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ABSTRACT

A theory is developed which defines the technical objec-
tives for portable EMP simulator experiments and calculations.
"It is shown that under certain conditions, a configuration of
portable sources need only excite a prescribed external inter-
action response on a class of systems. Under these conditions
the source configuration will excite the same electrical quan-
tities within the system as would an EMP. Considerable atten-
tion is devoted to the demonstration that these conditions
must include an accounting for the external environment to the
system under test as well as the degree of electromagnetic
rigidity of the portable sources. Finally, calculations that
were chosen to address the plausibility of achieving the des-
cribed external interaction objectives are presented and

interpreted according to the required conditions. b
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AN INVESTIGATION OF PORTABLE
EMP SIMULATORS/ALTERNATE SIMULATORS

ABSTRACT -

A theory is developed which defines the technical objectives for portable -
EMP simulator experiments and calculations. It is shown that under certain
conditions, a configuration of portable sources need only excite a prescribed
external interaction response on a class of systems. Under these conditioms,
the source configuration will excite the same electrical quantities within the
system as would an EMP. Considerable attention is devoted to the demonstration
that these conditions must include an accounting for the external environment to
the system under test as well as the degree of electromagnetic rigidity of the
portable sources. Finally, calculations that were chesen to address the plaus~
ibility of achieving the described external interaction objectives are presented
and interpreted according to the required conditioms.

Acknowledgement

This work was sponsored by the Defense Nuclear Agency under Subtask Code .
EB200, Work Unit 71.

121



248-2 EMP 1-27
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SECTION I

INTRODUCTION

The broad objective of this effort is to guide the experi-
mental invesitgation of electromagnetic pulse (EMP) simulation
by portable simulators. We perform two distinctly different
types of analysis directed toward this objective. First, we
develop a theory that results in the definition of technical
objectives for both experiments and calculations. Finally,
we perform calculations to determine whether a very idealized
experiment could possibly achieve the required chjectives.

The analysis resulting in the technical objectives consists
of developing the form of a transfer operator equation in
sufficient detail to identify the significance of all terms.
Specifically, attention is directed toward clearly identifying
the physical quantities related by the transfer operator as
well as the physical quantities on which the transfer operator
depends. To facilitate the discussicn of the physical gquan-
tities it is necessary'to discuss the type of system we wish
to excite with the portable simulators. The class of systems
for which this study is applicable are those systems that are,
in effect, imperfectly sealed metallic enclosures. Important
svstems that belong to this class are aircraft, missiles, ships,
and tanks. The breaks in these enclosures are referred to as
apertures and they might correspond to windows, hatches, or
portions of deliberate antennas that are intended to allow
energy to flow into the system. -

The operaﬁor equation relates electrical guantities
excited within the actual enclosure (system) to the current
density induced on metallic seals placed over all of the
apertures of the imperfectly sealed enclosure. The existence
of this equation would seem to imply that if a configuration
of portable sources excited the same current density on the
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seals as did an EMP, then internal electrical guantities with-
in the enclosure of the unsealed system would be identically .
excited by either the EMP or the portable source configuration.
This would be the case under the following conditions; the
portable scurces must be electromagnetically rigid, i.e.,
unaffected by the presence of any scatterer, and the external
environment of the system must be the same for the portable
source configuration as for the EMP. For example, an ailrcraft
having the appropriate seals correctly excited by rigid port-
aple sources when parked on the ground, can only be viewed

as having been excited by the corresponding EMP when it is
still resting on the ground and in particular is not in free
£light.

Even with these limitations, we see that it is possible
to assist the alternate simulation program by performing only
external interaction measurements or calculaticns. The
initial source configuratiocn can be determined by employing
only external interaction considerations. We emphasize that
we expect the focus to be on external interaction only in the .
initial program stages because we anticipate that the local
sources will not be capable of exciting exactly the same
external interaction guantities on the metallic seals as
would an EMP. In order to assess these effects as well as
non-rigidity degradation, we expect that internal electrical
gquantities will have to be measured for excitaticn by the
portable source configuration as well as for excitation by
a more orthodox simulator which represents the EMP excitation.

The environment and source rigidity conditions previously
discussed result from the dependence of the transfer operator
on these factors and not the quantities this operator relates.
This source rigidity requirement causes special concern in
that any physically realizable portable source is going to
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have structure that can interact with the fields reflected
from the system under test. This is of particular concern
because it is presently anticipated that the configuration
of portable sources will be in close proximity to the system
under test. The choice of calculations to perform, which
represéﬁted aﬁ idealized experiment, was made with the issue
of source rigidity being a distinct factor.

The problem for which we made our calculations was the
excitation of a sphere in free space by a plane wave and by
various configurations of idealized local sources. These
calculations were performed in the frequency domain for a
range of frequencies starting at zero and extending to approx-
imately three times the first resonant frequency of the sphere.
Well-established plane wave solutions exist for this problem
and our methcd of obtaining our plane wave solution can be
verified by comparison of our results to the established re-
sults. This is necessary because cur method of obtaining the
plane wave solution is the same as our method of obtaining the
source configuration results and no data is presently available
to verify those calculations. As a general conclusion, our
calculations indicate that our choice of local source config-
uration can approximately excite the desired external inter-
action current density at a shorted point of entry only if at
least one local source is in close proximity to the shorting
surface. This result increases the need to study the effect

of the degree of rigidity of physically realizable sources on
the alternate simulation preoblem.
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SECTION II
THEORETICAL BACKGROUND

This investigation concerns the local excitation of systems
that are predominantly metallic and is valid for those fre-
quencies or times for which the metal can be considered to be
perfectly conducting. The eguations that form the basis of
this investigation of portable EMP simulators is a set of
equations that recognizes those essential features of classical
aperture coupling analysis that have relevance to complex
systems. Since this approach is based on aperture coupling
equations, one might be concerned with its relevance to other
types of penetrators, e.g., deliberate antennas. Such pene-
trators have assoclated apertures or else no energy could
penetrate the sealed skin of the system corresponding to that
penetratcr.

First we will present the general form of the equations
that provide the basis of this study and draw all of our
theoretical conclusions by référrinq to properties of this
general form. Next we will present a somewhat detailed
derivation of these general equations for a complex interaction
situation in order to give a more concrete meaning to the
general properties on which we based our theoretical conclusions.

The form of the underlying equation is as follows

Lgm(g') = EE.I.(E) (L)
where the meaning and significance of each term requires consider-
able attention. First, we emphasize that equatidn 1l describes

the relationship between electrical quantities on two different
physical systems. One system is the actual system of interest
and the other system is that original system modified by

metallic shorting surfaces covering all aperturee {including

those associated with antennas). For illustrative purpcses
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consider the system depicted in figure 1. One system is the

aircraft in its environment with the apertures Sl and S2
unmedified and the other system needed to give equation 1
meaning is the same aircraft in the same environment with
metallic seals covering sl and 82. In equation 1, the

notation Em was chosen to denote "magnetic current," but

it is simply n(zr') x E (z') where r' varies over all of the
mathematical surfaces corresponding to the open apertures in

the original systemhrﬁ(g’) is the outward normal at r', and

E.(z') is the tangential component of the electric field

induced in the open aperture. The quantity QE I.

(z) is the

"external interaction" current density induced on the shorted
system with r ranging only over the shorting surfaces. It is
important to note that even though r and r' refer to different

physical systems, they mathematically refer to the same set

of points. This distinction allows a discussion of the mathe-

matical nature of equation 1 that is not confused by the

dual physical nature of the problem. It remains o discuss

the meaning of L in equation 1 to proceed. Mores specifically,

L 1s a linear operator that depends on a varlety of quantltles

associated with the system, 1ts env1ronment and certain

aspects of its excitation. Just what these gquantities are

plays an essential role in the underlying theory of portable

EMP simulators and we will elaborate on what these guantities

are when presenting the details for the system depicted in
figure 1.

It is now necessary to introduce an additional equation

to augment the information contained in egquation 1. This
equation also represents a general form and is

Qy = LJ (')

3 8=m

This equation is a mathematical statement of the fact that

J.(z') is sufficient to determine a variety of electrical
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Qe(e.g., 8 can correspond to a voltage, a current, or a field
component) that are excited within the system by fields
penetrating through the apertures. In equation 2, LB is a
linear operator that depends on the internal structure of the
system and the choice of the internal electrical quantity =
that is bheing determined. Next we introduce a step., the
legitimacy of which is currently being studied using a field -

equivalence point of view. Specifically, it is assumed that
-1

the L appearing in equation 1 has a unigue inverse, L 7, sO
that from equation 1 we can obtain
= -1 _
In =V Ip1. S
Combining equations 2 and 3 we obtain
Q, = ToJ (4)
B S-E'I.
where
o _ -1 .
TB = LBL (5) -

and the superscript o is explicity introduced to indicate
that Tg depends on the environment external to the system.

If the same system were placed in two different environments,
then the o designation for each envircnment could change to

accommeodate a mathematical representation of the fact that

a Q
1 2 s
TB £ TB ' (6)

if the external environments for the same system are sufficiently
different. Part of what we shall mean by the external environ-
ment is the physical structure of the portable EMP simulators
that are being investigated. When we discuss the details
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with the system and environment depicted in figure 1, we shall
emphasize this source structure dependence and make a crucial
distinction between rigid and nonrigid sources.

It is possible to present all of the portable simulator
theory on equation 4; however, that equation will be modified
to conform to the prevalent notion that both the external

interaction current density QE I and the external interaction

charge density ¢ are required for the ultimate determina-

E.I.
tion of the internal gquantities QB' For non-zero frequency,

it follows from VS.EE.I. = meE.I. that EE.I.
determine Og.1.’ SO the requirement that Oz.1
determined must be superfluous. There are a number of pos-

sibilities why it might be convenient to separately view

suffices to
be separately

Oz p. @5 a desired input and viewing it as suchrleads to the
following decomposition of eguation 4

Q, = 1%

8 Jedz. 1. ¥

[0 1
TGBUE.I. (7)

as the basic equation.

At this point we could present the underlying theory of
portable EMP simulators by referring to either equation 4
or equation 7 1f we did not have to deal with the real
physical structure of the portable sources.

The means whereby this aspect enters the consideration is
rather complex and is treated by giving a more explicit meaning
to these eguations. Specifically, this will be accomplished
by deriving more explicit representations for equation 1
and equation 2 for the situation depicted in figure 1. First
.we introduce the following definitions:

Sm: the surface of the metallic enclosure (aircraft)
augmented by the mathematical surfaces Sl and S2

L is the volume of a lossy medium in the proximity of
the enclosure (earth, water)

v
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L
V_: the volume of an object in the proximity of the

S0 the surface bounding v

Sp: the surface bhounding vp

Vs: the volume of a subsystem contained within the

“énclosure -

SS: the surface bounding VS

VO: the vclume exterior to Sm bounded by Sm’ Sp, SL’
Sr’ and the hemisphere at infinity

\

Tt the volume interior to sm bounded by Sm and Ss

VJ: the volume of a rigid source of an electromagnetic
wave, J, and it is contained in VO

Vr: the volume of the portable radiator

Sr: the surface of the portable radiator

Sg: the portion of Sr over which the surface tangential

electric field is rigidly specified

The essential equation that this approach is based on is the
dyadic identity B N

j( é(g’)-[V'xV';g(g';gﬂ —[V'xV'x&(E')]-g(g';g) dv'

v
=/ A(e') (Al )X T XD
s

where A(r') and D(z';r) are, at this point, a general vector
and a general dyadic that must satisfy certain behavior
requirements (e.g., differentiability) but not necessarily
any equations. In equation 8, S is the surface bounding V
and A(r') is the outward normal to V. Next. the volume,
bounding surface, A(zr'), and D(r';r) are specialized. V is
chosen, in turn, as V, and V. and A(z'") is chosen as & (')

=9
and gi(g'). We alsc choose D(r';r) as appropriate Green's
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dyadics (gOCE';El,gICE';E}) that satisfy the vector wave
eguation

2
(V'xV'x.-kO) G, (rlrr,) = I6(xl-g, ) 0=0,I Iy rZ eV (9)

and subsequently the o subscrict of r and r'will automatically
be implied by the subscript on ga when it is not explicitly
indicated. Boundary conditions to be satisfied are

L

‘€S (10)

ﬁgwxﬁugrgngﬁ =0 -

=}
in
>
—
<<}
>
Gl
a1
t
S
|

=0 E'eSrUSPUSm (11)
Q(E')X(V'xg (E'rr))= S(E')X(V‘XQL(E',E)) r'eSL {L2a)
ﬁ(g')xecgo(g',g) = ﬁ(;f}xag (r',z)} r'es (L2b)

The equation satisfied by G.(z',zr) is

(V'xV‘x-mzuqe>gL(£',£) =0 E‘eVL,éeVO (13)
The equations satisfied by the Ha(g'} are
(V'xV'x—kg) B (e') =} ° o=t (14)
vixJ(r') o=0
It also follows from Maxwell's egquations
VIXE, (') = ~iwe B (2') r'es (15}

Substituting equations 9, 14, and 15 into 8 for V=VO or VI

and using the property of the ¢ function, we obtain
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~
where a., is
S_,

f lir.fﬂ_,z@
s | =
S

where € is the appropriate dielectric permittivity and

Using equations 10 and 11 as well as the fact that

5(50).+77 E
- g=m,p,xr,L S
q
+¢£. a1 EgiHy G
<o
{nq’gl’gr'gz
g=m, s Sq

das'

248-15

(17)

the unit outward normal to the sphere at infinity

ds'

H(z')- [ﬁ(g_' ) x

V'xg(;';;)%} + iwe {

= T'XJ (') *Ga (' ;)
JC == =20'= =9

J

n(z')xE(z")

we f£ind that
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- [ i A t t . ' !

fsr 2 ByrHy Gyt 98 ./;g tueg [REIXE(R")] g (2! izy) 4S
= S(z,) (22)
'[Smllnaxgwﬁa,ga} 4ds' = lu&:o(/s'l{na(r')X%(E‘)]‘gq(z‘:—';Ea) ds

and because E satisfy the radiation condition

_OI Eof

S |fe ozt

The remaining gquantities to evaluate in equations 16 and 17 are
and Ss' Substituting the equa-

and go

is' = 0 (24)

the surface integrals over SL

tions appropriate for the lossy half space, that is

t r_2 | B t
(V'xV'x-w u e)E (') = 0 r'eV (25)

V'XEL(E') =-iw€§L(£') E‘eVL (26)

as well as equation 13 into 8 we cbtain
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L

" —/; _%L(_}:;')‘ nCE')X%V'XgL(E';E)}} + iwe S(EI)XEL(EV)}QL(}:I;I.) ds'

+./; gL(g')"ﬁ(g')x{V'ng 5';5)}} + lwe n(r')ng(r’)]gL(E';g) ds

© .

The second integral in equation 27 is zero due to the losses
in VL(or the radiation condition if VL is lossless). Using
the fact that the tangential components of E and H are contin-

uous across SL as well the boundary conditions in equation 12a -
and 12b we see that the integral over SL in eguation 16 is egqual
to the integral over SL in equation 27 which in turn we have
just shown to equal zero. The integral over S3 will also
equal zerc and the manner in which this can be seen depends
on the physi;al properties of the subsystem occupying Vs. If
it were totally metallic, the boundary conditions on Es and -
gI would make the surface integral vanish in the same manner
‘. they did for the integral over Sp. If it were a homogeneous
dielectric, then the boundary conditions would cause the
surface integral over Ss in the same manner the surface
integral over SL was caused to vanish. If it were some
hybrid of dielectric and metal, a combination of the arguments
would be used to cause the surface integral to vanish.

We can now write eguations 16 and 17 as

Hylzy) = Elzy) = Ryd (") (28)

and

B (zg) = K I (z') (29)
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where

F(r,) = L(zy) + S(zy) (30)

I,
with I(z,) and S(r,) defined by equations 13 and 22 and the
operators K, are defined by

1 - 4 Yy ' !
K. w80<‘/; I (2")g, (' r ) d8

¢« =0,I {31)

and we have made use of the fact that the tangential components

of the electric field are continuous through the apertures so
that

~ng(Z')XEy(2') = Ap(z)xEr (@) = J (=) Z'€S,US;  (32)
Now we focus cur attention on E(Eo) appearing in equation 28.
The meaning of this quantity is an extremely important aspect
of the theodry behind portable EMP simulators. It would ke

a very difficult task to evaluate eguations 19, 22, and 30

in order to determine the full significance of E(z,). Instead,
we will simply utilize certain key features of those equations
as well as equations 28 and 31 to determine what E(r,) must

be if all the required eguations were evaluated. First, we
ncte according to equation 19 that ;(EO) is excited by the
rigid (interaction independent) source J(r') and that accord-
ing to equation 22, §(£0) is excited by the rigidly specified
R(r')XxE(z') for £'esg. Next, we note that according to these
equations, both I(r,) and S(z,) are insensitive to the size
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of the apertures Sl and 52 and in fact they are insensitive

to whether or not these apertures are even present. Using
these observations in conjunction with equation 31 as the
aperture size becomes zero and using the result in equation

28, we see that gkgd) edﬁélérgbfgirfoi the special case

where all apertures are sealed (short circuited). Mathema-
tically, we express this gvg%gagion,of,g(;o) as —

5.C. (

E(EO) = EO r.) (33)

—O .

where the superscript is intrcduced to indicate "short
circuit."” We note that F(zr,) is the short circuit magnetic
field at some point EO with apertures sealed, but all other
aspects of the external environment including the proximity
and structure of the radiaﬁof} S%, unchahged.

Substituting equation 33 into equation 28 we obtain

S.C.

Hy(zy) = By W7 () =Kyd (2") (34)
Next, we define ﬁ(;) = HI(E) = -ﬁo(g) for res,Us,, use
the fact that

A(Z)XEy(z) = n(2)xE,(z) (35) ~

and employ equations 28 and 34 to obtain

lim ﬁ(r)x(KO+K

-r

)

DI ED =3 ;@ (386)

In
I,
I

where we have used the definition
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and we have the desired result, in that equation 36 is the
more detailed representation of egquation 1.

Before we can present our thearetical conclusions, we
must present cur more detailed representation of eguation 2.
We have, in fact, already a representation of equation 2 for
the case where the desired internal electrical gquantity is the
magnetic f£ield. For that use we might choose the symbol 8
as H so that Q. =H and LS=LH=KI' Another example where the
structure of LB changes depending on the choice of QB is
readily demcnstrated by considering the case where the desired
internal electrical quantity is the electric field E and we

denote 8 as E so that Q =E. For this case equation 2 becomes

Qr = Lgd (z) | (38)
where

L= - —=—TUxK (39)

E iwe I

Q

Finally, we will discuss the mors important'case where the
desired internal electrical quantity\is a current. For this
discussion consider that part of the internal subsystem
occupying volume Vs in figure 1 contains a wife and we choose
a local cylindrical coordinate system having its axis along
the wire and having the local azimuthal vector denoted

$w(1') at the point on the wire where we wish to determine
the current. The argument of this unit vector, &', denotes
the circumferential position on the wire. With these defini-
tions, the current on the wire is

I =fdz'$wcz')-g1(_r_l) (40)
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We see that from equations 29 and 4Q that _
= T 1
Qc cgmtg ) (41?
where we have denoted I = Qc and
1 = Iy 1Y o ] 4
Ld,(2") -fdz 9 (A1) KT (2") (42)

We have now presented equations 1 and 2 in sufficient
detall to draw our desired conclusions. We will base our
conclusions on equation 4 which contains exactly the physics
as do equations 1 and 2. The specific points we wish to
make are 1) the external interaction current density, Io. 1.7
can be excited by either a rigid source, a non-rigid source,
or a combination of the two types ii) the transfer operator,
T%,'depends on the external environment to the system iii)

a

T, depends on the internal environment iv) TC

3 depends on the
internal electrical quantity, QB’ being determined v) Tg
depends on the rigidity of the source. 'Equations that speci-
fically illustrate each of these points are identified with the
numbered points as follows: 1) equations 19, 22, 30, 33, and

37 ii) equations 1l and 12 iii) equation 10 as well as the argu-
ment that eliminated the integral over Ss iv) egquations 5, 39,

and 42 v) equation 11l.

The remaining portion of this report will be devoted to the
calculation that represents the idealized experiment. !

139



248-22

SECTION III
MAGNETIC FIELD INTEGRAL EQUATION FOR A SPHERE

If we impose an orthonormal coordinate system ;,E on
closed surface pcssessing continucus curvature such that
sxt = ﬁ,the cutward normal to the body, we can write the
Magnetic Field Integral Equation (MFIE) as the following

system of coupled scalar integral equations

%JS(E) = -’E(g)'fnc(y + (A(grg_')Js(r‘)
+B(r, ¢ )Jt<5')) ds'

%Jt(r) = S(x) B C(x) + <c<£,_r_'ws<r')
+D(£,£‘}Jt(£‘)) ds’

where

Alr,c') = —Q(Ir-E'U[E(g_)-(_-_r_')xé(g')]

stz,z) = -tz D [E@ @ xd )]

c(z,z") = Q(l*—r‘{)[%(5)'(_-5‘)x§(g'ﬂ

10
3
[

(ikR-1)

4TR

and J_ (g}, J. (g) are defined through

J(x)= J_(z)s(x) + J

< (x) & ()

t
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(44a)

(44b)

(44c)

(444)

(45)

(46)
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_ For a sphere af radius "a" centered at the origin, ﬁ=(£/a)
for all pecints on the surface. This permits us to greatly
simplify the form of egquations 44a - 44& even before specifying
our actual choice for s and £. Formal manipulation of the
triple products in these eguations yield

A(z,g') = -ao(;;_r_'){é(;_)-%(;:_’)-%(_r_)-%(_r_') (472)
B(r,z') = -ad(;:.-_r_') [§<5>-€<g'>+%<_r_>-§<_z.;' )] (47b)
Clz,z') = aQ(z-x') [-E(g)-é(g’)-é(g)-%(gw (47¢)

and )
D(z,c') = aQ(_r_-g’){-€<5>-Ecg'>+§(g~§<g'> (474)

thus showing that D(z.z') -A(z,r') and C(z,z') = B(z.Z2').

We also note that A(;,;') = A(z',z) and B(z,z') = B(z',x). —
This latter symmetry property is of considerable importance

for analytic treatments of the MFIE on a sphere, but will be

lost in the numerical scheme for solving the equations.

A numerical implementation of equations 43a and 43b even
with the simplifications of equations 47a - 47d requires that
the sphere be imbedded in some coordinate system. We use
a spherical coordinate system, l.e., an arbitrary position
on the surface of the sphere has cartesian coordinates

£(8,9) a(cos¢siné,singsiné,cosg) (48)
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We may define

£(8,6) = -;e = :é %5 r(8,9] = (~cos¢cosb,-sindcosd,sind) (49a)
and
5(8,6) T & = —=—2_1r(5,4) = (-sins,coss,0) (49b)
! T T¢ T asing 3¢ =77 e !
obtaining
a(8,8) = S(8,0)xE(8,8) = T £(6,4) = (cosdsing, sinosind,coss)
{49¢)

as it should.

Inserting equations 48, 49a and 49b into equations
47a = 474 and recalling that the element of area cn the surface
of a sphere is azsin6d8d¢ completes the specification of the
MFIE in a spherical coordinate system.

. OQur procedure for solving the coupled scalar equations of
the MFIE is to pértition the sphere into zones Sj by an
algorithm which has the maximum separation of any two points
of any zone tend to zero as the number of zones tends to
infinity. We then approximate both JS and Jt by piecewise
constant functions whose discontinuities occur at the zone
boundaries. If we pick a representative point from each zone
and restrict r to this set of points, we obtain, as a matrix
approximation to the MFPIE,

795 = e E ) - ) Js(ri’fA(-Ei'E" as’
3 S5

+'§£:Jt(ri1/;j B(r,,r') ds' (50a)
] .
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F I (g;) = s(z;) & (£;) +:E: Js(gi{/r Clg;,r') as
3 54
+:E: Jt(Ei)jf Dlg;,c') ds’ (50b)
3 3

This method of solution can be viewed as either a method of
moments solution or as a product integration method.

We must, however, consider the nature of the integrands
in equations 50a and 50b. One can show that for an arbitrary
bod§ with everywhere continuous, non-zero, local curvature
A, B, C, and D are singular but beshave at worst as

a/|z-x'| as r' approaches r for some finite a. This will be —

explicitly shown for the case of a sphere. Since we are S

dealing with a two-dimensional integral, these integrands

are still absolutely integrable, however, these singularities
should be treated analytically in order to avoid convergence
problems for numerical integration. . Qur programs for scat-
tering from cylindrical bodies remove this singularity before
attempting the numerical integration; experience indicates —
that such treatment greatly improves the accuracy of both phase
calculations and resonant phenomena.

For a sphere, the numerical problem is much simpler. As

‘will be shown by the following analysis, a symmetric integration

procedure will permit the singularities to be ignored for
sufficiently large zones. By expanding the scalar triple
products to second order in 6-8' and ¢-9¢' we will show, as we
mentioned earlier, that the above mentioned singularity does
exist, but numerical techniques exist which aveoid the need

to treat the singularity analytically.

We start by expanding 1575'[2 in powers of (6-8') and (¢-3').

lz=z' 1 = 1z 1% 4 (21?2 - 2¢zep) = 22%@-a.2Y) (5D)
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which by equation 49c yields

157512 2a2[l—sinesineﬁccs¢cos¢'+sin¢sin¢‘}-cos@cosBﬂ

a?[sine (0-01) % + (-840 [(8-a11 % (5-012] (52)

Similarly. from equations 49a, 49b and 47a we get

-A(z,zc')
——ga————~= sin¢sine' + cos¢cosg¢’

- (cosgcosdcosfBcoss '+sindsing 'cosfcosd ' +sinfsing ')

- 1] 0-01)%-s1a2a om0 roftomeny Be ey ] 1)

while equations 49a, 49b and 47b yield

-B(z,r')

FYe = -a(o-¢') (8-8"')sing +o h¢-¢')2+{6-8‘)2] (54)

The above analysis has shown that neither A nor B behaves
any worse than a/[gfg'l for some finite a, yet, except at the
poles (B is non-singular if 8 =0) there exists directions of
approach such that both A and B vary as 1/|z-c'| as ¢’
approaches r. In addition, we have shown that except at
6=0 and 6= B is antisymmetric in (8-8') and (¢=-¢') and A
is antisymmetric in (8-8') + (¢-¢') sineé. Thus if our
integration scheme is symmetric in (8-6') and (¢=¢')

+ (¢=¢')sin® the singular part effectively vanishes for self
term interactions, i.e., when i=j for egquations 50a and

50b. However, neighboring zone interactions deo not necessarily
have this antisymmetry property. If wavelength considerations
force the zones to be small the singularities should be treated
analytically.
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Qur experience has shown that the zoning criteria for
accurate solution of the MFIE can be split into wavelength and
geometry considerations. As a general rule, between six and
ten zones per wavelength are needed to fulfill +he wavelength
requirements._  For ﬁhis special case we found that we could
employ even fewer zones for wavelength. For low frequency,
however, geometric considerations dominate the zoning criteria.
The adequacy of the gecmetric ragquirements can be ascertained
by examining the ‘results for magnetostatic excitation. Study-
ing both types of zone requirements, we found that the nearest
neighbor zones are far enough removed to permit simple inte-
gration schemes for evaluating the integrals of equaticns S50a
and 50b.
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SECTICN IV
PRESENTATION CF SPHERE CALCULATIONS

The coordinate system, incident field description, and
zone numbering scheme for this calculation are depicted in
figure 2. The boundaries £for each zone are determined by
allowing 45° increments in 8§ and ¢. In figures 3 through 11
we present the current density induced by the depicted incident
field as well as by selected local excitation. What is meant
by the local excitation is that a numbered patch is either
considered to be illuminated by the depicted incident field
or is considered to receive no incident illumination. A
discussion of the relevance of this type of local illumination
will be deferred to the next section.

The labeling of the tangential components of the induced
current density is as follows

Js = J¢ . (55)

Jt = -3, (56)
and the quantities plotted are the magnitudes of these compo-
nents of current density normalized to the magnitude of the

incident magnetic field, H The code verification data

0
presented in these figures comes from two sources. For ka=0,

the magnitude of the magnetostatic solution given by

Is

-(3/2)H0cos¢coée (57)

and

o
1]

: -(3/2)HOsin¢ (58)
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is used to obtain the code verification data. For k =1.1, 1.7,
2.3, 2.9 we use the data presented in figure 66a of reference 1.
Specifically, we relate their data, Ke and Kz, te the code
verification data using the relations

3 (8,9)

s

Kz(Wl)cos¢

(59)

and

3. (8,9) .
-——H-O-— = lKe (el) s:.n¢

. (60}

as well as making the identification Wl=el=6. The wvalues of

8 and ¢ which are chosen for the evaluation of equations
57, 58, 59, and 60 for the code verification data correspond to

the angular centers of the patches. Finally, we note that
we need only present our incident field results for zones

1 through 8 because’ those results can be translated to the
remaining range of ¢ values through the relations .

J_(8,6) T_(9,6_)
= | = Hscos¢E cosd
o | 0o, (61)
and
g ,0) |3 (8,6
0 0 o) (62)

where ¢p corresponds to a value of ¢ in the data presented

for zones 1 through 8.

1. KXing, R.W.P. and T.T. Wu, The Scattering and Diffraction
of Waves, Harvard University Press, Cambridge,
Massachusetts, 1959.
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Figure 3, Normalized Current Deﬁsities on Patch 1,
Selective Patch Excitation is Achieved by
Exciting all Patches but No. 1.
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Figure 4, Normalized Current Densities on Patch 2.
Selective Patch Excitation is Obtained by
Exciting all Patches but No. 2.
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Figure 5. Normalized Current Densities on Patch 3.
Selective Patch Excitation is Obtained by
Exciting all Patches but
Nos. 2, 3, 14, 15, 18, 19, 30, 31.
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Figure 6. Normalized Current Densities on Patch 4,
Selective Patch Excitation is Obtained by

Exciting all Patches but
~ Nos. 2, 3, 14, 158, 18, 19, 30, 31.
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Figure 7. - Normalized Current Densities on Patch 5.
Selective Patch Excitation is Obtained by
Exciting all Patches but No. 1.
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Figure 8. Normalized Current Densities on Patch 6.
Selective Patch Excitation is Qbtained by
Exciting all Patches but No. Z.
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Figure 9, Normalized Current Densities on Patch 7.
Selective Patch Excitation is Obtained by

Exciting all Patches but
Nes. 2, 3, 14, 15, 18, 19, 30, 31.
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Figure 10. Normalized Current Densities on Patch 8.
Selective Patch Excitation is Obtained by
Exciting all Patches but
Nos. 2, 3, 14, 15, 18, 19, 30, 31.
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SECTION V
INTERPRETATION OF SPHERE CALCULATIONS

The basis for our choice of the illumination scheme that
was used to obtain our data is as follows: i) the objective
of each portable simulator was determined only by the incident
field ii) it was easy to numerically implement iii) it bore a
relation to an identifiable class of resal sources iv) it had
to succeed as more sources where included. The choice of where
to place the sources is related to the scurce rigidity issue.
This is readily seen by interpreting the results presented in
figures 3 and 4. In each of these figures, 31 of the 32
patches were illuminated in exactly the same manner that they
would be by the incident plane wave. The only patch that wasn't
excited is the patch on which we present the data and we see
that the induced ' current density is a very poor approximation
to the desired current density which was induced by the inci-
dent plane wave. This implies that if the non-~illuminated
patch corresponds £o the shorted POE location, we can obtain
good excitation of that POE only by having a source, of the
type considered in this repert, in close proximity.

This result enhances the importance of source rigidity -
effacts. This is the case because a qualitative examination
of the eguations that raised the issue of source rigidity indi-
cates that the nonrigidity effect becomes increasingly impor-
tant as the source location approaches the POE. Determining
the gquantitative effect of source rigidity appears to be an
experimental problem. Figures 7 and 8 show that patches adja-
cent to the nonexcited patch can be excited in the desired
manner for the described 31 out of the 32 patch illumination.
This result again, is only meaningful if source rigidity is
not found to be a limiting consideration.
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The remaining data appearing in figures 5, 6, 2, and 10

correspond to an illumination scheme in which only 24 of the 32

patches are illuminated. The basis for choosing not to illu-

minate the eight patches is that they correspond tc the small-

est values of ﬁxg}nc. For this more sparce illumination scheme

we again see that we obtain gcod results at a patch that is

excited and poor results at a patch that is not excited.

Another conclusion werth noting from all the data presented
in figures 3 through 10 is that the plane wave illumination
results agree reasonably well with the code verification data
for ka as large as 2.3. In many cases the agreement is still
reasonable for ka=2.8. These results indicate that it is
possible to give up a certain measure of accuracy and have
fewer zones per wavelength than previously thought. For the
data presented, the ratic of the wavelength A to a2 zone dimen-
sion D is given by A/D=8/ka which is 3.5 if we accepted results
only up to ka=2.3 and is 2.8 if we accept the results up to
ka=2.9. In either case we see that it is possible to cobtain
acceptakle results with fewer zones than has in general been
previously thought. This can impact a2 scheme for determining
a configuration of local scurces. The fact that sparce illu-
mination - -gave good results also provides a rationale for employ-
ing fewer sources. Both of these results can assist the choice

of a configuration to be employed in an experiment.

At this point, it should be noted that no part of ocur ex-
plicit sphere calculation can be used to infer any experimental
information for very early times since our calculation was not
appropriate for high frequencies. Another limitation of our
calculation should ke pointed out. The sphere does not have
a sharp rescnance and this could contribute to the fact that
the patch containing the POE required direct excitation in
order for good results to be obtained. For structures having

more pronounced resonances, i1t is possible that near resonance
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a given POE can be excited without having the source in as

close proximity as indicated by our sphere results. Having

elaborated on the limitations of our sphere calculations we
would like to emphasize that the general theory presented in
this work is valid for all frequencies and consegquently all

time.

We now address the essential aspects required by our ana-
lysis for each local source. In the absence of any other ob-
jects and socurces, their radiated fields should rapidly decay
away from their patch location and at the same time their

radiated

fields should vary slowly over their own patch loca-

tion. The simplest source that possesses locality to some
extent, is a half-loop placed above the patch. A simple
calculation shows that the fields decay rapidly for distances

larger than the radius of the loop.

which, to a certain degree, satiasfies one of our conditions for
an allowable source, there are difficulties with the half-loop .

that we will briefly discuss: 1) the field due to a half-loop

is slowly varying over a region surrounding the center of the

locp but
ficantly

Despite its local character

the maximum linear dimension of this region is signi-

smaller than the radius of the loop. To remedy this

we may either consider a half-loop much larger than the patch
or a "solencid" consisting of many parallel half-loops with
its dimensions not significantly larger than the dimensions of

the patch.

will now
assessed
However,
studying
does not
pertable

vary rapidly cover other patches, and we have not

the effect of this behavior in our calculations.

the numerical solution is only a convenience for
selective patch excitation and its inapplicability
invalidate the potential use of the half-loop as a
simulator. ii) The "solenoid" is an improvement with

regard to the condition of slow variation but it, as well as
the large half-lcop, may interact with the sphere substantially

and this

could significantly alter the transfer operator
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as explained earlier in connection to non-rigidity of sources.
Despite all the described limitations, both the "solencid”
and the half-lcop have sufficiently desirable features to be
included in an experimental program.

Finally, we discuss the Singularity Expansion Method (SEM)
as it relates to alternate simulation. We do this because it
offers a hope of determining the global capabilities of a
configuration of portable sources. We will now interpret our
results as related toc SEM. An SEM external interaction solution
has the form

J(z,v) sZ Ng (Y Y_\J; v, (£)
&

The natural modes ¥y and natural frequencies Y,C are intrinsic
properties of the metallic body. The coupling coefficients

Ny depend on both the coupling vectors (alsc an intrinsic
property of the body) and the incident field. Thus, once the
natural modeéy the coupling vectors, and the natural freguencies
are known, the responses to various excitations in the SEM
prescription are cbtained by determining the corresponding
coupling coefficients.

Admittedly there is no known recipe for obtaining the
coupling coefficients, in general, but at least we know that
for the sphere and plane wave illumination the correct coupling
coefficients are class 1 given hy

(v

b incl
n

Nnmc[dkn/dyl Y=Y (63)
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where

Yopt 2re the pole locations (Ynn,c = natural frequencies), to

is the instant at which the incident wavefront hits the sphere,
E;nc=ax§;nc and p stands for polarization, An are the eigen- —
values of the Magnetic Field Integral Operator L, and Snmc are

eigenfunctions of L corresponding to eigenvalue l—kn. “*

If we were to compare responses to selective patch excita- -
tion and plane wave illumination, we could assume that the
coupling coefficients for patch excitation are also given by
equation L and proceed to calculate ﬁhem. The comparison of
the coupling coefficients for the two excitations would allow
us then to ascertain how well selective patch excitation
simulates plane wave illumination. At this poiht, however,
caution should be exercised. To clarify the point we are
trying to emphasize, consider the case whereby we axcite all
patches on the sphere but one, in the manner that was explained.
The MFIE solution shows that the total current induced on the
sphere i1s everywhere approximately egual to the current for
plane wave illumination except at the center of the patch
that was not excited. However, if we were to use SEM for the
comparison of the two types of excitation, the coupling
coefficients for the first few modes would be approximately
equal and this result might lead one to the false conclusion
that the simulation was adequate. Notice, however, that our
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patch zoning results provide no information as to any early-

time SEM results and/or conclusions.

162



