.

As the EMP simulation and test technologies have advanced,

the interaction mechanisms of EMP with various systems have also

become better understood. When specific EMP penetration mechan-

isms into systems are known, means have been developed to reduce

or eliminate the EMP couplings and penetrations. And, as a result,

various systems can become hardened against vulnerability to EMP

effects such as transient upsets or permanent damage to electronic

equipment.

After each implementation of a new hardening concept or tech-

nique, an engineering test and evaluation is in order. To test a

full-scale system in a large EMP simulator could be costly, time-

consuming, and often impractical. For alleviating problems asso-

ciated with full-scale testing, some types of small EMP simulators

have been conceived (ref. 1) to provide localized illumination of

EMP onto discrete POES (ports of entry) of interest on systems.

1. Baum, C. E., “13hfPSimulators for Various Types of Nuclear EhfP

@

Entiironment: An Interim Categorization, ” IEEE Trans. on
Antennas and Propagation, January 1978. Also, “Some Types of
Small EMP Simulators,” AFM’Lhlisc. Simulator Memos, No. 9,
December 1976.
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This report formulates and evaluates the potential perfor-

mance characteristics of a particular type of small Simulator of

which the fields are to be produced purely by a pair of electric

and magnetic dipoles.

2. THE ~ CROSS ; CONCEPT AND LIMITATIONS

Should there be a pair of pure electric dipole F and pure

magnetic dipole A placed perpendicular to each other and related

properly in amplitude (m = cp with c as the speed of light), their

combined radiation would have a set of unique features to be for-

mulated and discussed in this report (see Sections III and IV).

However, any radiating source has its physical limitations.

That is, any “design” or synthesis of source distributions cannot

be done by an arbitrary mathematical arrangement without consider-

ing its physical realizability. Physical limitations of electric-

and magnetic-multipole sources including those of dipoles have been
o

treated in reference 2. Since a production of dipoles by any source

will also produce higher-order multiples, one of the main tasks

of this report is to formulate completely all the multipole strengths

of a given source (see Section II and all Appendixes).

If a source region is made vani.shingly small, an ideal ~

cross % source can be conceptually formulated (ref. 3) for wave-

front propagation studies. In scattering phenomena, an ideal

.

.

2. Chu, L. J., “Physical Limitations of Omni.-I)irectional
Antennas, ” J. of Applied Physics, December 1948.

3. Rumsey, V. H., “Some New Forms of Huygens Principle,” IRE
Trans. on Antennas and Propagation, December 1959.

8



+ 4

P cross m scatterer can be well approximated (ref. 4) by small

spherical bodies of various material parameters. Of particular

interest in radiation is that a resonant E cross firadiator can

be approximated (ref. 5) by a microwave antenna of A3/16 with

about 30Z operating bandwidth. Finally, it is important to note

that rigorous derivations (ref. 6) of the ~ cross ~ condition have

also been previously performed under low-frequency approximations.

The approach of this report is to formulate the exact solution in

terms of multiples of a radiation source. This approach will

permit accurate evaluation of degradation effects by higher-

order multiples that are ever-present with varying degree of

significance.

An ideal ~ cross 3 radiator has some unique features that

are not found in other elemental radiators. They are summarized

in part as follows:

a. Cardioid radiation pattern rotationally symmetric with

the axis of maximum radiation.

b. Purely real power outflowing from any spherical sur-

face enclosing the source region.

c. Twice the directivity of a purely electric or magnetic

dipole.

4.

5.

6.

Yu, J. S., “Electromagnetic Resonance, Invisibility, Non-
Uniqueness, and Dipole Scattering of a Small Sphere,” General
Electric Tech. Information Series, No. R71EM112;January 1971.

Yu, J. S., and H, hloriomoto,ttElect.romagnetiC Dipole, “ Gener~l
Electric Tech. Information Series, No. R71EM113;January 1971.

Baum, C. E., “Some Characteristics of Electric and Magnetic
Dipole Antennas for Radiating Transient Pulses,” AFWL Sensors
and SirnulfitionNotes, No. 125; January 1971.

9



These desirable features are some of the goals to which small EhW

simulators are to be designed.

3. h!EDIUS(MAGNETIC AND ELECTRIC DIPOLE UNIFORM SIMULATORS)
SYNTHESIS AND REALIZABILITY

The acronym MEDIUS (ref. 1) is adopted here to represent all

small EMP simulators of which the fields are approximately those

of an ideal 3 cross % radiator.

The synthesis problem of MEDIUS can be stated simply; that

is, to find specific types of current distribution that would give

rise to a pair of dipoles with proper amplitudes and orientations.

Solution to this synthesis problem is known (e.g., ref. 4) to be

non-unique; that is, there are indefinitely many distributions that

may yield the same desired result, at least approximately.

Without going through mathematical formalisms, two possible

current distributions (ref. 1) are selected for study in this

report. Based on the fundamentals of electromagnetic theory (refs.

7-10) the arrangements shown in figures 1 and 2 are known to radiate
.

dominantly both electric- and magnetic-dipole fields, if their

7.

8.

9.

10.

Stratton, J. A., Electromagnetic Theory, bicGraw–HillBook
co.; 1941.

Jackson, J. D., Classical Electrodynamics, John Wiley & Sons,
Inc.; 1962.

King, R.W.P., Chapters 9 and 11 of Antenna Theory, Part 1,
edited by R. E. Collins and F. J. Zucker, McGraw-Hill Book
co.; 1969.

Baum, C. E., “On the Singularity Expansion Method for the
Solution of Electromagnetic Interaction Problems, ” AFWL
Interaction Notes, No. 88; December 1971.
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Figure 1. ‘Transmission-Line NEDIUS and Its Source Coordinates
(The y’ axis is pointing out of the page. The driving
power flow is along the (+z’), but the fixi%radiation

along the (-z’), emphasizing “backward” radiation.)is
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22n(2h/a) =
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Figure 2. Collocated Linear and Circular Current Elements
and Their Common Source Coordinates. (The y’ axis
is pointing out of the page. The ~ x firadiation is
along the (+z’).)

11



sizes are small measured in wavelength. Presehtly the transmission

line is assumed to be perfectly matched, and the collocated current

elements are assumed to have two independent but adjustable

generators.

As soon

conductors as

as the locations of generators are selected for the

arranged in figures 1 and 2, the current distribu-

.

tions will become unique and so will the radiated fields. The

relative amplitudes and phases of the generators in figure 2 may

be assumed, for the time being, to have unlimited ranges of flexi-

bility. If the same assumption is also applied to the transmission

line in general, the arrangements as shown in figures 1 and 2

could be considered physically realizable.

4. GENERALIZED lilULTIPOLECOEFFICIENTS AND QUASI-STATIC MOhlENTS

Two basic approaches are available for formulating multipole

radiation. One is based on the Taylor series expansion of source o

co.ntributionsunder the quasi-static approximation. This approach has

been rigorously explored (ref. 6) leading to two leading terms for

dipole moments. The other is based on the Bessel-Tourier series

expansion that represents the source contribution in complete sets

of spherical harmonics (refs. 7-10). This approach appears to

have no previous work directed toward formulating the multipole

radiation of the arrangements shown in figures 1 and 2. This

report adopts the second approach to first formulate the general-

ized multipole radiation in full and then demonstrate asymptotically

that generalized multipole coefficients are related to multipole

moments for a small source region.

12“



Coordinate systems for this report are conventional rectangu-

lar and spherical coordinates as shown in figures 1 and 2 for

describing source regions. They are primed to designate specifi-

cally source coordinates. hlultipoleradiation in this report will

use unprimed coordinate systems as shown in figure 3 for descrip-

tions of all field vectors outside of source regions.

5. SIGNIFICANT RESULTS AND OBSERVATIONS

Since multipole radiation of the two selected structures

appears to have no existing formulation in terms of spherical

harmonics, a complete formulation has been carried out in this

report. Section II serves as a summary for all the mathematical

details derived in Appendixes A through E.

Multipole coefficients and quasi-static moments

selected simulators are evaluated in Sections III and

vector fields are also expressed in terms of radiated

for the two

IV where

multiples.

Field patterns have been written out in full including contribu-

tions by dipoles and quadruples. Conditions for the ideal ficross

h radiation are established for both simulators to demonstrate the

desired unique features. The specific results and their asso-

ciated significance are referred to Section V for more detailed

discussions.

13
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SECTION II

hlULTIPOLESOF DISTRIBUTED SOURCES

Solutions for Maxwell’s equations have been developed in

standard text books (refs~ 7-9) with several techniques. A unique

solution for a specific problem is assured when proper initial

conditions and boundary conditions are applied to’the general solu-

tion of the wave equations. The same unique solution can also be

obtained by applying appropriate radiation conditions and boundary

conditions to the general solution of the Helmholtz equations.

In the following, Helmholtz equations will be used for

fields and potentials in the MKS system and in the frequency domain

with exp(jut) as the factor for time-harmonic description. If the

complex plane s-domain is chosen, the factor exp(st) should be

used.

1. HELh!HOLTZEQUATIONS FOR POTENTIALS

For the purpose of studying the ~ cross A concept, electro-

magnetic fields and potentials are desired in terms of multiples.

hlultipolecoefficients are to be formulated for distributed sources,

while multipole moments are to be obtained asymptotically for small

or point sources under quasi-static approximations. Both potentials

and fields will first be written in Helrnholtzequations for solving

them in terms of multiples.

Since the magnetic flux density ~ in the hlaxwell’s equations

is solenoidal, it can be expressed as the curl of a vector poten-

tial I as

15



where v is the permeability of space being considered. Also, by

the Maxwell’s equation, the electric field intensity %, when comb-

ined with ju~ or s~, becomes an irrotational vector. Let the

combination be the gradient of a scalar potential 0, the electric

field intensity becomes

Equations (1) and (2) assure that both magnetic and electric

fields are solved if the two potentials are uniquely determined.

Substitution of equations (1) and (2) into the h!axwell’s

equation, and application of the Lorentz condition

will give rise to the desired Helmholtz equations for the two.

potentials as

(V2 + k2)$ = -S-lP, or (V2 - y2)@ = -E-lp

(4)

(5)

where k2 = m2prz= u2/c2, and y
2 22

=s/c with c as the speed of

light and c as the permittivity of space. The source term ~ and

p are volumetric current and charge densities.

2. GREEN’S FUNCTION FOR POTENTIALS AND FIELDS

The Green’s function G for equation (5) and for the rectangu-

lar components of equation (4) is defined to satisfy the Helmholtz

16



equations as

(V2 + k2) G(~,~’) = -6(J - ~’)

Together with the Sommerfield’s radiation condition

the time-harmonic Green’s function takes the form

G(:j;’) = exp(-jkl~ - ~’1)
with k = u/c

47TI;- ;’[ and $ # ~’

(6)

(7)

(8)

where ~ and ~t are the position vectors of the field and source

points. If the sources in equations (4) and (5) are first

restricted to be elemental sources [~(~’) dv’] 6(J - ~’) and

[9(;’) dv’] 6(; _+!r ), the solutions for the elemental potentials

would also take the form of equation (8). By allowing the sources

to be distributed, the solutions for the potentials become the

integrated contributions from the entire source region as

(9)

(lo)

where the continuity equation is used in the second equality of

equation (10). Solutions for the fields may also be expressed

17



using the Green’s function by substituting equation (9) into equa-

tions (1) to (3). They are:

(11)

The potentials and fields as solved in equations (9) to (12)

are next to be formulated in terms of multiples.

3. MULTIIX3LEEXPANSIONS 01’POTENTIALS

The Green’s function in equation (8) can first be written as

the zeroth-order spherical Hankel function of the second kind h&2),

and then expanded (ref. 7) into a complete set of spherical har-

monics as

!(2){kr) j~(kr’) ~ L(
~;(zg+l)hk=_ P Cose) PR(COSW) .
4m 8=0

[
“ cos(m$) cos(m$’) + sin(m$) sin(m+’)

1)
(13)

I

where jl are the spherical Bessel functions, Pk are the Legendre

..
18
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.

polynomials, P! are the associated Legendre polynomials, and

Cos$ = Ir*ir,. Substituting equation (13) into (9) and (10) gives

rise to

~y(z!+l)hg1=-4X ‘2)(kr)
J
p2(cos$) j~(kr’) ~(~’) dv’

8=0

(14)

and

@ ‘2)(kr)
I
pi(cos$) jR(kr’) p(~’) dv’jk ; (2L + 1) hg

= 4Tr&~=o

02

(15)

These multipole expansions are valid for arbitrarily large source

regions. Each term in the expansions has (2!2+ 1) coefficients to

be determined by the nature of source distributions. As illustra-

tions, the first two terms in the potential expansions are first

given in exact forms and then asymptotically expressed in terms of

multipole moments. For the scalar potential

A h(2)(~r)00 = -4nE o
I
Po(cos$) jo(kr’) p(~f) dv’

* h(2)(kr)
= 47T& o I

@) dv’, for kr’ << 1

* h(2)(kr) Po,
= 4TrE o with p. =

I
P(Z’) dv’ (16)

o
,

19



(17)

The first two terms of the vector potential are

with

and

~ h(2)(kr)(j~;1),
/

+=-
0 with ~1 = r’ p(~’) dv’ (18)

W h\2)(kr) ~ P1(cos4) jl(kr’) ~(~’) dv’‘1=-411

+-

J
1 ;,

‘1=2- x 3(;’) dv’

where equation (19a) defines the magnetic dipole moment and equa-

tion (19b) defines the components of electric qua.drupolemoments

in a dyadie form. Further expansion of 12 involving the magnetic

quadruple moments (in dyadic form) can be found in Appendix A,

20

o

(19a)

.

.



AlSO formulated there are the electric and magnetic fields contrib-

uted by all the dipole and quadruple moments. A more general

solution of fields in terms of multiples is treated next.

4. MULTIPOLE EXPANSIONS OF FIELDS

Electromagnetic fields can be expanded (ref. 8) in terms of

multipole coefficients. The derivations are somewhat lengthy and

are treated in Appendixes B to D. In summary, the electric and

magnetic fields due to a

have been obtained as

i=
.kw

G
j1!2L + 1){!=

i

given source distribution ~(;’)andp(;’)

(20)

(21)

?where .2 m and VX(h~2) ~~,m) are expanded in spherical coordinates
>

in Appendix C. The electric multipole coefficients p~,m and the

magnetic multipole coefficients ml m are derived in Appendix B as
)

PR,m =
(zL+ I)!!

J
f +, ) & [r’j2(l{r’)]

ki (~ + 1)
y~,m(o ’,$’)lp(r

+ju[~ * ~(~’)]jl(kr’)~ dv’ (22)

and

21



~2t+ l)!!
ml,m = -

J
W;,m(o’,+ ‘) ji(kr’)] ● [;’ x j(;’)]clv’

k~ (L + 1)
(23)

where
I

(2L +“1)!! = (21 + 1) ● (2R - 1)...(5).(3)”(1) (24)

and

yL,m(e’ ,4’)
‘m

P; {cosO’) exp(jm$’) (25)

The electric dipole coefficients pl,m (with m = -1,0,+1), the elec-

tric q.uadrupolecoefficients p2,m (with m = -2, =1, O, +1, +2), the

magnetic dipole coefficients m~ ~, and the magnetic quadruple
>

coefficients mz ~ have all been expanded in Appendix D as integrals
>

over the source region in spherical coordinates. Also in Appendix

D, thecoefficients are related to their corresponding moments when

the source region kr’ << 1.

5. ASYh!PTOTICMULTIPOL13COEFFICIENTS
QUASI-STATIC SOURCES

Nest ,radiators of given sizes can

low frequencies but electrically large for high frequencies. The

AND MULTIPOLE LIOMENTSOF

be electrically small for

simulators under study may be operated from low frequencies up to

their structural resonance frequencies. To assure that their

characteristics can be developed in exact forms, it is appropriate

to emphasize that the multipole coefficients in equations (22) to

(25) are valid for arbitrarily large sources, These coefficients

are exact and somewhat more complicated than their asymptotic

approximations. When a source region is known to be small (i.e.,

kr’ << 1) the coefficients can be asymptotically approximated as

22
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(

.

‘I,m K@) CIV’

1
‘fl,m: E + 1 I

V’((r’)flJ’;,m) ● [~’ x ~(r’)] dv’

(26)

(27)

The asymptotic electric-dipole coefficients are related (in Appen-

dix D) to their corresponding moments in rectangular coordinates

as

Pi,. = fj
3
F r’(cose ’) p(r’,e ’,$’) dv’

Nrj3 r3=
GZ ‘ P(X’,y’,Z’) dv’ = = Pz (28)

JTPpl = & Tr’(sin8’) p(r’,0’,$’) exp(~j$’) dv’

J73‘% r
=(x’ Yjy’) p(x’,y’,z’) dv’ = T & (Px Y jpy)

(29)

Similarly,

(30)

(31)

The asymptotic electric-quadrupole coefficients are related (also

in Appendix D) to their corresponding moments in rectangular coor-

dinates as

(32)
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where

P =
x.x. J

xxi j ~(X’,y’,Z’) dv’
~J

Finally, the asymptotic magnetic-quaclrupolecoefficients are:

~1
‘2,0 J3 % (’mzz - ‘xx - myy)

r~ 15
‘2,12 = 3 ~ ‘mx~ - ‘yy 7 j2m~y)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

,..
This section has formulated the potentials and fields in

terms of multiples of a given source region. The general solu-

tions have also been asymptotically formulated for quasi-static

sources whose kr’ is vanishingly small. These solutions are to be

applied to two specific simulators in the following two sections.
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SECTION III

TRANSMISSION-LINE MEDIUS PERFORMANCE

The simulator source coordinates of the transmission-line

h!EDIUSis shown in figure 1. To maintain a good transmission

line mode, the height to length ratio h/L is restricted to be no

larger than 0.2, and the height h is intended to be a small frac-

tionofthe operating wavelength. The flat portion of the transmission

is designated as region II, while the slant portions at the source

and load ends are respectively designated as regions I and III.

Presently the entire line is assumed to have been perfectly

impedance-matched. That is, the driving source, the terminating

load and the bends are assumed to have no impedance discontinuity.

Under this assumption, the current and charge distributions are

first to be formulated. The multipole strengths will then be

formulated and evaluated before the simulator field characteristics

are discussed.

1. CURRENT AND CHARGE DISTRIBUTIONS

The driving source in figure 1 is assumed to send a traveling-

wave current propagating along the entire line and terminating at

the load end without any reflection. Let the amplitude of the cur-

rent be I
o’ and let the upper- and lower-half currents of the

structure be It. The current distributions can be written by

assuming a lossless transmission line as
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ro[sin(~l)~x, ~ cos(al)lz,]exp[-jk(z’+L)sec(al ) + jkL]

[

in I o

It(z’) = kIolz, exp(-jkz’) in II

ro[-sin(@xl i cos(a2)~z t]exp[-j]{(z ‘-L)sec(a2)-jkL]

in 111

(~o) .

Use of the continuity equation on these currents will result in

linear charge densities q+ on the upper and lower parts:

“[
t(Io/c) exp[-jk(z’+L) sec(ul) + jkL] in I

qf(z’) = ~(Io/c) exp(-jkz’) in 11

t(Io/c) exp[-jk{z’-L) sec(a2) - jkL] in 111 (41)

Equations (40) and (41) complete the current and charge descrip-

tions for x’ > 0 and x’ < 0 in figure 1. They are the sources

for the multiples of interest.

2. THE NULTIPOLE COEFFICIENTS

The generalized rnultipolecoefficients, defined in equations

(22) through (25), are valid for an arbitrarily large source region.

If the basic property of the associated Legendre polynomials is

app~ied to equation (25), it can be shown that YR ~ = (-l)mY~ ~.
>- ?

This identity can in turn be applied to equations (22) and (23) to

show that

‘y)-m = (-I)m p~,m, and ‘L,-m = (-l)m m{,m (42)



●
Thus only pi ~ and m% ~ need be explicitly formulated for the

> P

evaluations of multipole coefficients.

The line sources in equations (40) and (41) can now be used

in equations (22) and (23) to give the multipole coefficients of

the transmission line in figure 1, They are:

(22+1)!!

/
y;,m(W’) /qt

[
1 (z’) kr’jL_l(kr’) - 2jL(kr’)P~,m =

ki(~ + 1) 1
-t ju[z’ ● I+(z’)] j~(kr’) ~ dz’ (43)

and

= (2R +1)!!
‘$,m

k~(l + 1) I
v’[y~,m(e’,$’) jg(~r’)l ● [~’ x tt(z’)] dz’

= (2g+ 1)!!

I

jk (kr’)
(-jm) ~, sine, f

[~’ X ~t(z’)]~dz’
kfl(l+ 1)

Y;,m(e ’,$’)~I@, ●

(44)
where the second identity for m~ ~ is the result of recognizing

}
that ~’ x 1+ of the transmission line have only $’ components.

The line integrals in equations (43) and (44) are along the upper

half of the transmission line when the sources are subscripted

by (+) as defined in equations (40) and (41). Naturally, the

integrals have to include also the path along the lower half of

the transmission line with the sources subscripted by (-).

Referring to equations (40) and (41) in conjunction with

figure 1, the source terms in equation (43) have the following

properties:

Cl+(z’)= -q_(z’),
+

and r’ “ 1+(2’) = -[:’ “ 1 (z’)] (45)
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Alsot equation (25) can be applied to figure 1 to show that

*
Yi, m(e’,()’=o) = Y;,m(e’,$ ‘=Tr) form = 0,2 ,4,... (46)

Therefore, for m even, the qt,m in equation (43) become identi-

cally zero for the transmission line. On the other hand,

Y; ~(8’,$’=0) = -Y~m(O’,@’=n), for m= 1,3,5, ...
~ )

(47)

Thus , for m odd, the upper- and lower-half contributions for qg ~
J

in equation (43) are equal, and the line integration can be carried

out only along the upper-half of the transmission line. The mag-

netic multipole coefficients mg ~ in equation (44) can be demon-
9

strated tobe similar to pg m by recognizing that
9

+
r’ x f+(z~) = -:’ x t (z’) (4s)

In summary, the transmission line MEDIUS (in fig. 1) has

only odd multipole coefficients with m = 1,3,5,... in equations

(43) and (44). h!oreover,their total contributions from the com-

plete line,integrations are simply twice the integrations along

the upper half of the transmission line using only the sources

q+(z’) and ~+(z’).

3. THE ELECTRIC

The electric

Pl,l=;
J
Y;,l(w

AND ~[AG~E’TIc DIpoL~~

dipole coefficient PI ~ by equation (43) isi

[
,$’=0) ~q+(z’) kr’.jo(kr’)- jl(kr’)

1

[
-I- jid3’ w 1I+(z’) jl(kr’)~ dz’

28
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.

where the integration is decomposed into three regions according

to the sources defined in equations (40) and (41). Substitutions

of these sources into equation (49) give rise to

1

-L
(P;,l)l =; Jy: l(ei,o)lf[q+(z’,al)l,~(z ‘,al),ri

-L-hcot(al) ‘

(50a)

3
~

L+hcot(a2)
(P1,l)lll =~ L { !1y~,l(e~,o) lf[q+(z’ja2)l,~(z‘,a2)jr31

● sec(a2) dz’ (50b)

(50C)

The above integrations are considerably simplified if a special

case is made for al = a2 = a. The results are:

-[
3
%7 (Io/c)sin(9j)exp(-jkz’)[krjjo(krJ)

+ jkz’ jl(kr~)] dz’

jl(kr.j)

(51)

(P1,l)l+lll = (P1,l)l + (P1,l)lll

= -~: ~~~-hcot(a)
(Io/c)sin(ei){cos(0)[krijo(kri)

-jl(kri)] - sin(fl)[kz’see(a)+ k(L tan(a)

+ h) sin(a)]jl(kri) see(a) \ dz’ (52)
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where the variables in terms of z’ are:

O=k L- k(z’+L) see(a) ,

\[

,2

h

2P
‘i= z + (L+z’) tan(a) + h

and

Si?l(Oi)=
[ 1
(L+z’) tan(a) + h /r~

(53)
o

2 (54)

(55)

Numerical integrations of equations (51) and (52) have been per-

formed and their normalized results are plotted as the primed

quantities in the bottom set of figure 4 fora= 45° and h/L = 0,1.

The normalization factor for these curves is (-~ A Io/c) with

A as the area of the transmission line in the X’Z’ plane, i.e.,

A= 4Lh + 2h2 COta (56)

The factor .(-~) was used in equation (29) to relate the spheri-

- cal dipole coefficient pl,l and the Cartesian dipole moments. The

dipole moments for the transmission line are derived in detail in

Appendix F. Equations (20) and (21) of Appendix 1’indicate that

the dipole moment has only the x-component px:

Px = (PX)l + (Px) + (Px)
11 111

(57a)

with

(Px) = (PX)l + (Px)
1+111 , III

1 [kh csc(a)
= (Io/c) f s~~(a) sin z

1[

kh CSC(ci
sin kL + ‘12’

)
-(4h/k) sin(kL)~ (57b)

and
)

(PX)ll = (lo/c) & sin(kL)
I
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Using a normalization factor (A Io/c) for the above equations,
a

their normalized curves are plotted as the primed quantities shown

in the top set of figure 4.

A comparison between the two sets of curves in figure 4

indicates clearly that the dipole moments for the transmission

line approximate very closely the generalized dipole coefficients

if 2L/A with A as the wavelength is restricted to less than 0,5.

However, this conclusion is not true for larger values of 2L/A.

Figure 5 shows that the generalized dipole coefficients are mono-

tonically decreasing with the length 2L/A. On the other hand, the

moments under quasi-static approximations are seen to deviate from

the exact solutions significantly for 2L/A > 0.5 and become oscil-

latory. Therefore, the dipole moments as obtained in equation
!

(57) can hot be accurately used to represent the dipole fields of

the MEDIUS if 2L/A becomes larger than 0.5. 0

Formulation and evaluation of the magnetic dipole for MEDIUS

are considered next. Use of equation (44) will follow closely the

procedures performed in using equation (43). The magnetic dipole

coefficients can be obtained similar to equations (51) and (52) as

‘1,1 = (ml,l)l + (MI,I)ll + ‘ml,l)lll (58a)

with

~~

L

(m+ = -J,+: _L Io[jl(kr.j)/r~le~p(-jl~z’)dz’ (58b)

and

[j
36-L=

‘j Silk
—. COS(0)[L tan(u) + h][jl(kr~)/r~]dz’

-L-hcot(u)
(58c)

e
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Referring to equations (31) and (56), the normalization factor

(j~w IOA) is appliecltothe above equations. Their normalized

curves are plotted as the primed quantities in the bottom set of

figure 6 for a = 45° and h/L = 0.1.
I

Quas$.-staticapproximation of the magnetic-dipole coeffi-

cients leads to the magnetic-dipole moments which are derived

in detail in Appendix F. As can be seen in equations (31) and

(33) of Appendix F, the transmission line has only the y-component

moments as

‘Y
=(m)+(m) +(m)

Y~ y 11 y III
(59a)

and

{n-l)
y 11

= -10(%) sin(kL)

and

(m )
y 1+111

=(m)+(m)
Y~ y 111

.
sin(a)= -10 4[L + h cot(a)] ~

[
sin kh csc(a)

2 1

[
kh csc(a

● COS kL + 2 ‘1

(59b)

(59C)

Using a normalization factor (IOA) with A defined in equation (56),

the normalized moments are plotted in the top set of figure 6.

Comparison between the moments and the coefficients indicates that

an excellent agreement exists for 2L/A Y 0.5, as was also observed

in figure 4. However, significant error would occur if the coeffi-

cients for 2L/A > 0.5 were to be used for the fields of the trans-

mission line. This observation is illustrated in figure 7 where

the magnetic coefficients are plotted in absolute values. While
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.

the combined coefficient decreases rapidly for 2L/A z 0.5, the

combined moment is seen to oscillate with a much slower rate of

decrease.

a magnetic

its exact

4. T1lE

Therefore, if fields are to be described in terms of

dipole, the

form becomes

ELECTRIC AND

use of the magnetic-dipole coefficient in

necessary for 2L/A > 0.5.

hlAGNETICQUADRUPLES

?70110wingthe same procedures in obtaining the dipole coef-

ficients, the electric-quadrupole coefficients for

sion line can be obtained from equation (43) as

with

P2,1 = (P2,1)1 + (P2,1)11 + (P2,1)111

fj
55L=-—
~2 %7 _L (Io/c) sin(2e~) exp(-jkz’)

- 2j2(kr~) + jkz’j2(kr~)] dz’

and

(P2,1)1+111 = (P2,1)1 + (P2,1)111

=- Fj’Q5-L

k2 E (Io/c) sin(20i)
-L-hcot(a)

the transmis-

(60a)

(60b)

1sin(fl)[krijl(kri)- 2j2(kri)] + COS(Q) [kz’ see(a)

+ (kL tan(a) + kh) sin(a)] j2(kri)\ dz’ (60c)

An appropriate normalization factor for P2,1 is (-j- AIoLe/c)

with Le as the effective length defined as
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Le = A/2h = 2L = h cot(a) (61)

Normalized curves for these coefficients are plotted in the bottom

sets of figures 8 and 9 for a = 45° and h/L = 0.1.

The corresponding moments under quasi-static approximation

have been obtained in equation (44) of Appendix F as (pxz) , and
II

in equation (46) of Appendix F as (pxz) The normalization
1+111”

factor for these moments i.s(jA IoLe/c). Normalized plots for

these moments are shown in the top sets of figures 8 and 9.

Magnetic-quadrupole coefficients can be obtained from equa-

tion (44) as

(62a)

with

j2(kri)

[L tan(a) + h] ● ~, dz‘
‘1

(G2C)

An appropriate normalization factor for the above quantities is

(- &~ AIoLe) according to equation (37) with mxz = O. Their

normalized curves are plotted in the bottom sets of figures 10

and 11. The top sets of figures 10 and 11 are plotted with a
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normalization factor (jAIoLe) for the quasi-static quadruple

moments (m ) in equation (57) of Appendix F, )and (myz ~+111
yz II

in equation (59) of Appendix F.

5. PARAMETRIC VARIATIONS OF MULTIPOLES

The dipole and quadruple moments have been demonstrated as

accurate approximations of the generalized coefficients, if 2L/A

is restricted to less than 0.5. One area of particular interest

in studying the ; cross ~ concept is the sensitivity of multipole

moments with respect to the transmission-line parameters.

Figure 12 shows that the amplitudes and rates of variation

of the normalized electri-dipole moments are varying with differ-

ent combinations of the parameters. Should the maximum amplitude

and the minimum rate of change with respect to 2L/A be the most

desirable features, the choice of h/L = 0.1 and a = 45° would be

a good one. The parametric curves can also be plotted using

quation (61) and letting Le/A = 2L/A[l + h/2L tan(a)] be the

abscissa. This transformation of abscissa will indicate that all

the parametric curves are essentially the same for Le/A < 0.5.

Further detailed study may shed some more light on this optimiza-

tion question.

The variations (fig. 13) of normalized magnetic-dipole coef-

ficient also indicate the same conclusion. That is, the various

combinations of h/L and

realizedmagnetic-dipole

small a will reduce the

line.

a give rise to essentially the same nor-

coefficients for Le/A < 0.5. A choice of

impedance mismatch of the transmission

Parametric variations of the normalized electri-quadrupole

moment arc also given in figure 14 with 2L/A as the abscissa.
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o The transformation of the abscissa to Le/A will indicate that the

normalized curves are essentially the same in that a good f cross

ficondition is to have insignificant higher-order moments for

Le/A < 0,5, The same observation can also be made for the nor-

malized magnetic-quaclrupolemoments shown in figure 15.

6. FIELD PATTERNS OF THE SIMULATOR

The eventual performance characteristics of interest are the

fields generated by the simulator (ofwhich multipole strengths and

their parametric variations have been formulated and evaluated).

h!akinguse of equations (20) through (25), the fields can be

expressed in terms of multipole coefficients pg m and m
Ijm” For

>
the dipole and quadruple coefficients the asymptotic relation-

ships with their moments in rectangular coordinates have been given

in equations (28) through (39). Since the moments are good

approximations for the coefficients when 2L/A < 0.5, as shown in

figures 4 through 11, and since the dipole moments begin to reach

zero rapidly for the simulator to be about one-half wavelength,

use of the moments

for the simulator.

The electric

for field description is presently adequate

and magnetic fields in spherical coordinates

can be obtained using only the dipole and quadruple moments as:

~ k2m
E=

[1
~ Ir(*) y

3kcpxz
47rr gl(kr)sin(e) + g2(kr) sin(9)cos(e)

‘Y I

{[

Cpx

1[ km
‘ Cos($) + 10 gl(kr) + ~ g3(kr)cos(f3) + j Zmyz g2(kr)cos(e)

Y ,Y
kcpxz

+ 2m u4(kr)cos(29)
1
1
\
Cos($) - $

1
gl(kr)cos(tl)

Y

[

limvz kcpxz

+ J 2nl—~ g2(kr)cos(28) + ~
Y Y

g4(kr)cos(~~}sin($ )]exp(-jkr)

(63a)
47
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\

[-

Cpx

][

kcp

+ ~e~ my gl(kr) + g3(kr)cos(0) + j Zmxz g2(kr)cos(9)
Y

11 I+~ g4(kr)cos(29) sin($) + ~
[

Cp

J 1d g1(kr)cos(f3)+ g3(kr)
Y O( my

[

kcpxz km
+j

2m g2(kr)cos(2e) + ~~ g4(kr)cos(@)
1} 1

COS(I$)exp(-jkr)
Y Y

where

gl(kr) = 1 - ~

[
g2(kr) = 1 - 3

1

_g

(kr)2

(63b)

(64a)

(64b)

and
[

1

1
_& (64c)g3(kr) = 1 -

(kr)2

[
g4(kr) = 1 - 6

1[

1 2.j3=-

1
(64d)

(kr)2 (kr)3

It is noted that the fields are written with the magnetic dipole

coefficient m as a common factor. The normalized m
Y Y

is m’
Y = my/

AIO with A given in equation (56). -If the transmission line were

made sufficiently short that 2L/A < 0.1, the quadruple moments

would be negligibly small, and the dipole moments would be approxi–

mately related as m = -cpx. These approximations simplify the
Y

fields in equation as

I- g3(kr)cos(9)]cos@ - ~@[g1(kr)cos(8) - g3(kr)]sin@ exp(-jkr)

(65a)
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1- g3(kr)cos(0) sin$ - I$[gl(kr)cos(0) - 1
1g3(kr) COS$ exp(-jkr)
1

(65b)

The fields represent the desired radiation from a combination of

x-directed electric-dipole moment px and y-directed magnetic-dipole

‘Y
= Cpx. With the aid of equations (G4a) and (G4c), the fields

are valid in all re~ions outside of the source region. The com-

ponent Ee(O, $=0) is seen to have a pattern identical to the

Ho(e, $=7T)2). Similarly, the patterns E+(6, $=-IT/2)and

HO(O, $=0’)are also identical. As kr + ~, the r components of

fields vanish rapidly and the other components have a simple

(l+cosO) variation that is characteristics of a ~ cross ~ radiator.

Both dipole moments of interest are given in equations (57)

and (59). IrIthe low frequency limits where 2L/A and h csc(a) ●.

approach zero, the moments take the forms:

410hL 2h21 csc(a)
Px”c+ c

and

-410hL - 210h2 cot(a)
‘Y =

Thus

4L+2hcsc(a)=1if ~=o

-cpx/my = 4L + 2h cot(a) ‘
(66)

The field strengths in equation (65) can be readily obtained

if the transmission line area is given. For example, consider the

case of 2L/A = 0.1 in figure 6 where m; is found to be about 0.96.

.
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For a = 45°, the area in equation (56) gives A/A2 = 0.00105.

Substitution of these values into the common factor in equation

(65a) gives

nIo~

r (mJA/A2) = 1.2+

Therefore an electric field intensity of 12 V/m at r = 10 m would

be induced by a current 10 = 100 amperes flowing in

, tally small (A = 0.00105 AZ) transmission line.

If the transmission line is allowed to become

large, the quadruple moments would be increasingly

and the field patterns given in equation (63) would

used. For this situation the field strengths would

and field patterns deviate gradually from the ideal

the electri-

electrically

significant,

have to be

become larger

case given in

equation (65). The field strengths for 2L/A < 0.5 can also be

readily estimated by using the normalized curves in figures 4, 6,

8, and 10.

For the convenience of using equation (63) in estimating the

field strengths for 2L/A < 0.5, figure 16 shows the relative value

of cpx/m used in the equation.
Y

The other relative values used

in the equation are shown on the top curves of figures 17 and 18.

The latter curve can be used in conjunction with figure 16 to

obtain kmyz/my. Bottom curves of figures 17 and 18 are plotted

using the generalized quadruple and dipole coefficients. Since

they are exact solutions they may be used for more accurate evalua-

tion of equation (63). Of course, the exact values of the normal-

ized PI ~ and ml ~ in figures 4 and 6 will have to be used for this
J >

purpose.
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7, T1lES CROSS i CONDITIONS

For the transmission line to be short (2L/A s 0.1), the

.

field components in equation (65) can be used to

E#3=lT,i$=o) E (8=Tr,@=Tr/2)

H$(e=n,@=O) =~=
-Ho(6=Tr,$=m/2)

show that

(67)

This is the first px cross m condition stating that the fields
Y

produced by the transmission line (fig. 1) are pure TEM (Transverse

Electromagnetic) waves propagating outward in the (-z) direction.

This condition is a unique property that assures a nearly uniform

plane wave arounde =nalong all distance outside of the source

region. For an EMP simulator, this property allows near-zone and

especially quasi-near-zone illumination of a test object. Even

for a longer transmission line with 2L/A < 0.5, equation (63) can

be used to show that the above property still holds approximately

true.

the

the

The second unique property of the; cross ~ condition is that

total outflowing power is purely real in all space outside

source region. That is

k4m~~
P
pxm = 6TT = Pp + Pm = 2Re(pp) = 2Re(pm) (68)

A derivation of this result is given in Appendix E where P
P

is the

complex outflowing power of px and Pm is that of m = -cp
Y x’ Both

Pp and Pm are complex but are conjugate of each other. The

ProPerty of p~X~ is an important property for a small radiator in

that there is no reactive power outside the source region.
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Consequently when a fix;condition is realized, the difficult prob-

lem of feeding a highly reactive small radiator could be alleviated
o

from the reactive loading of a purely electric or purely magnetic

radiator.

The third important property of a fixfiradiator is the

directivity defined as

E6(6=T,$=O) X H*@=n,$=O)
D=

P;x;/4T
= 3.0 for r + ~ (69)

It means that in the far zone, the directivity of a ~x~ radiator

is twice that of a pure electric or magnetic dipole. An increase

of the directivity by a factor of 2 is significant in that the

maximum power density is increased by a factor of 4 while the total

radiated power is increased only by a factor of 2.

The three unique features of a ~x~ radiator are well assured

by a small transmission h!EDIUS. These properties degrade gradu- 0

ally for the MEDIUS if the length is restricted to 2L/A < 0.5.

In other words, these features are closely approximated in the

region around 9 = r, even though the transmission line is operated

above 2L/A = 0.1 but limited to 2L/k < 0.5.
.
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1.

as an

SECTION IV

COMBINED LINEAR AND CIRCULAR CURRENT ELEhlENTS

CURRENT AND CHARGE DISTRIBUTIONS

The linear and circular elements of figure 2 are collocated

attempt to produce a pair of crossed electric and magnetic

dipoles. Assuming no interaction between the two elements, their

current and charge distributions can be obtained from reference 9.

For the linear current element, the distributions occurrent and

linear charge density (coulomb/m) are

1(X’) = ~x, (Io)~sin(kh - klx’1) + A[cos(kx’) - cos(kh)]

+ B[cos(kx’/2)

q(x’ ?0)= (qo)[~cos(kh -

q. = j(Io/c)

- cos(kh/2)]~ (70a)

klx’1) + A sin(kx’) +: sin(kx’/2)] (70b)

(70C)

where the coefficients A and B are dependent of the length and

diameter of the linear wire. Evaluation of their values using

2Ln(2h/a) = 10 are available from reference 9. The current and

charge distributions of the circular

1(6’) = ~o,(Io)
[
++2 cos(ne ‘

i a
o n=l n ‘1

and

q(e’) = *(+) n;l n Si:(ne’) = &= n

current element are:

[ 1
= ~e, I: + 2 ~ I~cos(ne ’)

n=l
(71a)

w

~ (1~/c) sin(ne’) (71b)
n=l

where the coefficients (l/an) are plotted in reference 9 and the

value of 10 is (-jV/n~) with V as the applied voltage.
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2. STRENGTHS OF ELECTRIC AND h!AGNETIC DIPOLES

Full derivation of the multipole coefficients and moments

is given in Appendix G. For the linear current element the mag-

netic multiples are all zero assuming the wire is sufficiently

thin such that ka + 0. Also, assuming the wire length 2h/~ < 0.5,

all the higher-order electric multiples are negligibly small.

Since the linear element is center-fed, the electric quadruple

also vanishes. The only :lonzeromultipole is the electric-

dipole with a coefficient

‘1,1 = - ~~~ q(xt)[kxtjo(kxt) - jl(kx,)] dxI (72)

where equat’ion(70b) should be used for evaluation. Asymptotically

with kx’ <<,1, the electric-dipole moment px can be obtained as

210 I
px=j —[l- cos(kh)] ~ j $ h2 = qohz (73)

kzc

The normalized electric-dipole strength can be done in the manner

as in the last section. Figure 19 shows that for 2h/1 < 0.4 the

exact and asymptotic definitions are identical.

The electric and magnetic dipoles for the circular loop are

obtained in Appendix G as

and

‘u= M)(w jl(kb)

5s

&--

(74)

(75)
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They become the dipole moments px and my (without the factor

~W) under the quasi-static approximations of the spherical

Bessel functions with

are plotted in figure

given in reference 9.

zero as kb approaches

they approach about 2

kl)<< 1, Their normalized absolute values

20 using the values of (l/ao) and (l/al)

The value of (l/al) is complex and approaches

zero. When pl ~ or Px is normalized by ~b2,
t

as b approaches zero. This is caused by the

real part of (l/ao) which diverges as b becomes zero (see ref. 9).

3. STRENGTH OF ELECTRIC AND hlAGNETICQUADRUPLES

As mentioned earlier, the linear element is center-fed and

its electric quadruple is zero. The electric and magnetic quadru-

ple coefficients of the loop can be obtained from the results of

Appendix G as

and

(76) ●

(77)

If kb << 1, they become the quadruple moments pxz and myz
without

the factor m. Their normalized curves are given in figure

21 where resonance phenomena are associated with the coefficients

(l/al) and (l/a,) as given in reference 9.

4. FIELD PATTERNS OF THE ELEMENTS

As the multipole coefficients have been formulated and

evaluated their substitution into equation (63) will give the

field patterns of the combined elements assuming no interaction.

Go



1

0 10

8

6

4

2

.

20

15

10

5

P; = {pxl/(nb21i/c)

I

A
I

\/’ \
I \
I

‘f
\

/
\

/ \

/ \

‘\ P;

I \ ‘.

o 0.4 0.8 2b/A

_m;----”-----
0 0.4 0.8 2b/A

Figure 20. Normalized Dipole Coefficients and Dipole Moments
of the Circular Current Element Shown in Figure 2

G1



3.0

2.5

2.0

1.5

1.0

0.5

I
P’Xz /

o 0.4 0.8 2b/?l

4.0
t

o 0.4 0.8 2b/}

Figure 21. Normalized Quadruple Coefficients and h$oinents
of the Circular Current Element

62

-.

)o-



For 2b/A < 0.8 the relative strengths of the quadruple coeffi-

cients are plotted in figure 22 for the circular loop. Since the

loop also contributes to electric-dipole field, the total electric

dipole coefficient of the combined elements should be the sum of

those in equations (72) and (74), For kb << 1, their sum becomes

(Px)s for the combined elements as

(Px) = (Px)l + (Px)
s 2

j2(Io) 2nkb3(I:)

1(1-
2=

2 cos(kh)) + j
ck

c (78)

if (Ii) in equation (74) is approximated as (-k2b21~) for kb

vanishingly small. The designations (px) and (px) are used to
1 2

distinguish the electric-dipole moments for the linear and circu-

lar currents. hfeanwhile,the magnetic moment m
Y

can be obtained

from equation (75) as

‘Y
= (nb2)(I;)

2

One condition of particular interest is the relationship

between (l.) of the linear element and (I:) of the circular
1 2

element such that C(px) = my. Use of the above two equations
s

gives the required ratio as

(l.) /(1~) = -jr(b2/h2)(l - j2kb), or
1 2

(CCIO) /(1~) = nb2/h2 , for 21~b<< 1
1 2

(79)

(&o)
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This indicates that, if the two currents could be maintained

independently, the linear current would have to lag 90° in phase

and be proportional to ~b2/h2 in amplitude with respect to the

circular current. Should the value of (l.) in equation (80) be
1

used in equation (78), the (px) would be dependent of (I:) only
s 2

and the combined element would exhibit an ideal p cross m

condition.

Similar to the transmission-line hlEDIUS,the patterns for

the combined elements with 2b/1 < 0.1 are completely described

by equation (65). Also, all the p cross m conditions discussed

in connection with the transmission line are equally applicable

to the combined elements. The only exception is that the maximum

radiation now takes place at e = O instead of 8 = n for the trans-

mission line. As for the field strength, the combined elements

would yield considerably more than the transmission line if the

same amount of current could be maintained. This observation

becomes quite clear by comparing the normalized magnetic-dipole

moments in figures 6 and 20. For instance, the loop element with

2b/A = 0.0366 will have the same area as the transmission line

with 2L/A = 0.1, a = 45°, and h/L = 0.1. While m; for the trans-

mission line is nearly unity, the m; for the loop is about 10 as

can be seen in figure 20. Therefore, if the same amplitude of

current were maintained in the loop and the linear current were

maintained as in equation (80), the combined elements would pro-

duce 10 times higher fields than those by the transmission line.



SECTION V

CONCLUSION AND OBSERVATION

1. MULTIPOLE RADIATION

Due to the apparent absence of previous work, a complete

description of multipole radiation has been formulated for the

two selected simulators. The
1

those of references ‘7,8, and

Multipole radiation has

spherical vector functions used are

10.

been solved exactly for an arbi-

trarily large source. The solution is exact in that the complete

set of spherical harmonics is used and the harmonic coefficients

are formulated by integrals over the entire source region. These

harmonic coefficients have been treated in this report as the

generalized multipole coefficients.

Considerable amount of vector operations on the spherical

harmonic functions has been found necessary, as was found in

reference 10, to lead to the complete formulation of multipole

radiation. Some of the benefits of this

as follows:

● Generalized multipole coefficients

formulation are listed

can now be evaluated in
their exact forms for an arbitrarily large and complex
source, and their asymptotic approximations can be directly
identified with the multipole moments developed under
quasi-static solutions.

● Generalized dipole coefficients can now be used to system-
atically perform a source-synthesis procedure by which their
strengths can be maximized with appropriate relationships.
{This benefit is to alleviate the restriction of a vanish-
ingly small source region, which is inherent in quasi-static
source synthesis.)



● I’ora relatively large and complex source, the generalized
higher-order-pole coefficients can now be used to system-
atically minimize their radiation contributions when only
the ideal ficross firadiation is desired.

The first benefit has been demonstrated for the two selected

simulators. Effort to demonstrate the last two benefits remains

to be attempted in the future.

2. TRANSMISSION-LINE MEDIUS

The first simulator (fig. 1) is a backward radiator in that

its maximum radiation is along e’= n or (-z’) axis if the line

length is restricted to be small. A complete evaluation of its

dipole and quadruple moments has been performed and compared

with their generalized coefficients. Figures 4 through 11 are

their normalized plots for direct comparisons between exact solu-

tions and quasi-static approximations.

Parametric variations of the multipole coefficients have

also been evaluated as shown in figures 12 through 15. The

results indicate that the variations with geometric parameters

of the simulator are relatively insignificant when h/L is

restricted to less than 0.2.

Radiation patterns of various field components are concisely

formulated in equations (63) and (65). The fields are the exact

solutions valid everywhere outside of the source region. They

are relatively simple functions of the spherical coordinates when

the values of multipole coefficients are evaluated as has been

done in this report. For the convenience of using these equations

to estimate field strengths and patterns, the relative values of
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multiples are also plotted in figures 16 through 18, Patterns

of field vectors are considerably simplified when the radiation

is predominantly of dipole moments. For 2L/1 s 0.1 the field

vectors in equation (65) are an accurate representation of the simu-

lator radiation which is closely that of the ideal E cross ~

condition desired.

The ideal 5 cross ficonditions are discussed in conjunction

with equations (67) through (69). These conditions are presently

confined to a small simulator 2L/A < 0.1. However, when the simu-

lator becomes larger, the conditions are degraded gradually. For

example, the half-power-density beamwidth of an ideal ~ cross ~

radiator can be obtained as about 131° from equation (65) with

kr + co. Earlier work (ref. 5) on a resonant electromagnetic dipole

has a range of 108° to 177° half-power-density beamwidths for

approximately equal R- and H-plane patterns.

3. LINEAR AND

The second

elements. It is

CIRCULAR CURRENT ELEMENTS

simulator (fig. 2) is the collocated current

a forward radiator in that the maximum radiation

is in the (+z) direction with O = O, if the conditions of equation

(80) are met.

Assuming the wires are thin compared to their lengths, the

normalized dipole and quadruple strengths have been evaluated as

shown in figures 19 through 21. The currents in both elements

were assumed to be independent for the multipole evaluations.

This assumption would be valid if the generators could be adjusted

including their mutual impedances to support the required currents.

I
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Radiation field vectors and the patterns of field components

are the same as equations (63) through (65), provided the multi-

pole moments are replaced by those obtained for the combined

current elements. These equations are valid also for larger simu-

lators using multipole coefficients when the relationships given

in equations (28) through (39) were properly used.

Again for the convenience of using equation (63), the rela-

tive strength of the multiples are plotted in figure 22.

Perhaps it is worth noting that all the multiples of second simu-

lator are complex, instead of being purely real or imaginary for

the first simulator.

4. LIMITATION AND REALIZABILITY

Physical limitations of the two simulators are imposed by

the assumptions made in their formulations. The first simulator

is assumed to have been perfectly impedance-matched. The second

simulator is assumed to have its currents maintained indepen-

dently. The former assumption is not severe and the required

generator is clearly realizable in practice, although the radiator

is extremely inefficient in that most power would be delivered to

the terminating load. The latter assumption is quite severe in

that both generators are connected to highly reactive loads

including the mutual coupling effects. Thus the realizability of

the required generators is not immediately clear. However, if the

generators were realizable in practice, the radiation efficiency

of the second simulator would be much higher than that of the
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first simul~tor.

of separating the

could be explored

Also the second simulator has the flexibility

linear and circular elements. This flexibility

for optimizing the simulator performance in

conjunction with generator requirements. One possibility is to

separate the current elements as was suggested in reference 6.

This would allow the linear element to radiate without being

strongly affected by the presence of circular loop. All the data

and formulations presented in this yeport can be used directly

even for this arrangement, except that a phase factor has to be

introduced to account Ior spatial separation. This is true if

one recalls that the two elements were assumed to have no inter-

action and were driven independently.
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APPENDIX A

DERIVATION OF hWLTIPOLE MOMENTS
FOR POTENTIALS AND FIELDS

Fields and potentials can be expressed in terms of multipole

coefficients or multipole moments. This Appendix will first.show

that the vector potential can be expressed as an infinite series.

The first three lowest-order terms are to be expanded in terms of

electric and magnetic rnultipolemoments by restricting the source

region to be small.

After the potentials are derived, the associated fields due

to dipole and quadruple moments are given to show how each moment

is contributing to the near and far fields.

1,

given

VECTOR POTENTIAL SERIES

The vector potential for

by

1(;) =%
\

3(P)

Expanding the integrand of the

the current distribution 3(;’) is

e-jkl~ - ~’1

];-;’1 ‘v

above integral yields

(Al)

(A2)

where jR are the spherical Bessel functions, P are the Legendre
k

h(2) are the spherical Hankel functions of the secondpolynomials, ~

kind, and ~ is the angle between ~ and ~’.
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2. ZERO-ORDER POTENTIAL

The zero-order vector potential is

which can be approximated by retaining only the first term of

jo(kr’) expanded in Taylor series, i.e.,

l.(:)

It can be shown by

,

using the continuity equation that”

J )

Hence

Xo(:) =
jupoe-jkr ~

4~r 1
r’pdv

Since the quasi-static definition of an electric dipole

moment is

the zero-order potential can be written

(A3)

(A4)

(A5)

(A(5)

(A?)

(A8)

.

Thus , for small source region kr’ << 1, the zero-order potential

contains only the electric dipole moment.

3. FIRST-ORDER POTENTIAL

The first-order potential is considered next, i.e.,
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After several vector operations, the integrand in
xl can be

expressed as

where % is the magnetic dipole moment

and ~ is the dyadic form of electric quadruple moments

-> +(:)X~ = lilj

\

X;X; Pdv
ij

Hence

(A9)

(A1O)

(All)

(A12)

(A13)

Note that the above representation iS appropriate onlY ‘or a

source that is electrically small.

4. SECOND-ORDER POTENTIAL

The expansion of vector potential 12 can be written from

equation (A2) as

jkll
12 = -~ (5)h$2)(kr)

J
~(~’) j2(kr’) P2(COSY) dv

where

(A14)

‘)
●



h(2+k~) =
[
_&. 3

2 1+~ ~-jkr
(kr)2

/
(kr)

P2(COSY) = + (3 cos2y -l),

and
+

“ ;’Cosy = rrr,

The integrand is expanded as

(3)j2(kr’) p2(cosy)=(~)(1~’) 2 ;[3(~;j’)2 -,]

k2=—
30 ‘3(3 ● f’)2 - (r’)23

r2

Using the vector identity,

(A15)

the integrand becomes

k231
m [[p @ “ ;)(3 X3) X3+3(;’ “ ;)2+;’(3 “ 3)(;’ ● ;)

1

- (r’)2 ~
I

The magnetic quadruple is defined in dyadic form as

+
;=~

/
z [(~’ X ~)~’ +~’(~’ X ~)ldv (A17)

Substitution of this definition into the integrand in equation

(A15) gives rise to

jku h$2)k2

X2=- ;4T
1

3 3~ (m ● ;) x z +—
j [(

+

2
r’x(;’xj)x~)x~

r

++
+ J(r’ ● :)2

Zrl ,

+ ~’(~ ● ~)(~’ ● :) dv - (r’)2~dv
I

(A18)
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Since the magnetic quadruple is of main interest, the

second-order potential contributed by magnetic quadruple moment

is specifically written as

(A19)

5. FIELDS OF DIPOLE MOMENTS

After the vector potential is obtained, the fields can be

expressed through standard procedure of solving Maxwell’s equa-

tions. That is

Ii ~~ 1? x 3,=— (A20)
0

and

Substitution of equation

equation (A13) into the above

and the magnetic dipole term in

equations gives rise to

and

(A22)

1

1
-“(jk + ~+~)(<r*~l);r

jkr
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(

where the vector fields El and HI are subscripted to denote that

they are contributed only by the electric and magnetic dipole

moment vectors PI and ml.

6. FIELDS OF QUADRUPLE MOMENTS

If only the quadruple terms in the vector potential expan-

sion are substituted in equation (A20),the magnetic field due to

electric and magnetic quadruples is

[(~2=~e-Jkr jk+~-~
) (
~rX(t2”1r)- jk+~+fi8TTr jkr2

12 ~

)4

Tr*i2.1r

)(
i- 2 3_—

k2r3 c
jk + ~+—

jkr2
+ fi)~ .,r)] (A24)

The electric field due to quadruple moments is

The above fields are valid at any field point but are appropriate

only when the source region is small, i.e., kr’ << 1.
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DER1VATION OF hlULTIPOLE

APPENDIX B

COEFFICIENTS IN SPHERICAL HAIihlO~?ICS

In a source-free region, an electromagnetic field can be

expanded as the superposition of multipole fields. The multipole

coefficients are to be derived in the following paragraphs.

Using the MKS system and assuming the time factor e
jwt , the

Haxwell equations in frequency domain are given by

(Bl)

‘vX; = 7+ jucoii (B2)

v“; = p/c. (B3)

v“; = o

Taking the curl of equation (B2),and using equations (131)and

(B4),yields

Define a function ~’ ,

(M)

Note that E’ = ~ in source-free region.

Taking the curl of equation (131)and using equations (B2)

and (B3),it follows that

(B5)

(v2+k2)&=-Vxv x-&
o

(P17)

(B6)
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Equations (B5) and (B7)are known as the vector IIelmholtz

equation. A complete set of vector solutions for the Helmholtz

equations can be formed by two sets of electromagnetic multipole

fields (ref. 8), The first set is

$m= %,nw%+,M(W) (B8)
1

and

?
= -*vxiim

,m
o #

.

1=__
JU~o v x %,4 kr) ~g,~e,$) (B9)

where ~~ mare the vector spherical harmonics (ref. 8) and gi
, ,m

are the radial functions to be determined. Another set is

and

%
1

I.,m
.-VX

JLOEO % ,m

where

k = 0,1,2,3, ...

m= -A,-i+l ,...,0,1 i,...

The vector spherical harmonics are defined (ref. 8) as

(B1O)

(Bll)

(B12)
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where Y
!t,m

are the spherical harmonics in terms of associated

Legendre polynomials as

(B13)

The orthonormality of both functions can be expressed as:

(1314a)

and

2Tr?-r+*

\ojJ!?/ I

1, 2 =’2’ and m = m’
,,m,w$) ~,po) s~ng do d$ = ~ otherwise

>

(F314b)

The radial function fi ~ in equation (B1O) can be determined
>

as follows. Substituting equation (B1O) into equation (B5), taking

scalar product of both sides with ~x and then integrating over
,m

all angles will lead to

=-
h’

-&$) “ V x ~ sin9 d9 d$ (B15)

The left-hand side becomes

(B16)
I

‘-)
●
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\,_

because of orthonormality. Hence, equation (B15) can be written as

Note that the Green’s function G(r,r’) for the differential equation

[-

d2
+2d

dr2 1;m+k2-R(g;l)G(rJr’)=-$~(r-r’) (B18)

with the boundary conditions of finiteness at the origin and out-

going waves at infinity is known to have two possible solution

forms:

[

‘2)(kr) ,-jkjg(kr’) h8 r>r’
G(r,r’) =

‘2)(kr’) , r-jkjy,(kr)hg < r!
(B19)

h(2) are spherical Bessel functions and Hankel functionswhere jg, ~

of the second kind.

Thus , the solution for equation (B17)for r > r’ is

J
‘2)(kr) ~ r’2jg(kr’)f2,m(kr)= -jkhfl (’[Y,Je’) $’)

. V’xj. sine’ dr’de ’d$’

‘2)(kr)= -jkh8
L

r’2jR(kr’) ~*,mO V’ x ~ dv

Using equation (B12) and appropriate vector identity it

follows that

(B20)

(B21)
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Define the electric multipole coefficients pg ~by
I

+ $[~ ● ~(%’)jj2(kr’)} dv

●

(B22)

which approaches the electrostatic multipole coefficients or the

quasi-static definition in Appendix D.

The magnetic field in equation (Blo)isthen given by

(323)

where (2R + l)!! = (21 + 1)(2A - 1)...5.3.1.

By similar procedure, ~)~kr) in equation (B8)can be shown

to be

. V’ xV’ Xj(r’)
jweo sin6‘ dr’ d~’ d+’

‘2)(kr)jkhR
=_,

I
r’2j2(kr’) ~ ~0’ ,+’) v’ x v’ X ~(;’) dv

juso v >
(1324)

Using equation (B12) and appropriate vector identities, it follows

Define the magnetic multipole coefficients as
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(B26)

By using the identity with ~(~’) = O on the integration surface

+/v’*[ f(r’) ;’ x 3(;’)] clv

=-
/
V’f(;’) ● [;l xj(;l)] d~

(B27)

The electric field in equation (B8)can now be written as
,r

2+2
+ jk Cpo

()

g + 1’~
h(2)(kr) mg,m~g,~e,$)‘l.)m= (21 + l)!! t 2

(B28) ‘ ‘

(B29)

.
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APPENDIX C

EXPRESSION OT-VECTOR SP1lEllICALHARh!ONICS

3 ,mAND VXh~2)$ ,mIN SP1lERICALCOORDINATES

1. 4 EXPANDED IN SPHERICAL COORDINATES
,m

The vector spherical harmonics used in multipole fields are

defined (ref. 8) by

~,-p$) = ---& (: x v) $, #,@)>

1= t Y1,J6,+) (cl)
/2( 2+1 )

I
where

(C2)

After somewhat lengthy operations, equation (Cl)can be expanded

into only (3and @ components:

+ J(L + m)(!?- m+l) e-J+ y

1
1

1,~-@$) J (C3)

Noting that

y&,_m(uo = (-l)m ;*m(e,$)
and

%’.E,-Tfl(e’$)= - __J--- (: x v) Yj,_mo3,0
{L(R + 1)

(C4)

(C5)

1

/34



2~ ~ can be related to
% ,mby

)-

3 J(-I)m (: x v) Y;, (3A)fi,-m= - 41(2 + 1)

%
= (-l)m+l *,m (C6)

For reference purposes, some lowest,orders of the Y1 ~e,$) and
2

the spherical harmonic vectors are explicitly written in the

following functions of O and @

‘1,0 = r
& CoSe,

and

and

f
j+

‘1,2 = - ~ sinfle ,

[(
5321

)‘Z,o=zzcos e-% ‘

J
15 j$

‘2,1 = - ~ sin% cosO e ,

J1 15 “2$
‘2,2 = z 5 sin2EleJ (C7)



2. VXht$ ~(e,$) IN SPHERICAL COORDINATES
.8

By vector identity

(2)(kr)V X $m(o, $)VXh~2)(kr) ~8m(0,$) = Vh~2)(kr) x k2m(0 ,0) + h~
*

(C9)
By the recurrence formula,

Since
$

m is independent of r and has no r-component, as shown in

equation (C3),it can be written as ~eXo +3 X and its curl becomes:
$+

Combining equations (C9)to (Cll)results in the desired expansion:

(h\2)(kr) ~X
-& + Cote x$ - Csce )

~1VXh~2)(kr) ~ (6,$) = ~ r

+
[
kh~~~(kr)

1
- ~ h~2)(kr) (-X$18 + xo~$)

(C12)
For m < 0, equation (C6) can be used to show that

(C13)

With the aid of equation (C8), the results of the operations in

equation (C12) are tabulated below for reference purposes.
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!2

1

2

m

o

1

0

1

2

J-[$ $ ~j$
~\2 )

— Csce(cos 20
r

-l)Ir +

1

kh&2 ) _ 2 (2)
r ‘1 )

J-[f)15
j~r (Cos 20 + cos2e) 3r

-(
kh~2) _ ~ 1h$2))sine cose ~r

1

[[
-~:ej~

h$2 )

4 r (3 sin 2(3)3=

+
(
kh~2) - 1#h~2))(-jCOS2f3fe+cose~$)
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ASYMPTOTIC
MULTIPOLE MOMENTS

APPEi4DIxD “ ‘

RELATIONSHIP 13ETWEEN
AND MULTIPOLE COEFFICIENTS

1. ASYh!PTOTICMULTIPOLE COEFFICIENTS

The electric and magnetic multipole coefficients are derived

in Appendix B as

‘J3,m
= (22+1)!!

kR(L+l) \
Y~,m(e ’,$l) ~tkr’jR_l(kr’)

- ljg(kr’)] p + ~ (~’ ● ~) jg(kr’)~ dv (Ill)

and

(2k+l)!!
‘fi,m= 1[ 1

V’ Y~,m(8’,C#I’)jfl(kr’)“ (;’ X ~) dv (D2)
k@l)

where integrations are over the source region designated by the

primed spherical coordinates, and

(22+1)!! = (2i+l)(22-1)...5”l.l (D3)
!

The Yl,m(6’,$’) are spherical harmonics and the jR(kr’) are

spherical Bessel functions with E = 1,2,3,..., and m = -k,-L+l, ...2.

When the frequency approaches zero, or kr’max << 1, the

spherical Bessel function can be approximated by

Retaining only the first term of j2(kr’) the electric and magnetic

coefficients in their asymptotic form can be reduced to
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P2,m =
1

(r’)R Y~,m Pdv,

and

1

‘l)m = 1+1–1 [ 1
V’ Y~)m(r’)A ● (;’ x ~) dv

(D5)

(D6)

By expressing the integranciin terms of rectangular coordin-

ates, the P$,m and m~,m in equations (D5)and (D6)can be written

as linear combinations of multipole moments. Examples for electric

dipole, magnetic dipole, electric quadruple, and magnetic quadru-

ple coefficients are shown below. Since dipoles are of main

concern, more extensive derivations are given.

2. ELECTRIC DIPOLE

The electric dipole coefficient in spherical harmonics is

given by

pljm=~J~jmF(kr’Jo-’, )+$( J’”3)Jlldv ‘D’)

‘., .
where m = -1,0,1. Expanding as equation and retaining only

the kr terms for the spherical Bessel functions, the asymptotic

form of equation becomes

Pl,m “
\ ‘~,m(e ’’$’) r’ p(r’,e ’,$’) dv

Use of the expression Y~,m in Appendix B gives

(D8)

fo(e’, do = {~cOse’, .
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and
*
Yl,q(e’,$’) = - Yl,l(w’)

Meanwhile, the following relationships

x’ = r’ sinO’ COS*’ ,

Y’ = r’ cosf3’sin$’ ,

(D9)

and
~1 = ~t ~o~ei (Dlo)

are applied to the definition of the electric dipole moments,

Px =jx’Pdv,

Py=/y’~dv,

and
Pz = ~ Z’~ dv (Dll)

A straightforward rearrangement shows that the asymptotic coeffi-

cients are related to the moments as

I

fPl,o = *PZ J

and

rPl,_l = & (Px + jpy) (1112)

3. MAGNETIC DIPOLE

The magnetic dipole moment and coefficient have similar

relationship as the electric dipole. The magnetic dipole coeffi-

cient in spherical harmonics definition is given by
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3
‘l,m = 2% /[

v’ Y*
1

~,m(e ’,$’) jl(kr’) ● (;’ x if)dv

where m = -1,0,1,

Note that

y; ~ jl(kr’) = ~ (-J& sj,~e ~-j$,
J

r3k=_— .
8773 (x’ - jy’)

when only the first term is retained. The gradient becomes

Similarly,

v’
[y~,o jl(kr’)1 “ iK’z,

(D14)

Thus the magnetic dipole coefficients are in th”eirasymptotic

forms:

(D15)

‘1,1 e ●

and

x 3) iv ,

Noting that the multipole moments are defined as

1m=—
x 2 J

~x.(;’ X ~) dv

J
; ~y.(;’x~)dv

‘Y =

1m=-Z 2 I
tz.(~’ X ~) dv
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(D17)

(D18)

(D19)

(D20)
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it becomes straightforward to show that the magnetic dipole

coefficients are related to magnetic dipole moments as

and

‘1,1 = f
- & (mx - jmy) ,

[
3

‘1,0 = mimz ‘

%,-l = r& (mx + jmy)

(D22)

(D23)

(D24)

The above series expansions show that the dipole coefficients

in general contain dipole moments and higher-order moments. How-

ever, the dipole moments become the dominant terms for small

sources or low frequencies.

4. ELECTFiICQUADRUPLE

The electric quadruple coefficient is given by

‘5
‘2)m = ~ ~

Y;,m(
[

6’,$’) P kr’ jl(kr’) - 2j2(kr’)

+ * (;1 ● ~) j2(kr’1] dv form= t2,fl, O (D25)

Using equation (D4)and retaining the (kr’)2 term in the integrand,

P2,m ‘
J

(r’)2 Y; mpdv
J

(D26)

Using the expression of Y; m in Appendix B and transforming
3

spherical coordinates into the rectangular coordinates, the

asymptotic quadruple coefficients become related to the rectangLl-

lar moments as
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P2,2 = J
1 13
z m (pxx - pyy - j2pxy)

P2,1 = - f ~ (Pxz - jpyz)

P2,0 = r
15
~ ~ @Pzz - Pxx - Pyy)

p2,_l =rg(Pxz ~z)+ jp

P2,_2 = r; ~ (Pxx - Pyy + j2P )Xy

5. hlAGNETICQUADRUPLE

The magnetic quadruple coefficients are defined as

5
‘2,m = ~ /[V’ y~,m(e’)$’) j2(kr’)] ‘ (~’ x ~) dv

Keeping only the first term of j2(kr’) expansion

1
/

2*
‘2,m = 5 V’(r’ y2,m) ●

(~’ x ~) dv

(D27)

(D28)

(D29)

(D30)

(D31)

(D32)

(D33)

Following the same steps performed earlier, and using the defini-

tions for magnetic quadruple moments,

m 1=—
2 J[

Xi(;’ X3)01 .+ X.(; ’X ~)* idv
x II

(D34)
.91 ‘j JJ

the desired relationships are obtained as follows:

mz,z= [+ ~ (mxx - myy - j2mxy) (D35)



‘2,1 = r
.$ ~ (mxz - jmyz)

1
r
~ (2mzz - mxx - myy)

‘2,0 = 3 4fi

r
=~15

‘2,-1 3 = (mxz + jmyz)

r
.~15

%,-2 6 m (mxx - my, + j2mxy)

(r)36)

(D37)

(D38)

(D39)



APPENDIX E

TOTAL RADIATED POWER OF }juLTIpoL~s

The total radiated power is defined as the integration of

Poynting vector in radial direction over a spherical surface of

radius r:

(El)

where the fields expressed in multipole coefficients are:

and, h~2), mR m, ?P~,m~ and ‘t,m are defined in Appendix B.
)

Define coefficients aL and bi as

1.+2Cp
jk

()
02+1$

ak = (2L +1)!! ~

(E3)

(E4)

(E5)

and the fields as
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so that the fields can be represented as

3=31+32

ii=?i1+i12

(E6)

(E7)

(E8)

(E9)

(Elo)

(En)

Substitute equations (E1O) and (En) into equation (El)and

decompose P into four parts

P= P1+P2+P3+P4 (E12)

(E14)

I
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Note that the vector identity

can be used in the integrand of PI, after equations (E6) and (E8)

are used. First,

then from Appendix C

where

(E19)

(E20)

Hence the vector operations in the integrand of Pi-become

By orthonormality of 12 m, the integrated result is
)

(E21)

(E22)

The quantities P2 and P3 involve cross products of fields

that are produced by two independent sets of electric and magnetic

densities. Their net outflow of powers has been demonstrated to

be zero for the dipoles and quadruples. For the present purpose,

P2 and P3 are identically zero for the first two lowest-order poles.
,. -.,

The evaluation of P iS Sitii’lirto P “,Itis obtained as
.4 . 1“



(E23)

For the purpos,eof providing some examples, the dipole and quadru-

ple terms are combined from equations (E22)and (E23)as

(E24)

Examples are given below for electric dipole, magnetic dipole,

and a combined fix;dipole.

Example 1. Radiated Power of an Electric Dipole Centered
Along x-Axis

The electric dipole coefficients in Appendix D can be used

in equation (E24)to give

The use of equation (E2C))gives

Simple substitutions give rise to

0



For an electrically small dipole with py = O

4
P = - :;T:

o ‘PX’2 [’ + H
Example 2. Radiated Power of a Magnetic Dipole Centered

Along y-Axis

The magnetic dipole coefficients in Appendix D give

P=-
g(k’”fl’ (lmljJ2 + lY-112) ‘!2) ●

j2k4cpo
=

9 lm1,112
[
-j++

1

For a small magnetic dipole with mx = O

jk4cp
P=

[
~2n” lmy12 -j + &

1

.

Example 3. Radiated Power of a ~X~ Combination

By imposing the p cross m condition, CP1,l = -ml,l~

results of last two examples can be combined to give

~k2clp1,11
2

Ppxm = 9s0 = * M2
o-

which is purely real and indepe”nde”ntof the di’stancer.

(h+)*

!“

the

,,

,,
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APPENDIX F

hfULTIPOLEMOMENTS OF THE TRANSh!ISSION-LINEMEDIUS

1. TRANSMISSION-LINE MEDIUS
1

The trarismission-lineMEDIUS has a flat section of length

2L (region 11), a slant section

(region I), and a slant section

(region 111). The transmission

at the source end with angle 2a

at the load end with angle 2a2

line is sketched as follows:

I
I 11
I

I
I 1.

Xt

I11 III
I
1
![

It is assumed that there is no mismatch along the entire line.

Under this assumption, the current and charge distribution will be

given first in this appendix. The definitions of multipole coeffic-

ients will then be defined for the purpose of applying to the

transmission line. Finally, the dipole and quadruple moments of

both electric and

2. CURRENT AND

The current

magnetic types will be formulated.

CHARGE DISTRIBUTIONS

distribution on the structure is assumed to take

the forms (all variables are unprimed in the following equations

without risk of confusion):
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-jk(z+L)sec(al)+jkL
Io[sin(al)~x~@s(al)lz]e

-[

in I

1+ = fI ~
Oz in II

Io[-sin(a2)@os(c@~z] e-jk(z-L)sec(cz2)-jkL in’~11

for x/O (l?l)

‘J’hecharge distribution can”be obtained by the’continuity

equation as:
.

[

+ 10 -jk(z+L)sec (al)+j~
-— e
c

qf = __ e-jkz+10
c

I -jk(z-L)sec(~)-jW
*LCe

in I

in II

in III

for x ~ O (F2),,,,. ...

3. hlULTIPOLEMOMENTS

The multipole moments in quasi-static approximation are

defined as

+p.
I

: pdv ()?3)

~

1;”$=—2 x~dv (F4)

(F5)

(FG)

for electric dipole moment 6, magnetic dipole moment ~, electric

L

*.quadruple moment (i)xixj, and magnetic quadruple moment (m)xixj,

respectively.
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The multipole coefficients in spherical harmonics are given

by

(F7)

(F8)

where pfl,mis the electric multipole coefficient’,mfi~is the mag-
9

netic multipole coefficient. The dipole coefficient consists of

three components with index R = 1 and m = -1,0,1. The quadruple

coefficient has five components with index 1 = 2 and m = -2,-1,0,1,2.

The formulation of multipole moments and coefficients for the

transmission line are given below.

4. ELECTRIC DIPOLE MOMENT

The electric dipole moment for the MEDIUS can be expressed

according to equation (F3) as

-+(1)=

\ m dz(XIX + .12) q(z) 1 + (F9)

where

{

z tan(al)+L tan(al)+h ,

x= h,

( -z tan(u2)+L tan(a2)+h ,
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in 11
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,,

.[’ -
tan(al) , s in I

dx—=
dz o in II

-tan(a2) ,in III..

(I’ll)

Let the dipole moment ~ in equation ()?9)be treated in three

distinct regions I, II, and’III as
,,.

+(1) +(l) +P = pl +(1)’.;$1) + p3 (F12)

Their x-components may be integrated only along the upper part of

the transmission line as

+(1)
PI

/
=TX(2) ‘L /[ztan(al)+L tan(al)+h] q+(z) sec(al)~%

-L-hcot(al)

(F13)

+(1)

1

L
P~ = 7X(2) hq+(z) dz

-L
(F14)

6$1) = lx(z) j I‘+hcot(ai) \[-z tan(az)+ L tan(a2)+ h]q+(z) sec(a2)jdz
L

(F15)

After making use of equation (F2),the PI
+(1)

‘(1) and p3 can be simpli-

fied by the function

1

-L
fl(k,a) = {[ 1

“-j[k(z+L)sec(a)i-kL]tiztan(a)+L tan(a)+h]sec(a)e
-L-hcot(a)

(F16)

After integration, it becomes
,,’

fl(k,a) = sin(a)[l - ejk]lcsc(a)+ jkh csc(a)]ejkL

kz
(F17)
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Thus
“ .+(1) = 210
Pi ~ fl(k,ul) ‘lx (I?18)

Noting that fl(-k,a) = f~(k,a), equation (F15) can be written as

+(1)-= > “*
P~ fl(k,a2)~xc

(F19)

I
+(1) !

The p2 in equation (F14) is readily obtained as

+(1) ~ 41 h
P~ ~ sin(kL) ix

For the case al = a2 = a,

41+(1) + +(1) =
PI P3 $ Re(fl(k,u))~x

{[

410h 2 sin(w) sin (kL + -)
=1— sin(a)

X ck

/

kh 1-sin(kL) (l?21)

The total dipole moment becomes

-yl) +(1) + +(1) + +(1)= pl P2 P~

.1%
xck2 ‘h(a) S’F-l ‘in FL ‘ ‘-l

Before the magnetic dipole moment is formulated, it is worth noting

that the z-component

fact that the charge

the z axis.

(F20)

(F22)

in equation (F9) is identically zero due to the

distribution is antisymmetric with respect to

10U
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5. A!AGNETIC DIPOLE MOMENT

The magnetic dipole moment for the transmission line is,

according to equation (F4),

(F23)

where the currents I~,Iz are defined $.nequation (Fl). The inte-

grand can be decomposed making use of equations (F1O) and (Fll) as

e

[

‘XIZ- %JJ+(gy = ;:[:::%)+,’]‘-’k(z+L)sec(a:::1
-jk(z-L)sec(~)-jkL

IOIL tan(a2)+h] e , in III

(F24)
Again, let equation (F23)be written in regions I,II, and III as

o
+-(1)= ;(1)

(F25)
+ ;(1) + Ail)

1 2

I
(1) = J -L -jk(z+L)sec(al)+jkL

‘1 IOIL tan(al)+h] e dz
y -L-hcot(al)

(F26),,

1

+(1) = _~ L
‘2 J’ _L ‘oh e-jkz dz

(F27)

I

~(~) = _i ‘+hcot(az) -jk(z-L)sec(~)-JW

3.- YL
1 [L tan(a2)i-h] e
;0 .< .

dz

(F28)

Define a funct”ionas was done in equation (“F16),
,,

f2(k,(x)=

=

,
l.’ .,

\

-L -jk(z+L)sec(a)+jkL
[L tan(a)+h] e ~ ~dz

-L-hcot(a)

~[h COS(;)+L sin(a)]~jkL c1 _ ejkhcs(a)l (I?29)

--, .
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Noting that f2(-k,a) = f~(k,a), equation (F25) can be written as

+(l)=_~
2 Ioh

‘2 — sin(kL)
Y~

~$1)=-fyIofj(k,a2)

For the case al = a2 = a

(F30)

(r31)

(F32)

+-(1)+ fry)= _210~yRe[f2(k,a)]
‘1

= -IY410[L + h cot(a)]w ● -rhc:’”)]4kL‘-1
(F33)

Thus the total magnetic dipole moment in equation (F25) becomes

+-(1) = *210
-3’7 \

h sin(kL)

[
● COS kL +

[
+ 2[L sin(a)+hcos(a)]” sin - 1

khcsc(cz)
2 II

(F34)

6. ELECTRIC QUADRUPLE MOMENT

The electric quadruple moment is defined in dyadic form as

(I?35)

where ; = Xix + Ziy for the transmission line. Assuming al = a2 = a

the antisymmetry of the charge distribution requires that the com-

ponents p~2~ and p~~~rvanish.
(2)

The nonzero components are p ~ z

and p$2~. ‘

?

By the definition,
I
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o
J2)

Z,x (F36)

equal toit can be shown that contribution from the part islower

that of the upper part of the structure.

Let

integrate

J2) (2)= pl + Pj2) + P$2 )Xjz
(F37)

line,and

(2)
PI

(2)
P~

transmissiononly along the upper part of the

21 0 -jk(z+L)s~(al)+jkL
tan(al)+L tan(al)+h] erzc

‘-L-hmt(al)
L

● sec(al)dz ‘ (F38)

(2) . ~ L hz e-jkz dz
P2 c 1-L

(F39)

210

/

-jk(z-L)sec(a2)-jkL
‘+hc0t(a2)z[-z tan(~)+L tan(a2)+h] e
Lc

●“sec(a2) & (F40)

where p$2) (2and p3 can be expressed with h common
!,

function:

f3(kja) =
J

-L
z [z

-L-hat(a)

.

tan(a)+L tan(a)+h] see(a)

e-jk(k+L)sec(a)+jkL’~

ejkLtm ~,‘[ hcot(a)-L
k

_jLh=t(a) + k see(a) 1
-*]

+e

[

jkhcsc(a)t,m(m)L + hmt(g + 2J

1

ejkL
k k see(a) (F41)

k2sec2(a)
.,
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Note that

Hence

f3(-k,a) - f~(k,a)

(2) . 2% f3(k,u)
PI

j4hI L
(2) ~ko

[

sin(kL)
~2 =— cos(kL) - ~L 1

210
(2)=_—

P3 f;(k,u2)
c

For al = a2 = a,

(F42)

(F43)

(F44)

(I?45)

‘~ 1m[f3(k,a)](2) + Py = ~
PI

’410 tan(a)= -
k I

-Lh cot(a) cos(kL) + ~ cot(a) Cos(a)
c

[
. ~o~ kh csc(a)

1[
sin kh CSC(~)

---r--- 1
+ kL

2

+ 2L
[
kh csc(a)

1[
~os kh C~c(a) + kL

~ cos(a) sin 2 1

[

kh csc(a)
1[ II

sin ‘h Csc(a) + kL
-—

:2
cos2(a) sin 2 2

(F46)

7. MAGNETIC QUADRU~LE MO’NENT

The magnetic quadruple moment of the transmission line is

defined in dyadic form as

~(2)=~JX(XXI)+(;X1)~dY (F47)

+ + :(2) is a
= Xix + Z~z and 1 = lXIX + Iz?z. Note that m

where ~
For example:

symmetric dyad, and only ‘Y,z and ‘z,y
are nonzero.

-.

0 )
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m =m 1
X)Y y)x = 2 1

‘(XZ Ix - X212) dZ (F48)

where the contributions from the lower and upper parts of the

structure cancel each other. Thus, m
X)Y = ‘y,x = o.

The two nonzero components are

(2)
I

= m(2) = ~ (Z21 - XZ’I ) dz‘y,z Z,y x z (F49)

Let m(2) = mj2) + my) + m.$2)y,z and integrate only along the upper

part of the structure,

~

(2) = _l -L -jk(z+L)sec(al)

‘1 z[Lsin(al) + h cos(al)]sec(al)eo
-L-hcot(al)

. ejkL dz (F50)

1
(2) = _l L (h)(z) ~-jkz dz

‘2 o -L
(F51)

(2) = _l

I

L+hmt(al) -jk(z-L)sec(a2)

‘3 z[L sin(a2)+h ws(a2)] sec(a2)eo L

● e-jkL dz

To simplify these expressions, a function is defined as

(F52)

J

-L -jk(z+L)sec(a)+jkL
f4(k,a) = z[L sin(a)+h cos(cz)]sec(a) ● e dz

-L-hcot(a)
., (F53)

log



[L sin(a) + h COS(U)
]ejkL ~

f4(k,a) = /1
- jkL see(a)

k2 sec{a)

+[jkL see(a) + jkh csc(a) - 1] ejkhcsc(a)~

Note that

f4(-k,a) = f~(k,a)

Thus the integrated results are

(2) =
‘1 -I. f4(k,a1)

(2) = J2h10
‘2 ~2 [sin(kL) - kL cos(kL)]

(2)
‘3 = 10 f~(k,a2)

For the case al = a2 = a,

(2)
‘1

+ m$z) = -j21 Irn[f4(k,a)]o

_j21 L sin(a) + h csc(a) ~ kh csc(a)= - 2 sin
o k2 see(a) 1 2

[

~o~ kh csc(a)
2

[,

sin kh csc(a)
2

(F54)

(I?55)

(F56)

(F57)

(F58)

1
+kL- 2 kL see(a) sin

kh csc(a)
2

1
+ kL + kh csc(a) cos[kL + kh csc(a)]~

(F59)

The dipole and quadruple moments of the transmission line

ave been formulated in this Appendix. Their corresponding

~efficielltsassociated with spherical harmonics are given in the

Lin text.
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APPENDIX G ,1.

MULTIPOLE COEFFICIENTS OF THE COMBINED
LINEAR AND CIRCULAR CURRENT ELEh!ENTS

1. THE CO1lBINEDCURRENT ELEMENTS

A linear current element of length 2h and a circular current

element of diameter 2b are arranged to have the coincident center

at the coordinate origin as shown in the figure:

2. MULTIPOLE COEFFICIENTS

The current and charge

ment can be written (ref. 9)

OF THE LINEAR ELE!JENT

distribution ’of a linear current ele-

as

+-
1(x’) = ~xIo

1
sin k(h - Ix’l) + A[cos(kx’) - cos(kh)]

‘ ‘[’”S(W- cowl

j 10
q(x’) = —

c [
fcos k(h - 1X’

for x’ ~

--

)

0

( )1
+ A sin(kx’) + ~ sin ~

(Gl)

(G2)
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where the coefficients A and B are ~functions of wire diameter and
1

length. ,. ,,%.. ,.
,.. ,...

To obtain multipole coefficientsreferenceshouldbe made to

the definitions in

magnetic multipole

,.

Appendix B.

coefficients

:’ x 1(X’)

For the linear element, all the

are identically zero because

. .
= o

where the coordinate x is primed to denote the source region.

As for electric multiples, all the coefficients of orders

higher than octupoles are assumed negligibly small for the time

being. The electric quadruple coefficients are defined as

P2,m =
5
p‘J

y~m(e’,$’) q(x’)[kr’ jl(kr’) - 2j2(kr’)] dx’

(G3)
I

where the primed r, 0, and $ denote the source region using the

conventional spherical coordinate system. Since Y~O and Y~2 are

even while q(x’) is odd along the x’ axis, it is readily shown

that

%,0 = P2,2 = p2,_2 = o

Also, Y~l = O at 6’ = Tr/2. As a result,
I

P2,1 = P2,_1 = o

These results confirm the well-known fact that a center-fed linear

element has zero quadruple field,

The electric dipole coefficient pl,O is equal to zero,

*;
because ’10 = 0 at 0’ = ‘/2” Therefore, the only nonzero coeffi-

cients are
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3.

(ref.

3h
Pl,l = -Pi,.l = + [/R*

q(x’)[kx’ jo(kx’) - jl(kx’)] dx’

(G4)

h!ULTIPOLECOEFFICIENTS OF CIRCULAR LOOP

The current and charge distribution for the loop is given

9) by

(G5)

where the coefficients an are dependent on the wire diameter and

the loop radius.

The electric multipole coefficients are defined as

J(21+1)!! * “ f
‘l.jm=

kk(E+l)
‘~,m ~q[kb jt-l(kb) - fij8(kb)]

.+ * (;1 , ~) j2(kb)\ bda (G7)

The second term of the inte~rand is zero,”because ~’ ● I = O for
.,

, the loop. Also, the integ~’ationaround the complete loop can be

shown to give . .

M

#
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. .

“Pi,o = P2,0’= P2,p = PQ,_2 = o

L

The other nonzero coefficients ,are

and

,,

=- Pl,_l

,-

mn sin(iO)
la
l,- n

(G8)

5(kb.jl- 2j2) 2n_ 15

f. f ‘()

21 m ~ sin(na) bda
P2,1 =

k2
~sin(a) cos(a)~ ● ~

1 an
...

5(kbj1 - 2j2)

(-J)
15- 210T

=
k2.

m j:az
. .

,,

The magnetic dipole coefficients are given in Appendix B as
.....

3rn=—
I

(v’y~, mjl) ●

(; X ~) dv
:1,m 2k

,,

‘he coefficient‘1,0 =0’ becaL1se

(G1O)

.

(Gil)” “

@
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‘or ‘1, 1

.

r.

A substitution and carrying out the integration give rise to

Ar

Ior~~.
‘1,1 = k 8= Jl(kb) ~ =

o ‘1,-1

because

(vy~,_ljl)$= (vy~,ljl)$

The magnetic quadruple coefficients are defined as

5
‘2,m = ~ I

(Vy~,mj2) .(~x~)dv

The coefficients m2 ~ and m2 z are zero because
2 J

and

‘or ‘2,1

r
= jcos(e) 15

I

1$ , $ = 0°
(vy~,1j2)$ — ~ j2(kb) 9b -~$ , -$ = 180°

Hence,
15 Iobn.~

‘2,1 ~ rz j2(kb) ~ — =
al ‘2,-2

because

(G12)

(G13)

(G14)

(G15)

(G16)

(G17)

(G18)

(G19)

(vY;,_1j2)$= (vyj,1j2)+
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4. P CROSS M CONDITION FOR A LOOP AND LINEAR DIPOLE COML31NATION

A loop and a linear dipole’combination can generate an elec-

tric dipole moment and a magnetic dipole moment to satisfy the

p cross m condition. The relationship of the currents on both

structures is derived here for an electrically small radiation

structure. ..

Consider the loop and linear dipole combination lying in

x-z plane as shown in section 1. The linear dipole is centrally

fed; The loop is driven at a = O. The diameter of loop is 2b;

the length of linear dipole is 2h.
,.

The current on the loop can be rewritten from equation (G5)

where In are functions of driving voltage, the radius of the wire

and the diameter of the loop.

The electric dipole moment and magnetic dipole moment of the

loop, in quasi-static definition, can be shown to be

and

The

‘+
pi = -j 2y T

x

,+
Ionb2 ~y

,.
(G21)

‘2 =

The current on the small linear dipole is given by eq. (G2)
(

Id = ~xId sin k(h-lxl) (G22)

dipole moments of the linear dipole are “

1
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and

;(, = Ixj ~[1- Cos(kh)]
k c.

->
m =
Cl”

TO have a p cross m condition for the combination, the

magnitudes of dipole moments must satisfy

or

I

2mb11
Io;ib2 = c j ~ [1 - Cos(kh)] - ~

kc I

(G23)

(G24)

Fox the low frequency, kb << 1, 11 can be approximated as

_k2b21
11 ‘ o

llence,

ld
(

2.nb—.
q= -Jc

~ k2b2
)/{( )

+[1- cos(kh)]~
f

(G25)
kc

(
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