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Abstract

Multipole radiations are formulated in terms of spherical harmonics
for two small EMP simulators. Zxact solutions for generalized multipole
coefficients are obtained and shown to became mulitpole maments under
quasi-static approximations. Strengths of multipoles are evaluated in
exact and approximate forms for two simulators to evaluate their per-
formance characteristics. Both simulators under quasi-static limit are
shown to exhibit the desired E'cross m features. General solutions
including quadrupoles are also explicitly obtained. The desired
feéngres of 5 cross m are gradually degraded as the simulators become
electrically larger. The numerical evaluations of multipole strengths
have been prepared for the purpose of checking potential engineering

~models of the two simulators. HMearwhile, the exact formulations of
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Multipole radiations are formulated in terms of spherical harmonics
for two small EMP simulators. Exact solutions for generalized multipole
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multipole strengths have been completed to allow more refined synthesis
and design of potential simulators for generating uniform TEM illumination

along the direction of maximum radiation.
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O .SECTION I
INTRODUCTION
1, SMALL EMP SIMULATORS

Various types of large simulators have been built and
operated to provide approximate simulations of nuclear EMP
(electromagnetic pulse) environment. These simulators are large
in that:-they are intended to provide a uniform illumination of

- EMP onto test objects such as aircraft of missiles.

As the EMP simulation and test technologies have advanced,
the interaction mechanisms of EMP with various systems have also
become better understood. When specific EMP penetration mechan-
isms into systems are known, means have been developed to reduce

‘ or eliminate the EMP couplings and penetrations. And, as a result,
various systems can become hardened against vulnerability to EMP
effects such as transient upsets or permanent damage to electronic
equipment.

After each implementation of a new hardening concept or tech-
nique, an engineering test and evaluation is in order. To test a
full-scale system in a large EMP simulator could’be costly, time-
consuming, and often impractical. For alleviating problems asso-
ciated with full-scale testing, some types of small EMP simulators
have been conceived (ref. 1) to provide localized illumination of

EMP onto discrete POEs (ports of entry) of interest on systems.

1. Baum, C. E., "EMP Simulators for Various Types of Nuclear EMP
Environment: An Interim Categorization,'" IEEE Trans. on
!!’ Antennas and Propagation, January 1978. Also, "Some Types of
Small EMP Simulators,' AFWL Misc. Simulator Memos, No. 9,
December 1976,




This report formulates and evaluates the potential perfor-
mance characteristics of a particular type of small simulator of .
which the fields are to be produced purely by a pair of electric
and magnetic dipoles.
2. THE p CROSS m CONCEPT AND LIMITATIONS

Should there be a pair of pure electric dipole 5 and pure
magnetic dipole m placed perpendicular to each other and related -
properly in amplitude (m = cp with ¢ as the speed of light), their
éombined radiation would have a set of unique features toc be for-
mulated and discussed in this report (see Sections III and IV).

However, any radiating source has its physical limitations.
That is, any "design" or synthesis of source distributions cannot
be done by an arbitrary mathematical arrangement without consider-
ing its physical realizability. Physical limitations of electric-
and magnetlic-multipole sources including those of dipoles have been ‘
treated in reference 2. Since a production of dipoles by any source
will also:produce higher-order multipoles, one of the main tasks
of this report is to formulate completely all the multipole strengths
of a given source (see Section II and all Appendixes).

If a source region is made vanishingly small, an ideal E
cross m source can be conceptually formulated (ref. 3) for wave-

front propagation studies. In scattering phenomena, an ideal

2. Chu, L. J., "Physical Limitations of Omni~Directional
Antennas," J. of Applied Physics, December 1948.

3. Rumsey, V. H., "Some New Forms of Huygens Principle," IRE
Trans. on Antennas and Propagation, December 19859.




B Cross % scatterer can be well approximated (ref. 4) by small
spherical bodies of various material parameters. Of particular
interest in radiation is that a resonant E cross m radiator can

be approximated (ref. 5) by a microwave antenna of A3/16 with
about 30% operating bandwidth. Finally, it is important to note
that rigorous derivations (ref. 8) of the E cross m condition have
also been previously performed under low-frequency approximations.
The approach of this report is to formulate the exact solution in
terms of multipoles of a radiation source. This approach will
permit accurate evaluation of degradation effects by higher-
order multipoles that are ever-present with varying degree of
significance.

An ideal 5 cross m radiator has some unique features that
are not found in other elemental radiators. They are suﬁmarized
in part as follows:

a. Cardioid radiation pattern rotationally symmetric with

the axis of maximum radiation.

b. Purely real power outflowing from any spherical sur-

face enclosing the source region.

c. Twice the directivity of a purely electric or magnetic
dipole.
4. Yu, J. S., "Electromagnetic Resonance, Invisibility, Non-

Uniqueness, and Dipole Scattering of a Small Sphere,'" General
Electric Tech. Information Series, No. R71EMH2; January 1971.

5. Yu, J. S., and H. Moriomoto, "Electromagnetic Dipole,' General
Electric Tech. Information Series, No. R71EMI3; January 1971.

6. Baum, C. E., "Some Characteristics of Electric and Magnetic
Dipole Antennas for Radiating Transient Pulses,' AFWL Sensors
and Simulation Notes, No. 125; January 1971.




These desirable features are some of the goals to which small EMP

simulators afe to be designed.

3. MEDIUS (MAGNETIC AND ELECTRIC DIPOLE UNIFORM SIMULATORS)
SYNTHESIS AND REALIZABILITY

The acronym MEDIUS (ref. 1) is adopted here to represent all
small EMP simulators of which the fields are approximately those
of an ideal ﬁ cross m radiator.

The s&nthesis problem of MEDIUS can be stated simply; that
is, to find specific types of current distribution that would give
rise to a pair of dipoles with proper amplitudes and orientations.
Solution to this synthesis problem is known (e.g., ref. 4) to be
non-unique; that is, there are indefinitely many distributions that
may yield the same desired result, at least approximately.

Without going through mathematical formalisms, two possible
current disiributions (ref. 1) are selected for study in this
report. Baéed on the fundamentals of electromagnetic theory (refs.
7-10) the érrangements shown in figures 1 and 2 are known to radiate

dominantly both electric~ and magnetic-dipole fields, if their

7. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book
Co.; 1941,

8. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons,
Inc.; 1962.

9. King,'R.W.P., Chapters 9rand 11 of Antenna Theory, Part 1,
edited by R. E. Collins and F. J. Zucker, McGraw-Hill Book
Co.; 1969.

10. Baum, C. E., "On the Singularity Expansion Method for the
Solution of Electromagnetic Interaction Problems,' AFWL
Interaction Notes, No. 88; December 1971.
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Figure 1.

Wire Radius
2¢n(2h/a)
2%n(27wb/a)

Figure 2.

"Transmission-Line MEDIUS and Its Source Coordinates

(The y' axis is pointing out of the page. The driving
power flow is along the (+z'), but the P xm radiation
is along the (-z'), emphasizing "backward'" radiation.)
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»
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1

Collocated Linear and Circular Current ILlements

and Their Common Source Coordinates. (The y' axis
is pointing out of the page. The P xi radiation is
along the (+z').)

11




sizes are small measured in wavelength. Presently the transmission
line is assumed to be perfectly matched, and the collocated current
elements are assumned to have two independent but adjustable
generators.

As soon as the locations of generators are selected for the
conductors as érranged in figures 1 and 2, the current distribu-
tions will become unique and sd will the radiated fields. The
relative amplitudes and phases of the generators in figure 2 may
be assumed, for the time being, to have unlimited ranges of flexi-
bility. If the same assumption is also applied to the transmission
line in general, the arrangements as shown in figures 1 and 2
could be considered physically realizable.

4, GENERALIZED MULTIPOLE COEFFICIENTS AND QUASI-STATIC MOMENTS

Two bgsic approaches are available for formulating multipole
radiation.; One is based on the Taylor series expansion of source
contributions under the quasi-static approximation. This approach has
been rigorausly explored (ref. 6) leading to two leading terms for
dipole moments. The other is based on the Bessel-Fourier series
exXpansion that represents the source contribution in complete sets
of spherical harmonics (refs. 7-10). This approach appears to
have no previous work directed toward formulating the multipole
radiation of the arrangements shown in figures 1 and 2. This
report adopts the second approach to first formulate the general-
ized multipole radiation in full and then demonstrate asymptotically
that generﬁlized multipole coefficients are related to multipole

moments for a small source region.

12




Coordinate systems for this report are conventional rectangu-
lar and spherical coordinates as shown in figures 1 and 2 for
describing source regions. They are primed to designate specifi-
cally source coordinates. ’Multipole radiation in this report will
use unprimed coordinate systems as shown in figure 3 for descrip-
tions of all field vectors cutside of source regions.

5. SIGNIFICANT RESULTS AND OBSERVATIONS

Since multipole radiation of the two selected structures
appears to have no existing formulation in terms of spherical
hafmonics, a complete formulation has been carried out in this
report. Secé¢tion II serves as a summary for all the mathematical
details derived in Appendixes A through E.

Multipole coefficients and quasi-static moments for the two
selected simulators are evaluated in Sections III and IV where
vector fields are also expressed in terms of radiated multipoles.
Field patterns have been written out in full including contribu-
tions by dipoles and quadrupoles. Conditions for the ideal E Cross
m radiation are established for both simulators to demonstrate the
desired unique features. The specific results and their asso-

ciated significance are referred to Section V for more detailed

discussions.

13




MEDIUS Radiators
Centered at Origin

(These Cartesian coordinate axes are coincident
with those of source coordinates in figure 2)

Figure 3. Conventional Spherical and Rectangular Coordinates
for Fields and Potentials
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SECTION II

MULTIPOLES OF DISTRIBUTED SOURCES

Solutions for Maxwell's equations have been developed in
standard text books (refs: 7-9) with several techniques. A unique
solution for a sbecific problem is assured when proper initial

conditions and boundary conditions are applied to the éeneral solu-
tion of the wave equations. The same unique solution can also be
obtained by applying appropriate radiation conditions and boundary
conditions to the general solution of the Helmholtz equations.

In the following, Helmholtz equations will be used for
fields and potentials in the MKS system and in the frequency domain
with exp(jwt) as the factor for time-harmonic description. If the
complex plane s-domain is chosen, the factor exp(st) should be
used.
1. HELMHOLTZ EQUATIONS FOR POTENTIALS

For the purpose of studying the B cross m concept, electro-
magnetic fields and potentials are desired in terms of multipoles.
Multipole coefficients are to be formulated for distributed sources,
while multipole moments are to be obtained asymptotically for small
or point sources under quasi-static approximations. Both potentials
and fields will first be written in Helmholtz equations for solving
them in terms of multipoles.

Since the magnetic flux density B in the Maxwell's equations
is solenoidal, it can be expressed as the curl of a vector poten-

tial K as

15




B=v9 x &, or fi=utvx1 (1)

where ¢ is the permeability of space being considered. Also, by
the Maxwell's equation, the electric field intensity ﬁ, when com-
bined with jmK or sK; becomes an irrotational vector. Let the
combination be the gradient of a scalar potential ¢, the electric

field intensity becomes

Y

E=—-jok - V6, or E= -sk - Vs (2)

Equations (1) and (2) assure that both magnetic and electric
fields are solved if the two potentials are uniquely determined.
Substitution of equations (1) and (2) into the Maxwell's

equation, and application of the lorentz condition
v - & + juped = 0, or V « & + sued = 0 (3)

will give rise to the desired Helmholtz equations for the two

potentials as

(V2 + k2>3 = -uj, or (VZ - yz)K —uj (4)

1 (5)

I
|

(Vz + k2)® -£ T p, or (Vz - Y2)¢

where k2 = wzue = mzjcz, and 72 = 82/02 with ¢ as the speed of
light and £ as the permittivity of space. The source term J and
p are volumetric current and charge densities.
2. GREEN'S FUNCTION FOR POTENTIALS AND FIELDS
The Green's function G for equation (5) and for the rectangu-

lar components of equation (4) is defined to satisfy the Helmholtz

16
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equations as

2

(V% + k%) G(F,F') = -5(F - T') (6)

Together with the Sommerfield's radiation condition
T e (= + 3K) G(F,F1) = 0 (1)

Ir-—r' l+oo

the time-harmonic Green's function takes the form

N ,k]+ —»’!
G(r,r') = exg(—3+ L ~ r'i) with k = w/c (8)
ar|r - 1’| and T # *'

where T and T' are the position vectors of the field and source
points. ff the sources in equations (4) and (5) are first
restricted to be elemental sources [j(;’) dv'] 6(? - ?') and
[p(?’) dv'] 6(? - ?'), the solutions for the elemental potentials
would also take the form of equation (8). By allowing the sources
to be distributed, the solutions for the potentials become the

integrated contributions from the entire source region as

() = v J G(T,7') J(z') av'
- j 3 63,391 - 33 av: (9)
with 1= Ixix + Iyiy + iziz, and
o(F) = e % j G(E,T') p(F') dv!
- 301)—8 J G(F,2') V' - ('Y dv (10)

where the continuity equation is used in the second equality of

equation (10). Solutions for the fields may also be expressed




using the Green's function by substituting equation (9) into equa-

tions (1) to (3). They are:

i = p‘l vV x R = J v x [1G(%,7)] +» 3(T') av', and (11)
E = —juh - vo = -juk + - vy - A
Jjwue
= —Jup I d + x2vy) G(T,T') » HT') av’ (12)

The potentials and fields as solved in equations (9) to (12)
are next to be formulated in terms of multipoles.
3. MULTIPOLE EXPANSIONS OF POTENTIALS

The Green’'s function in equation (8) can first be written as
the zeroth-order spherical Hankel function of the second kind héz),
and then expanded (ref. 7) into a complete set of spherical har-

monics as

67,31y = @RCiklr - X1y o dE (D) 7 3o
' dnir - ']
- _ %% 220 (2% + 1) hgz)(kr) j (kr') P,(cosy)
- - ik ££o (22 + 1) 852 (kr) jy(kr") {Pg(cose) P, (cos ')
L-m)! ,
+ 2 m£1 %E:E%T . Pg(cose) P?(cose )
-[}os(m¢) cos(mé ') + sin(md) sin(m¢’)]] (13)

|
where jg are the spherical Bessel functions, P2 are the Legendre

18




polynomials, P? are the associated Legendre polynomials, and

cosy = Tr~ir,. Substituting equation (13) into (9) and (10) gives

rise to
K= -dku PIICLRED h§® (er) [ Py (cosu) g, (ket) F(E1) av!
= ] & (14)
2=0
and

= 25 T (20 + 1) héz)(kr) f P,(cosy) j,(kr') p(T') dv'

-7 s (15)

These multipole expansions are valid for arbitrarily large source
regions. Each term in the expansions has (22 + 1) coefficients to
be determined by the nature of source distributions. As illustra-
tions, the first two terms in the potential expansions are first
given in exact forms and then asymptotically expressed in terms of

multipole moments. For the scalar potential

% i%% h(2)<kr) J P (cosy) J (kr') o(T') dv'
= 2%% h(Z)(kr) J p(F') dv', for kr' << 1
= -4‘17?}26- h(2)(kr) p with po = J p('{.v) dv! (16)
19




oy = - 2 n{®xr) J Py (cosy) Jy(kr') p(F') dv'
= - j%% h§2)(kr) J ir Ir,(E§L>p(;') dv', for kr' << 1
= - j%% h(z)(kr) T . 51 (%) with p1 = J T p(;') dv'
(17)
The first two terms of the vector potential are
i, = - %%} h(z)(kr) f P_(cosy) j (kr') F(F') av’
. - %ﬁ} h(z)(kr) j T (jwp(F')) dv', for kr' << 1
= - %ﬁ% h( )(kr)(prl), with B = J 1 op(F) av! (18)
Ay = - IEE 1 (2D (kry J P, (cosy) jy(kr') J(F*) av'
= - )y J i« 1 (B3 F) av, for ket << 1
il 2 S -> 3 -_-t
= LI hgz)(kr)[ml x i+ 225 - ir] 5, (19)
with
m, = % J Ttox J(F') dv’ (192)
and
:; — '-r » 1 ] +'l 1
(pZ)i,j = liij j kixj po(r') dv (19b)

where equation (19a) defines the magnetic dipole moment and equa-
tion (19b) Hefines the components of electric quadrupole moments
in a dyadic form. Further expansion of Kz involving the magnetic

quadrupole moments (in dyadic form) can be found in Appendix A.

20
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Also formulated there are the electric and magnetic fields contrib-
uted by all the dipole and quadrupole moments. A more general
solution of fields in terms of multipoles is treated next.
4, MULTIPOLE EXPANSIONS OF FIELDS

Electromagnetic fields can be expanded (ref. 8) in terms of
multipole coefficients. The derivations are somewhat lengthy and
are treated in Appendixes B to D. In summary, the electric and
magnetic fields due to a given source distribution j(;') and.p(?‘)

have been obtained as

S L R+2 2 2
3= ik Yuje (2 + 1)2 7

L, Gry O ) (Mg m

m=-2

1 (2) Z
- Tue qz,m V%) hz (k) Xl,m' (20)

A

i

o 42 3 2
ik //Ez(z + 1) 7 3y m

Jhy GTEDIT\T2 o

+omy v n{P ) ¥y (21)

where iﬂ m and Vx(hgz) X ) are expanded in spherical coordinates

H

%,m
in Appendix C. The electric multipole coefficients Py m and the

magnetic multipole coefficients m, o are derived in Appendix B as

= {22 + 1)1 * 1 iz ey 4 t 3 1
Po,m = éz—zz—:—I; J Yo m(®¢") p(x") guv [r'dg(krt)]

+ jul? - 3(?')]j2(kr')} dv' (22)

and

21




My o = “Mf viIY, (8',07) j,(ke)] -« [F' x F(EDIav

2 kz (2 + 1) %,m
(23)

where j

(28 + 1)11 = (28 + 1) + (2% = 1)---(5)-(3)-(1) (24)
and

C 22+1)(L-m)! , N

Yo m(8',00) =/( 4ﬂ(}lim)?> Py (cos8') exp(jmé') (25)

The electric dipole coefficients P m (with m = -1,0,+1), the elec-

tric quadrupole coefficients Pz,m (with m = -2, =1, 0, +1, +2), the
magnetic dibole coefficients ml,m’ and the magnetic quadrupole

coefficients mz,m have all been expanded in Appendix D as integrals
over the so;rce region in spherical coordinates. Also in Appendix
D, thecoefficients are related to their corresponding moments when

the source region kr' << 1.

5. ASYMPTOTIC MULTIPOLE COEFFICIENTS AND MULTIPOLE MOMENTS OF
QUASI-STATIC SOURCES

Mostéradiators of given sizes can be electrically small for
low frequeﬂcies but electrically large for high frequencies. The
simulators under study may be operated from low frequencies up to
their structural resonance frequencies. To assure that their
characteristics can be developed in exact forms, it is appropriate
to emphasize that the multipole coefficients in equations (22) to
(25) are valid for arbitrarily large sources. These coefficients
are exact and scmewhat more complicated than thelr asymptotic
approximations. When a source region is known to be small (i.e.,

kr' << 1) the cocfficients can be asymptotically approximated as

22




Py m ® J (rF vy e dve (26)

Te,m z‘%‘f J v ((r)* YZ,m> © [T x J(r')] dv (27)

The asymptotic electric-dipole coefficients are related (in Appen-

dix D) to their corresponding moments in rectangular coordinates

as
3 ! 1 t 1 H ]
P10 27 | r'(cosé’) p(r',8",¢") dv
/43ﬂ J z' p(x',y',z'") dv' = 4% P, (28)
N A j Fri(sind') p(r',0',0') exp(¥j¢') av'
- 3 =S UF oyt 1 1 [} PR 3 .
=JB7 (x Jy') e(x',y',zh) dv! o= X fam (py F Ipy)
(29)
Similarly,
1 /3
m ot 5 e J 1,0 ¥ x3@E)av = J&m (30)
1 [3 /3 .
My 41 % 587 J (1., = ;1 (r' x J) av' = F gr (m ¥ me)

(31)

The asymptotic electric-quadrupole coefficients are related (also

in Appendix D) to their corresponding moments in rectangular coor-

dinates as

25 (2P, = Py - Pyy) (32)

D=

Po o

23




- 15 .
p2,11 = FJEr Py, T prz) (33)
.1 [15 :
Py 4 = 5087 (Pyy - Pyy + JZDXY) (34)
where
pXixj = J RiRg p(x",y',2") dv' (35)

Finally, the asymptotic magnetic-~quadrupole coefficients are:

1 /5

My o % 337 (2m_, - m - myy) (36)
-2 15 .

Mo, x1 5 T 3NEW (mp ¥ mez) (37)
1 [1s _ .

Mo +2 3N &7 (M x fyy ¥ szxy) (38)

where
_1 > . o .
A R A L

Thié section has formulated the potentials and fields in
terms of multipoles of a given source region. The general solu-
tions have also been asymptotically formulated for quasi-static
sources whose kr' is vanishingly small. These solutions are to be

applied to two specific simulators in the following two sections.
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SECTION III
TRANSMISSION-LINE MEDIUS PERFORMANCE

The simulator source coordinates of the transmission-line
MEDIUS is shown in figure 1. To maintain a good transmission
line mode, the height to length ratio h/L is restricted to be no
larger than 0.2, and the height h is intended to be a small frac-
tion of the operating wavelength. The flat pdrtionofthe transmission
is designated as region II, while the slant portions at the source
and load ends are respectively designated as regions I and III.
Presently the entire line is assumed to have been perfectly
impedance-matched. That is, the driving source, the terminating
load and the bends are assumed to have no impedance discontinuity.
Under this assumption, the current and charge distributions are
first to be formulated. The multipole strengths will then be
formulated and evaluated before the simulator field characteristics
are discussed.
1. CURRENT AND CHARGE DISTRIBUTIONS

The driving source in figure 1 is assumed to send a traveling-
wave current propagating along the entire line and terminating at
the load end without any reflection. Let the amplitude of the cur-
rent be IO, and let the upper- and lower-half currents of the
structure be Ii. The current distributions can be written by

assuming a lossless transmission line as
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Io[sin(al)Ix, 3 cos(al)iz.]exp[-jk(z’+L>sec(al> + jkL]
in I
Ii(z') = iloiz’ exp(~jkz') in II
ID[~sin(a2)Tx, * cos(az)fz,]exp[—jk(z'—L)sec(az)—jkL]
' in 111
(40)
Use of the continuity equation on these currents will result in

linear charge densities q, on the upper and lower parts:

t(IO/c) exp[~jk(z'+L) sec(al) + jkL] in I
q.(z") = i(IO/c) exp(-jkz') in II
i(Io/c) exp[-jk(z'-L) sec(az) - jkL} in 11X (41)

Equations (40) and (41) complete the current and charge descrip-
tions for x' > 0 and x' < 0 in figure 1. They are the sources
for the multipoles of interest.
2, THE MULTIPOLE COLFFICIENTS

The generalized multipole coefficients, defined in equations
(22) throdgh (25), are valid for an arbitrarily large source region.
If the basic property of the associated Legendre polynomials is
applied té equation (25), it can be shown that YR,—m = (—1)mYz’m.
This identity can in turn be applied to equations (22) and (23) to
show that

_ m _* o~ _qam ¥
pl,—m = {~-1) pﬂ,m’ and ml,—m = (~-1) ml,m (42)
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Thus only pz,m and m}Q”m need be explicitly formulated for the
evaluations of multipole coefficients.

The line sources in equations (40) and (41) can now be used
in equations (22) and (23) to give the multipole coefficients of

the transmission line in figure 1. They are:

- (22 + 1Hy1! j v* vy 'y (p Kr') - 24 (k'
SR rraverell IR FCUTIILRE ket g ey - 23,000
+ julF - T,(20)] jz(kr')% dz' (43)
and
_czz+1>!!j Y 6t 6') 4 (kp 20 x 3 (m :
m === VY 61, (kr')] -« [r' x I,(2")] 4
R,m kz(z N 1) [ 2’m< q) ) JR r r + zZ z
C(2g o+ 1yt Jg (BT OV P \
= ;zzzf:fzs—'(—Jm) J TT singT Yo ,m(®'s¢ )13¢' clrt x I,(z )]fdz

(44)

where the second identity for m is the result of recognizing

L,m
that ?' X Ti of the transmission line have only ¢' components.
The line integrals in equations (43) and (44) are along the upper
half of the transmission line when the sources are subscripted
by (+) as defined in equations (40) and (41). Naturally, the
integrals have to include also the path along the lower half of
the transmission line with the sources subscripted by (-).

Referring to equations (40) and (41) in conjunction with
figure 1, the source terms in equation (43) have the following
properties:

a,(z') = -q_(z'), and ' - I,(z') = -[F" -1 (2')] (45)
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Also, equation (25) can be applied to figure 1 to show that

Y#

*
o m(8',9'=0) = ¥, | (8',¢'=n) form = 0,2,4,... (46)

Therefore, for m even, the q, o in equation (43) become identi-
?

cally zero for the transmission line. On the other hand,

Y' (8',6'=0) = ~Y,

¢ m s m(8',¢'=m), for m=1,3,5,... (47)
H )

Thus, for m odd, the upper- and lower-half contributions for Ay m

. . E]
in equation (43) are equal, and the line integration can be carried
out only along the upper-half of the transmission line. The mag-

netic multipole coefficients m in equation (44) can be demon-

£,m
strated tofbe similar to Pom by recognizing that

Fox T,(z) = -7 ox T_(2") (48)
In summary, the transmission line MEDIUS (in fig. 1) has ‘
only odd multipole coefficients with m = 1,3,5,... in equations

(43) and (44). Moreover, their total contributions from the com-
plete liné integrations are simply twice the integrations along
the upper half of the transmission line using only the sources
q+(z') and T+(z’).

3. THE ELECTRIC AND MAGNETIC DIPOLES

The .electric dipole coefficient Py 1 by equation (43) is

e % J Y;,l(e‘,$'=0) §Q+(Z‘)[kr'jo(kr') - jl(kr‘)}

+ jm[§' - T+(z')} jl(kr')g dz’

1

(p ) + (p ) + (p ) (49)
1,17 1,174 1,171
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where the integration is decomposed into three regions according
to the sources defined in equations (40) and (41). Substitutions

of these sources into equation (49) give rise to

3 "L
- 3 * ' f ' T |
(p ) = 35 f Y (e )0) f[q (Z ;a )},I(Z )a ))r
1,1 I k —L—hcot(al) 1,101 l * 1 1 1
. sec(al) dz' (50a)
L+hcot(ay,)
3 2 * t ‘ t * t ll
(pl’l)III - k fL Yl,l(e )O)lf[q_*_(z ,Cl2>],I(Z )az):rsi
. sec(az) dz' (50b)
(p, ) =3 JL v¥ er 0y lt1q 21,1z, s Laz (50¢)
1,17 Tk ) 1,10 2Rty ’ o

The above integrations are considerably simplified if a special

case is made for 0y = Qg 7 a¢. The results are:

L
(1,00, = - /or & || (orersin(oprenni-gian) lhrzioliry) = 330r)
+ jkz' jl(kré)] dz' (51)

]

(pl,l) (pl’l)I + (pl,l)

I+III III

-L
_ /3 6 J . N ' \
= - [f= = (I_/c)sin(6l!)icos(Q)[krij (kri)
81 k ~L-hcot(a) o] 17 1“0 1
~j1(kri)] - sin(Q)[kz'sec(a) + k(L tan(a)

+ h) sin(a)]j (kr]) sec(a) %dz' (52)
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where the variables in terms of z' arc:

Q = KL ~ k(z'+L) sec(a) , (53)
2 2]?
'ri = {z‘ + [(L+z') tan(a) + h] ; s (54)
and
sin(ei) = [(L+z') tan{a) + h]/ri (55)

Numerical integrations of equations (51) and (52) have been per-
formed and their normalized results are plotted as the primed
gquantities in the bottom set of figure 4 fora-= 45° and h/L = 0.1,
The normalization factor for these curves is (—/§7§? A Io/c) with

A as the area of the transmission line in the x'z' plane, i.e.,
A = 4Lh + 2h° cota (56)

The factor (-v3/87) was used in equation (29) to relate the spheri-
- cal dipole coefficient p1’1 and the Cartesian dipole moments. The
dipole moments for the transmission line are derived in detail in
Appendix F. Equations (20) and (21) of Appendix ¥ indicate that

the dipole moment has only the x-component p,:

p,. = (p.) + (p,J) + (p) (87a)
= *1 * 11 *rIr
with
(p,.) = (p,) * (py)
5 5.5 SN ®111
= (1,705 sin(a) sin[Ehese(@)] giqfip, 4+ Khocsele)])
>k
-(4h/k) sin(kL)% (57b)
and
() = (I/e) R sin(ki) (57¢)
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Figure 4. liormalized Electric-Dipole Moments (Top Curves) and

Electric-Dipole Cocfficients (Bottom Curves) of the
Transmission-Line MEDIUS (in fig. 1) with 2L/A < 0.5
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Using a normalization factor (A Io/c) for the above equations,
their normalized curves are plotted as the primed quantities shown
in the top set of figure 4.

A comparison between the two sets of curves in figure 4
indicates clearly that the dipole moments for the transmission
line approximate very closely the generalized dipole coefficients
if 2L/X with X as the wavelength is restricted to less than 0.5.
However, this conclusion is not true for larger values of 2L/A.
Figure 5 shows that the generalized dipole coefficients are mono-
tonically decreasing with the length 2L/A. On the other hand, the
moments under quasi-static approximations are seen to deviate from
the exact solutions significantly for 2L/A > 0.5 and become oscil-
latory. ?herefore, the dipole moments as obtained in equation
(57) can ﬁot be accurately used to represent the dipole fields of
the MEDIUS if 2L/A becomes larger than 0.5.

Formulation and evaluation of the magnetic dipole for MEDIUS
are considered next. Use of equation (44) will follow closely the
procedures performed in using equation (43). The magnetic dipole

coefficiehts can be obtained similar to equations (51) and (52) as

m = (m ) + (m ) + (m ) (58a)
1,1 1,17, 1,17, 1,174
with
L
4 3 3 3 ] T > L PR | 1
(ml’l)II = —l/g? T J—L Io[Jl(kr2>/r2] exp(-jkz') dz (58b)
and
(my ) = (m; 4) + (my )
Ll et 1,17y L%y
36 (~h
= -j §? X J cos(Q)[L tan(a) + h}[jl(kri)/ri]dz'
~L-hcot(a)

(58¢c)
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Referring to equations (31) and (56), the normalization factor
(jY/378m 1,A) is applied to the above equations. Their normalized
curves are plotted as the primed quantities in the bottom set of
figure 6 for a = 45° and h/L = 0.1.

Quasg-static approximation of the magnetic-dipole coeffi-
cients leads to the magnetic-dipole moments which are derived
in detail in Appendix F. As can be seen in equations (31) and

(33) of Appendix F, the transmission line has only the y-component

moments as

mg = (my)I + (my)II + (my)III (592)
and
(m ) = -1 (2% sin(xL) (59b)
y I1 o k
. and
= +
(my)1+111 (my)I (my)III

SI_ 4[L + h cot(a)] SIB() g5p[kh escla) |

. cos[kL + 59-939191] (59¢)

Using a nérmalization factor (IOA) with A defined in equation (56),
the normalized moments are plotted in the top set of figure 6.
Comparison between the moments and the coefficients indicates that
an excellent agreement exists for 2L/A > 0.5, as was also observed
in figure 4. However, significant error would occur if the coeffi-
cients for 2L/X > 0.5 were to be used for the fields of the trans-
mis;ion line. This observation is illustrated in figure 7 where

the magnetic coefficients are plotted in absolute values. While
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the combined coefficient decreases rapidly for 2L/A > 0.5, the
combined moment is seen to oscillate with a much slower rate of
decrease. Therefore, if fields are to be described in terms of
a magnetic dipole, the use of the magnetic-dipole coefficient in
its exact form becomes necessary for 2L/ > 0.5.
4, THE ELECTRIC AND MAGNETIC QUADRUPOLES

Following the same procedures in obtaining the dipole coef-
ficients, the electric-quadrupole coefficients for the transmis-

sion line can be obtained from equation (43) as

p = (p ) + (p ) + (p ) (60a)
2,1 2,17, 2,17, 2,111
with
5 A5 (L
Py 1) = - S /%5% f (I,/¢) sin(285) exp(-jkz') [krgj,(krj)
'+ 1I k -L
- 2j,(kry) + jkz'jo(krg)] dz’ (60Db)
and
(p ) = (p ) + (p )
2,111 2,171 2,17111
- _ j1o0 /5 J—L (I_/c) sin(261!)
kz 8w -L-hcot(a) ° 1

{sin(ﬂ)[krijl(kri) - 2j,(kr)] + cos(R) [kz' sec(a)
+ (kL tan(a) + kh) sin(a)] j2(kri) dz' (60c)

An appropriate normalization factor for Py 1 is (-jvY15/8n AIoLe/c)
2

with Le as the effective length defined as
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L_ = A/2h = 2L = h cot(a) (61)

Normalized curves for these coefficients are plotted in the bottom
sets of figures 8 and 9 for a = 45° and h/L = 0.1.
The corresponding moments under guasi-static approximation

have been obtained in equation (44) of Appendix F as (p_.) , and
II
The normalization

XZ

in equation (46) of Appendix F as (pxz) .
I+111

factor for these moments is (jA IoLe/c). Normalized plots for
these moments are shown in the top sets of figures 8 and 9.
Magnetic-quadrupole coefficients can be obtained from equa-

tion (44) as

m = {(m Y 4+ (m ) + (m ) (62a)
2,1 2,17} 2,1714 2:17711
with .
L Jo(krs)
(m, ;) = -j 15 (2 l§) I h cos(84) —g_T_g_ exp(-jkz') dz'
2,1 II k2 3/ 87 -, © 2 T,
(62b)
(my ) = (m, 4) + (m, 1)
S €553 SRR 21011
30 {2 /15 [
= = (~ 5%) J Io(cosei) sin(®)
k ~L-hcot(a)
Jolkry)
[L tan(a) + h) *+ ———— dz' (G2¢)
T1

An appropriate normalization factor for the above quantities is
(- %/IS?Eﬂ AIOLe) according to equation (37) with M, = 0. Their
normalized curves are plotted in the bottom sets of figures 10

and 11. The top sets of figures 10 and 11 are plotted with a
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normalization factor (jAIOLe) for the quasi-static quadrupole

) in equation (57) of Appendix F, and (m Z)
II Y2 1+111

in equation (59) of Appendix F.

moments (myZ
5. PARAMETRIC VARIATIONS OF MULTIPOLELS

The dipole and quadrupole moments have been demonstrated as
accurate approximations of the generalized coefficients, if 2L/A
is restricted to less than 0.5. One area of particular interest
in studying the E cross m concept is the sensitivity of multipole
moments with respect to the transmission-line parameters.

Figure 12 shows that the amplitudes and rates of variation
of the normalized electri-dipole moments are varying with differ-
ent combinations of the parameters. Should the maximum amplitude
and the minimum rate of change with respect to 2L/A be the most
desirable features, the choice of h/L = 0.1 and a = 45° would be
a good one. The parametric curves can also be plotted using
quation (61) and letting Le/A = 2L/A[1 + h/2L tan(a)] be the
abscissa. This transformatidn of abscissa will indicate that all
the parametric curves are essentially the same for Le/A < 0.5.
Further detailed study may shed some more light on this optimiza-
tion question.

The variations (fig. 13) of normalized magnetic-dipole coef-
ficient also indicate the same conclusion. That is, the various
combinations of h/L and « give rise to essentialiy the same nor-
malized magnetic-dipole coefficients for Le/k < 0.5. A choice of
small o will reduce the impedance mismatch of the transmission
line.

Parametric variations of the normalized electri-quadrupole

moment arc also given in figure 14 with 2L/X as the abscissa.
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The transformation of the abscissa to LC/A will indicate that the
normalized curves are essentially the same in that a good B cross
m condition is to have insignificant higher-order moments for
Le/A < 0.5. The same observation can also be made for the nor-
malized magnetic-quadrupole moments shown in figure 15.
6. FIELD PATTERNS OF THE SIMULATOR

The eventual performance characteristics of interest are the
fields generated by the simulator (of which multipole strengths and
their parametric variations have been formulated and evaluated).
Making use of equations (20) through (25), the fields can be
expressed in terms of multipole coefficients pﬁ,m and mz’m. For
the dipole and quadrupole coefficients the asymptotic relation-
ships with their moments in rectangular coordinates have been given
in equations (28) through (39). Since the moments are good
approximations for the coefficients when 2L/A < 0.5, as shown in
figures 4 through 11, and since the dipole moments begin to reach
zero rapidly for the simulator to be about one-half wavelength,
use of the moments for field description is presently adequate
for the simulator.

The electric and magnetic fields in spherical coordinates

can be obtained using only the dipole and quadrupole moments as:

Yu/e k2m } 2¢cp 3kep..
T = s V[ﬁr ﬁ%){—ﬁgﬁ gl(kr)sin(e) + yxz gz(kr) sin(8)cos(8)
. cpX kmvz
+ cos(d) + le{[gl(kr) + ]ir g3(kr)cos(8)} + J 2my gz(kr)cos(e)
kaxz l 2
+ _EE;" g4(kr)COS(28)]scos(¢) - 1¢{ g1 (kr)cos(9)

kmv7 kcpxz z
* Jism 89(kr)cos(28) + 5 g4(kr)008<6%ssin(¢)] exp(-Jkr)
y

2m
y
(63a)
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%o kg [ ‘ ' 3km_ . |
PT T [Telr) B (krsin(e) + —l—my 8 (k)sin(9)cos(0) sin(o)

‘ Px kaxz
W[~;7 (kr) + g3(kr)cos(0)] + 3 2my gz(kr)cos(e)

km ” 1 ’ cp,
+ Tﬁ%ﬁ g4(kr)cos(26)stin(¢) + i¢([]§7 gl(kr)cos(e) + gs(kr)]

+ j[kaxz g (kr)cos(28) + Em_Lz g (kr)COS(e)]2COS(¢)]eX (~jkr)
2m, =2 2m_ €4 f p(~J
y

y
where (63b)
gy(kr) =1 - k—lr (64a)
3 i3
g, (kr) = [1 - J- J2 (64b)
2 (kr)z kr
1
g (kr) = |1 - } - (64c)
3 [ (kr)z kr
and
6 . 1 2
g,(kr) = [1 - ] - 33[—— - —————] (644)
4 (kr)2 kr (kr)3

It is noted that the fields are written with the magnetic dipole
coefficient my as a common factor. The normalized my is m§ = my/
AIO with A given in equation (56). If the transmission line were
made sufficiently short that 2L/X < 0.1, the quadrupole moments
would be negligibly small, and the dipole moments would be approxi-

mately related as my = -Cp,. These approximations simplify the

fields in equation(63) as

Tl Yu/e ' .
T = __9;___ (m§ A/Az){ir[%% gl(kr)sin(G)JCOS¢ + Ie[gl(kr)

- g3(kr)cos(e)]cos¢ - I¢[g1(kr)cos(e) - g3(kr)]sin¢ exp(-jkr)
(65a)
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Tl : ‘
= ~;9 (m& A/x2){1r[%% gl(kr)sin(e)]sin¢ - Io[gl(kr)

|

- gs(kr)cos(e)]sin¢ - T¢[g1(kr)oos(8) - gs(kr)]cos¢Jexp(—jkr)
(65b)

The fields represent the desired radiation from a combination of
x~directed electric-dipole moment p, and y-directed magnetic-dipole
mg = CP.
are valid in all regions outside of the source region. The com-

With the aid of equations (64a) and (64c), the fields

ponent Eege, $=0) is seen to have a pattern identical to the

Ha(e, ¢=w72). Similarly, the patterns E¢(6, $=-m/2) and

H¢(8, ¢=0§ are also identical. As kr =+ =, the r components of

fields vanish rapidly and the other components have a simple

(l+cos®) variation that is characteristics of a E cross m radiator.
Both dipole moments of interest are given in equations (57)

and (59); In the low frequency limits where 2L/A and h csc(a)

approach zeroc, the moments take the forms:

4I1_hL 20”1 cse(a)
o + <
X C C

1

and

2
—4IOhL - 2Ioh cot(a)

3
4

Thus

_ 4L + 2h csec(a)
_CDX/my ~ 4L + 2h cot(a)

=1, ifa=0 (66)

The field strengths in equation (65) can be readily obtained
if the transmission line area is given. For example, consider the

case of 2L/A = 0.1 in figure 6 where m& is found to be about 0.96.




For a = 450, the area in equation (56) gives A/A2 = 0.00105.
Substitution of these values into the common factor in equation

(65a) gives

ﬂIOVu/e I

' 2, . o
= (my A/XT) = 1.2 —

Therefore an electric field intensity of 12 V/m at r = 10 m would
be induced by a current Io = 100 amperes flowing in the electri-
cally small (A = 0.00105 Az) transmission line.,

If the transmission line is allowed to become electrically
large, the quadrupole moments would be increasingly significant,
and the field patterns given in equation (63) would have to be
used. For this situation the field strengths would become larger
and field patterns deviate gradually from the ideal case given in
equation (65). The field strengths for 2L/A < 0.5 can also be
readily estimated by using the normalized curves in figures 4, 6,
8, and 10,

For the convenience of using equation (63) in estimating the
field strengths for 2L/X < 0.5, figure 16 shows the relative value
of cpx/my used in the equation. The other relative values used
in the equation are shown on the top curves of figures 17 and 18.
The latter curve can be used in conjunction with figure 16 to
obtain kmyz/my. Bottom curves of figures 17 and 18 are plotted
using the generalized quadrupole and dipole coefficients. Since
they are exact solutions they may be used for more accurate evalua-
tion of equation (63). Of course, the exact values of the normal-
ized P11 and ml,1 in figures 4 and 6 will have to be used for this

purpose.
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7. THE P CROSS i CONDITIONS
For the transmission line to be short (2L/X < 0.1), the
field components in equation (65) can be used to show that

Ee(6=ﬂ,¢=0) Eéf6=n,¢=n/2)

H,(6=7,9=0) ~ "M/® “-E (6=7,4=7/2)

(67)

This is the first p, cross my condition stating that the fields
produced by the transmission line (fig. 1) are pure TEM (Transverse
Electromagnetic) waves propagating outward in the (-z) direction.
This condition is a unique property that assures a nearly uniform
plane wave around 8 =7 along all distance outside of the source
region. For an EMP simulator, this property allows near-zone and
especially quasi-near-zone illumination of a test object. Even
for a longer transmission line with 2L/A < 0.5, equation (63) can
be used to show that the above property still holds approximately
true.

The second unique property of theg cross m condition is that
the total outflowing power is purely real in all space outside

the source region. That is

k4m%/u/e
PpXm = _——%?_—— = pp + P = 2Re(Pp) = 2Re(P_) (68)

A derivation of this result is given in Appendix E where Pp is the
complex outflowing power of Py and Pm is that of my = -Cpy- Both
P_ and Pm are complex but are conjugate of each other. The

property of P§%% is an important property for a small radiator in

that there is no reactive power outside the source region.
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Consequently when a EX$ condition is realized, the difficult prob-
lem of feeding a highly reactive small radiator could be alleviated
from the reactive loading of a purely electric or purely magnetic
radiator.

The third important property of a pxm radiator is the
directivity defined as

*
By (8=7,4=0) x H (8=7,$=0)
D= = 3.0 for r + ® 69
NI ° (69)

It means that in the far zone, the directivity of a EXE radiator

is twice that of a pure electric or magnetic dipole. An increase
of the directivity by a factor of 2 is significant in that the
maximum power density is increased by a factor of 4 while the total
radiated power is increased only by a factor of 2.

The three unique features of a BXE radiator are well assured
by a small transmission MEDIUS. These properties degrade gradu-
ally for the MEDIUS if the length is restricted to 2L/A < 0.5.

In other words, these features are closely approximated in the
region around 8 = 1w, even though the transmission line is operated

above 2L/A = 0.1 but limited to 2L/A < 0.5.
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SECTION IV

COMBINED LINEAR AND CIRCULAR CURRENT ELEMENTS

1. CURRENT AND CHARGE DISTRIBUTIONS

The linear and circular elements of figure 2 are collocated
as an attempt to produce a pair of crossed electric and magnetic
dipoles. Assuming no interaction between the two elements, their
current and charge distributions can be obtained from reference 9.
For the linear current element, the distributions of current and

linear charge density (coulomb/m) are

T(x') = Ix,(Io){sin(kh - k|x'|) + A[cos(kx') - cos(kh)]

+ B[cos(kx'/2) -~ cos(kh/2)]% (702a)
q(x' 2 0) = (qo)[tcos(kh - k|lx'|) + A sin(kx') + g sin(kx'/2)] (70b)
a = 3(I5/c) (70¢)

where the coefficients A and B are dependent of the length and
diameter of the linear wire. Evaluation of their values using
2¢n(2h/a) = 10 are available from reference 9. The current and

charge distributions of the circular current element are:

(=9}

1y = 1 T cos(ng' _ ' ' ,
HCIE ie'(lo)[g + 2 ngl —én——)—}- Ie, {10 + 2 n£1 I!cos(n8 )]
(71a)
and
I 0 . ©
2 ! 2 ' ; '
qee') = EEE(7§) nzl n s12in9) = %D ngl (In/c) sin(né') (71b)

where the coefficients (1/an) are plotted in reference 9 and the

value of I is (~jV/n/u/e) with V as the applied voltage.
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2. STRENGTHS OF ELECTRIC AND MAGNETIC DIPOLES

Full derivation of the multipole coefficients and moments
is given in Appendix G. For the linear current element the mag-
netic multipoles are all zero assuming the wire is sufficiently
thin such that ka -+ 0. Also, assuming the wire length 2h/X < 0.5,
all the higher-order electric multipoles are negligibly small.
Since the linear element is center-fed, the electric quadrupole
also vanishes. The only unonzero multipole is the electric-

dipole with a coefficient

h
3 /3 L s ; . .
pl,1 = - % EE-JO q(x')[kx JO(kX Y - Jl(kx )] dx'’ (72)
where equatﬁon (70b) should be used for evaluation. Asymptotically
with kx' << 1, the electric-dipole moment p, can be obtained as

21 I 2 9

s O - < _O =
Py = 3 '20 [1 - cos(kh)] = j c h qoh (73)

The normalized electric-dipole strength can be done in the manner
as in the last section. TFigure 19 shows that for 2h/A < 0.4 the
exact and asymptotic definitions are identical.

The electric and magnetic dipoles for the circular loop are

obtained in Appendix G as
Ii 5—— 31
Pr,1 7\~ TTN/%F e (kbj,(kb) - j; (kb)) (743
! J

my 1 = (Iéx/%)(ﬁgp‘) J1(kb) (75)

and
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py = p,/(ash™)
{1 = pl’l/(—qohz/S/Sﬂ)
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Figure 19. Normalized Dipole Moment and Dipole Coefficient
of the Linear Current Element in Figure 2
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They become the dipole moments Py and my (without the factor
v3/87) under the quasi-static approximations of the spherical
Bessel functions with kb << 1, Their normalized absclute values
are plotted in figure 20 using the values of (l/ao) and (1/a1)
given in reference 9. The value of (l/al) is complex and approaches
zero as kb approaches zero. When pl’1 or p, is normalized by vbz,
they approach about 2 as b approaches zero. This is caused by the
real part of (1/a0) which diverges as b becomes zerc (see ref. 9).
3. STRENGTH OF ELECTRIC AND MAGNETIC QUADRUPOLES

As méntionéd earlier, the linear element is center-fed and
its electric quadrupole is zero. The electric and magnetic quadru-
pole coefficients of the loop can be obtained from the results of
Appendix G as

) 1=

my 4 = (Ii /é—%)(J———'lkO;b) jo (kb) (77)

If kb << 1, they become the guadrupole moments Pyy and myz without
the factor v15/8w. Their normalized curves are given in figure
21 where fesonance phenomena are associated with the coefficients
(1/al) and (l/az) as given in reference 9.
4. FIELD PATTERNS OF THE ELEMENTS

As the multipole coefficients have been formulated and
evaluated, their substitution into equation (63) will give the

field patterns of the combined elements assuming no interaction.
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Figure 20. Normalized Dipole Coefficients and Dipole Moments
of the Circular Current Element Shown in Figure 2
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For 2b/A < 0.8 the relative strengths of the quadrupole coeffi-
cients are plotted in figure 22 for the circular loop. Since the
loop also contributes to electric-dipole field, the total electric
dipole coefficient of the combined elements should be the sum of
those in equations (72) and (74). For kb << 1, their sum becomes

(p.) for the combined elements as

X's
(p,) = (p,) + (p,)
s 1 *'2
. 3/t
J2(1_) 27kbY (1)
°1 ° 2
= ——5—= (1 - cos(kh)) + J (78)
c
ck

. . . . . 2, 2.,
if (Ii) in equation (74) is approximated as (-kb IO) for kb

vanishingly small. The designations (px) and (px) are used to
1 2

distinguish the electric-dipole moments for the linear and circu-

lar currents. Meanwhile, the magnetic moment my can be obtained

from equation (75) as.

2 '
my, = (tb )(10)2 (79)

One condition of particular interest is the relationship

between (IO) of the linear element and (Ié) of the circular
1 2

element such that c(px) = my. Use of the above two equations
s

gives the required ratio as

—Jv(bz/hz)(l - j2kb), or

14

(1) /(1)

R

(ca ) /(1) bez/h2 , for 2kb << 1 (80)
A B
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This indicates that, if the two currents could be maintained
independently, the linear current would have to lag 90° in phase
and be proportional to 'nbz/h2 in amplitude with respect to the
circular current. Should the value of (Io)1 in equation (80) be
used in equation (78), the (px) would be dependent of (18)2 only
and the combined element would :xhibit an ideal p cross m
condition,

Similar to the transmission-line MEDIUS, the patterns for
the combined elements with 2b/X < 0.1 are completely described
by equation (65). Also, all the p cross m conditions discussed
in connection with the transmission line are equally applicable
to the combined elements. The only exception is that the maximum
radiation now takes place at 6= 0 instead of 6§ = m for the trans-
mission line. As for the field strength, the combined elements
would yield considerably more than the transmission line if the
same amount of current could be maintained. This observation
becomes quite clear by comparing the normalized magnetic-dipole
moments in figures 6 and 20. TFor instance, the loop element with
2b/X = 0.0366 will have the same area as the transmission line
with 2L/X = 0.1, a = 45%°, and h/L = 0.1. TVhile m; for the trans-
mission line is nearly unity, the m§ for the loop is about 10 as
can be seen in figure 20, Therefore, if the same amplitude of
current were maintained in the loop and the linear current were
maintained as in equation (80), the combined elements would pro-

duce 10 times higher fields than those by the transmission line.
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SECTION V

CONCLUSION AND OBSERVATION

1, MULTIPOLE RADIATION

Due to the apparent absence of previcus work, a complete
description of multipole radiation has been formulated for the
two selected simulators. The spherical vector functions used are
those of references 7, 8, and 10.

Multipole radiation has been solved exactly for an arbi-
trarily large source. The solution is exact in that the complete
set of spherical harmonics is used and the harmonic coefficients
are formulated by integrals over the entire source region. These
harmonic coefficients have been treated in this report as the
generalized multipole coefficients.

Considerable amount of vector operations on the spherical ._)
harmonic functions has been found necessary, as was found in
reference 10, to lead to the complete formulation of multipole
radiation. Some of the benefits of this formulation are listed
as follows:

+ Generalized multipole coefficients can now be evaluated in
their exact forms for an arbitrarily large and complex
source, and their asymptotic approximations can be directly
identified with the multipole moments developed under
quasi~-static solutions.

* Generalized dipole coefficients can now be used to system-
atically perform a source-synthesis procedure by which their
strengths can be maximized with appropriate relationships.
{This benefit is to alleviate the restriction of a vanish-

ingly small source region, which is inherent in quasi-static
source synthesis.)
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+ For a relatively large and complex source, the genecralized
highcr-order-pole coefficients can now be used to system-
atically minimize their radiation contributions when only
the ideal P cross M radiation is desired.

The first benefit has been demonstrated for the two selected
simulators. Effort to demonstrate the last two benefits remains
to be attempted in the future.

2. TRANSMISSION-LINE MEDIUS

The first simulator (fig. 1) is a backward radiator in that
its maximum radiation is along 8'= 7 or (-z') axis if the line
length is restricted to be small. A complete evaluation of its
dipole and quadrupole moments has been performed and compared
with their generalized coefficients. Figures 4 through 11 are
their normalized plots for direct comparisons between exact solu-
tions and quasi-static approximations.

Parametric variations of the multipole coefficients have
also been evaluated as shown in figures 12 through 15. The
results indicate that the variations with geometric parameters
of the simulator are relatively insignificant when h/L is
restricted to less than 0.2.

Radiation patterns of various field components are concisely
formulated in equations (63) and (65). The fields are the exact
solutions valid everywhere outside of the source region. They
are relatively simple functions of the spherical coordinates when
the values of multipole coefficients are evaluated as has been

done in this report. For the convenience of using these equations

to estimate field strengths and patterns, the relative values of
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multipoles are also plotted in figures 16 through 18, Patterns

of field vectors are considerably simplified when the radiation

is predominantly of dipole moments. For 2L/A < 0.1 the field
vectors in equation (65) are an accurate representation of the simu-
lator radiation which is closely that of the ideal p cross m
condition desired.

The ideal 5 cross m conditions are discussed in conjunction
with equations (67) through (69). These conditions are presently
confined to a small simulator 2L/X < 0.1. However, when the simu-
lator becomes larger, the conditions are degraded gradually. For
example, the half-power-density beamwidth of an ideal E cross m
radiator can be obtained as about 131° from equation (63) with
kr -+ o, Egrlier work (ref. 5) on a resonant electromagnetic dipole
has a rangé of 108° to 177° half-power-density beamwidths for
approximately equal E- and H-plane patterns.

3. LINEAR AND CIRCULAR CURRENT ELEMENTS

The second simulator (fig. 2) is the collocated current
elements. It is a forward radiator in that the maximum radiation
is in the {+z) direction with 8 = 0, if the conditions of equation
(80) are met.

Assuming the wires are thin compared to their lengths, the
normalized dipole and quadrupole strengths have been evaluated as
shown in figures 18 through 21. The currents in both elements
were assu%ed to be independent for the multipole evaluations.

This assumption would be valid if the generators could be adjusted

including their mutual impedances to support the required currents.
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Radiation field vectors and the patterns of field components
are the same as equations (63) through (65), provided the multi-
pole moments are replaced by those obtained for the combined
current elements. These equations are valid also for larger simu-
lators using multipole coefficients when the relationships given
in equations (28) through (39) were properly used.

Again for the convenience of using equation (63), the rela-
tive strength of the multipoles are plotted in figure 22.

Perhaps it is worth noting that all the multipoles of second simu-
lator are complex, instead of being purely real or imaginary for
the first simulator.

4. LIMITATION AND REALIZABILITY

Physical limitations of the two simulators are imposed by
the assumptions made in their formulations. The first simulator
is assumed to have been perfectly impedance-matched. The second
simulator is assumed to have its currents maintained indepen-
dently. The former assumption is not severe and the required
generator is clearly realizable in practice, although the radiator
is extremely inefficient in that most power would be delivered to
the terminating load. The latter assumption is quite severe in
that both generators are connected to highly reactive loads
including the mutual coupling effects. Thus the realizability of
the required generators is not immediately clear. However, if the
generators were realizable in practice, the radiation efficiency

of the second simulator would be much higher than that of the
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first simulator. Also the second simulator has the flexibility
of separating the linear and circular elements. This flexibility
could be explored for optimizing the simulator performance in
conjunction with generator requirements. One possibility is to
separate the current elements as was suggested in reference 6.
This would allow the linear element to radiate without being
strongly affected by the presence of circular loop. All the data
and formul%tions presented in this report can be used directly
even for tﬁis arrangement, except that a phase factor has to be
introduced to account for spatial separation. This is true if

one recallé that the two elements were assumed to have no inter-

action and were driven independently.
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APPENDIX A
DERIVATION OF MULTIPOLE MOMENTS
FOR POTENTIALS AND FIELDS

Fields and potentials can be expressed in terms of multipole
coefficients or multipole moments. This Appendix will first show
that the vector potential can be expressed as an infinite series.
The first three lowest-order terms are to be expanded in terms of
electric and magnetic multipole moments by restricting the source
region to be small.

After the potentials are derived, the associated fields due
to dipole and gquadrupole moments are given to show how each moment
is contribufing to the near and far fields.

1. VECTOR POTENTIAL SERIES

The vector potential for the current distribution J(T') is

given by l o l
u Jjkilr r'’
Ay = 2 j FEy e dv (A1)
T - >,
r -1r']
Expanding the integrand of the above integral yields
Jeu
A = 52 1 e n$® f J(F') jy(kr') Pylcosy) dv  (A2)
2=0

where jg are the spherical Bessel functions, Pg are the Legendre
polynomials, hgz) are the spherical Hankel functions of the second

kind, and ¢ is the angle between T and T'.
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2. ZERO-ORDER POTENTIAL
The zero-order vector potential is
Jku
Iy = o ,.(2) Ty ,
A () = - === h_ "/ (kr) j J(x) J (krt) dv (A3)
which can be approximated by retaining only the first term of

jo(kr') expanded in Taylor series, i.e.,

~jkr
u e
R (¥ = - > J J(F) av (A4)

4Tr

It can be shown by using the continuity equation that

J Jav = - juw f T'pdv (AS)
Hence Sun e—jkr
KOG) = —— f T'pdv (AB)

Since the quasi-static definition of an electric dipole

moment is

5 = j 21 pdv (A7)

the zero-order potential can be written

jwuoe_Jkr

4mr

B2

3 () = (A8)
Thus, for small source region kr' << 1, the zero-order potential
contains only the electric dipole moment.

3. FIRST-ORDER POTENTIAL

The first-order potential is considered next, i.e.,
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i - Jku

1 2

(1 - gLy eI J (F - ¥y Jav (A9)
anr

After several vector operations, the integrand in Kl can be

expressed as-

J (r « ') Fdv=mx7T+ % jw p - ® (A10)

where m is the magnetic dipole moment

-+

m = % J Tt ox J(r') dv (A1)

+
and p is the dyadic form of electric quadrupole moments

* R
(p)x.x. = lilj xixj pdv (A12)
13
Hence
Jku, Gy -dkrle w132
Kl = - (1 - kr) e mx 71 +3jwp ° r] (A13)

47r
Note that the above representation is appropriate only for a
source that is electrically small.
4. SECOND~-ORDER POTENTIAL
The expansion of vector potential Kz can be written from
equation (A2) as

> Jku R
Ay = - 4ﬂo (5)h§2)(kr) J J(F Jo(kr') p,(cosy) dv (A14)

where

| Sgkr')z

jz(kr') = 5.4_3'2 ) fOI‘ kr' << 1 ;

7h




h§2)(kr) = 1{_ _R% - 3 + 3j . e-Jkr ,
(kr) (kr)
2
py(cosy) = % (3 cos“y - 1) ,
and
T - T
cosy = =——

2
_ k 3 "'."*12 1y2
-§6L§3“‘ ') ‘(r)jJ (A15)

Using the vector identity,

IE - H =3 [F D FI@E - H PG D] 1o

the integrand becomes

2 N >
% {i% 3 [<?' CBE D xFHIE D TE L DHE

30
T
- ()2 js

H
~
—

The magnetic quadrupole is defined in dyadic form as

3¢y

J[(r' x T+ T(T x 3)]dv (A17)

I
DO -4

Substitution of this definition into the integrand in equation

(A15) gives rise to

(2),.2
JkU h k 3 > > -> -
o= - iji.(m P x P S J rx(r'xJ)xr)xr
2 24n r2 2r2 [( )
£ I@E D2 e G D ?)] dv - J(r')Zjdv} (A18)
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Since the magnetic quadrupole is of main interest, the
second-order potential contributed by magnetic quadrupole moment

is specifically written as

I 1,3 (2)

. JkTu_h (kr) g R

T = : 2 (m - T) x 7T (A19)
Tr

5. FIELDS OF DIPOLE MOMENTS
After the vector potential is obtained, the fields can be
expressed through standard procedure of solving Maxwell's equa-

tions. That is

uO
and
- 1
%= Joe, v x A (A21)

Substitution of equation (A8) and the magnetic dipole term in

equation (A13) into the above equations gives rise to

- jw _~Jkr .. IveT 2 . 1, 1 2
By = - ghx e [(ak + (I 2By ¢ Gk o+ g =)@y /e)
. jkr
. 3 3 - +
- Gk + T+ - 2)(fr -ml/c)]T] , (A22)
Jkr
and
- Jwyu/e ~jkr . 1,7 = . 1 1 >
§1 T 4Trr e [_(Jk ¥ r)(lr:(ml/c) Gk + Tt - 2) Py
! jkr
I
L 3 3 > + 7 . :
Sk o+ 2 2T apoa ] (423)
r jkrz r 17 r
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where the vector fields El and Hl are subscripted to denote that
they are contributed only by the electric and magnetic dipole
moment vectors Py and my -
6. FIELDS OF QUADRUPOLE MOMENTS

If only the quadrupole terms in the vector potential expan-
sion are substituted in equation (A20), the magnetic field due to

electric and magnetic quadrupoles is

ﬁ = __.kw e—jkr [(Jk + g - 3 > I P (g . I ) - (Jk + é + _12__
2 8nr jkrz r 2 r :;r jkr2
b <
T .m, -1 m
- %23>zx<r 2 r>+ (jk+-2£+ 2o+ 233)<—C%-I>] (A24)
kK°r jkI' kr T

The electric field due to quadrupole moments is

3
_ kw/i/e _-jkr . 3 3 M. ) 5 . 12
§2 = Tgmr ¢ [L'Gk trc jkr2)Irx( c Ir S G Jjkr

12 3 . 2 3 3 3
- k2r3>idzr " P 'Ir> * (Jk Tr T jkrz * k2r3>(p2° Ir)} (A25)

The above fields are valid at any field point but are appropriate

only when the source region is small, i.e., kr' << 1.
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APPENDIX B
DERIVATION OF MULTIPOLE COEFFICIENTS IN SPHERICAL HARMONICS

In a source-free region, an electromagnetic field can be
expanded as the superposition of multipole fields. The multipole

coefficients are to be derived in the following paragraphs.

Using the MKS system and assuming the time factor ejmt, the
Maxwell equations in frequency domain are given by
vsE = ~juuH (B1)
.
vl = J + jue E (B2)
. .
V*E = p/eo (B3)
-
V'H = 0 (B4)
Taking the curl of equation (B2), and using equations (Bl) and
(B4), yields
i >
w2+ xHE = - vxJ (B5)
. . e
Define a function E ,
O
E' = E + = (B6)
Jwe g
>, > .
Note that E' = E in source-free region.

Taking the curl of equation (B1) and using equations (B2)

and (B3), it follows that

(v2 + kHE = -7 x ¥V x (B7)

Il

sto
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Equations (B5) and (B7)are known as the vector Helmholtz

equation.

A complete set of vector solutions for the Helmholtz

equations can be formed by two sets of electromagnetic multipole

fields (ref.

and

3

where K

2.m

8). The first set is

%Z,m= g (kr) % (6,6) (B8)
_ 1

ﬁi,m-  Jung v X i;‘R,m
- 1 %
= - Tou, vV x gz’n_fkr) Xz,nge,cp) (B9)

are the vector spherical harmonics (ref. 8) and g9 m

are the radial functions to be determined. Another set is

and

where

'ﬁg o= %, (kr) iz (8,9) (B10)
N U

ﬁz,m" Jwe v ﬁrL,m
- 1 *
S Jue, vV x fg,ngkr) xz,nge,w (B11)

£ =0,1,2,3,...
m= -£,-2+1,...,0,1,...2

The vector spherical harmonics are defined (ref. 8) as

¥ = —d (¥ x vy, (6,6) (B12)
.?.,m m( R,Ug )
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where Y£ mare the spherical harmonics in terms of associated .
»

Legendre polynomials as

28 + 1(5 - m)!
4n(2 + m)!

Ylnnge,@)) = PrE(cose) eJImé (B13)

The orthonormality of both functions can be expressed as:

2m T, 1,2 =2" and m = m'
J J Y, (8,¢) Y, (0,¢) sing de d¢ ={
0 ‘0 1 : »1n 0, otherwise
(Bl14a)
and
2m N ' 1,2 =2" and m = m'
J J XJL' (8,4) X,Q (8,¢) sind d6 dé =
0 0 T , I 0, otherwise
(Bl4b)

The radial function:& min equation (B10) can be determined
as follows. Substituting egquation (B10) into equation (B5), taking .)
scalar product of both sides with ﬁslnand then integrating over

: H

all angles will lead to

27T, 2 2 o .
JO JO xg’m(e,q:) - (V7 + k7)) lem(kr) Xx,ée’d”) sin6 dé dé

= - J J §51§9,¢) -V x J sin® de d¢ (B15)

y

The left-hand side becomes

r

dr2

27
LHS = J

T L% =+ ] .
5 J Xﬁﬂ§9,¢) . Xﬁﬂée’¢) sinf d8 d¢ [

0

1 2
208 + 1)} . - 1.d 2 d 2 e+ 1
- ]fg,m(m [_“drz fEdr ]fz,rékﬂ




®

because of orthonormality. Hence, equation (B15) can be written as

; .
4 ,24d .2 _ 20 +1) = * . i
[dr2 frart k- ___;zr—_}fkﬂ5kr) - T jJ %,uf8:8) + 7 x J sinedods

(B17)

Note that the Green's function G(r,r') for the differential equation

2
d 2 d 2 2(2 + 1) = 1
[ZI—;Z_ + ; a? + k - __T___JG(r,r') _.._rz 6(1‘ - r') (B18)

with the boundary conditions of finiteness at the origin and out-
going waves at infinity is known to have two possible solution
forms:

oy (2) '
-jkji,(kr') h (kr) , r > r
G(r,r') = { TRty (B19)

-3ki,(kr) B{P (k) , o< x

where jz, héz) are spherical Bessel functions and Hankel functions

of the second kind.

Thus, the solution for equation (B1l7)for r > r! is

==}

r'?5, (kr) Jznjn % (8,6")

-jkhéz)(kr) J
o o

%ﬁngkr) X

« V' x J .+ sing' dr'de'de’

~sen{®ae) | ey £ v 0T aw (B20)

Using equation (B12) and appropriate vector identity it

follows that

£k2h£2)(kr)
!

§ufk) = —2 %, 008 {e ) g [r13,(ken)
» j + ’
# BOTE - JEND) Ik} av (B21)
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Define the electric multipole coefficients paxnby
’

- (28 + 1)1

* > d .
Y, (8',¢') {p(r') 5 {r'j,(kr')
kﬂ(z + 1) J z,é { dr { 2 ]

Py m

LY 3(;')]jz(kr')} dv (B22)

which approaches the electrostatic multipole coefficients or the
quasi-static definition in Appendix D.

The magnetic field in equation (B10)is then given by

Cex k2 3
2 2
B J(zz T ( 7 ) h{?) () Py %y 8.4 (B23)

where (22 + 1)!! = (22 + 1)(22 - 1)...5-3.1.
By similar procedure, gglékr) in equation (B8)can be shown

to be
© 2w o
g k) = -3xn§?) (kr) L} rt?5, (krt) L) L) S SNCERED

¥' x V' x J(r')

s sin@' dr' d8' d¢°
JOE,

o (2)
_ qkhg (kr) 2
T See T

Jp(kr") i;,ée',¢') 7' ox V' ox J(r') dv
(B24)

O

Using equatidn (B12) and appropriate vector identities, it follows

that

8 o5 -

1(2)
kh (kr) > -
- | Y, 01,00 Gyert) VI[F x FED] av

{(B25)

(2 + 1

Define the magnetic multipole coefficients as
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_ (22 + 1)

- * t 1 ] ' -bl j—*'
Tm ™ kz(z r 1) J Xk,ée 9') Jy(kr') ¥ C[F ox J(E)av

(B26)

By using the identity with j(;') = 0 on the integration surface

J £(r) v (Frox FGEN) av = - ij(?') c [Fox F(F )] av

+ f vioe [f(r) T ox J(F)] av

- Jv'f(F') - [Frox F(EN] av

+ J [f(r') ' x J(¥")] - da
A

- Jv'f(§') [T ox F(FY) av

(B27)

equation (B26) becomes

(22 + 1)!!J * . > >
m = s V'Y 8',6') j.(kr') + [r' x J(¥')] av (B28)
2,m k’Q(}Z, 1)y 9,,11-{ 3 [ ]
The electric field in equation (B8) can now be wfitten as

. 842

> K ey e+ 1yt (2 =

E, = 2 ( ) hi“/(kr) my, X, (8,6) (B29)

£,m (2% + 1)1 0 L 2,m 2,%
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APPENDIX C

EXPRESSION OF VECTOR SPHERICAL HARMONICS

(2)
iﬁ’mAND VXh§ ﬁz,m IN SPHERICAL COORDINATES

1. §i]nEXPANDED IN SPHERICAL COORDINATES

>
The vector spherical harmonics used in multipole fields are

defined (ref. 8) by

% nf0,0)

~—d (T x Uy, (6,0)
YT+ b,

i

—1 7y (0,9 (C1)
VI(TFLY 2, ob

where

f0.0) = [T sy o (e

After somewhat lengthy operations, equation (Cl) can be expanded

into only 6 and ¢ components:

A S b 5 o - B
g,m(e,qa) T li‘e[m csed Y ( ,¢>] +J'1‘¢[m cot® Y, (8,9)

+ T T L =~ mry e J¢ Yﬁ,m_l(s,qa)]f (C3)
Noting that
Yy p(8.8) = (-1 YT (5,4) (c4)
and .
X, _m(8.0) = - —;?;i:—;;~(? x V) Y, _(0,4) (C5)
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%2,—m can be related to fl’mby

j: m
g om = - =Ll (7 x v) Y;,§G,¢)
‘ /IR + 1) ’

(-™ R (C6)

For reference purposes, some lowest, orders of the YQ, m(e,cp) and
the spherical harmonic vectors are explicitly written in the

following functions of 6 and ¢

_ /3
Yl,o— Ecose,
Y 5= - |& sins &3,

_ (5 3 2 1
Yz’o = ZE (5 cos™ 8 -~ g) ,

Y - /1S sinf cos8 e‘w,

2,1 8w
and 1 [15 2. j2
Yo o = 3.3 sin’e e ¢ (C7)
X 0 =15 /3 sins
1’0( :¢) - ¢J 87 sSin ) ‘
% -1 /3 _j¢ .
Xl,l(e,é) = 3J7 ¢ (Te+3 cosei¢> ,
%y (8,4 = 1,3 %% sin® cos®
iz,l(e,qb) = %\/—ge‘w (coseie + j cos 26%) s
and \
Xy 500,0) = - 32 sino &% (T 4 cosol,) (Cc8)
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2. vxn2221§6,¢) IN SPHERICAL COORDINATES

By vector identity

vxh{?) (kr) iim(e,¢) = v0{?)(xr) x %, (8,0 + n{®) (kr)v x %, .(8,0)

: (C9)
By the recurrence formula,
| (2)
ah {kr)
thg)(kr)==ir ——23;————4=Trk[h§%z(kr) g h§2>(kri](C10)

Since i&m is: independent of r and has no r-component, as shown in

equation (C3), it can be written as TGX6-+T¢X¢ and its curl becomes:

i: d(rsinB X,) (3rX))
Vx% = r [ ¢ $]+lo<i - x. 1)
) 2ing 36 3% T %80 I
1r axX 8%, 1
=';T(7ﬁ$ + cot® X¢ - ¢sch EYY + = (—Xq)ffe + Xei¢) (C1L)

Combining equations (C8) to (Cl1l) results in the desired expansion:

) _ _b
35 + cotb X¢ csch 39

(2)
n¢$%J) (xr) [ox% 3%
Vthz)(kr) X (8,4) = = - ( 9) 1

(2) 2 .(2) _
+ [khz_l(kr) -1y (kr)]( X, 1g + %1,
(ci2)
For m < 0, equation (C6) can be used to show that

(2) _ m+1 (2) 3*
VXh 22,_ = (-1) VXh %2’ (C13)

m m

With the aid of equation (C8), the results of the operations in

equation (C12) are tabulated below for reference purposes.
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vX h(z)(kr) Xy 8,6)

h<2)

f, - anokn?) - L h§2>)ieJ

J / 3 [2 cosf

(2)
:l _13? J¢ [ - csce(COS 28"1)11. + (kh(2) - % h 2))

(coseie-+jf¢)]

7 n{2)
. 5 2
IJer | — 75 (cos 28 + cos 8) I

—(khiz) - % h$? ) sins coseie]

+ (kh(2) - % h(z))(—j cos 2616 + coseI¢)}

. o [n$2)
%«/§-9J2¢ —%;— 3 sinze Ir

+ (khcz) - % éz))(81n8 cosei + 3 s1n63 ]
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ASYMPTOTIC RELATIONSHIP BETWEEN
MULTIPOLE MOMENTS AND MULTIPOLE COEFFICIENTS

1. ASYMPTOTIC MULTIPOLE COEFFICIENTS
The electric and magnetic multipole coefficients are derived

in Appendix B as

_@RN [ R s '
- Rjz(kr')] p + %? (;' . j) jz(kr'); dv (D1)

and
Te,m f{%ﬁi—} J V'[Y:,m(e"‘b') J’z“‘“"ﬂ‘ (7' x ) av (D2)

where integrations are over the source region designated by the

primed spherical coordinates, and

(22+1)!! = (22+1)(22~-1)...5-3-1 (D3)
The Y, m(ef,¢') are spherical harmonics and the j,(kr') are
spherical Bessel functions with & = 1,2,3,..., and m = ~-%,-2+1,...%2.
When the frequency approaches zero, or kr‘max << 1, the
spherical Bessel function can be approximated by

2
1 122 1 12
k! 2 E(kr ) [ﬁ(kr ) ]

Jolkr') = T )Y~ Ty T sreEnyamsy (PP

Retaining only the first term of jg(kr') the electric and magnetic

coefficients in their asymptotic form can be reduced to
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2 x
J (r')" ¥, o pdv, (D5)

o
o
1

and

3
i

bom ® T J V'[YZ,mh')ﬂJ' (Fr = &) av (DG)

By expressing the integrand in terms of rectangular coordin-
ates, the pﬂ,m and mz’m in equations (D5) and (D6) can be written
as linear combinations of multipole moments. Examples for electric
dipole, magnetic dipole, electric quadrupole, and magnetic quadru-
pole coefficients are shown below. Since dipoles are of main
concern, more extensive derivations are given.
2. ELECTRIC DIPOLE |

The electric dipole coefficient in spherical harmonics is

given by
— _§_ * . . . j_k - ' . .
Pim*© 2k,j‘Yl,m[b(kr'Jo - J) F S (r j) Jl] dv (D7)
where m = -1,0,1. Expanding as equation (D4) and retaining only

the kr terms for the spherical Bessel functions, the asymptotic

form of equation (D7) becomes

*
P1,m * j Yl,m(e':¢') r' p(r',8',9¢') dv (D8)

K
Use of the expression Y2 m in Appendix B gives
)

. . . ; . St
Y;,l(e‘,¢') = -/’é% sing' e7I¢" |

Y, (8',6")
1,0 '

/§§ cosf!,
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and
*
Y3 308%,00) = - ¥y 1(80,4") (D9)

Meanwhile, the following relationships

x' = r' sinB' cos¢p' ,
y' = r' cosb' sing' ,
and
z' = r' cosh! (D10)

are applied to the definition of the electric dipole moments,

P, = ] x'p dv ,
= t d
Py f yip dv |
and
p, = [ z'p av (D11)

A straightforward rearrangement shows that the asymptotic coeffi-

~clents arefrelated to the moments as

3 .
- /& (o, - 3p)

Pi1 ~
- /3
P1,0 a7 Pz o
and
= .._3_ i
Py 1 gr (Px * JPy) (D12)
3. MAGNETIC DIPOLE

The magnetic dipole moment and coefficient have similar
relationship as the electric dipole. The magnetic dipole coeflfi-

cient in spherical harmonics definition is given by
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1,m

3

2k

where m = -1,0,1,.

] v'[YI,m(e',¢') jl(kr')] C(E % 3 dv (D13)

Note that
L pry o kI [3 g =30
Yl,l Jl(kr ) = 3 (- T sinf e )
3
= -z 5 ' -3y (D14)
when only the first term is retained. The gradient becomes
vy * : 1 ~ /ji k . '
v [Yl,l Jl(kr )] - - ST 3 (Txy - J-Iy) (D15)
Similarly,
* . .k /3 -
7 [Yl,o Jl(kr')] =3 iz Iz, (D16)

Thus the magnetic dipole coefficients are in their asymptotic

forms:
S N 1 N TS S YR TN SN (D17)
1,1 2 N 81 x! y' !
and A
1 /3 >
M0 % 2437 j 1, G'xd)av (P18)
Noting that the multipole moments are defined as
mo=x2 1 .3 x¥H av (D19)
X 2J X
1 ( >
m == (' x J) av D20
1 [ . >
m =& T (F' x J) dv (D21)
Z 2‘ 2z,
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it becomes straightforward to show that the magnetic dipole

coefficients are related to magnetic dipole moments as

- /3. o
1,17 ~ /8 (my me) ! (D22)
m, .=/>m_, (D23)

1,0 471 =z
and

ml’__1 ='/§§ (mx + jmy) (D24)
The above series expansions show that the dipole coefficients
in general contain dipole moments and higher-order moments. How-
ever, the dipole moments become the dominant terms for small
sources or low frequencies.
4. ELECTﬁIC QUADRUPOLE

The electric quadrupole coefficient is given by

|
5 * , _
+ %§ (r* - ¥) jz(kr')] dv for m = #2,:1, 0 (D25)

Using equation (D4) and retaining the (kr')2 term in the integrand,

2 X
p2,m = J {(r") Yz,n!pdv (D28)

*
Using the expression of Y2 m in Appendix B and transforming

spherical coordinates into the rectangular coordinates, the
asymptotic quadrupole coefficients become related to the rectangu-

lar moments as
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1 /I5 .
Py o = 3\/5— (Pyy = Pyy = 32P,0) (D27)

i XX vy Xy
Py 1 = - J5 (Pyy - 3Pyy) | (D28)
p2,0 = % é% <2pzz T Pyx T pyy) (D29)
Py 1 = [E2 (b, 3py,) (D30)
Py _g = % %ﬁ (Pyy = Pyy * J2pyy) (D31)
5. MAGNETIC QUADRUPOLE

The magnetic quadrupole coefficients are defined as

My o = i% [ velvy 87,60 Gpkr)] ¢ G x Ty av (D32)

Keeping only the first term of jz(kr') expansion

J VYD Oy - (3Fox Fy av (D33)

,

3

n
|
[\ 3

2,m

Following the same steps performed earlier, and using the defini-

tions for magnetic guadrupole moments,

3
"
N[

+lx . - -*'x .
J [xi(r 3 IJ + oy (r 3 11} dv (D34)

the desired relationships are obtained as follows:

My o = é %é (m -m - J2m
2 T XX vy Xy

»

) (D35)
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2 /15

My,1 - ~ 3N8T (M -~ jmyz)
=1 /3 - -

Ma,0 ~ 3 4w (2m, o~ Mxx myy)
- 2 /15 :

Mo,-1 ~ 387 (M * mez)

_1 [i5 _ :
m2,72 T B 42m (Myx ~ Myy * szxy)
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APPENDIX I

TOTAL RADIATED POWER OF MULTIPOLES

The total radiated power is defined as the integration of
Poynting vector in radial direction over a spherical surface of

radius r:

1 21 7 Sk 9 _
P=x ExH + 1 rsin6 dé dé (E1)
2Jo b r

where the ficlds expressed in multipole coefficients are:

i, 2+2
T Jk e 3 %
= o 2 + 1 (2) 2
: Rzl [(22 + ( % ) hy Tk mgLQ ml{m *e,m
2+2 3 [
1 k™ “¢ 2+ 1 (2)
+ jweo j(2z + 1)!!( 2 ) mgll pl,mv x hy (kr)ig,m] (E2)

© 242 3 L
* k C L+ 11° . (2)
H = 221 [j(zz T 1)!1( 3 ) hg™ 7 (kr) mglz P .m X m
o RF2
. jk cu 3 2
j o [2 + 1) (2)
+ G, (2T 7 1)!!( z glg mlimv x hy il,m (E3)

and, h£2), My m» Py m and iz,m are defined in Appendix B.

Define coefficients a2 and b2 as

2, s
a, = 0 (R s 1) (£4)
L ST F DT 3
2+2 3
_ k c L + 1
by = 338 + 1)!!( Z ) (ES)

and the fields as
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= (2) 3
Ep = I agh™r) My, m X2,m (E8)
E, = 7 i) v« n(2) % 27
2 2“m Jwe pz,m 2 L,m (E7)
o= § d-a m vxnl®3 (E8
1 2'm wpg & L,m L £,m )

- (2) %
Hy = zz Dehy™” Py m %g.m (£9)
,n
so that the fields can be represented as
s

E=FE +E (E10)
=0 o+, (E11)

Substitute equations (E10) and {E11) into equation (E1l) and

decompose P into four parts

P=P, +P,+Py+ P, (E12)
where

1 * 2 .

P1 =5 JI ﬁl x ﬁl . Trr sin® d8 d¢ (E13)
1 * 2 .

P, = 5 JJ B, x B, + 1.r° sine do a¢ (E14)
1 * 2 .

Py =3 JJ E, x - 1 r sine deo d¢ (E15)
1 x 3> 2

P, =3 JJ E, x H, - Irr sing d8 d¢ (E16)
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Note that the vector identity

AxB) - =% . B«
B. (Cx1 (E17)

I

can be used in the integrand of Pl’ after equations (E6) and (E8)

are used. First,

£,m r

X x (V x hEZ) %z,m)* -1 = iz,m . [(V x h, iz,m)*><1r] (E18)

then from Appendix C

2 e 3
GRS RS SR IS A (E19)
where
ey = en(2) 2 (2
hy(r) = kn{?) - £ p(2) (E20)

Hence the vector operations in the integrand of Pl'become

(2) * . _ . %
%z,m x (v x hy iz,m) 1. = ii’m hi(r) X m (E21)
By orthonormality of % , the integrated result is
£,m
i 2 21 (¢ * .2
Py = - gl Lt Fmy ol [n,§2)]<hp r (E22)
o £,m ?

The quantities P2 and P3 involve crosé products of fields
that are produced by two iﬁdependent set; of elecfric and magnetic
densities. Their net outflow of powers hés beeﬁ demonstrated to
be zero for the dipoles and quadrupoles. For the present purpose,
Py and P3 are identically Zero foz the first two lowest-order poles.

The evaluation of P4 is similar tQ‘Pl. ift is obtained as




= __J_ 2, 2 (2)* ' 2
Pa = Zue, zzmlbz‘ Py l” hg™ Mg (£23)

£,m

For the purpose of providing some examples, the dipole and quadru-

pole terms aré combined from equations (E22) and (E23) as

2 2 2 u
N b i 2 2,(2), ,* "o 2 2, (2)*
p e T T (100l n§® g5 205,17, )% 0]

(E24)

Examples are given below for electric dipole, magnetic dipole,
and a combined Exﬁ dipole.

Example 1. Radiated Power of an Electric Dipole Centered
Along x-Axis

The elegtric dipole coefficients in Appendix D can be used

in equation (E24) to give

2 ;.3 2
_ Jr® [k c/ﬁ) ( 2 2\ . L (2)*
P Bwe, ( 3 Ipy 117+ 1pg 4l hy”™" By
Note that
(2) _ i ,-Jkr
po kr €
and

(2) _ 1 J ~jkr
i = - A~ x3) e

The use of equation (E20) gives

(2) h§2) j 1 j ik
= S I S S —~JLTr
hi kho T [r + 2 23 ] e

: kr Kr

Simple substitutions give rise to

4
= _ i2k ¢ 2 . 1
P 5e— 1Py 117 |3t 53
o) k'r
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For an electrically small dipole with py = 0

~

Ip, J1% = E
P11

o |
81 Py

.. 4
k'c 2 1. 1
Pﬁ—‘l——lpl[JJr——]

12nso X k3r3

Example 2. Radiated Power of a Magnetic Dipole Centered
Along y-Axis

The magnetic dipole coefficients in Appendix D give

3 2
.2 [kTp c¢2>
jr o 2 2) L(2) . 1y ¥
- 2wu0< 3 <lml,ll +dmy gl ) By (hy)

]

a4
J2kgcuo [ml 1l2 [_J. . 313]
¢ k'r

For a small magnetic dipole with m, = 0

2 N
| |

n

2 3
lml,ll 8w lmy
.. 4
Jkcu
p 2 o,

l2 .1
= Tiom y J 1 3.3

> o '
Example 3. Radiated Power of a pxm Combination
By imposing the p cross m condition, Cpy 1 = -My 4, the

results of last two examples can be combined to give

2 2
p 4k Clpl.,ll ke ' I:z
= &~ p
pxm QEQ ' 6ﬁeo X

which is purely real and independent of the distance r.
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APPENDIX F
MULTIPOLE MOMENTS OF THE TRANSMISSION-LINE MEDIUS

1. TRANSMISSION-LINE MEDIUS

The traésmission-line MEDIUS has a flat section of length
2L (region II), a slant section at the source end with angle 2a
(region I), and a slant section at the load end with angle 2a2

(region III). The transmission line is sketched as follows:

27
! 1
IlII IIIIII
{ |
| |
~_~~~ 1 ’2"" '8‘
204 2h "'(\'X’\’ 13 2a,, —_—
| )
- 2L -

It is assumed that there is no mismatch along the entire line.
Under this assumption, the current and charge distribution will be
given first in this appendix. The definitions of multipole coeffi-
cients will then be defined for the purpose of applying to the
transmission line. Finally, the dipole and quadrupole moments of
both electriciand magnetic types will be formulated.
2. CURRENT AND CHARGE DISTRIBUTIONS

The current distribution on the structure is assumed to take
the forms (all variables are unprimed in the following equations

without risk of confusion):
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-jk(z+L)sec(alﬁjkL

Io[sin(al)igi.cos(al)ié]e in I
fi = tIOTZ in II
I, [-sin(ay)T, * cos(ayl, ) o Jk(z-L)seclay)-JkL ;" 1yg
for x 2 0O (F1)

The charge distribution can be obtained by the'continuity

equation as:

I -jk(z+L)sec (g J+IKL © in I
+2 o
c
_ I . .
q, = +. O e—gkz in II
* = 7
I -jk(z-L)sec (a,)-jkL
=2 e "2 in III
c :
for x 2 0 | (F2)
3. MULTIPOLLE MOMENTS

The multipole moments in quasi-static approximation are

defined as

5 = J r pdv (F3)
m = % J T x J dv (¥r4)
(p)xixj = J Xixj p dv (¥F5)
=< -+ >
m, , == j [xi(r x Iy Ry x 3&.] dv (F6)
i73 J i

for electric dipole moment E, magnetic dipole moment E, electric
3 . +
quadrupocle moment (p)xixj, and magnetic quadrupole moment (m)Xin’

respectively.
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The multipole coefficients in spherical harmonics are given .

by

' _ (28 + 1)1 * X .
Pem =0, 1y I‘%g%p@u-az_l-zag]

+ 48 (3 0h jz}dv (F7)

_(22 + 1t

2 I V(Y, o) ¢ (Fx ) av (F8)
k(e + 1) P

m
2,m

where pzlnis the electric multipole coefficient, m is the mag-

£,m
netic multipole coefficient. The dipole coefficient consists of

three components with index 2 = 1 and m = -1,0,1. The guadrupole

coefficient has five components with index £ = 2 and m = -2,-1,0,1,2.

The formulation of multipole moments and coefficients for the

transmission line are given below. .)
4. ELECTRIC DIPOLE MOMENT

The efectrio dipole moment for the MEDIUS can be expressed

according to equation (F3) as

2
p) = f I+ 21 qz) J1+ (%ﬁ) dz (¥9)

where
z tan(al) +1L tan(al) +h , in I
X = h , in 11 (F10)
-z tan(a2)+1,tan(a2)+h , in III
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tan (czl) in I
dx _ ‘ o 2
iz = 0] in 11 (Tr1i1)
-tan(az) , Sin III

Let the dipole moment E in equation (F9) be treated in three

distinct regions I, II, and III as

R e S (F12)

Their x-components may be integrated oniy along the upper part of

the transmission line as

5D - 1 (2 J-L {[z tan(a))+L tan(e;)+h] q,(2) sec(o)ldz
X ~L-hcot(a,) 1 : ' .
(F13)
S(1) _ g gy (T d - (F14)
Py = 1,(2) N hq,(2) dz
N L+hcot(a.)
pél) _ TX(Z) JL i g[_z tan(o,)+L tan(a,) +h]q,(z) sec(az)fdz

(F15)
Af . . (1) >(1) . .
ter making use of equation (F2), the Py and P3 can be simpli-

fied by the function

-L

fy(k,a) = j {[z tan(a) +L tan(a)+h] sec(a)}‘e‘j[k(z+L)sec(cx)+kL]dz
-L-hcot(xa)
(F186)
After integration, it b'ec'omes '
. jkhesc(a) . JkL

£ (k,q) = sin(a)[1 = e + jkh csc(a)]e (F17)

1 k2
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Thus 21

B = -2 fy(k,ay) T, (F18)

* !
Noting that fl(-k,u) = fl(k,a), equation (F15) can be written as

| Bgl) - —° f;(k,uz)Ix (F19)

!

The Eél) in eduation (F14) is readily obtained as

(1) _ 41 h
Py ek

sin(kL) IX (F20)

For the case ay T 0y = a,

a1
> Re(fy (ko)) T,

a1 n{[2 sin(MRES@) &3y, (kL + kh esc(a))
0 2 2 sin(a)

]

5§1) N 3§1)

=1

X ¢k kh
~ sin (kL) (F21)

The total dipole moment becomes

g(l) = Eil) + 5;1) + Eél)
81
=1 2 sin(a) sin[l‘l‘.&i“»(_a)] sin [kL + gh_c_sggg_)] (F22)
xckz 2 2

Before the magnetic dipole moment is formulated, it is worth noting
that the z-component in equation (F9) is identically zero due to the
fact that the charge distribution is antisymmetric with respect to

the z axis.
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5. MAGNETIC DIPOLE MOMENT

The magnetic dipole moment for the transmission line is,

according to equation (F4),
dx 2
J (xIZ - ZIx) 1+ <_dZ> dz (F23)

where the currents Ix’Iz are defined in equation (Fl). The inte-

CONNE
y

o=

grand can be decomposed making use of cquations (F10) and (F11) as

—jk(z+L)sec(alyjkL
I [L tan(e)+h] e , in
2 .
(xI, - zIx)N/i + (gg) ={ I h e~dkz in II
—jk(z—L)sec@?)—jkL
I [L tan(ey)+h] e , in III

(F24)
Again, let equation (F23)be written in regions I, II, and III as

m(1) = R g1 4 3 (D) ~ (F25)
-L , -jk(z+L)sec(ty)+IKL
m§1> = -ij I [L tan(e;)+h] e . dz
-L-hcot(a,)
| , (F26)
>(1) - _1 IL I h e J9KZ dz . (F27)
2 y L © ©
N » (L*hcot(ay) | -3k (z-L)sec(ay)-jkL
0 - 3D anc ) R
(F28)

Define a function as was done in equation (F16),

-

;Lv | o —3kkz+L)sec(aﬁjkL
fz(k,a) = j (L tan(a)+h] e . b -dz
-L-hcot(a)
_ iln COS(i)+L sin(a)] KL [1 - eJkhese(a)] (F29)
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*
Noting that fz(-k,a) = fz(k,a), equation (F25) can be written as

’*(1)=_i 1 fz(k'al) (F30)
2I h
i) = 1, 2 sin(xL) (F31)
F(1) o *
my 1y10f2(k,a2) (F32)
For the case al = az = qQ

Egl) + 51(31)-4 _QIOIyRe[fZ(k,a)]

]

-1 vt [L + hcot(a)] §_1n_(a_) sin[khcgc(a)] cos[kL + khc;c a]

(F33)
Thus the total magnetic dipole moment in equation (F25) becomes

2I
.n’;(l) = {h sin(kL) + 2[L sin(a) + hcos(a)]- 51n[khc’§c o ]
‘ bos[kL + 5953999]1 (F34)
5. ELECTRICIQUADRUPOLE MOMENT

The electric quadrupole moment is defined in dyadic form as

>
5(2) o J ¥ % odv (F35)

+ + L . .
where r = Xix + zly for the transmission line. Assuming 0y = 0y = @

the antisvmmefry of the charge distribution requires that the com-

(2) (2) (2)

ponents Py X and p) v vanish. The nonzero components are p <.z
H

and p( i. By the definition,
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2
pf{zy), = j xzq(z) [1 + (-S-?Zi) dz = pt2) (F36)

it can be shown that contribution from the lower part is equal to
that of the upper part of the structure.
Let

SR R R

and integrate only along the upper part of the transmission line,

2y _ 2I, (L ~Jk(z+L)sec(o)+IKL
p;" = — J z [z tan(a;)+L tan(ey)+h] e
—L—hcot(al)
» sec(a;) dz ' (F38)
21 L X .
ps?) —EQJ hz e 952 4z | (F39)
-L

2I_ (L+hcot(a,) ’ =3k (z-L)sec(a,)-ikL

péz) = _CE jL 2 z[-z tan(o,)+ L tan(az)-f-h:l e 2

~'s‘eAc(a2) dz . .(F40)

where p§2> and péz - can be expressed with & common function:

~-L

f3(k,a,‘) = j z[z tan(a)+L tan(a)+h] sec(a)

~L-hcot(a)

| . e-Jk(z+L)sec(a)tikL
- ejkLtanga) [—'Lh éot(c:) N heot(a)-L _ 2j o

k J k sec(a) k2 seéz(a)
+ejkhcsc(u)tan(cr) L + heot(a) , __ 2j | JJEL (541)

: k o k sec(a) kzsec (@) . . :
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Note that

50k - £ (Fa2)
Hence ,
I
p{? = 2 £5(k,0) (F43)
j4nI_L .
pgz) = cko {?os(kL) - §3%é?£l] (F44)
21 -
p{?) = - 52 £50x,0p) (F45)

For oy = g = q,

I

j4ar
p:(LZ) + pgz) . co Im[fs(k,a)]

j4al
= - co taﬂfa)g—hh cot(a) cos(kL) + %? cot(a) cos(a)

. cos[kh c;c(a)] sin[kh c;c(a) N kLJ

+ 2L cos(a) Sin[EE_E%ELEl} COS[EE_EEELEL + kL]

g cosz(a) Sin[Eﬁ_g%ngl] sin[}—{p——g%c-—(-El + k%”

i , (F46)
7. MAGNETIC QUADRUPOLE MOMENT

The magnetic quadrupole moment of the transmission line is

defined in dyadic form as

1(2) 1 > > - -+ - -+
m =3 r(r x 1) + (r X% 1) r dy (F47)
->
- > - - > - +(2) )
where r = x1_ + zl1_ and 1 =11_+I1 . DNote that m is a
x z XX A
symmetric dyad, and only my . and m, y are nonzero. For example:
? 2
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Id

-~

_ _ 11 2
m =m -§J (xz Ix—x IZ) dz (F48)

where the contributions from the lower and upper parts of the

structure ca 1l each other. Thus, m = m = 0.
e ncel e X,y v, X

The two nonzero components are

H(2) _ (2) _

o, |
v,z 2,y J (z Ix - XZ Iz) dz (F49)

DOf =

Let m}(IZ; = m§2) + m%z) + mé‘?‘) and integrate only along the upper

b

part of the structure,

(2) -L —jk(z+L)sec(al)
L j z[L sin(a;) + h cos(al)] sec(a;) e
—L-hcot(al)
. oJEL 45 (F50)(
(2) L —jkz
mg“’ = -1 J (h)(z) e %% dz (F51)
o —
L+hcot(a, ) : -jk(z-L)sec(a,)
méz) = -1 J 1 z[L sin(e,) +h cos(az)] sec(ag) e 2

L
. o~JkL 45 . (F52)

To simplify these expressions, a function is defined as

-L ~Jjk(z+L)sec(a)+jKL
fik,a) = J z[L sin(a) + h cos(a)] sec(a) + e .
-L-hcot(a)

dz

(F53)
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[L sin(a) + h cos(m)]e‘jk

L
il - JkL sec(a)

T,(k,a) =
4 k2 sec(a)
: !
+[JKL sec(a) + 3kh csc(a) - 1] elkbesela) (F54)
Note that
*
f4(-k,a) = f4(k,a) (¥55)
Thus the integrated results are
(2) _
my %’ = -I f,(k,ay) (F56)
(2) j2hIO _
my“7 = T2 [sin(kL) - kL cos(kL)] (F57)
(2) _ *
M I, f,(k,a5) (F58)
For the case 0y T ooy, = oa,
2 2 . '
mi ) 4 mg ) = —32?0 Im[f4(k,aﬂ
- -jZIO L sin(g) + h ecsce(a) | _ 2 sin kh c;c(a)

k® sec{a)

kh csc(a)

cos[EE_ESEiEl + kL] - 2 kL sec(a) sin 2

sin[EE—E%9191-+ kL] + kh csc(a) cos[kL + kh csc(aﬂ{
(F59)
The dipole and quadrupole moments of the transmission 1ine
ave been formulated in this Appendix. Their corresponding

sefficients associated with spherical harmonics are given in the

tin text.
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APPENDIX G R
MULTIPOLE COETFFICIENTS OF THE COMBINED
LINEAR AND CIRCULAR CURRENT ELEMENTS
1. THE COMBINED CURRENT ELEMENTS
A linear current element of length 2h and a circular current
element of diameter 2b are arranged to have the coincident center

at the coordinate origin as shown in the figure:
A x

2. MULTIPOLE COEFFICIENTS OF THE LINEAR ELEMENT
The current and charge distribution of a linear current ele-

ment can be wriften'(ref. 9) das

I(x') = IXIO{sin k(h - |x']) + A[cos(kx') - cos(kh)]
+ B[Eos(kgl) - cos(%%)];’ (G1)
R ' . B
a(x') = Pcos k(h - |x']) + A sin(kx') + 5 s1n(7?J]
for x' 20 | ' (G2)
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where the coefficients A and B are .functions of wire diameter and

[
I

length.
To obtain multipole coefficients referenceshouldhe made to
the definitions in Appendix B. TFor the linear element, all the

magnetic multipole coefficients are identically zero because
x' x T(x') =0

where the coofdinate ¥ 1s primed to denote the source region.

As for electric multipoles, all the coefficients of orders
higher than oétupbles are assumed negligibly small for the time
being. The electric gquadrupole coeffigients are defined as
J Y, (87,4') a(x')[kr' jll(kr') - 2j,(kr")] dx'

(G3)

_ S
pz,m = ;{—'

Ij
where the primed r, 6, and ¢ denote the source region using the

' . * *
conventional spherical coordirnate system. Since Y20 and Y22 are
even while gq(x') is odd along the x' axis, it is readily shown

that
= 0

Po o= Pg 2= Py g
%
Also, Y21 =0 at 8' = /2. As a result,
|
Pg 1 =Py 1 =0
These results confirm the well-known fact that a center-fed linear
element has zero quadrupole field.

The electric dipole coefficient P1 o is equal to zero,

x| .
because Yig=0at ' = w/2. Therefore, the only nonzero coeffi-
cients are
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h
Pi,17 P11 " R 4B L) alx[kx" 3 Gext) = 3y Gext)] dx!

(G4)
3. MULTIPOLE COEFFICIENTS OF CIRCULAR LOOP

The current and charge distribution for the loop is given

(ref. 9) by
- v -jna _ 1 T cos(na)
T—IG -Zm In e = Ialo['a—o' + 2 § T] (GS)
1 a(T - Ia)
= Jwb da

wb ¢
21o e n sinna
= Job § a (G6)
3!

where the coefficients a  are dependent on the wire diameter and
the loop radius.

The electric multipole coefficients are defined as

RNCITe D T N B Y
Pom T ) f Yo,m lq[§b Jp_p(kb) = 23, (kb)]
+ %§ G- jz(kb)} bda (G7)

The second term of the integrand is zero, because r' + 1T =0 for
the loop. Also, the integfation around the complete loop can be

shown to give




P10 =Py g =Py g=Py o5=0. ' | ()

The other nonzero coefficients are

o ' 121 © . . :
3b . . T 3 . o n sin{ng)
by 4 = 3 kbl - 3y) | (— 2 )sin(o)] - ag
1:1 k o 1 o 8w Jwb § ar} .
; RN Iy S
= :_3_9 3 — 3, - i) [o] ' N
k (kao Jl)( N 87 (jmbal) -
= T P11 ' (G8)
and
5(kbj; - 2J5) (27 [i5 - 21 ) o .
= - A2 s "o} . y n_sin(na)
Po o1 2 JO g Sina) cos(a)\ 35 § a_ bda
_ S(kbj1 - 2j2) (_ 25{) 2IOﬁ
kz' 83 Jgaz
= Py 1 " (69)
The magnetic dipole coefficients are given in %ppendix B as
- 3 iy . (T SR
m 2K J (V¥ pdg) - (% x 3y dv (G10)
Note that é ~ o -
1 $ =0
- *x J =0l { 2 . (G11)
-1, $ = 180

The coefficient my g = 0, because

b

* .
(VY1,0J1)¢ = 0
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—~—
-

For m1 1

’

-
]
(@]

. J ) (1,
(VYy 439) =d.Jg7 —¢%—°
1,141 s 8w b l—I¢,~¢ = 180

A substitution and carrying out the integration give rise to

. ) I w
my g = gy 31 (kb)Y 5 my o1

o

because

(vy;

1,_13'1) = (VY

* 3
1,191)

¢ ¢

The magnetic quadrupole coefficients are defined as

* . - ->
m = = (VYz,sz) s (r x J) dv

The coefficients My o and m are zero because

) 2,2

* »
(V¥y odg) =0
o)
and
(VYh 030) = (VYh o3.)
2,2v2 =0 2,2Y2 b=
For mz’1
. 1
* jcos(8) /15 . . ¢’
(VYZ,IJZ) b §'.E J2(kb) ; i
. d) - )
)
Hence,
. I br
- Jio . 15 "o =
my 1 5 Jo(kb) J&7 2 My -2
k i
because

(VY;,_1J2)¢ = (VY§,132)¢
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(G16)

(G17)

(G18)

(G19)
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4. P CROSS M CONDITION FOR A LOOP AND LINEAR DIPOLE COMBINATION
A loop and a linear dipolé combination can generate an elec-
tric dipole moment and a magnetic dipole moment to satisfy the
p cross m condition. The relationship of the currents on bpth
structures ié derived here for an electrically small fadiation
structure.
Considér the loop and linear dipole combination lying in
X-z plane asishown in section 1. The linear dipole is centrally
fed. The loop is driven at ¢ = 0. The diameter of loop is 2b;
the length of linear dlpole is 2h.
The current on the loop can be rewrltten from equation (G5)

as

where I are functions of driving voltage, the radius of the wire
and the dlameter of the loop.
The electric dipole moment and magnetlc dlpole moment of the

loop, in quasi-static definition, can be shown to be

. o s z'ﬁ'bIl I
p2 J w X
and
S 2 : o G21
m, I b Iy ( )

The current on the small linear dipole is given by €q. (G2)

i

= 1.1, sin k(h-]x|) " (G22)

Td xd

The dipole moments of the linear dipole are
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> i . 2Id .
pg = LJd 5 (1 - cos()]
and

-
In

1
o

To have a p cross m condition for the combination, the

magnitudes of dipole momenis must satisfy

m,| = c|B, + Byl
'3 £ d
or
21 21bI
2 . d 1
Io’n'b = c J ;{E: [l - COS(}:h)] - "

For the low frequency, kb << 1, I1 can be approximated as

Hence,

I 2
9 . <_jﬂ_ - 27D kzbz) {(22_) [1 - cos(kn)]
c

2
|
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