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Abs&act-The electromagnetic surface wave which can propa-

gate over a rectangular wire mesh of infinite extent, is con-

sidered. The propagation constant is determined both from a

rigorous Floquet formulation and an approximate method using

averaged boundary conditions. The agreement is fairly good

for sufficiently small mesh dimensions. The rectangular mesh

is found to be highly

effective anisotropic

the mesh is discussed

Wire mesh screens are

anisotropic, and the possibility of an

transfer inductance representation for

briefly.

INTRODUCTION

often employed in electromagnetic shielding

applications. Plane wave reflection and transmission coefficients are

normally utilized to characterize the shielding effectiveness and, of

course, a good sh~eld should have a low transmission coefficient for a

wide range of incidence angles for any wave polarization. The method

of averaged boundary conditions [1] has been used to analyze the
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INTRODUCTION

Wire mesh screens are often employed in electromagnetic shielding applica-

tions. Plane wave reflection and transmission coefficients are normally

utilized to characterize the shielding effectiveness and, of course, a good

shield should have a low transmission coefficient for a wide range of incidence

angles for any wave polarization. The method of averaged boundary conditions

[1] has been used to analyze the reflecting and transmitting properties of both

square [2] and rectangular [3] meshes. The method gives good results for both

bonded and unbended junctions, but is restricted to mesh dimensions which are

small compared to a wavelength. General solutions have been given for plane

wave scattering from separated wire grids in free space [4] and for unbended

wire grids over a half-space [5] and for bonded wire grids in free space [62.

These solutions generally involve matrix inversion to solve for the wire

currents, but fortunately, large matrices are not required.

A major difference between a wire mesh and a continuous metal sheet is the

ability of the wire mesh to support a trapped surface wave. When the source

and observer are located near the mesh, this surface wave is quite important.

For the case of a square bonded mesh, surface wave propagation has been ana-

lyzed [7], and the propagation constant of the surface wave is closely related

to the shielding effectiveness of the mesh. Here we extend the previous

analysis to the more general case of a rectangular bonded mesh. For comparison,

the approximate method of averaged boundary conditions is also applied to the

rectangular mesh geometry.

FORMULATION

The geometry of the infinite rectangular bonded mesh in free space (permi-

ttivity &o and permeability

parallel to the x axis with

a are centered in the plane

junctions. The wire radius

IJo)is illustrated in Fig. 1. Arrays of wires

spacing b and parallel to the y axis with spacing

z = O, and perfecc contacts are made at the

c is small compared to both the spacings a and b

and the free space wavelength A. Consequently, only the axial wire currents

are important and the usual thin wire approximations are valid.

164



249-3

z

\/

Fi=gme 1. Gecmetrl for a surface wave propagating on a recta.agular
eitr mrdh eiyh bonded junctions. Wire radius equals c.
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tions are valid.

Since the mesh structure has a plane of symmetry at z = 0, the

electromagnetic field can be decomposed info symmetric and antisymmetric

parts which are uncoupled [8]. The electromagnetic surface wave of

interest here is symmetric, and the rectangular components of the elec-

tric field satisfy the following [7]:

Ex(x,y,z) = Ex(x,y,-z)

and Y Y

Ez(x,y,z) = ‘Ez(X,y,-Z). (1)

The analysis closely follows that for the square mesh [7]. Again,

El@ 1-27

we invoke Ploquet’s theorem [9] in order to express the

magnetic quantity as an exponential function multiplied

which is periodic in x and y. Thus, for a surface wave

an angle ~ to the negative x axis, the current on the

relevant electro-

by a function

propagating at

qth x-directed

wire I and the current on the mth y-directed wire I
Xq

can be written:
P

I
Xq

= exp[y(xcos$ + qbsin$)] ~ Amexp(i2mmx/a) (2)
m

and

I
P

= exp[y(macos@ + ysin$)] ~ Bqexp(i2nqy/b). (3)
q

Here Am and B are the unknown Fourier coefficients and y
q

is the

propagation constant which we seek. The m and q summations are

over all integers including zero from ~ to W. The calculation of

the fields produced by these currents is straight-forward [5] and will

not be repeated here. The thin wire boundary condition for perfectly

conducting wires is the following: Ex(x,o,c) = Ey(o,y,c) = O. This
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condition need only be applied at the m = O and q = O wires; the

periodic Floquet form of (2) and (3) assures they will be subsequently

satisfied at all wires.

Actually, the expressions for the current in (2) and (3) are identi-

cal to those in the plane wave scattering case [5] except that y has

replaced ikS where k was the free space wave number (=2T/X) and

S (=sin@) was the sine of the incidence angle. Thus the previous

equations for A and B [5] can be used with the following modifica-
m q +

tions: 1) set the incident fields equal to zero (source-free problem),

2) set the grid separation b. equal to zero (bonded grids in the same

plane), 3) set the wire impedances equal to zero (perfectly conducting

wires), and 4) set the half.space parameters equal to those of free

space. As a result, equations (24) and (26) in [5] reduce to the follow-

ing:
(k2-k~)Pm ik

Am 2ikb + #J ~ B$y e’p:-’c) = (),
q

(k2-kj)Q ik
B + & ~ Ak ‘Xp$-rc) = 0,
q 2ika mx

m
where

Pm=;
{[ ( )1
-h 1 - exp ~

~[

2m exp(-I’c) _
An”; ‘ ~ r

q

Qq=; {[
-h 1 _exp(+)] ,,q} + q:_ ,

}

exp(-rmoc)
+Am+ r’

mo

exp(-2~ q c/b)

Iql 19

(4)

(5)

(6)

(7)

(8)
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rmq(=T) = (k~+kj-kz)%

EMI?1-27

(lo)

kx = (2mm/a) + kS cos@ , (11)

and

k = (2mq/b) +kS sin$ .
Y

(12)

A superscripted prime ‘ over the summation sign indicates omission of

the q = O (or m = 0) term. S is now defined as y/(ik).

The doubly infinite set of linear equations <4) and (5) for Am

and B is numerically inefficient in the present form because An
q

and B decay slowly for large
~

Irnl and Iql. The difficulty arises

because the current expansions in (2) and (3) are slowly convergent for

the discontinuous current that occurs at the wire junctions in the

bonded meshes. However, we can circumvent this convergence problem by

modifying the current expansions to allow for a jump discontinuity at

the origin. This procedure was adopted previously for square bonded

meshes [63, [7]. As we indicate below, the method requires only slight

modifications for rectangular bonded meshes.

We now rewrite the current expressions in (2) and (3) in the follow-

ing equivalent forms:

I
Xq

= exp[y(xcos$ + qbsin$)l

(13)

● [fAa(x) + ~ A~exp(i2mnx/a)]
m
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I
ym = exp[y(macos+ + ysin$)]

(14)

“ [-fAb(y) + 1 B~exp(i2mqy/b)]
q

where A’ and B’ are the modified coefficients.m ~

‘Aa is chosen to have a jump A at the origin and

is defined by

where

Q

where

A ~, exp(i2Tnx/a)
‘As(x) = ~ nn

The sawtooth function

with a width a; it

(15)

[ 1
=A u(x)-~-~ ;-;<x<~ ,

{

l;X>O
u(x) =

O:x<o

As before,
I

the superscripted prime over the summation sign indicates

omission of the n = O term. The function fAb(y) is defined in an

exactly analogous manner.

From (2), (3), and (13) - (15), it is clear that A A’ Bq and
m’ m’

B’ are related by
~

A(l-dmo)
A =A:+m 2Tr~m

and

A(l-6qo)
BB’-=
qq 2Triq

{

l;m=o
6 .
mo

O;m+O

(16)

(17)
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Then, by substituting (16) and (17) into (4) and (5), we obtain the

following equivalent set of equations for the modified coefficients:

(k2-k;)Pm ikx
A;

2ikb + m ~ ‘$, ‘Xp:-rc)
a.

(la)

\

(k2-k;)Pm (dmo-l) k P’
+A

x

[
f+

kSsin@ p
2kb Z’rrm - m IIZi’r lrn =

o

and
(k2-k2)Q

B’
q 2ika +

where

and

exp(-”c)
‘lnl= Z’ ~“

q

exp(-rmoc)
P’ “i -
m m r

Kno

exp(-rc)r ~~Qlq = ~

exp(-roqc)

Q:=Qq- r
Oq

(20)

(21)

(22)

(23)

indicates omission ofAgain, the superscript prime ‘ on the surmuation

the q = O (orm = 0) term. Now, all summations are in a rapidly con-

vergent form.

Since we have introduced an unknown A in the modified current

expansions in (13) and (14), another equation is required to have an

equal number of equations and unknowns (A;, B’, and A). The most con-
q

venient equation is obtained from charge continuity [6]:
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[

aI
L-.$!?

aI

1[

.~~
+— +%Go 1 (24)

2 2 ay
x=o- ~.0+ ~=()- y=o+

By substituting (13) and (14) into (24), we obtain the following auxiliary

condition:

- +(1+:)+? $Jim:+%@)

- ~ BJiq+~ sin@) ‘O

~

Since the current expansions in (13) and (14) are rapidly convergent,

the doubly infinite set of equations, (18) and (19), can be truncated

with the m ranging from -M to M and q ranging from -Q to Q

where M and Q are small integers. Thus (18), (19), and (25) yield

(25)

a set of T(=2N+2Q+3) linear, homogeneous

TxT!

coefficient

matrix

—

-t—

‘-M
.
.
.

A.
.
.

4

‘-Q.
.
.

B
0
.
.

‘Q

A
--
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A nontrivial solution to (26) exists only

a function of y(=ikS), vanishes. Thus,

for y is written

Tx~

coefficient

matrix

. 0

if the determinant, which is

the mode equation to be solved

(27)

The z dependence of the Floquet harmonics is given by the factor

exp(-rmq12~). For sufficiency small ka and kb, there are no grating

lobes (rmqreal) and thus there is no loss mechanism. Consequently,

y is purely imaginary and Iyl > k (or S > 1). Equivalently, the

equations (18), (19), and (20) can be normalized so that all coefficients

are real functions of the real variable S. This real form has been

programmed and (27) has been solved numerically for S by the bisection

method [IO].

AVEW4GEH2 BOUNDARY CONDITIONS

Plane wave scattering from rectangular meshes has been analyzed by

Astrakhan [3] by the method of averaged boundary conditions. For a

bonded rectangular mesh, Astrakhan derives the following expression for

the vertically polarized reflection coefficient, R;:

R:
= C{l - kC[y2cos2$ + (62-611sin$ COS$

- ylsin20]}/Io

where

172
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I = C(l+k281d2-k2yly2) + kS2[y2cos2$ + (62-61)sin@ COS$
o

- ylsinz$] + k(Y1-Y2)

Y1 =ctl(l -
a/b

1 + a/b S2 cos2@)

‘i~= -c12(l- b/a
1 + b/a

S2 sin2@)

a/b
% = al 1 + a/b S2 sin$ cos$

bla
62 = ‘a2 1 + b/a S2 sin~ COS$

(29)

‘b !&(&
al=-F )

a2 ()
=$%n &

and

c = (1-s+

[Astrakhan’s paper contains a misprint, and y2 sin2@ should be

yl sinz$ in his (14)]. The propagation constant (y=ikS) of the

surface wave is obtained from the pole of Re in the S plane. Thus11

the mode equation for S is

()
-1

R: ‘Oor I=Oi
o

Since the averaged boundary condition formulation is valid for only

electrically small meshes and does not include the possibility of

(30)

grating lobes, there is no possible loss mechanism for any values of
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the parameters. Thus the solution of (30) for

and greater than one. For the general case, no

(30) was found, so it was solved numerically by

S(=y/ik) is always real

analytical solution for

the bisection method

[10].

For the special case of propagation along one of the grids (~ =

0° or 900), the expression for R: in (28) simplifies considerably.

For + = 0°, we have

[

Iccil

1

-1
R:=l+ ~ (1-R1S2)

$=0°
where

(a/b)
‘1 = 1 + (a/b)

Thus the mode equation for $ = O“ is

()
-1 kal

O= R: =1+ y W@)

By usfng the quadratic formula, we find

For the special case of small Ikall, (33) reduces CO

For $ = 90°, the results are quite similar.

[

ka2
R: . 1+~

1
(1-R2S2) %

$=90°

(31)

(32)

(33)

(34)

(35)
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where

b/a
‘2 = 1 + b/a

o

+
2R2k2a~ - 1 + [1 + 4k2c$(R~-R2)]$

[
(36)

2Rzk2ctz
L L

sl@=90” e 1
- ~ k2aj(R2-1)2 (37)

For the special case of a square bonded mesh (a=b), the results

become independent of @ and the mesh can be characterized by an iso-

tropic surface transfer impedance which is inductive [7]. The situation

is much more complicated for the rectangular mesh as can be seen from

the complicated @ dependence for R: in (28). However, by noting the

simple expressions for R~ for @ = 0° and 90° in (31) and (34), we can

postulate an approximate surface transfer impedance representation for

the rectangular mesh which is anisotropic. The anisotropic thin sheet

boundary condition has the form [11], [12]:

‘ly - ‘2y
= -MXEX (38)

and

‘lx - ‘2x
=ME

Y Y.
(39)

where the subscript 1 denotes the region above the mesh and the subscript

2 denotes the region below. In a similar manner to the square mesh case

7 x from R:, we can infer M

I

in (31) and M from R;
+=0” Y $=90°

in (35) with the following result

Mx = 2fn
(40)

kal(l-RlS2)
and
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My = 2/n

ka2(1-R2S2)
(41)

where rI= (!lJEo)$ For angles near grazing, including the surface wave

case (S=1), Mx and Fly can be approximated by

2/n
‘X s ktzl(l-Rl)

(42)

and

Z/n
‘y = kct2(l-R2)

We can also define an effective transfer inductance from

M = (iuLx)-l
x
Y Y

(43)

(44)

Thus, R and k are given by
x Y

~ _ (l-R@ob

2’Ti ()
h L

2TC
(45)

x

and
(1-R2)poa

.!Y=
2Tr )~~(& (46)

For normal incidence (S=0), the surface transfer inductances inferred

from (40) and (41) are
.

pb”
Lx =

()
*!?,n ~

21Tc
(47)

and
poa

%
()

En z (48)
Y=~ 2’Tfc

In this limiting case of normal incidence (S=0), Rx is independent of

a and % is independent of b because the two grids are uncoupled.
Y

Also, we see that (47) and (49) are consistent with the analysis of a

single grid for normal incidence [13]. In the grazing case, the factor

176
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(l-RI) in (45) or (1-R2) in (46) represents the coupling between the

grids.

NUMERICAL RESULTS

The mode equation (27) was solved numerically by the bisection method

[IO], and the convergence was examined by increasing M and Q until

the value of S(=y/ik) did not change significantly. Even for the rec-

tangular mesh (a#b), no advantage was found in making M+ Q. Also,

for M = Q, it was found that S remained essentially constant beyond

M = Q = 2 (T=ll) which is consistent with previous results [6], [7].

All results shown here are for M = Q=2, and the required determinant

calculation is fairly rapid for the resultant 11 X 11 matrix. For com-

parison, the approximate results from the method of averaged boundary

conditions have been calculated from (30).

a

These results were checked

further with the analytical solution in (33) for @ = 0° and in (36)

for @ = 90°.

In Figs. 2-4, we illustrate the $ dependence of S for different

values of a/b. Because of symmetry, only the range of ~ from 0° to

90° need be shown. As indicated in Fig. 2, the value of S for the

square mesh (i.e. a = b), is nearly independent of @ for the b/A

values considered. However, when alb is increased, as seen clearly

Figs. 2 and 3, the $ dependence of S becomes significant.

As discussed previously [7], the departure of S from unity is a

measure of the degradation of the shielding effectiveness of the mesh

for grazing propagation. Also, as expected, the method of averaged

boundary conditions tends to underestimate S, particularly as b/A

is increased [7].

in
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— FLOQUET
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Cl b= O.02
a=b

0.03

s-l

0.01

-—
~+

———— ——— ——.

b/h = 0.1

“&——– ———— ——–-’

o
0°

I I I i i I i I
30” 60°

+

9o”

Figure 2. No~alized propagation constant S(=y/ik) for a square
mesh as a function of direction.
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a/’ b=2.o

/

01
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Fi.qre 3. Normalized propagation constant S(=y/ik) for a 2 to 1
mesh as a function of direction.
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Fi=wre 4. Normalizedpropagationconstant S(=y/ik] for
a 3 to 1 mesh as a function of direction.
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9 In some applications, such as in parallel plate waveguide simulators

[14], propagation at @ = 0° is of particular interest. In Fig. 5, the

frequency dependence for a square mesh and a 3 to 1 mesh is shown. The

3 to 1 ratio has been used in

C.E. Baum). Note that S is

square mesh in all cases. In

some EM? simulators (private communication,

smaller for the 3 to 1 mesh than for the

the limit alb = @ (no crossed wires)

TEM propagation is possible and S goes to one. Analytically, the

limit of large a/b is difficult to obtain because for sufficiently

large a/A (or b/1), rmq in (10) is no longer real and grating lobes

can result. The mode equation (27) for S is still valid, but S is

expected to be complex under such conditions. Then, the mesh would act

as a radiator rather than a simple slow-wave structure (i.e. S is real

and greater than one). We

because the mesh is not an

Furthermore, the method of

the possibility of grating

have not investigated the grating lobe case

effective shield under such conditions.

averaged boundary conditions does not include

lobes.

CONCLUDING REMARKS

The propagation constant of a surface wave propagating along a rec-

tangular mesh in free space has been determined numerically from a gen-

eral I?loquetformulation. For comparison, an approximate solution, from

the method of averaged boundary conditions, is also presented. The

agreement between the two methods is fairly good for sufficiently small

mesh dimensions. In contrast to the square mesh which has a fairly

isotropic behavior [7], the rectangular mesh is highly anisotropic.
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FjL~~rc 5. Frequencydependenceof propagationconstmt fw
propagationalong the x-directedwires.
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A worthwhile extension is the introduction of imperfect conducti-

vity in the wires by use of an impedance boundary condition at the wire

surface rather than imposing zero tangential electric field. The intro-

duction of a lossy half-space [5], ~15] would also be useful in modeling

ground screens for antennas. Either of the above extensions would intro-

duce a loss mechanism and result in a complex propagation constant y.

Finally, a second mesh (as in a parallel plate waveguide) can be intro-

duced and this configuration has already been treated by the method of

averaged boundary conditions E16].
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