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Abstract

The electromagnetic equivalence of an infinitely long loaded
wire-cage structure and loaded hollow cylindrical geometry is
established based on the same radiated fields under identical con-
ditions. Analysis of the canonical infinitely long loaded wire
geometries are given by treatment as boundary-value antenna prob-
1ems. An expression for the equivalent radius of the wire cage
and an equivalent impedance-loading function are obtained, includ-
ing frequency dependence.
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0 I. INTRODUCTION

The electromagnetic equivalence of radiating objects has

been a subject of study for a long time by many investigators. 1-3

This yields a simple equivalence corresponding to a complex radi-

ating structure based on a predefine electromagnetic equivalence

criterion. The question of equivalence critericm may be defined

according to the same total radiated fields, or the same total

current induced, or even the same effective impedance(s) of the

geometries under equivalence study. There does not appear as yet

to be a unique equivalence criterion one may establish; it entirely

depends on the specific need and its application. In this paper,

the field radiated by the structure is taken as the basis for com-

parison and for establishing electromagnetic equivalence.

Even though the question of electromagnetic equivalence is

basic in nature, the motivation for the present investigation is

to come up with suitable modeling for hybrid EMP simulators. In4

0
figures 1.1 and 1.2 are shown examples of wire cage hybrid simula-

tors with complex bicone feed structures. 5,6 A straightforward

analysis in a given frequency spectrum is quite complicated. Hence

a systematic modeling of the conical feed and generator, wire cage

hybrid simulator, and the transition region between the conical

feed and the simulator is required. 7

This note is primarily concerned with the development of a

theory for equivalent electromagnetic properties of a wire cage as

compared .to a hollow conducting cylinder. Wire cage structures

have been extensively used in the design of hybrid simulators5,6

from the practical standpoint of lower structural weight, lower

wind resistance, ease of construction and erection at the experi-

mental sites. The exact analysis of the wire cage hybrid simula-

tor is very complicated; one has to suitably model it to simplify

the analysis. The reader should note that the wire cage by itself

is inadequate to model a hybrid simulator since certain parts of

it involve conducting conical, cylindrical, and other transition

sections which are physically quite different from a wire cage

(and desirably so, for improved performance).
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Figure 1.1. Sketch of the ATHAMAS I Simulator l?acility at Kirtland AFB, New Mexico
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The subject of electromagnetic equivalences as applied to

wire cage models is previously studied by Schelkunoff,1 King,
2

3and also recently by Baum, to obtain an equivalent radius. The

results obtainedl-3 are in principle applicable to only perfectly

conducting wire cages in the limit as frequency approaches zero.
<

In one study’ a cage consisting of conical wires equally spaced

over the surface of a bicone is studied, and compared with respect

to a solid cone of same characteristic impedance so that there is

only a transmission line mode excited. In the limit as the cone

angle becomes small, the result of the effective radius of the

cage is the same as the one.obtained in reference 3 which is based

on conformal transformation; an equivalence between a single

charged conductor arida number of equally spaced concentric charged

conductors is thereby derived in the static case. A different

approach is studied in reference 2 wherein a cage antenna consist-

ing of closely spaced parallel and identical conductors placed

around a circle is compared with respect to a single conductor

antenna, so that the total axial assumed current distribution is
oapproximately the same in both eases.

This note consi.d.ersvarious, but comparatively more accurate,

alternative analyses of the impedance ioaded, infinitely long

cylindrical models which can be used as substitutes to the complex

wire cage structure having the same electromagnetic field proper-

ties. The question of electromagnetic equivalence of wire cages

(both circular cylindrical and circular conical) used in hybrid

(aridother) simulators as compared to a cylindrical solid wire, a

cylindrical cage of strips, or a hollow circular cylinder with

complex impedance loading functions is investigated in a larger

perspective, based on the detailed analysis of the infinitely

I.ongcanonical geometries with uniformly loaded impedance func-

tions, treated as boundary value problems. These in general fit

into the category of boundary connection supermatrices8 for the

radiated fields.
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II. ANALYSIS Ol?INFINITELY LONG CANONICAL THIN WIRE ANTENNA
GEOJIETRIES

An analysis for electromagnetic radiation by two-dimensior,al

uniformly loaded structures is treat-edas a boundary value problem.

The following antenna geometries areconsidered below:

1. Infinitely long loaded wire antenna (thin)

2. Infinitely long loaded wire cage antenna and its
special case of an infinitely long loaded circular
cylindrical wire..eage antenna

3. Infinitely long loaded hollow circular cylindrical
antenna

Integral expressions are derived for the current induced and

the corresponding fields radiated for the above canonical problems.

Using saddle point integration, the electric and the magnetic far

fields and the asymptotic solution for the induced current are ‘-
..

evaluated.

A.

axis in a

the cross

generator

Infinitely Long Loaded Wire Antenna

An infinitely long thin wire is oriented along the z

free space isotropic homogeneous medium. The radius of

section of the wire is b and it is excited by a source

of voltage ~(s) across a gap of width 2d centered at

z= O as shown in figure 2.1. The electric and the magnetic fields

radiated into the surrounding medium are calculated from the

induced electric current ~(z,s) on the wire, which can be obtained

by solving the boundary value problemg and enforcing the impedance

boundary condition on the surface of the

of the problem and nature of excitation,

~(’~, z,s)and magnetic field fi(~,z,s) are

rii(Y,z,s)
1?i(v,z,s)

239

wire. Due to the symmetry

the radiated electric field ““
<

obtained by

(2.1)
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Figure 2.1. Infinitely Long Thin Solid Wire Antenna
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where fi(’J,L,s) and ~(’f,<,s) are the spectral distributions of the

corresponding electric and magnetic fields.

In the present analysis, the following Laplace-transform

definit-ions (two-sided) are followed for the time variable t and

the space coordinate variable

Laplace
(tjz) ~

Transform
Fl(t)

F2(Z)

F3(t,z)

z,

(S,c)

ij(s)

gm)

i3(s,c)

,Co

J~l(s) = J?l(t) e-st dt
-m

(2.2a)

(2.2b)

which have the corresponding inverse Laplace transforms

—.

where C
7

and C
c

are the contours of integration in the s- and G-

complex planes as shown in figure 2.2.

At any point P, there exists only the z-component of

the magnetic vector potential, 9,11 %

(2.3)

from which the radiated electric and the magnetic fields can be

obtained as
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82
i(Y,z,s) = —-

~2

-%(2z2 Y2)~z + ‘2 ayaz Y
1

——1 QY,Z,S)
Y Y

In the expression (2.3),

u= [Y
22+

-cl

and the cylindrical radial coordinate

(24a)

(2,4b)

-.

(245a)

(2,5b)

K. is the modified Bessel function of the second kind, zero order,

and the propagation constant is

-Y= [ql(u +-SE)]+ (2.5c)

= jK (2.5d)

where U, c, and a are the permeability, permittivity, and the con-

ductivity of the homogeneous medium. The-spectral term ~(b,~,s)

in the expression (2.3), is the term proportional to the Laplac6,

transform of the induced electric current ~(z,s) on the infinitely

long wire. In the above spectral representation, an e‘t+~z field

variation is assumed, s being the two-sided Laplace transform

variable. The infinitely long wire is sufficiently thin to satisfy

Iybj << 1 . (2.6) “

so that no internal modes are excited.

The spectral term ~(b,~,s) is to be determined based on

enforcing the following impedance boundary relationship for the

tangential total electric field.on the surface of the wire. The

infinitely long wire is excited by an ideal source generator of

243
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voltage ~(s) across a gap of width 2d. Within the gap the z com-

ponent of the electric field is specified to have the variation o
-t(s)/2d. Hence, on the surface of the infinitely long thin wire,

the induced electric current ~(b,z,s) and the electric field

~z(b,z,s) should satisfy,9

iz(b,z,s) =(-w Pal(z)+ ~;(s) ~(hz,d (2.7)

where

pal(z)= 1, lZ~ <d

In the above expression, ~~(s) is the series axial impedance per

unit length of the infinitely long loaded wire. In this analysis,

the impedance function ~J(s) has the definition of impedance per

unit length which is the ratio of the tangential electric field to

the total current along.the axial direction. This impedance func-

tion includes a contribution due to the Iossy characteristics of

the wire in addition to the externally introduced loading terms. o

Depending on the cross section of the wire geometry, complex s

dependence may arise at very high frequencies. In Appendix A, the

series impedance ~~,(s)per unit length is discussed for certain

geometries. However, with large external loading, the contribu-

tion due to lossy material of the wire can be ignored-for all

practical purposes.

In terms of the transformed spectral quantities, the

boundary relationship (2.7) becomes, with the following source
9function expansion, .

(2.8a) .

(2.8b)

+ 1, as l~dl + O

244



252-12 EM? 1-27

@ ,

and hence,

(2,,9)

According to the expressions (2.1), (2.2d), (2.3), and

(2.4a), the z component of the spectral electric field is

iiz(Y,c,s)= - + U2KO(UY) ~(b,~,s)
Y

(2,10)

The induced electric current along the infinitely long wire is

obtained as a line integral of the @ component of-the magnetic

field (2. 4b) evaluated just outside the surface of the infinitely

long wire,

2T

1 [

3XZ(Y,Z,S)
i(b,z,s) = - + Y

3Y 1 d~ (2.11)
$=0

‘Y=b

The electric current has no +-angular variation, and using the

expressions (2.1), (2.2d), (2.3), and (2,4b), the spectral distri-

bution of–the electric current is

(2.12)

where KI is the modified..Bessel function of second kind, first ~

order. As pointed out earlier, the term ~(b,c,s) is proportional

to the transform of the electric current.

On substituting the expressions (2.10) and (2.12) into

the impedance boundary relationship (2.9), the expression for the
%

spectral term ~(b,~,s) is obtained as,

where

~(~,S) = uKo(ub) +

G(c)
(2.13a)

U5(C,S)

i;v(s)
2mbyK1(ub) Z. (2,13b)
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and the characteristic impedance of the medium is

‘o= [. %1’

o
(2.13C)

Hence from the expressions (2.2d), (2.12), and (2.13a), the total

induced electric current on the infinitely long loaded wire antenna

has the distribution,

i(z,s) f(s)yb
jZ.

Kl(ub)

6(L,S)
(2.14)

In fact one can verify the expression (2.14) for the

special case of a perfectly conducting, ~~{s) = 0, solid cylindri-

cal antenna. Assurmingthe source to be an ideal slice generator,

the electric current on a thin solid perfectly conducting infinitely

long antenna12,13 is given by,

W(z,s} = i(~$.s)i;v(s)=o

K@b)
= ;(s)yb

/jZo ~ U~o(ub )
?-

Since F(b,c,s) is known from the expression (2.13a),

the z component of the magnetic vector potential defined in (1.3)

takes the form

(2.16)

It is now possible to calculate the electric and the magnetic

fields as defined in the expressions (2.1) and (2.4), and using

the expression (2.13a), we have the spectral fields
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(2,17a)

where [~1]is a vector for the infinitely long thin wire antenna

and represents the spectral distribution of the radiated fields,

[1
iil

[-1
i-= (2.17b)

ii2

where the elements of the above vector are,

and

UKO(UY)
ill= -t-(s)g(c)

5(C,S)
(2.17c)

.

(2.17d)

Due to the symmetry of the structure and its excitation, the fields

are independent of $-angular variations. The general solution to

the radiated fields (2.1) is difficult by direct analytical methods,

where the integration is to be performed along the contour C in
G .

the complex <-plane, figure 2.2.

If the far-field di.stribution is the quantity of inter-

est, it–is possible to obtain explicit expressions for the various

field components defined in (2.1). A classical approach is based
13on the sadcllepoint integration, and using this technique, the.

radiated far fields of the infinitely long perfectly co~ducting

wire antenna are obtain in reference 14, and are extended to

infinitely long loaded wire antenna structures conveniently; a ‘-

summary of the procedure of the saddle point integration method to

obtain far field distribution of the H (Y,z,s) as Y + m is given in
o

Appendix B. Hence asymptotically as ‘1’+CO,the integral expression

(2.1) reduces to the following forms:
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i(s)~z(r,a,s) m - — Cosa ~-yr

2“
L1(Y,a) r

252-15

(2.18a)
o

(2.18b)

where a = 90 - 0 and y~l(y,a) is defined in Appendix B and repeated

below for future usage

.
L1(Y,CO = COS(Q) Ko(yb COSCi) + ij(S) Kl(yb COSU) (2.18C)

Z;V(S)
Xl(s) = Zmb ~ (2.18d]

o

In the expressions (2.18), r and 8 = 90 - a are the spherical coor-

dinate variables, while a is the angle measured from z = O plane,

figure B-1.

In a similar way, it is possible to obtain an asymptotic

solution for the total axial current ~(z,s) as,given in the expres-
0sion (2.14) or one can evaluate E (Y,z,s) on the surface of the

$
infinitely long wire in the limit as z + ~ ,14

(2.19a)

To evaluate fi$(~,z,s) on the surface of the wire structure Y ‘b
for large values of z, it is necessary to restrict the radial dis-

tance r and angle a so that b = r COS(U), and we have z = r siu(a).

For a ~ ‘rr/2,

function can

sion (2.19a)

7(s] %

z = r so that in (2.18c) the arguments of ~he Bessel.

be replaced by yb cos(a) = yb2/z. Hence the expres-

yields

T@s) e-yz

20
Ko(Yb2/z) + [~l(s)z/b] K1(yb2/z)

asz+~

(2.19b)
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As z takes on larger values, yb2/z is very small. The modified

Bessel functions can be replaced by their small argument approxi-
15mation,

Ko(z) = -!n $$ (2.19c)

17= 0.5772. ., (2.19e)

and (2.19b) simplifies to

o(- as

e-yz

-ln(I’yb2/2z) + [fil(s)y/b](z/yb)2’

T;(s) e-yz

Z.
(2.19f)

-An (1’yb2/2z)+ 27r[~;V(s)/Zo](z/yb)2

Z’+m

B. ~LlmeriCal’ Results: Far Field

The infinitely long thin-wire loaded antenna has been

analyzed in the previous section, and the integral expressions for

the induced electric current, and the radiated electric and mag-

netic fields have been derived. The reader may refer to references

16 and 17 for further discussion and solution of the integral

expression (2.15) for the induced electric current”. As stated

earlier, direct analytical solutions for the radiated fields,

expressions (2.1) and (2.17), are complex unless one re’sortsto
18n~merical techniques. Further, based on the saddle point method,

explicit expressions (2.18a, b) have been obtained in the far- “-

field region for the radiated fields.

In figures 2.3 through 2.6 are shown the numerical

results of the distribution of the radiated far fields. These are

appropriately normalized with respect to (e‘yr/r) and $(s) = 1 is

249
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assumed. IrIfigures 2.3a and b are shown the magnitude and phase

of ~z far field distribution as a function of observation angle a o

for different values of ~ybl = $ (y = jK) and for a fixed value

of loading fi;V(s)= 50 + jO. The same results are obtained in

figures 2.4a and b for E
+“

Figures 2.5a and b indicate the mag-

nitude and phase of fizfar field distribution as a function of a

for different values of the impedance loading ~~Vfor a fixed value

of [ybl = 0,01. The same variations are given in figures 2.6a and

b for fi
4“

The results thus far obtained are useful to analyze

infinitely long parallel cage wires.

c. Infinitely Long Loaded Wire Cage

The analysis of the infinitely long loaded wire antenna

as discussed in section II-A, can be similarly extended to infi-

nitely long multiple parallel loaded cage wires. We shall first

discuss the general problem and later specialize to a circular

cylindrical wire cage.

A set of infinitely long loaded thin wires are all

oriented parallel to the z axis in an isotropic homogeneous medium o
as shown in figure 2.7. There are N parallel wires of radius an,

n = 1,2,3 ,...,N which are located at (Yn,@n) with their axes disp-

laced at least a few radii apart. The respective parallel wires

are excited by source generators of voltage ~n(s) across a gap of

width 2dn, all centered at z = O. If ~n(z,s) is the induced axial

current on the nth infinitely long thin cage wire, at any point P

in the mecliurnthe z component of the magnetic vector potential is
2

given by the superposition of the individual wire contributions,

N
P(v,z,s) = ~ ii (?,2, s)

z n=l ‘n

,
(2.20a)

where the superscript c refers to the cage wires and referring to

expression (2.3),

2.58
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and the term ~n(an ,L,s) is proportional to the Laplace-transforrn

of the corresponding induced electric current on the nth wire.

Again it is assumed ~n(z,s) has no angular variations and for each

of the n wires

l~anl << 1 II= 1,2 N7 J...>- (2.21)

so that no modes internal to a wire are excited. The electric and

the magnetic fields for the wire cage structure are obtained by
-(c)the expressions (2.4a,b) with ~z replaced by Az . Since each of

the cage wires is excited by an ideal gap of width 2dn, within

each gap the electric field varies approximately as -tin(s)/2dn;

similar to the expression (2.7), the electric current ~n(an,z,s)

and the scattered electric field fi$c)(Y,z,s)should satisfy the

following impedance boundary relationship, 6.

(2.22)

n = 1,2,3, ....N

where

P~(z)=lj
n

= 0,

[zt <dn

\Z\ > dn

and ~~Vn(s) is the series axial impedance per unit length on the
,

nth cage wire (Appendix A). In terms of the transformed quantities,

the impedance boundary relationship (2.22) becomes

260
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i(c)(v C,S) = -in(s) ~n(c) + ~(v,n(s) ~n(an)c)s)-z n’ (2.23)

n = 1,2,3, ....N

—.—

According to the expressions (2.1), (2.2d), (2.4a), and (2.20), -

the z component of the spectral electric field is

~z(’+n,c,s)= Y-% u2Ko(ul~n - ~m\) }m(am,~,s) (2.24)
m=l y

Similarlyj the induced electric current along the nth infinit-ely

long cage wire is obtained from, refer;ing to expression (2.11),

2?T a.iiz(Y’,z,s)

~(an,z,s) = - *
/

Y’ n
ay’

3$’ (2.25)
+’=0 ~ ‘=an

where Y’ and ~’ are the local cylindrical coordinates about the

axis of the nth wire. Assuming ~n(an,z,s) has no $’ angular vari-

ations and the cage wires are placed at least a few radii apart,

the expressions (2.1), (2.2d), (2.4b), and (2.20) yield,

i(an,c,s) = ~ 2nanuK1(uan) $n(an,z,s) (2.26).

On substituting the expressions (2.24) and (2.26) into the impe--

dance boundary relationship= (2.23), the following expression is

obtained for cletermining ~n(an,~,s),

~ n(s)[~2~~nuK1(uan)+ if FJan,<,s)
/ 1

n = 1,2,3, ....N

(2.27)

This forms a set--oflinear simultaneous equations and the spectr~l

term l?n(an,c,s), n = 1,2,3 ,...,N can be determined as the solution

to the following matrix equation
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[ m:nmim =. ---
.

where the matrix elements are

:nm= u2Ko(u@ - ?m~) ,n

and

i~ n(s)
:Hm= u2Ko(uan) + 2nanuyKl(uan) ‘Z

o

si.nh(cdn)<
;n = fin(s) (gdn) S

The matrix equation. (2.28a) yields

> n=m

(2.28b)

(2.28C)

(2.28d)

the solution

(2.29)

Tiiecurrent on each cage wire is obtained from (2.2d) and (2.26),

and the magnetic vector potential obtained by substituting the e

result of (2.28) into the expression (2.20). Thus the radiated

fields are obtained from the expressio~s (2.4) and (2.20).

D. Infinitely Long Loaded Circular Cylindrical Wire Cage

The general problem discussed in the previous section

is specialized to a circular cylindrical wire cage. Suppose all

the 1?wires are placed along the circumference of a large circle

of diameter 2A and distributed uniformly around the circumference.

If the circular wire cage consists of identical wire geometries,

figure 2.8, which are fed from identical source generators, the

matrix equation (2.9a) simplifies into a diagonal form.

Referring to figures 2.7 and 2.8, let

?(s) = ?n(s) source voltage across each gap

2d = .2dn width of each gap
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aa= n radius of each cage wire

o
z(c)’(s) = il;,n(s)/Ii
w axial series impedance loading of

each cage wire per unit length

for n = 1,2,3, ....N

Under these symmetrical conditions, the spectral func-

tions ~n(an,c,s) are all the same, i.e., ~1 = ~2 = i73= ... = EN

(=F(c)(a, C, S)). Hence the induced electric current on each of the

cage wires is the same, il(z,s) = 72(2,s) = i3(z,s) = “.” = iN(z,s)

(= @(z,s)/N). Applying these relationships for the concentric

wire cage, the expression (2.28) yields the solution,

(2.30a)

comparing the expressions (2.13b) and (2.30b), the summation in . 0
(2.30b) accounts for various mutual interactions and the factor

‘I,rlis the inter-chord distance from wire 1 to wire n given by,

‘l,n=a ’n=l (2.30c)

~~n=1~/gJ , n=213)...,N (2.30d) “
>

Since the angle between any two consecutive wires is 2n/N, the

inter-chord distances (2.30d) can be written as
<

‘l,rl= 2A sin[~ (n - 1)], n = 2,3, :..,N (2.30e)

Hence the current on each cage wire is obtained from the expres-

sions <2.2d), (2.26), and (2.30a),
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* i(c) i(s)ya(a,z,s) = jz J :(C)
o c.

(2.31)

potential is obtained by .–and the corresponding magnetic vector

dc

(2.32)

substituting (2.30a) into the expression (2.20),

The electric and the magnetic fields can now be written using the

in spectral form asexpressions (2.1), (2.4), and (2.32)

1
1
I

(2.33a)

1zoii$Q(Y,c,s)

vector for

l.-

cylindrical wire cagewhere [~] is a

antenna and is

[1
g

the circular

given by

(2.:33b)

and the elements of the vector are,

[
&(pl-Fm)

1
(2.33d)(
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Again we have difficulty obtaining general solutions

for the fields (2.33a), since the integrations are to be performed e

along the C
<

contour, figure .2.2. But in the far field region as

Y + ~, the expressions (2.33) reduce to simpler forms (Appendix

B) based on the saddle-point integration method. Hence for the

infinitely long circular wire cage structure, in the far field

region the electric and the magnetic field components are obtai~ed

as (figure B-l),

i(s) cos(ct) e-yr ~fl(c)(r,a,s)~ - ~
z

E2(Y,CX) r f
(2.34a)

(2.34b)

where the cage factor is

E.= NI-(YA COS(Cl)) (2.34c)
J. u

10 is the modified Bessel function

r and 6 = 90 - a are the spherical

above expressions

of the first kind, zero order, o
coordinate variables. In the

~2(Y,a) = Cosa “~ KO(YAI ncos~) + ~2(s) Kl(ya cosa) (2.34d)
n=l Y

@’(~)

ii2(s)= 27Ta ‘y~ (2.34e)
o

%
E. Numerical Results: Far Field

In section II-C the infinitely long loaded wire cage is

analyzed, while the specialization to the circular wire cage is

given in section II-D along with the expressions for the induced

electric current, radiated fields and far-field distributions.

.
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In figures 2.9a and b are shown the magnitude and phase

Of the E(c) far-field distribution as a function of observation
z

(c)’angle u for different values of the loading ~w and for a fixed

value of KA = 1.0, Ka = 0.01 and number of—cage wires N = 12.

The same variations are given in figures 2.10a and b, but for the

far-field fi$c). Similarly in figures 2.lla and b are shown the

magnitude and phase of—the E$c) far-field distribution as a func-

tion of angle u for different number
*(C)’impedan-ce loadings ZJV = (50 + jO)

2.12a and b give the distribution of

far field.

7

6)

of cage wires N and fixed

Q/m. Further, the figures

‘(c) of thethe corresponding H
4

.,
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III. INFINITELY LONG LOADED HOLLOW CIRCULAR CYLINDRICAL ANTENNA

The analysis of the hollow cylindrical structure 16,17 is

slightly different from the previous cases discussed wherein the

wire antenna structure is assumed as thin, so that the fields

inside the wire can be completely neglected. This is particularly

true with the ease of solid thin-wire structures. 13 But when the

radius becomes large, one has to analyze both the external and ‘the

internal regions separately and enforce the relevant impedance

boundary condition on the surface of the hollow cylinder. It is

assumed the cylinder wall is very thin and for all the mathematical

considerations, the thickness of the wall can be neglected. The

material of the wall of the hollow cylinder is lossy and homogene-

ous and can be characterized in terms of a uniform sheet impedance

(Appendix A). Even with an external impedance loading function

introduced, the concept of the boundary condition is based on a

uniform sheet impedance in contrast to the surface impedance con-

cept utilized in the previous sections.

The infinitely long hollow cylinder is oriented along the z

axis in an isotropic homogeneous medium. The radius of the cylin-

der is C and is excited by a source generator of voltage ~(s)

across a gap of width 2d centered at z = O, as shown in figure 3.1.

The medium characteristics (M,s,u) are the same both for the inter-

nal region 1 and the external region 2. The z component of the

magnetic vector potential is given by, in region 1,

P(Y,Z,S) 1
z I‘~c ~l(C,L,S) KO(UC) 10(U’Y)egz d~

G

‘+<C & (3dia)

and in region 2,

f

Im(y,z>s) = & c ~2(C,C,S) 10(UC) KO(UY) ecz d<z
c

y>c (3.lb)
.-
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where 10 and K. are the modified Bessel functions of first-and

second kind, zero order. The spectral terms ~l(C,C,s) and

~2(C,L,S) are proportional t-othe Laplace transform of the net-

electric current [~2(C,L,S) + J1(C,L,S)] of the external and

internal surface of the hollow cylinder. Again electric and mag-

netic fields in the regions 1 and 2 are obtained by substituting>

(3.1) into the expressions (2,1) and (2.4). The tangential elec,-

tric field EZ(Y,Z,S) at the wall surface is continuous, while the

tangential magnetic field ~@(’Y,z,s) is discontinuous to the extent

proportional to the difference of the external and the internal

surface currents. Hence we have the following impedance boundary

relationship

;W(c-,z,s) =
z

~,;hereZ! (s) is

the infinitely

.—

i(2+c+, z,s)
z

_ i(s)
2d pal(z)+ 2’(s) [7(2)(C+,2,s) + i(l)(c-,z,s)]

(3.2)

the impedance loading function per unit length of_

long hollow cylinder,

is(s)
ii’(s)= Zrc (3.3)

and Zs(s) is the sheet impedance in ohm of the hollow cylinder ._

(Appendix A). In terms of transformed variables the boundary

relationship (3.2) becomes,

E(2+C+,; ,S)j+)(c-,c,s) = -z
-z ●

= -&(s) g(c) + i’(s) [i(2+c+,c,s) + y(c-,c,s)]

(3.4)

Referring to the expressions (2.1), (2.2d), (2.4a), and (3.1) the

z component of the electric field is given by,
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(3.5a)
o

(3.5b)

y>c

Further, the external and the internal currents on the hollow

cylinder using the expressions (2.1), (2.2d), (2.4b), and (3.1)

are obtained as

(3.6a)

(3.6b)

on substituting the expressions (3.5) and (3.6) into the boundary

relationship (3.4), we have

:I(c,c,s) = :2(C, LS)

where

ij(c,s)
i’(s) [~]

= UIO(UC) KO(UC) + 2TfCY~ Uc
o

(3.7a)

(3.7b)

Hence the electric current on the internal and the

external surface of the hollow cylinder is obtained fro~ (2.2d),

(3.6), and (3.7) as,

i(s)yc
i(l)(c,z,s) =

\
g(c)

jZo c
<

272



.—

7

—

1-27 252-4

.— —.

i(s)yc
jZ

,0
i(2)(c,z,s) (3.8b )

The net total current flowing on the ho11Ow cylinder, with the

assumption of current flowing in the z dir

[i(z)(c,z,s) + W(c,z,s)],
ection 2s positive ) is

‘)(C,Z,S) 1 —
Ub(c,s)

3.8c)G(c) (

Since the surface Cu,rrent density is independent of it is

obtained by dividing the expression (3.8c) by the circumferent ia,l

1ength 2TC. The z component of.the magnetic vector potential in,

the regions 1 and 2 is obtained by SUbStituting the spectral term

(3.7a) in th

~(l)(j+
z

.e expressions (3

i(s) Y2‘,2,s) = ~-3-

Y

Ia,b),

g(c)

cc

<c

KO(UC) Io(uy)

Us(c,s)
‘i3a)(3.

10(UC) Ko(uy)

U$(;,s)
~qy,z,s)
z

(309b)G(L

c

,etic

)

fields radiated are obtainedThe electric and the magn

using the expressions (2.1), (2.4), and (3.9b) in the regions 1

and 2 in the spectral form as,
-.

10a)

[

@,2
-z

~o~jl
-’

(3

the for the infinitely long hollow .n-where is vector

dri,cal antenna ,
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and the elements of the vector have the form

(3.10b) o

(3.1OC)

(3.10d)

As Y + m, the field expressions cau be reduced to simpler forms in

the far field region using the saddle point method
14 discussed in

Appendix B,

F(S] cosci e
-yr

-— EfE(2)(r,a,s) ~
z 2

L3(YJX) r

where the hollow cylinder factors are

@

(3.lla)

(3.IIC)

(3.lld)

(3.lle)
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A. Numerical Results: Far Fields

Based on the analytical expressions formulated in the

previous section for the induced electric current, radiat-ed

fields, and far-field distribution for the case of infinitely,
long loaded hollow cylinder, numerical results are presented in

figures 3.2 through 3.5 for the radiated far-field distribution.

In figures 3.2a and b are shown the magnitude and

phase of ~(z) of the far-field distribution as a function of the
z

observation angle a for different values of the radius C of--the

hollow cylinder, and for a fixed y = jl and loading function

z’ = 50 + jo. Figures 3.3a and b indicate the same variations,

but for the fi$2) component . Similarly in figures 3.4a and b are

shown the magnitude and phase of the ~~2) component far-field as

a function of a for different values of the loading function ~’

and for fixed value of \yCl = 1. Further the figures 3.5a and b

indicate the same variations, but for the ~$2).

-.

.---

0
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IV. ELECTROMAGNETIC EQUIVALENCE BASED ON FAR FIELDS

In the previous sections, three different types of canonical

infinitely long antenna geometries are studied viz. , (i) the

infinitely long loaded solid wire antenna of radius b and impe-

dance loading function per unit length ~~V(s), (ii) the infinitely

long lo’adedcircular wire cage antenna of cage radius A, radius

of each cage wire a, number of cage wires N and its corresponding

impedance loading function per unit length along each of the cage

wires Z(c) ‘w (s), and (iii) the infinitely long loaded hollow cyl:i.n-

drical antenna of radius C and sheet impedance loading function

i’(s).

For each of the above canonical antenna structures integral

expressions for the induced current, and for the radiated elect:ric

and magnetic fields are derived. Based on the saddle-point tecll–

nique, fa~-fi,el~ ele&ri.C and magnetic field components are

obtained in a more simplified form. Table II summarizes the

results thus far obtained for the far-field distribution.

It is now possible to compare (and thus approximately equ:%.te)

the distribution of-the far-field components of the circular wi:re

cage antenna as against the far-field distribution of a hollow

cylindrical antenna. Such a comparison would allow establishing .

electromagnetic equivalences based on the far-field distributions.

Given the circular wire-cage parameters viz..,number of cage wi:res

N, cage radius A, --@J’(s),wire radius a; and its loading function Z$v

the electromagnetic equivalence allows one to pick equivalent–

radius C = ‘#eq and the corresponding loading funct-ion ~’(s) = z~q(s),.
so that both the structures radiate the same far-field distribu-tions.

The equivalent parameters are in fact a function of the~complex

frequency s, and the observation angle a. The ,dependence On a

can be eliminated in some cases discussed further.

We shall now consider the electromagnetic equivalence between

an infinitely long loaded circular wire cage structure and a loaded

hollow circular cylinder based on the same radiat-ed far fields.

Columns 2 and 3 in table 11A for the far-field distributions are

eq~ated,
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Loading w
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N m
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0

and

L2(,YW ~3(Y,~)
C=Yeq

(4.1)

i’=i’
eq

where

Y
eq = equivalent

g?
eq = equivalent

radius

impedance loading

and (3.11), the expression (4.1) takesFrom the expressions (2.34)

the form,

NIo(yA COSY,)

N
Cost 1 KO(YA1 ncoso) +~2(s) Kl(ya cosa)

n=l >

10(YC COS~)
=

[ a f-J=lu““2)COSCI Io(yC COS(%) KO(YC CoSa) + @)yc

‘ eq

2’=2’
eq

for the loaded

is a function

Practicably it

The expression (4.1) depicts equivalence condition

cage wire model and the hollow cylinder model, and

of.the frequency y and the angle of observation a.

is impossible to extract both the equivalent radius Y and equiva-

lent impedance 2’eq(s) from one equation unless one ma;~s certain

choices or forces one more realizable constraint. Some of the

alternatives available are discussed in the following.

CASE I: Equivalence of perfectly conducting wire’cage and
perfectly conducting hollow cylinder

For this we have the impedance loading functions

@’(s) = ~
w

(4,,3a)

ii’(s)= o (4,3b)
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the expression (4.2) yields the equivalence condition

(c)
o

? KO(YA1 ~COS~ ) - NIO(YA COSCl)Ko(yyeq COSa) = O (4.4)
n=l >

We note ‘Y(c)
eq

is to.be determined as the solution to the

equation -(4.4) and it appears implicitly in the argument of the

modified Bessel function. Further

*W = Lp(y,cos(u))
eq eq

In the quasi-static case lyA~ << 1, the modified Bessel

functions can be replaced by their small argument approximations,15

Io(z) = 1.0

(4,6a]

(4.6b)

On substituting the above small argument approximations, the

equivalence condition (4.4) simplifies to
@

!JC) = [aA1,2Al,3,..Al,~eqo
~1/N

where the irite~-chorddistances Al ~, n = 2,3,.. .,N are defined in

(2.30). It is interesting to npte’the equivalent radius Y(c) is
eqo

independent of the variables y and cos(a) in the quasi-static case.

The equivalence condition (4.4) yields the same result (4.7) even

for the limiting case as a + w/2 and Iycosal << 1. The equiva-

lent radius result (4.7) checks with King’s equivalent radius2&
obtained for a perfectly conducting finite circular cage antenna.

In fact, Y(c) can be shown also to be identical to the equivalent
eqo 3

radius obtained by Baum,

@)
eq ay l/No =
A [1-i- <4.8)
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0 which is based on conf-ormaltransformation; an equivalence between

a single charged conductor and number of equally spaced concentric

charged conductors. Apper:dixC discusses the two results (4.’7)

and (4.8) as one and the same.

In figure 4.1 is shown the variation of–the normalized equiv-

‘c)/A as a function of A and similarly in figure 4.2alent rad~us ‘i’eqo
3

‘asa function-of a/A, for different values of number of cage wire

N.
(Cj

As stated earner Yeqo is independent of the complex fre–

quency y and of the variabl= COS(U), figure B-2, in the quasi-

static limit. The first order effect of the complex frequency y

on the equivalent radius Y
(c)
eq

can be obtained if.higher order

terms are included in the series expansion of the modified Bessel

functiGns, and can be written as,

! Ko(z)”= [-~@]Io@) + - +(, + # :~ + , (49a,

()&z2 &z22

Io(z)
4 4

=1+~ +2,+””’ (4,9b)

Picking the first two terms in the above series expansion (4.9)

and subs-tituting into the equivalence condition (4.4), it reduces

“to the following transcendental equation,

4N
‘1 = (y’A)2

“[ 1

a2 4
()

Ln ~
‘2 = ~+2N - (Y,A)2

(4.10a)

(4.10b)
~

(4.1OC)

Y’ = y Cos(c) (4.10d)
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Further, the equat~~n (4.10a) yields the f~rst order solution,

~$)=~-)[~-~($+,~)(~~] ),,.,<l (4.11)0

The expression (4.4) is also solved numerically 19 to deter-

mine the more exact quasi-static frequency range up to which the

results of Iigure 4.1 are valid. Table III gives the lowest first

zero solution to the implicit equation (4.4) for a particular set

of wire cage parameters. As the frequency approaches large values,

the equivalent radius result (4.7) is no longer valid, and Y(c)
eq

should be obtained from the solution to equation (4.4) or equation

(4.11) for a given complex frequency y and observation angle a.

Figure 4.3 indicates the variation of the equivalent radius Y(c)

as a function of K’A. For very large values of (y. cos(a]l, o~~

may substitute asymptotic forms of the modified Bessel function

in the expression (4.4) and solve for the equivalent radius Y(c)
eq “

CASE II: Equivalence of loaded wire cage and loaded
hollow cylinder

For this general case the equivalence condition (4.2) should e

be considered leading to the difficulty of one equation and two

unknown parameters Y
eq and ~~q(s) to be determined. We can con-

veniently make a choice of one of the unknown parameters. Suppose

the equivalent radius is chosen to be the same as the frequency-

“’(c) (as obtained from (4.4) or approxi-dependent equivalent radius Y .

mately from (4.11)) for the p~~fectly conducting case (case 1),

we obtain for the equivalent impedance loading function E:q(s),

Y y(c)
eq = eq

(2:C:(S’) Io(YY& Cos(a))
i:q(s)= ya COSO.Kl(ya cosa)

10(YA CoS(a))

(4.12b)

As pointed out earlier, the equivalent impedance-per-unit-length

function ~~q(s) is a function of y and cos(a). In the quasi-static

. .
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KA COS((X)

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

j 0.0

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0;0
0.0
0.0
0.0

Table 111

KY(C) COS(CL)
eq

.08395

.16844

.25353

.33913

.42508

.51121

.59736

.68338

.76909

.85430

.93877

1.02218

1.10405

1.18360

1.25953

1.32939

1.38810

1.42353

1.40057

1.19554

j-.0001O

-.00074

-.00239

-.00538

-.00999

-.01647

-.02506

-.03605

_.04981

-.06681

-.08772

-.11346

-.14535

-.18534

-.23643

-.30342

-.39446

-.52418

-.71896

-.99934

. .

‘ eq
A

.83953

.84221

.84511

.84783

.85015

.85201

.85337

.85422

.85454

.85430

.85343

.85182

.84927

.84543

.88969

.83087

.81653

.79085

.73714

.59777

j-. 00096

-,00370

-.00795

-.01345

-.01999

-.02746

-.03581

-.04507

-.05534

-.06681

-.07974

-.09455

-.11180

-.13239

-.15762

-.18964

-.23204

-.29121

-.37840

-.49967

i= 0’01
N=12
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frequency range lyAl << 1, the above expression (4.12b) simpli-

fies to

(4,12c)

which is exactly the equivalent parallel impedance of the N cage

wires. The first order effect of the complex frequency y on the

equivalent sheet impedance per unit length ~’ (s) can be obtained
eq

by substituting higher order terms for the modified Be-sselfunc-.

tions in the expression (4.12.b),hence we have

[ 1[ 14+(y’v:;))2 2$)’(S)
i~q(s) = 1 + ~(y’a)2

4 + (y’A)2 N (4.13a)

for (–)24 <1
y’A (4.13b)

CASE III:

In the

radius to be

make another
Jc) = A, theeq

above case II, we maclea choice for the equivalent

the same as the perfectly conducting case. We can

practical choice of choosing the equivalent radius

radius of the wire cage, and work out the correspond-

ing -appropriate equivalent–loading function so that far-field ~

equivalence holds good.
(c)

—
Hence substituting Yeq = A in the expression (4.2.)yields

an expression for the equivalent loading function Z~q(s). In’the

c~uasi-static limit.as._\yAj << 1, we obtain

~(d’(s) ycos%)zo ()
~(c)

i:q(s) = Iv ~, -
27T

In ~ (4.14)
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which shows an angle dependent (a) positive inductance per-unit-

Iength term as o

()AL’+ Cosz(a) M — >0
~(c)
eq

(4.15)

Note that as s + O the inductive term is negligible giving the

wire loading as the dominant term as one would expect. For higher

frequencies, ho~;ever,the property of having an angle (a) depen-

dent impedance per unit length is an undesirable feature because

there is then no unique equivalent impedance per unit length; it

depends where one looks.
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0 v. CONCLUSIONS

A preliminary

modeling hybrid EMP

analysis is carried out to aim at suitably

simulators made up of thin wire structures

and wire meshes. Canonical infinite-ly long loaded wire geometries

in the form of a thin wire, a circular wire cage and hollow cylin-

drical structures are analyzed systematically by treating them as

boundary value antenna problems. Results of the induced current

distribution and the corresponding radiated fields are obtained

for each of the canonical geometries.

The radiated fields of the loaded concentric wire cage are

compared with the radiated fields of the loaded hollow c“ylinder

to arrive at an electromagnetic ecluivalence condition. Based on

this equivalence, the equivalent radius of the wire cage and the

corresponding equivalent sheet impedance per-unit-length loading

function are obtained so that both the compared structures radiate

the same far fields, In fact the results obtained are a function

of the complex frequency. In the low frequency ranges an explicit

expression for the equivalent radius of the cage is”obtained; one

has to sol~reimplicit equations for higher frequencies.

The theory and the concept of the electromagnetic equiva-

lence applied to wire structures, discussed in this note is used

in the future work as a foundation to effectively model hybrid

simulators including their complex feeding generators.
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APPEND IX A

252-73

LONGITUJIINAL $-INDEPENDENT IMPEDANCE CHARACTERISTICS
OF CIRCULAR CYLINDRICAL STRUCTURES

The impedance characteristics of infinitely long circular-

cross-section structures are discussed in detail in reference 20.

A summary of the expressions utilized in the previous sections is

given below.

1. Thin Solid Cylindrical Wire

In figure A-1 is shown the geometry of an infinitely long

solid circular thin wire of radius b. The material of the wire

!C2Shomogeneous characteristics of permeability MYV,permitti.vity

&w ‘ and conductivity atV. The structure is oriented along z-axis

in an isotropic homogeneous medium. Only axial electric current

~(c,s) is assumed to exist and hence only the TM (transverse mag-

netic to z) electromagnetic field components ~y(c,s), ~z(c,s) and

~ ($,s) are present and are symmetric with respect to $-angular

variations..
In the region Y < b, the magnetic vector potential is

= :(L,s) Io(u#)~zm,s) ~

where

(Al)

(A.2)

(A.3)

In the expression (Al), ~(~,s) is a constant which determines the

potential distribution. if displacement currents are neglected

Yw
= [Dwulvs]*. The series axial impedance per unit length of the

salid infinitely long wire is given by

(A.4)
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Figure A-1. Thin Solid Cylindrical Wire
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which is the ratio of the axial electric field to the total axial

current . Using the expressions (2,&a and b) o

(A.5)

10 and 11 are the modified Bessel functions of first kind, zero

and first orders, respectively. In the quasi-static range

IY~[ >> C2, and the axial impedance per unit length reduces to

yIvIo(ytvb)
i;:(s)= ~nb(o (A.6)

+ SEW) I1(Y\Yb)w

For the limiting case of static conditions, s + 0,

(A.7)

(h.%)

(A.9)
e

The infinitely long thin cable wire characterisitcs for a

typical copper conductor olv= 5.65 X107 mho~meter are shown in

figures A-2 and A-3, as a funct-ionof frequency in the quasi-

static range for different radii of the wire. Figure A-1 gives

E;q= real (i~r),resistance of the cable wire/meter length and

figure A-2 gives ~; = imag. (~{V),self reactance of the cable wire/

meter length. As the frequency is increased both ~~Vaqd ~;V

increase linearly on the logarithmic scale. At very low frequencies

~~ approaches zero, while fi/Vapproaches its static value.

Even if the structure is loaded with extra lumped impedances,

it can be included into Z~V(s) of (A.6) and characterized as cer-

tain uniform impedance per unit length as a function frequency.

Whenever external loadings are built into the structure, the

e
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impedance loading due to the material characteristics of the wi:re

is a very small percentage of the total loading and hence can be

neglected. The concept of the impedance definition is based on

the surface impedance in contrast to the sheet impedance defini-

tion discussed in the next section.

2. Hollow Circular Cylinder

The geometry of the hollow cylindrical tube, having a radius

equal to C, is shof~min figure A-4. The thickness of the wall is

neglected and the mat-erial of the tube has permeability u
c’ per-

mittivity cc and conductivity o The tubular structure is
c“

oriented along z axis in an isotropic, homogeneous medium. Again,

only the axial currents are assumed to exist on the outer and

inner surface of the hollow cylinder. Similar to the definition

(A.4), the impedance per unit length of the hollow circular cylin-

der is given by the ratio of the axial electric field ~z(<,s) to

the net total current in the axial direction which is obtained”by
‘(l)(~~s) total‘(2)(~,s) and the inner ~the sum of the outer I

currents,

(A,1O)

evaluated on the surface of the cylinder. According to the

expressions (3.5) through (3.8) and (3.10), the expression (A.1O)

takes the form, after making use of the Wronskin relationship

z
i’(c) =#u: KO(UCC) 10(UCC) (A,ll)

c %

where

u
c = [Y: - L21* (A>12)

Ye = [PCS(OC + CCS)]* (A,13)
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2and in the quasi–stat-it–range ly~j >> c , the axial impedance

~’(s) per unit length of the hollow circular cylinder becomes,

z
ii’(s) = +fYc KO(YCC) 10(YCC)

where &

[1

pcs
z =
Oc a + Ecs

c

(A,14)

(A,15)

Further, the sheet impedance of the cylinder is given by

is(s) = Znci’(s) (A.16)

3. General Solid Cylindrical Wire

In section A-(l), the impedance characteristics of a thin

solid cylindrical wire are discussed with the obvious assumption

that the current on the surface of the wire is uniform with

respect to +-angular variation. Let us consider another c~s,:wi,th

current density ~z($,s) on the surface as a function of angle ~,

but which is independent of the z-coordinate variable. Then in

the region “Y-< b,”figure A.-1,the electric field distribution is

given by,

iz(v,$,s) = ~ ~m(b,m,s) Im(yJVY’)eJm@
m.-~

(A.17)

.

where ~m is the mth Fourier mode coefficient, so that the repre-

sentation (Al) is for the special case of the m = O mode.

According to the expression (2.4zJ and (Z.kb)the current’density

on the surface of the wire is obtained,

(A.18)
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On the surface of the cylindrical wire, we have the surface

impedance boundary relationship, o

iz(b,$,s) = is (s) ~z(b,$,s)
w

(A.19)

Substituting (A.17) and (A.18) into (A.19) and enforcing orthagon-

alit.yof the modes

+JYw,@
2s (s} = Z&v
wm I~(ylVb)

(A.20)

Hence for any given mode excitation m on the wire, the mode sur-

face impedance i
‘Wm

(s) is associated.

4. General Hollow Circular Cylinder

The impedance characteristics of the general solid cylindri-

cal wire can also be extended to the case of a hollow circular
‘(~)(c,~,s) on thecylinder, figure A-2, with the current density Jz

surface 2s a function of angle ,$, but is independent of z- 0
coordinate variable. On the surface of the hollow cylinder, we

have the sheet-impedance boundary relationship,

iz(c,@,s) = 2s(s) p(c,$,s) (A.21)

where the current density is obtained by the difference in the

tangential magnetic field
●

(A.22)

Hence for any given mode excitation m on the hollow cylinder, the

associated mode sheet impedance ~sm(s) is given by

is(s) = ycC Zoc Im(ycC) Km(yCC)
m

(A.23)
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FAR-FIELD EXPRESSION

The @-component of the magnetic “field radiated by the

infinitely long thin solid wire is given by the expression (2.17a),

i ‘;

~

K1(uY)
HO(Y,Z,S) = g(<) egz dcj2nZo 5(?,s)

cc -

(B.1)

In fact–the expression (B.1) reduces to the (2.1’3)for the total

axial current ~(z,s) = 2~b~ (Y,z,s) evaluated on the surface of
o

the infinitely long wire ‘1= b. In the expressi-on (B.1), the

integration is along a Bromwich contour in the C-plane, figure

2.2, and

2
u = [y - C21*

ii(s)= 2~b(o + SE) i(V(S)

and ~~(~,s) as given by the expression (A.5) has the form,

(B.2)

(B.3)

(B.4)

(B.5)

and ~LV(G,S)would be independent

region. Assuming an ideal slice

g(~) + 1.

of C, @.6), in the quasi-static

generator excitation, i + O and

It is possible to obtain the general solution to the inte-

gral (B.1) by closing the contour, figure 2.2, in the left half

of the ~-plane for z + O, but this procedure involves some

numerical work. However, as y + 0, in the far-field region, an
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explicit expression for ~ (Y,z,s) can be obtained based on the
@

saddle-point method of integration. 13,14 lYiththe substitution o
i =q!+j~’’, ~’=Oand Y= jP, the integral (B.1) reduces to

the form discussed in reference 14 and hence we have for z > 0,

and

I=Vy” K1(uY’)
$(Y,Z,S) e‘j~”z dq,,

2TZ0
-m 5(C’’,S)

2u = jv = j[p
- V’21*

(B.6)

(B.7)

In the far-field region as Y + ~,15

The saddle point Lo is obtained by solving the equation obtained

from the exponent of (B.8),

--&w +’ ~’lz 1L“=L; = 0 (B.9)

o
The expression (B.9) yields C; = p sin(a), with the proper substi-

tution Y = r cos(a), z = r sin(a) and 6 = 90 - a where r and 0 are

the spherical coordinate variables and a is the angle measured

from z = O plane, figure B-1. Calling the exponent term in (B.9)

as

f(c”) = -j(v’#+ ~“z)- (B.10)

and at ~“ = c“o

f(c”) ~?f=g,,= -jp(~ cos(ci) + z sin(a)) ‘ (B.11)
o

In the neighborhood of the saddle point C“ = L:, f(~”) can

be expanded in a Taylor series,

— .
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Figure B-1. Coordinates for Far-Field Calculation
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f(c) :
[

-j P(’?cos(a) + z sin(a)) -
v

(z” - <:)2] (B.12)
p cos3(d o

Hence, according to the expression (B.12) the path of the saddle

point integration is obtained by forcing the imaginary part of

(B.12) to be constant along the path. With the substitution

L71-<:= R ejdl andp = IPI ejaz, the path of the saddle point

integration is given by the imaginary part (Ire)as

[1Im -jp (Y Cos(cx)+ z sin(a))

and (B.13) is satisfis+ionly when

constant

(B.13)

(B.14)

The expression (B.14) yields (61 - 62) = fTr/4. Only the positive

value of (61 - dz) = m/4 represents the correct slope of the inte-

gration path through the saddle point g: = p sin(a), whic~lis also

obvious from the further transformations used in reference 14.

Chznging the variable of integration C“ in the expression (B.1)

to T by the transformation L“ = p sinT, and ~ = al + ja2, the

s~.dcllepoint is located at al = a on the real axis of the complex

~-plane. The reader may refer to reference 21 for the complete

details of the various transformations from C“-plane to ~-plane

and the paths of the integration”. Hence the expression (B.8) can

be written as

In the far-field region, the expression (’B.1)for fi$(y,z,s)

becomes,
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Most of the cent-ribution to the integral (B.16) comes from the

vicinity of the saddle point ~ = a, and with the approximation

ejT/4 the expression (B.16) reducesCos x : 1- x2/2, and~ - a = >

to,

15and th-eintegral in (B.17) as r + ~, z + ~,

Hence H6 (r,a,s) in the far-field region has the form

1
~-y r

fib(r,a,s) ~. —
o L(y,a) r

where the denominator term is

= y COSO.Ko(yb COSa) + fi(S)Kl(yb COS~)

where ~(s) is defined in the expression (B.4).

(B.17)

(B.18)

(B.19)

(B.20)

We note that ~(s) in the expression (B.20) holds good only

in the quasi-static frequency ranges, or when the wire is loaded

uniformly by external impedances, For very large frequencies

fil(s)in (B.20) should be replaced by h(C~,S) where
*

ii(g;,s)= ii(c’’,s)
~“=c~=-jysina

(B,21)
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APPENDIX C

DIFFERENT FORXS
13

OF ‘THEEQUIVALENT-RADIUS EXPRESSIONS
THE QUASI-STATIC!LIMIT

It is interesting to note the different forms of the equiva-

lent radius
1-3 of a circular wire cage derived in quasi-static

limit are one and the same, and check with the result obtained in

section IV, In the earlier studies,

(i)

(ii)

a cage consisting of conical wires equally spaced over

surface of a cone is studied, and compared with respect

to a solid cone of same characteristic impedance so

that there is only a transmission line mode excited,
1,10

expression (4.8)

an equivalence between a single charged conductor and

number of equally spaced concentric charged conductors
3

is studied based on conformal transformation, expres-

sion (4.8)

(iii) a wire cage antenna consisting of closely spaced paral- 0
lel and identical conductors placed around a circle is

compared to a single conductor antenna, so that the

total axial assumed current distribution is approxi-
2

mately the same, expression (4.7)

(iv) far-field equivalence of the canonical infinitely long

circular wire cage and hollow cylindrical antenna

structure, section IV, expression (4.7).

In the following, the expression (4.7) for the circular wire

cage equivalent radius
.

l/Ny(c) = [aA1,2Al,3...Al,N]
eq

o
(Cl)

is showntobe equivalent to the expression (4.8)

. -. -.
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(Cl)

—-. ...—

J;)
~N l/N

o—=
A HT

with respect to

— .. -.. .—

(C(2)

Normalizing A,

~(c)

[

l/N
aAl,2Al,3”””Al,N

AN 1

- eqo
-= (C”.3)

(C.4)

f-l

isdistancethe mean

(C.5)

defined

‘1,2A1,3”””A1,N
---”’”AK-l

2,3 ,...,N, arevarious inter-chord distances A
I,n’

in (2.30).
‘n ‘~~bstituting ‘ljn into ““5)

(2A sin~) (2A sin%). ..(2A sin(N~l)T)
R=

#-l

(C.6)
2N-I ‘-1= rr sin(~)

n=l

have the product expression, 22

~ ~ N-1
sin(Nx) = 2 - ~ sin(x +

But

(C.7)

(C.6)

n“=”l

from and (C.7)’

R= sin(Nx)
sin(x) X+o

= N COS(NX)
Cos(x) X+o

‘N (C.8)
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