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Abstract

The electromagnetic equivalence of an infinitely long loaded
wire~cage structure and loaded hollow cylindrical geometry is
established based on the same radiated fields under identical con-
ditions. Analysis of the canonical infinitely long loaded wire
geometries are given by treatment as boundary-value antenna prob-
lems. An expression for the equivalent radius of the wire cage
and an equivalent impedance-loading function are obtained, includ-
ing fregquency dependence.
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I. INTRODUCTION

The electromagnetic equivalence of radiating objects has
been a subject of study for a long time by many investigaﬁ:ors.1-3
This yields a simple equivalence corresponding to a complex radi-
ating structure based1bn 2 pred;finéd eiectromagﬁetic equivalencer
criterion. Tﬁe gquestion of equivalence criterion may be defined
according to the same total radiated fields, or the same total
current induced, or even the same effective impedance(s) of the
geometries under equivalence study. There does not appear as yet
to be a unique equivalence criterion one may establish; it entirely
depends on the specific need and its application. In this paper,
the field radiated by the structure is taken as the basis for com-
parison and for establishing electromagnetic equivalence. o
Even though the question of electromagnetic equivalence is—
basic in nature, the motivation for the present investigation is
to come up with suitable modeling for hybrid EMP simulators.4 In
figures 1.1 and 1.2 are shown examples of wire cage hybrid simula-

5,6 A straightforward

tors with complex bicone feed structures.
analysis in a given frequency spectrum is quite complicated. Hence
a systematic modeling of the conical feed and generator, wire cage
hybrid simulator, and the transition region between the conical
feed and the simulator is required.7 -
This note is primarily concerned with the development of a
theory for equivalent electromagnetic properties of a wire cage as
compared .to a hollow conducting cylinder. Wire cage structures
have been extensively used in the design of hybrid simulatorss’6
from the practical standpoint of lower structural weight, lower
wind resistance, ease of construction and erection at the experi-
mental sites. The exact analysis of the wire cage hybrid simula-
tor is very complicated; one has to suitably model it to simplify
the analysis. The reader should note that the wire cage by itseldf’
is inadequate to model a hybrid simulator since certain parts of

it involve conducting conical, cylindrical, and other transition

sections which are physically quite different from a wire cage

(and desirably so, for improved performance).
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The subject of electromagnetic equivalences as applied to .
wire cage models is previously studied by Schelkunoff,l King,2
and also recently by Baum,3 to obtain an equivalent radius. The
results obtainedl_B are in principle applicable to only perfectly
conducting wire cages in the limit as frequency approaches zero.

In one study1 a cage consisting of conical wires equally spaced
over the surface of a bicone is studied, and compared with respect
to a solid cone of same characteristic impedance so that there is
only a transmission line mode excited. In the limit as the cone
angle becomes small, the result of the effective radius of the

cage is the same as the one obtained in reference 3 which is based
on conformal transformation; an equivalence between a single
charged conductor and a number of equally spaced concentric charged
conductors is thereby derived in the static case. A different
approach is studied in reference 2 wherein a cage antenna consist-
ing 0% closely spaced parallel and identical conductors placed
around a clrcle is compared with respect to a single conductor
antenna, so that the total axial assumed current distribution is .
approximately the same in both cases.

This note considers various, but comparatively more accurate,
alternative analyses of the impedance loaded, infinitely long
cylindrical models which can be used as substitutes to the complex
wire cage structure having the same electromagnetic field proper-
ties. The question of electromagnetic equivalence of wire cages
(both circular cylindrical and circular conical) used in hybrid
(and other) simulators as compared to a cylindrical solid wire, a
cylindrical cage of strips, or a hollow circular cylinder with
complex impedance loading functions is investigated in a larger
perspective, based on the detailed analysis of the infinitely
long canonical geometries with uniformly loaded impedance func-
tions, treated as boundary value problems. These in general fit
into the category of boundary connection supermatrices8 for the

radiated fields.
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II. ANALYSIS OF INFINITELY LONG CANOVICAL THIN WIRE ANTENNA
GEQMETRIES

An analysis for electromagnetic radiation by two-dimensioral
uniformly loaded structures is treated as a boundary value problem.

The following antenna geometries are.considered below:
1. Infinitely long loaded wire antenna (thin)

2. Infinitely long loaded wire cage antenna and its
special case of an infinitely long loaded circular
cylindrical wire cage antenna

3. Infinitely long loaded hollow circular cylindrical
antenna
Integral expressions are derived for the current induced and
the corresponding fields radiated for the above canonical problems.
Using saddle point integration, the electric and the magnetic far
fields and the asymptotic solution for the induced current are

evaluated. ' : : o
Al Infinitely Long Loaded Wire Antenna

". ) An infinitely long thin wire is oriented along the =z
axis in a free space 1sotrop1c homogeneous medlum The radius of”
the cross section of the wire is b and it is excited by a source
generator of voltage V(s) across a gap of width 2d centered at
z = 0 as shown in figure 2.1. The electric and the magnetic fields
lradiated into the surrounding medium are calculated from the
induced electric current T(z,s) on the wire, which can be obtainad
by solving the boundary value problem9 and enforcing the impedance
boundary condition on the surface of the wire. Due to the symmetry
of the problem and nature of excitation, the radiated electrlc field

E(v Z,s) and magnetic field ﬁ(v Z,8) are obtained by

B(Y,z,8) E(Y,z,s)
= & R (2.1)
3 213 J¢ 3
f(y,z,8) ¢ vz,
. - - -
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Figure 2.1. Infinitely Long Thin Solid Wire Antenna
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‘. where iﬁ(‘%’,;,s) and %(\P,C,s) are the spectral distributions of the
corresponding electric and magnetic fields.
In the present analysis, the following Laplace-transform
definitions (two-sided) are followed for the time variable t and

the space coordinate variable z,

Lapiééér
(t,z) e (s,z
Transform N
Fl(t) Fl(s)
Fo(z) Fo(Z) -
Fa(t,z) BRI CHD
B (s) = f P (t) 7St gt | (2.22)
Fo(z) = j Fo(z) e o7 dz (2.2b)
—C0 g . o
t" which have the corresponding inverse Laplace transforms
_ i ' ~ st ‘;7
Fl(t) = —271_—3' JC Fl(S) S ds (2.4.40)
Y
F,(z) = 5= F,(z) "% dz (2.24)
2 2mj C ~2 e
C

where C and C, are the contours of integration in the s- and z-

complex planes as shown in figure 2.2.

At any point P, there exists only the z-component of

the magnetic vector potential,g’ll .

HE
{

v

1 : ¢
— dg (2.3)

~ _ ~ ’ z
A (Y,z,8) = 5n3 jc F(b,z,s) K (u¥) e
4

from which the radiated electric and the magnetic fields can be

obtained as
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% S 82 2 T S 82 T "
(?:Z:S) = '_—<———— - ) + == = A (W,Z,S> (2.4&)
Y2 az2 z Y2 a¥gz VY Z i
Sy o oo . 13 =
B(Y,z,s) = - S 57 8,(¥,27,8) i¢ (2.4b)
In the expression (2.3), 7
2 - 2.% A
u = [y° - ¢%]® (2.52)
and the cylindrical radial coordinate
1
v = [x% + y217 | (2.5b)

Ka is the modified Bessel function of the second kind, zero order,

and the propagation constant is

vy = [su(o + se)]

[N

(2.5¢)

JK (2.54)

where u, €, and o are the permeability, permittivity, and the con-
ductivity of the homogeneous medium. The-spectral term ?(b,;,s)
in the expression (2.3), is the term proportional to the Laplace
transform of the induced electric current T(z,s) on the infinitely
long wire. In the above spectral representation, an eSt+cZ field
variation 1is assumed, s being the two-sided Laplace transform
variable. The infinitely long wire is sufficiently thin to satiéfy'

[vb] << 1 | . (2.6)ﬁ

so that no internal modes are excited.

The spectral term ?(b,c,s) is to be determined based on
enforcing the following impedance boundary relationship for the
tangential total electric field on the surface of the wire. The
infinitely long wire is excited by an idea1 source generator of
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voltage %(s) across a gap of width 2d. Within the gap the z com-
ponent of the electric field is specified to have the variation .
—%(s)/2d. Hence, on the surface of the infinitely long thin wire,

the induced electric current E(b,z,s) and the electric field

Ez(b,z,s) should satisfy,9
. 5 . .
B, 0,2, = (- L8 ) pyz) + B 10o,2,0) (2.7)
where
pylz) = 1, lzl < d
=0, |z] > d

In the above expression, 2&(5) is the series axial impedance per
unit length of the infinitely long loaded wire. In this analysis,
the impedance function ié(s) has the definition of impedance per
unit length which is the ratio of the tangential electric field to
the total current along the axial direction. This impedance func~
tion includes a contribution due to the lossy characteristics of .
the wire in addition to the externally introduced loading terms.
Depending on the cross section of the wire geometry, complex s
dependence may arise at very high frequencies. In Appendix A, the
series impedance 2&(5) per unit length is discussed for certain
geometries. However, with large extermnal loading, the contribu-
tion due to lossy material of the wire can be ignored for all
practical purposes. , o ] 7

In terms of the transformed spectral quantities, ther

boundary relationship (2.7) becomes, with the following source

function expansion, ' *
540) oy - 52 ], o 4
o C
Z
_ sinh(zd)
Q(C) —TEET*" (2.8b)

+~ 1, as |zd} » 0

244



252-12 . _ - _ L L , EMP 1-27

and hence,

I

E,(b,Z,s) = -V(s) G(z) + Z!(s) 1(b,z,s) (2.9)

According to the expressions (2.1), (2.2d),'(2.3), and
(2.42), the z component of the spectral electric field is

~ s 2 -~

E (Y,5,8) = - = u"K_(u¥) F(b,z,s) (2.10)

~Z 2 (o} ~

Y -

The induced electric current along the infinitely long wire is
obtained as a line integral of the ¢ component of the magnetic
field (2. 4b) evaluated just outside the surface of the infinitely
long wire,

¥ Ny deé (2.11)
¥=b

i(b,z,S) = -

=

|

jzw aﬁz<v,z,s)
$=0

The electric current has no ¢-angular variation, and using the
expressions (2.1), (2.2d), (2.3), and (2.4b), the spectral distri-
bution of-the electric current is

4

I(b,z,s) = % 2nbuk, (ub) F(b,z,s) (2.12)

M

where Kl is the modified Bessel function of second kind, first
order. As pointed out earlier, the term g(b,;,s) is proportional
to the transform of the electric current. -
On substituting the expressions (2.10) and (2.12) into
the impedance boundary relationship (2.9), the express;pn for the

spectral term f(b,c,s) is obtained as,

~ ~ 2 G(g) -
F(b,z,s) = ¥(s) - ——n (2.13a)
- ub(z,s) :
where i'(s)
D(z,s) = uK_(ub) + 27byK,(ub) ‘E (2.13b)
(o] -
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and the characteristic impedance of the medium is .
3
- su__|®
ZO = [G - sa] (2.13c)

Hence from the expressions (2.2d), (2.12), and (2.13a), the total
induced electric current on the infinitely long loaded wire antenna

has the distribution,

. 3 K, (ub)
fz,8) = KB [ gp) 2 o2 (2.14)
Yo fc, T D(z,s)

In fact one can verify the expression (2.14) for the
special case of a perfectly conducting, %&(s) = 0, solid c¢cylindri-
cal antenna. Assuming the source to be an ideal slice generator,
the electric current on a thin solid perfectly conducting infinitely

long antenna12’13 is given by,
TPC = 7 -
I (Z;S) I(Z:S) ZI<S)=O
W
K, (ub)
o 1
- V({s)yb m eCZ dr (2.15)
Jjz o
o CC

Since ?(b,c,s) is known from the expression (2.13a),
the z component of the magnetic vector potential defined in (1.3)

takes the form

. > 2 K (u¥)
B (v,z,s) = Y2l L f G(z) —=——e"% at (2.16)
™ c, T ud(z,s)

It is now possible to calculate the electric and the magnetic
fields as defined in the expressions (2.1) and (2.4), and using

the expression (2.13a), we have the spectral fields

246



252-14 EMP 1-27

E,(¥,2,s) |
= [y] (2.172)
ZH, (4,2,9)

where [M] is a vector for the infinitely long thin wire antenna

—~

and represents the spectral distribution of the radiated fields,'

My

[;\j] = (2.17b) B

M

~

where the elements of the above vector are,

- - uKO(uW)
My = =V(s) G(§) —— (2.17c)
D(z,s)
and ) N YKl(uW) -
My = V(s) G(z) —— (2.17d)
B D(z,s) '

Due to the symmetry of the structure and its excitation, the fields
are independent of ¢é-angular variations. The general solution to
the radiated fields (2.1) is difficult by direct analytical methods,
where the integration is to be performed along the contour CC in
the complex r-plane, figure 2.2.

If the far-field distribution is the quantity of inter-
est, it is possible to obtain explicit expressions for the varicus
field components defined in (2.1). A classical approach is based
on the saddle point integration,13 and using this technique, the
radiated far fields of the infinitely long perfectly coﬁducting
wire antenna are obtain in reference 14, and are extended to —
infinitely long loaded wire antenna structures conveniently; a .
summary of the procedure of the saddle point integration method to
obtain far field distribution of the ﬁ¢(W,z,s) as ¥ - « is given'in
Appendix B. Hence asymptotically as ¥ = «, the integral expression

(2.1) reduces to the following forms:
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. ~ ~yr
E (r,a,8) v - V(ZS) oSt e (2.183,).
Li(y,a)
. > ~yr
ZH, (r,a,8) v ‘gf) 1 = (2.18b)

il(Y:a)

where o = 90 - 6 and Yil(y,a) is defined in Appendix B and repeated
below for future usage

il(y,a) = cos(a) KO(Yb cosa) + El(s) Kl(Yb cosa) (2.18c¢)

2y (o)

Z
o]

ﬂl(s) = 271b (2.184d)

In the expressions (2.18), r and 8 = 90 - o are the spherical coor-
dinate variables, while o is the angle measured from z = 0 plane,
figure B-1.

In a similar way, it is possible to obtain an asymptotic
solution for the total axial current f(z,s) as given in the expres—
sion (2.14) or one can evaluate ﬁ¢(w,z,s) on the surface of the

infinitely long wire in the limit as z + « ,14

f(s) u Zﬂbﬁ (¥,z,s) as z +~ o« (2.192a)
@ W=b+

To evaluate ﬁ¢(?,z,s) on the surface of the wire structure ¥ = b
for large values of z, it is necessary to restrict the radial dis-—
tance r and angle a so that b = r cos(a), and we have z = r gin(a).
For o« = 7v/2, z =~ r so that in (2.18c) the arguments of the Bessel
function can be replaced by vb cos(a) = sz/z. Hence the expres-—
sion (2.18a) yields

W%(S) e V2

E(s) ~ >

5 - 5 as z + «©
0 K (1b7/2) + [By(s)z/b] Ky (157/2) (2.190)
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As z takes on larger values, sz/z is very small. The modified

Bessel functions can be replaced by their small argument approxi-

mation,15 o -

K (z) = -in =& | (z.isc)

5
K (z) = = (2.194)
1 Z T
I = 0.5772... | (2.19¢e)
and (2.18b) simplifies to
2oy . TV(S) Y7 | o
fes) v I — _ - |
o -in(Tyb™/2z) + [hy(s)Y/b](z/YDb)
_ mv(s) e 'Z (2.19%)
Zo  -fn (Tyb2/2z) + 2 (7] (s)/2,1(2/¥b)”
as Z > W
B. Numerical Results: Far Field

The infinitelyvlong thin-wire loaded antenna has been
analyzed in the previous section, and the integral expressions for
the induced electric current, and the radiated electric and mag-
netic fields have been derived. The reader may refer to references
16 and 17 for further discussion and solution of the integral
expression (2.15) for the induced electric current. As stated
earlier, direct analytical solutions for the radiated fields,
expressions (2.1) and (2.17), are complex unless one resorts to
numerical techniques.18 Further, based on the saddle point method,
explicit expressions (2.18a, b) have been obtained in the far- )
field region for the radiated fields.

In figures 2.3 through 2.6 are shown the numerical
results of the distribution of the radiated far fields. These are

appropriately normalized with respect to (e-Yr/r) and %(s) =1 is

249
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assumed. In figures 2.3a and b are shown the magnitude and phase .
of ﬁz far field distribution as a function of observation angle o

for different values of |yb| = %? (y = jK) and for a fixed value

of loading Z&(s) = 50 + jO. The same results are obtained in

figures 2.4a and b for i Figures 2.5a and b indicate the mag-

nitude and phase of Ez fgr field distrivution as a function of «
for different values of the impedance loading Z& for a fixed value
of |yb|] = 0.01. The same variations are given in figures 2.6a and
b for ﬁ¢. The results thus far obtained are useful to analyze

infinitely long parallel cage wires.
C. Infinitely Long Loaded Wire Cage

The analysis of the infinitely long loaded wire antenna
as discussed in section II-A, can be similarly extended to infi-
nitely long multiple parallel loaded cage wires. We shall first
discuss the general prcblem and later specialize to a circular
cylindrical wire cage;

A set of infinitely long loaded thin wires are all '
oriented parallel tothe z axis in an isotropic homogeneous medium .
as shown in figure 2.7. There are N parallel wires of radius ans
n=11,2,3,...,N which are located at (Wn,¢n) with their axes dis-
placed at least a few radiil apart. The respective parallel wires
are excited by source generators of voltage %n(s) across a gap of
width 2dn, 21l centered at z = 0. If In(z,s) is the induced axial
current on the nth infinitely long thin cage wire, at any point P
in the medium the z component of the magnetic vector potential is

given by the superposition of the individual wire contributions,2

-~ N ~
Aéc)(?,z,s) = Zl A, (%,2,8) (2.202)
n= n .

where the superscript ¢ refers to the cage wires and referring to

expression (2.3),

A (v,z,n) = 5= jc F (a,,t,8) K (u]¥ - ¥ ) e dr  (2.20Db)

Z 2% ]
g | @

n
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in which .

=[x - 2%+ v -y (2.20¢)

and the term En(an,c,s) is proportional to the Laplace-transform
of the corresponding induced electric current on the nth wire.
Again it 1s assumed in(z,s) has no angular variations and for each

of the n wires
lyanl << 1, n=1,2,...,N (2.21)

so that no modes internal to a wire are excited. The electric and
the magnetic fields for the wire cage structure are obtained by
the expressions (2.4a,b) with Ez replaced by Agf). Since each of

the cage wires is excited by an ideal gap of width 2dn, within

each gap the electric field varies approximately as -V (s)/Zdn,

similar to the expression (2.7}, the electric current I (a ,Z,8)

and the scattered electric field E(C)(u z,s)} should satlsfy the .

following impedance boundaxry relatlonshlp,

~(c) . '%n(s)

EZ (W:Z)S).— - —"2—87;—- pd (Z) (S) I (a‘ S) :
at ¥ = @’n (2.22)
n=1,2,3, , N

where
Py (z) = 1, lz] < d, .
n
=0 , lz] > d]

and 2& n(s) is the series axial impedance per unit length on the
nth cage wire (Appendix A). 1In terms of the transformed quantities,

the impedance boundary relationship (2.22) becomes
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=(c), _ =, o ‘
" E, T (¥ ,0.8) = <V (s) Gu(z) + 2y ((s) T (ag,n,s) (2.23)
n=1,2,3,...,N
According to the expressions (2.1), (2.2d), (2.4a), and (2.20), i
the z component of the spectral electric field is
B_(v = I§ S Wk ¥ -¥ ) F
_vz(‘n:c:s) - =1 - Y_Z" u O(ullyn - ml) E‘m(am>c:s) (2'24)

Similarly, the induced electric current along the nth infinitely
long cage wire is obtained from, referfing to expression (2.11),
-~ "
. o BAZ (¥Y',z,s) .
I(a_,z,s) = f

iyt n ’
gz 57 I

(2.25)

where Y' and ¢' are the local cylindrical coordinates about the
axis of the nth wire.

Assuming fn(an,z,s) has no ¢' angular vari-
ations and the cage wires are placed at least a few radii apart,
the expressions (2.1), (2.24), (2.4b),

and (2.20) yield,

-t

b = = T Y
I(a,,t,s) ™ 2ra ukK (ua, ) F (a,,C,s)

(2.26).
On substituting the expressions (2.24) and (2.26) into the impe—;

dance boundary relationship (2.23), the following expression is
obtained for determining ?n(an,;,s),

N
s .2 + ~ =
m£1 "z WK (uf¥ - Y ) Fo(a ,t,8) = =V (s) G ()
~ 1 - 5
+ Z&,n<s)[ﬂ 21z uK, (ua_) gn(an,c,s)} (2.27)
n=1,2,3,...,N

This forms a setof linear simultaneous equations and the spectral
term Fn(an,c,s), n=1,223,..

.,N can be determined as the solution
"’ to the following matrix equation
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where the matrix elements are

IS 1 T T

Syp = U Ko(u[vn ~ vm[) , n#m (2.28b)

: 2 Zy 5 (S)

§nm = u Ko(uan) + 2ﬂanuyKl(uan) ——3;7~— , n=m (2.28¢c)
and L sinh(zd,) .2

The matrix equation (2.28a) yields the solution

= z -l
q-BE

The current on each cage wire is obtained from (2.2d) and (2.26),
and the magnetic vector potential obtained by substituting the .
result of (2.28) into the expression (2.20). Thus the radiated

fields are obtained from the expressions (2.4) and (2.20).

D. Infinitely Long Loaded Circular Cylindrical Wire Cage

The general problem discussed in the previous section
is specialized to a circular cylindrical wire cage. Suppose all
the N wires are placed along the circumference of a large circle
of diameter 2A and distributed uniformly around the circumference.
If the cirecular wire cage consists of identical wire geometries,
figure 2.8, which are fed from identical source generators, the
matrix equation (2.9a) simplifies into a diagonal form.

Referring to figures 2.7 and 2.8, let

?(s) =V (s) source voltage across each gap

24 = 2dn width of each gap
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a = a, radius of each cage wire .
i(c) (s) = 7! (s)/N axial series impedance loading of
w w,n N .
each cage wire per unit length
for n = 1,2,3,...,N

Under these symmetrical conditions, the spectral func-

tions gn(an,;,s) are all the same, i.e., F1 = ?2 = §3 = . o= EN

~

(=§(C)(a,c,s)). Hence the induced electric current on each of the
cage wires is the same, fl(z,s) = Tz(z,s) = TB(Z,S) = v o= TN(Z,S)
(= i(c)(z,s}/N). Applying these relationships for the concentric

wiré cage, the expression (2.28) yields the solution,

- . 2 G(z)
7 a.r.s) = ¥(s) %?"f:“‘“‘ (2.302)
- uB(zg,s)
where ) ? ééc)‘(s)
B{(z,s) = ju K (uA Y; + 2mayk,(ua) —p—— (2.30b)
~ ne1 © I,n 1 Zq
comparing the expressions (2.13b) and (2.30b), the summation in . .

(2.30b) accounts for various mutual interactions and the factor

Al n is the inter-chord distance from wire 1 to wire n given by,
Al,n =g , n=1 (2.30¢)
- @n[ , n=2,3,...,N - (2.304d)

Since the angle between any two consecutive wires is 2rn /N, the

inter-chord distances (2.30d) can be written as

A n = 2asin[g (@ - D], 1n=2,3.. N (2.30e)

Hence the current on each cage wire is cobtained from the expres-
sions (2.2d), (2.28), and (2.302a),
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- ' b , K (ué) .
£ 1%a,z,5) = Ughe J G(g) ——— %% qz (2.31)
J%q c. - B(z,s)

and the corresponding magnetic vector potential is obtained by -

substituting (2.30a) into the expression (2.20),

N > -
S e e e Z Ko(ul\y - \gm’)
iy, z,5) = ¥(8) ¥~ a(z) | B=L e®? dar
z 213 s o - uB(z,s)
z 2ts, (2.32)

The electric and the magnetic fields can now be written using the

expressions (2.1), (2.4), and (2.32) in spectral form as
%éc>(‘¥:§:s> . T
=),y
ZOI:-IQb (*’C>S>

where [Q] 1s a vector for the circular cylindrical wire cage

antenna and is given by

[:é:l = (2.33b)
and the elements of the vector are,
N -> >
) 3 21 uKo<u]w - wmz)
Q, = -V(s) G(z) { v (2.33c)
. B(z,s) .
N
L YK (ul¥ -9 |)
Q, = V(s) c(z){ o=t - - [—9— (¥ - ¢ l)} (2.33d)
29 3 Bz.s) av m
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Again we have difficulty obtaining general solutions
for the fields (2.33a), since the integrations are to be performed

along the CC

contour, figure 2.2. But in the far field region as

¥ + o, the expressions (2.33) reduce to simpler forms (Appendix

B) based on the saddle-point integration method.

Hence for the

infinitely long circular wire cage structure, in the far field
region the electric and the magnetic field components are obtained

as (figure B-1),

- v -Yr
Eéc)(r,a,s) ~ V(s)ifos(u) er Cf
Lz(Y ,Cﬂ)
. o -Yr .
72 8 (r,0,8) o~ YEL L& &
© Ly (Y,0)

where the cage factor is

Cf = NIO(YA cos{a))

I 1is the modified Bessel function of the first kind,
r and 8 = 90 - o are the spherical coordinate variables.

above expressions

- N
Ly(Y,®) = coso )

n=1

~ ﬁéc)r(s)
hz(s) = 2Tg ———Z;—~—

E. Numerical Results: Far Field

Ko(yAl’ncosq) + hz(s) Kl(Ya CcOS0. )

(2.34a)

(2.34b)

(2.34c)

zero order,
In the

(2.34d)

(2.34e)

In section II-C the infinitely long loaded wire cage is
analyzed, while the specialization to the circular wire cage is
given in section II-D alcng with the expressions for the induced

electric current, radiated fields and far-field distributions.
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In figures 2.9a and b are shown the magnitude and phase
of the Eéc) far-field distribution as a function of observation
angle o for different values of the loading iéc)' and for a fixed
value of KA = 1.0, Ka = 0.01 and number of cage wires N = 12,

The same variations are given in figures 2.10a and b, but for the
far-field ﬁéc). Similarly in figures 2.11la and b are shown the
magnitude and phase of—the Eéc> far-field distribution as a func-
tion of angle o for different number of cage wires N and fixed
impedance loadings 2&0)' = (50 + jO) @/m. Further, the figures
2.12a and b give the distribution of the corresponding ﬁéc> of the
far field.
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III. INFINITELY LONG LOADED HOLLOW CIRCULAR CYLINDRICAL ANTENNA
The analysis of the hollow cylindrical structurele’17 is
slightly different from the previous cases discussed wherein the
wire antenna structure is assumed as thin, so that the fields
inside the wire can be completely neglected. This is particularly
true with the case of solid thin-wire structures.l3 But when the
radius becomes large, one has to analyze both the external and the
internal regions separately and enforce the relevant impedance
boundary condition on the surface of the hollow cylinder. It is
assumed the cylinder wall is very thin and for all the mathematical
considerations, the thickness of the wall can be neglected. The
material of the wall of the hollow cylinder is lossy and homogene-
ous and can be characterized in terms of a uniform sheet impedance
(Appendix A). Even with an external impedance loading function
introduced, the concept of the boundary condition is based on a
uniform sheet impedance in contrast to the surface impedance con-
cept utilized in the previous sections.

The infinitely long hollow cylinder is oriented along the z
axis in an isotropic homogeneous medium. The radius of the cylin-
der is C and is excited by a source generator of voltage %(s)
across a gap of width 2d centered at z = 0, as shown in figure 3.1.
The medium characteristics (u,c,0) are the same both for the inter-
nal region 1 and the external region 2. The z component of the

magnetic vector potential is given by, in region 1,

(1), - 1 o . zz
A (¢,z,s) TnT c F,(C,z,8) K (uC) I,(u?) e dg
C -
¥y < C . (3.1a)

and in region 2,

Z

<(2),, _ 1 ~ N L o
A (Y, z,8) T3 c Fo(Chz,s) I (uC) K (u¥) e dg 7
z

vy > C ‘ : (3.1b)
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Figure 3.1. Infinitely Long Loaded Hollow Circular Cylindrical
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where Io and Ké are fhe mddifiéa Béééel funct}ons of first and
second kind, zero order. The spectral terms fl(C,q,s) and
gz(c,c,s) are proportional to Ehe Laplace transform of the net-
electric current [gz(C,C,s) + Il(C,c,s)} of the external and
internal surface of the hollow cylinder. Again electric and mag-
netic fields in the regions 1 and 2 are obtained by substituting
(3.1) into the expressions (2.1) and (2.4). The tangential elec-
tric field ﬁz(?,z,s) at th? wall surface 1s continuous, while the
tangential magnetic field Hé(?,z,s) is discontinuous to the extent
proportional to the difference of the external and the internal
surface currents. Hence we have the following impedance boundary

relationship

E;l)(c—,z,s)

ﬁéz>(c+,z,s)

Vis)
Za

pa(z) + 2'(s) [120(cT,z,8) + I1)(c,z,8)]
(3.2)

where i'(s) is the impedance loading function per unit length of

the infinitely long hollow cylinder,

71(s) = (3.3)

and is(s) is the sheet impedance in ohm of the hollow cylinder .
(Appendix A). In terms of transformed variables the boundary

relationship (3.2) becomes,

EiM(c,z,s) = BPctg,9)

L

= -V(s) azy + z'(s) [1®)(c™,0,s) + TM (e, 8]
(3.4)

Referring to the expressions (2.1), (2.2d), (2.4a), and (3.1) the

z component of the electric field is given by,
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?;l)(?,g’S) = - ;/% uzKo(uC) I (u¥) E’l(c,g,s) (3.52) .
¥ < C
and
Eéz)(?:i:s) = - j% u210<uc) K (u¥) EZ(C,c,s) (3.5b)
¥ > C

Further, the external and the internal currents on the hollow
cylinder using the expressions (2.1), (2.2d), (2.4b), and (3.1)

are obtained as

il

=i e

1),z ,9) 27Cu I_(uC) Ky (uC) F,(C,z,s) (3.6a)

itcm,z,s) 2rCu K_(uC) I;(u0) F1(C,2,8) (3.6b)

on substituting the expressions (3.5) and (3.6) into the boundary

relationship (3.4), we have

F,(C,z,s) = F5(C,5,s)
- v2 G(z)
uP(z,s)
where
- - Z'(s) 1 .
P(z,s) = uI_(uC) K, (ucC) + 2mCy 7. [uC] (3.70)

Hence the electric current on the internal and the
external surface of the hollow cylinder is obtained fro& (2.2d),
(3.6), and (3.7) as,

%(ﬁ)YC KO(uC) Il(uC)

LZ .
37 e dz (3.8a)

E(l}(c,z,s) =

JC G(z)

°© z

P(z,s)
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Io(uc) K (uC)

o 1) (c,z,8) = L[ o) e*? dz  (3.8D)
jz c -

o . ?(C,S)

The net total current flowing on the hollow cylinder, with the -

assumption of current flowing in the z direction as positive, is
12 (c,z,s) + 11(c,z,9)1, ' ~

1P c,z,s) = L) J G(z) ——— "7 dz (3.8¢)
C

7€7f77 uP(z,s)

Since the surface current density is independent of ¢, it is
obtained by dividing the expression (3.8c) by the circumferential
length 2rC. The z component of the magnetic vector potential in
the regions 1 and 2 is obtained by substituting the spectral term

(3.72) in the expressions (3.1la,b), —

. > 2 . E_(uC) I (u¥) ,
A;1>(?,z,s) = %;?) - f G(g) =— -9 e%? 4z (3.92)
" c, uB(z,s)
‘I" ‘ ¥ < C
N -~ 2 I (uC) X_(u¥) :
i (v,z,8) = H2 L f e(g) 22 &% ar  (3.9b)
’ o uP(z,s)
¥ > C

The electric and the magnetic fields radiated are obtained
using the expressions (2.1), (2.4), and (3.9b) in the regions 1

and 2 in the spectral form as,

B2 v,,8)
- [%<1:2{[ (3.102)

=(1,2) N

where [@<1’2>] is the vector for the infinitely long hollow cylin-

drical antennsa,
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p—

-(1,2)]
TR o
{%(1’25} = : (3.10b)

N w+(1,2)
¥s

and the elements of the vector have the form

uKO(uC) IO(uWL
qu(uC) Ko(u?)

782 = ¥s) 6(o) - (3.10¢)
P(r,s)
-YK,(uC) Il(u?)q
- . yI_(uC) K,(u¥)
wél'z) = (s) () —2 1 J (3.10d)

P(z,s)

As ¥ - «», the field expressions can be reduced to simpler forms in

the far field region using the saddle point method14 discussed in

Appendix B,
-yr _ ‘l"

ﬁ(z)(r,a,s) no— V(s) cose € P (3.11a}
zZ 2 > f
La(y,a)
~ T ~Yr .
ZOHéz)(r,a,s) wES) L e § (3.11b)
Lo(y,a)
where the hollow cylinder factors are
Pf = IO(YC cosa) (3.11¢)
~ ~ : N 1
L3(Y,a) = coso IO(YC cosa) KO(YC cosa) + hg(s).[§5~€6§a] (3.11d)
~ . N 2’(8) .
h3(s) = 21C 5 {(3.11e)

o
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A. Numerical Results: Far Fields

Based on the analytical expressions formulated in the

previous section for the induced electric current, radiated

’fields, and far-field distribution for the case of infinitely

long loaded hollow cylinder, numerical results are presented in

figures 3.2 through 3.5 for the radiated far-field distribution.
In figures 3.2a and b are shown the magnitude and

phase of ﬁéz> of the far-field distribution as a function of the

observation angle o for different values of the radius C of-the

hollow cylinder, and for a fixed vy = jl and loading function

7' = 50 + jO. TFigures 3.3a and b indicate the same variations,

but for the ﬁég) component. Similarly in figures 3.4a and b are
5(2)

Z.

a function of a for different wvalues of the loading function 7z

shown the magnitude and phase of the

and for fixed value of |yC| = 1. TFurther the figures 3.5a and b
indicate the same variationsg, but for the ﬁ(z).

¢
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IV. 'ELBCTROMAGNETIC EQUIVALENCE BASED ON FAR FIELDS

In the previous sections, three different types of canonical
infinitely long antenna geometries are studied viz., (i) the
infinitely long loaded solid wire antenna of radius b and impe-
dance loading function per unit length é&(s), (ii) the infinitely
long loaded circular wire cage antenna of cage radius A, radius
of each cage wire a, number of cage wires N and its corresponding
impedance loading function per unit length along each of the cage
wires 2@0),(3), and (iii) the infinitely long loaded hollow cylin-
drical antenna of radius C and sheet impedance loading function
Z'(s). |

For each of the above canonical antenna structures integral
expressions for the induced current, and for the radiated electric
and magnetic fields are derived. Based on the saddle-point tech-
nigque, far-field electric and magnetic field components are —
obtained in a more simplified form. Table II summarizes the S
results thus far obtained for the far-field distribution.

It is now possible to compare (and thus approximately equate)
the distribution of the far-field components of the circular wire
cage antenna as against the far-field distribution of a hollow
cylindrical antenna. Such a comparison would allow establishing .
electromagnetic equivalences based on the far-field distributions.
Given the circular wire-cage parameters viz., number of cage wires
N, cage radius A, wire radius a; and its loading function 2§C)Y(S)5
the electromagnetic equivalence allows one to pick equivalent—

radius C = geq and the corresponding loading function %’(s) = 2$q(s),

so that both the structures radiate the same far-field distributions.

The equivalent parameters are in fact a function of the-«complex
frequency s, and the observation angle o. The .dependence on «
can be eliminated in some cases discussed further.

| We shall now consider the electromagnetic eguivalence between
an infinitely long loaded circular wire cage structure and a loaded
hollow circular cylinder based on the same radiated far fields. '
Columns 2 and 3 in table IIA for the far-field distributions are

equated,
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Table 1
1 2 3
Infinitely Long Loaded Infinitely Long Loaded Infinitely Long Loaded
Thin Wire Wire Cage Hollow Circular Cvlinder
Cage A
Radius b C
Wire a
Axial o ~(c) o
Impedance Z&(s) ZWC (s) Z'(s)
Loading
Number
of Wires 1 N

LT-T dRWHE

66267



.\
‘ g

€62

Table IIA
1 2 ' 3
Far Fields Infinitely Long Loaded Infinitely Long Loaded Infinitely Long Loaded
Thin Wire Wire Cage Hollow Circular Cylinder
E (r,a,s) ~ - ﬁ cosa e 'F _ i coso e /T & _ i cosa e JT 5
ZNT T 2 i Cy,a) r » 2 i (v,0) T i 2 i (y,0) T i
1 Y, —12 Y, 3 Y
E,(r,a,s) v | - V _sina e 'T _V _sina__ e 'F & _V _sina__ e /¥ 5
! 2 Lv,a) T Yiv,ey ©T 2 L.y,a) ¥ F
. o -Yr o -Yr v -Yr .
H¢(r,a,s) N 2; - 1 e:r og _ 1 e ¢, 2% 1 e Pf
(o] Ll(YJa) ““o L2(Y,(1) O L3(Y,OL)

09~-2¢6¢

LC-T dHZ
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Table IIB

2

3

Infinitely Long Loaded
Thin Wire

Infinitely Long Loaded
Wire Cage

Infinitely Long Loaded
Holiow Circular Cylinder

Ly(v,a) = Lg (v, 0) . Lo(y,a) =
L (y,a) cosa K (Yb cosa) coso, n£1 KO(YAl’ncosa) cosa I_(YC cosa)
+ hy(s) K{(Yb cosa) . K _(YC cosa)
+ hz(s) Kl(Ya cOSo ) N 1
+ hB(S) (yC coso)
Loading N “(e)
Factor . 7! (s) N z (s) ~ p
~ h,(s) = 21b —% ho(s) = 218 — h.,(s) = 2nC 2! (s)
1 Z 2 Z 3 Z
h_(s) o) 0 0
n
Geometric p -
Factor 1 Cy = NI (YA cosu) Py = I_(YC cosa)

LT-T dR4E
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C P,
t - _ £ (4.1)
L2<Y,CL) Ls(Y:C{')
C=v
eq
%1=’21
eqg i
where
veq = equivalent radius
iéq = equivalent impedance locading

From the expressions (2.34) and (3.11), the expression (4.1) takes

the form,

NIO(yA cosa )

N ~
cosa nél ho(yAl’ncosa)-+h2(s) Ky (ya cosa)

IO(YC cosa )
= - - * l (4'2)
cosa Io(yc cosa? KQ(YC cosa) + hs(s)Er—————J »

C cosg

The expression (4.1) depicts equivalence condition for the loaded
cage wire model and the hollow cylinder model, and is a function
of the frequency vy and the angle of observation a. Practically it
is impossible t? extract both the equivalent radius Weq and equiva-
lent impedance Zéq(s) from one equation unless one makes certain
choices or forces one more realizable constraint. Some of the
alternatives available are discussed in the following.

CASE I: Equivalence of perfectly conducting wire‘*cage and

perfectly conducting hollow cylinder

For this we have the impedance loading functions
iéc) (s) = 0 (4.32)

and 7
7Z1(s) = 0 (4.3b)
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the expression (4.2) yields the equivalence condition

N

- \ (e) -
ngl Kb(yAl’ncosa) NI_(¥A cosa) KO(Yqu cosa) = 0 (4.4)
We note ?éc) is to be determined as the solution to the

equation -(4.4) and it appears implicitly in the argument of the

modified Bessel functicon. Further

\P<§) = v(c)(y cos(a)) (4.5)
In the quasi-static case |YA| << 1, the modified Bessel
functions can be replaced by their small argument approximations,15
K _ 3 (Pz) 4.6
o(Z) = -ini5 (4.6a)
Io(z) = 1.0 7 (4.6b)
On substituting the above small argument approximations, the
equivalence condition (4.4) simplifies to
(e) 2 1/N
yeq [aAl,zAl,B“'Al,N] (4.7)
where the 1nter—chord distances Al n? = 2,3, ,N are defined in
(2.30). It is interesting to note the equlvalent radius Yég) is
o

independent of the variables y and cos(a) in the guasi-static case.
The equivalence condition (4.4) yvields the same result (4.7) even
for the limiting case as o + 7/2 and |ycosa| << 1. The equiva-
lent radius result (4.7) checks with King's equivalent i:-adius2
obtained for a perfectly conducting finifte circular cage antenna.
In fact, ?ég) can be shown also to be identical to the equivalent

0
radius obtained by Baum,3
Yoo 1/N
0 - [Eﬁ}“ (4.8)
A A :
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which is bLased on conformal transférmation; an equivalence between
a single charged conductor and number of equally spaced concentric
charged conductors. Appendix C discusses the two results (4.7)
and (4.8) as one and the same. - '

In figure 4.1 is shown the variation of-the normalized equiv-
alent radius Wé;g/A a; a function of A and similarly in figure 4.2
as a function of a/A,” for different values of number of cage wire
N. B S N - 3

As stated earlier ?éci is independent of the pomplex fre-
gquency Yy and of the variable cos(c), figure B-2, in the quasi-
static limit. The first order effect of the complex frequency y
on the equivalent radius ?ég) can be obtained if higher order
terms are included in the series expansion of the modified Bessel

functicns, and can be written as,15 —-
1.2 (;zzf
¢ = 'z . 2 B AT A
¢ hO(Z> = [—2n<77)}lo(z) T + (1 + 2) 5T + ' (409&)
- -1 .2 (1 2)2
zz 2 :
I(z) =1+ =7+ 5T o (4.9b)

Picking the first two terms in the above series expansion (4.9)
and substituting into the equivalence condition (4.4), it reduces

‘to the following transcendental equation,

2
¥ w7
" - Bl n 2| - }32 =z 0 (4.102)
4N
B, = —2N (4.10b)
Lo yay? ~
B, = [33 + 21'] -4 m(i@i) (4.10¢)
2~ |2 a2 3
Yr = v COS(G) (4.10d)
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Further, the equation (4.10a) yields the first order solution,
(c) .
(wég)> (Weqo) 1 a2 y'A 2
e S, ~ — ——an R Sl 1
5 " 1-5 2 + 2N ( 5 ) , Iyral <1 (4.11)

The expression (4.4) is also solved numerically19 to deter-
mine the more exact quasi-static frequency range up to which the
results of figure 4.1 are valid. Table IIIgives the lowest first
zero solution to the implicit equation (4.4) for a particular set
of wire cage parameters. As the frequency approaches large values,
the equivalent radius result (4.7) is no longer valid, and Wég)
should be obtained from the solution to equation (4.4) or equation
(4.11) for a given complex frequency y and observation angle «.
Figure 4.3 indicates the variation of the equivalent radius Yég)
as a function of K'A. For very large values of [yA cos(a)l, one

may substitute asymptotic forms of the modified Bessel function
c)

in the expression (4.4) and solve for the equivalent radius ?éq

CASE II: Equivalence of loaded wire cage and loaded

hollow cylinder .

For this general case the equivalence condition (4£.2) should
be considered leading to the difficulty of one equation and two
unknown parameters weq and %éq(s) to be determined. We can con-
veniently make a choice of one of the unknown parameters. Suppose
the equivalent radius is chosen to be the same as the frequency-
dependent equivalent radius ?ég} (as obtained from (4.4) or approxi-
mately from (4.11}) for the perfectly conducting case (case 1),

we obtain for the equivalent impedance loading function ﬁéq(s),

y o= p(e) . (4.12a)
eq eq
(e) . (c)
A (s) I (yv cos(a))
) _ \id ie) eq
Zeq(s) ( % )‘Ya cosg Kl(Ya cosa ) IO(YA T ICD)
(4.12b)

As pointed out earlier, the equivalent impedance-per-unit-length
function Zéq(s) is & function of ¥ and cos(c). In the guasi-static
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Table III
( y(C)

KA cos(a) K\Peccl) cos(a). eAq

.1 j 0.0 .08395 j-.00010 .83953 j-.00096

.2 0.0 .16844 ~.00074 .84221 —.00370

.3 0.0 .25353 ~.00239 .84511 ~.00795

.4 0.0 .33913 ~.00538 . 84783 -.01345

.5 0.0 . 42508 -.00999 .85015 -.01999

.6 0.0 51121 -.01647 . 85201 ~.02746

.7 0.0 .59736 ~.02506 . 85337 ~.03581

.8 0.0 .68338 ~.03605 . 85422 ~.04507

.9 0.0 . 76909 -.04981 . 85454 -.05534
1.0 0.0 . 85430 ~.06681 . 85430 ~. 06681
1.1 0.0 .93877 ~.08772 85343 ~.07974
1.2 0.0 1.02218 ~.11348 . 85182 ~. 09455
1.3 0.0 1.10405 -.14535 . 84927 ~.11180
1.4 0.0 1.18360 ~.18534 . 84543 ~.13239
1.5 0.0 1.25953 ~.23643 . 88969 -.15762
1.6 0.0 1.32939 ~.30342 . 83087 ~.18964
1.7 0.0 1.38810 ~.39446 .81653 -.23204
1.8 0.0 1.42353 -.52418 .79085 -.29121
1.9 0.0 1.40057 ..71896 . 73714 ~.37840
2.0 0.0 1.19554 -.99934 59777 ~.48967

2=0.01
N = 12
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frequency range |vA| << 1, the above expression (4.2 ) simpli-
fies to o L
~ 1
. z()" (s)

, zeq(S) = —"———N—'— (4.12¢)
which is exactly the equivalent parallel impedance of the N cage
wires. The first order effect of the complex frequency Yy on the
equivalent sheet impedance per unit length Zéq(s) can be obtained
by substituting higher order terms for the modified Bessel func-

tions in the expression (4.12b), hence we have

ry(e)y2q 5(e)’
~ r 4+ (y'Y )71 Z (s)
' - 1,42 eq W
Zeq(s) -1 + 5(v'a) }[ " s (Y'A)2 } N (4.13a)
we) 2 2 2 2 E(C)'
:&eq)“( . > (2) ( . > o)’ ()
A ,:(C) - —Y_'I - 1(0)1 N
: Y qu Y Weq YTA
. ) |
for '(?%K) <1 (4.13b)
CASE III:

In the.above case II, we made a choice for the equivalent
radius to be the same as the perfectly conducting case. We can
make another practical choice of choosing the equivalent radius
W<c)= A, the radius of the wire cage, and work out the correspond-.

eq
ing appropriate equivalent loading function so that far-field

equivalence holds good. -
Hence substituting Wég)= A in the expression (4.2) yields

an expression for the equivalent loading function Zéq(s). In the

quasi-static limit as |vA| << 1, we obtain

25 () yeos(arz, Rn(v§§)>

Zéq(s) = 7 o 3 (4.%4)
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which shows an angle dependent (o) positiﬁe inductance per-unit-

length term as

5(c)!

Zw (s)
N

[N}
~
0]
~—
]

+ sL!

(4.15)

. o 2 A
L 5 COS (o) £n<gr€7) > 0
eq

Note that as s + O the inductive term is negligible giving the
wire loading as the dominant term as one would expect. For higher
frequencies, however, the property of having an angle (a) depen-
dent impedance per unit length is an undesirable feature because
there is then no unigue equivalent impedance per unit length; it

depends where one looks.
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V. CONCLUSIONS

A preliminary analysis is carried out to aim at suitably
modeling hybrid EMP simulators made up of thin wire structures
and wire meshes. Canonical infinitely long loaded wire geometries
in the form of a thin wire, a circular wire cage and hollow cylin-
drical structures are analyzed systematically by treating them as
boundary value antenna problems. Results of the induced current
distribution and the corresponding radiated fields are cbtained '
for each of the canonical geometries. “*

The radiated fields of the loaded concentric wire cage are
compared with the radiated fields of the loaded hollow cylinder
to arrive at an electromagnetic equivalence condition. Based on
this equivalence, the equivalent radius of the wire cage and the
corresponding equivalent sheet impedance per-unit-length lecading
function are obtained so that both the compared structures radiate
the same far fields. In fact the results obtained are a function
of the complex frequency. In the low frequency ranges an explicit
expression for the equivalent radius of the cage is obtained; one
has to solve implicit equations for higher frequencies.

The theory and the concept of the electromagnetic equiva-
lence applied to wire structures, discussed in this note 1is used
in the future work as a foundation to effectively model hybrid

simulators including their complex feeding generators.
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APPENDIX A

LONGITUDINAL ¢~INDEPENDENT IMPEDANCE CHARACTERISTICS
OF CIRCULAR CYLINDRICAL STRUCTURES

The impedance characteristics of infinitely long circular-
cross—-section structures are discussed in detail in reference 20.
A summary of the expressions utilized in the previous sections is

given below.
1. Thin Solid Cylindrical Wire

In figure A-1 is shown the geometry of an infinitely long
solid circular thin wire of radius b. The material of the wire
has homogeneous characteristids of permeability U permittivity
€7 and conductivity O The structure is oriented along z-axis
in an isotropic homogeneous medium. Only axial electric current
E(c,s} is assumed to exist and hence only the TM (transverse mag-
getic to z) electromagnetic field components Ew(c,s), ?Z(c,s) and
g (4,8) are present and are symmetric with respect to ¢-angular
variations. ’

In the region ¥ < b, the magnetic vector potential is

E,(v,2,8) = C(z,8) I (u¥) (a.1)
where
M Al LA (4.2
,
Yo = {UWS(UW + EWS)]E (A.3)

In the expression (A.1), é(;,s) is a constant which determines the
potential distribution. If displacement currents are neglected

1
Y. = [p.o.s1?. The series axial impedance per unit length of the

w Ww
solid infinitely long wire is given by

Zl(z,s) = == (A.4)
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Figure A-1. Thin Solid Cylindrical Wire
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which is the ratioc of the axial electric field to the total axizal

current. Using the expressions (2.4a and b)

u I
O p— L
~W nb(ow + saw) Il(uwb)

IO and 11 are the médified Bessel functions of first kind, zero
and first orders, respectively. In the quasi-static range
Iyi[ >> cz, and the axial impedance per unit length reduces to

é‘(s) - leo(ywb)
W 2ﬂb(ow + sew) Il(ywb)
For the limiting case of static conditions, s =+ O,
I (v b) = 1 (A.7)
Yo
I, (YD) = —— . (4.8)
1
Z'! = (A.9)
W HbZO
w

The infinitely long thin cable wire characterisites for a
typical copper conductor Oy = 5.65 X107 mho/meter are shown in
figures A-2 and A-3, as a function of frequency in the guasi-
static range for different radii of the wire. Figure A-1 gives

ﬁé = real (2&), resistance of the cable wire/meter length and

figure A-2 gives X% = imag. (2&), self reactance of the cable wire/

meter length. As the frequency is increased both ﬁ& and i&

increase linearly on the logarithmic scale. At very low frequenciles

X% approaches zero, while R& approaches its static value.

Even if the structure is loaded with extra lumped impedances,

it can be included into 2&(3) of (A.6) and characterized as cer-

tain uniform impedance per unit length as a function frequency.
Whenever external loadings are built into the structure, the
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impedance loading due to the material characteristics of the wire
is a very small percentage of the total loading and hence can be
neglected. The concept of the impedance definition is based on

the surface impedance in contrast to the sheet impedance defini-

tion discussed in the next section.
2. Hollow Circular Cylinder

The geometry of the hollow cylindrical tube, having a radius
equal to C, is shown in figure A-4. The thickness of the wall is
neglected and the material of the tube has permeability M, Per-
mittivity €. and conductivity 0> The tubular structure 1s
oriented along z axis in an isotropic, homogeneous medium., Again,
only the axial currents are assumed to exist on the outer and
inner surface of the hollow cylinder. Similar to the definition
(A.4), the impedance per unit length of the hollow circular cylin-
der is given by the ratio of the axial electric field Ez(c,s) to
the net total current in the axial direction which is obtained by
the sum of the outer E(z)(;,s) and the inner E(l)(c,s) total

currents,
E,(%,s)
13,8 + 1% (g,8)

Z'(g,s) = (A.10)

evaluated on the surface of the cylinder. According to the
expressions (3.5) through (3.8) and (3.10), the expression (A.10)
takes the form, after making use of the Wronskin relationship

-y .
B _ ocC 2

20(2) = gy g Ko(uel) 1,(e0) (A.11)

where

' .2 2.3

u, = [y, - ¢"] (A.12)

= R 3 A iér

Yo = [MCS(OC scs)] (A.13)
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Figure A-4, Hollow Circular Cylinder
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and in the quasi-static range Iyii >> cz, the axial impedance
2'(5) per unit length of the hollow circular cylinder becomes,

- y/
- _oc¢ ‘
2'(s) = 5 v, K (v .C) I (v C) (A.14)

where

s |°
%oc T |5 ¥ Es (4.15)
& &

Further, the sheet impedance of the cylinder is given by

~

Z (s) = 21CZ' (s) (A.18)

3. General Solid Cylindrical Wire

In section A-(1), the impedance characteristics of a thin
solid cylindrical wire are discussed with the obvious assumption
that the current on the surface of the wire is uniform with
respect to ¢-angular variation. Let us consider another cas. with
current density 32(¢,s) on the surface as a function of angle ¢,
but which is independent of the z-coordinate variable. Then in
the region ¥ < b, figure A-1, the electric field distribution is
given by, ‘

o)

B,(¢,8,8) = ] Cotvm,s) I (r¥) &M - (4.17)

1= =0

LY

where ?m is the mth Fourier mode coefficient, so that the repre-
sentation (A.1l) is for the special case of the m = 0 mode.
According to the expression (2.4a) and (2.4b} the ourrent‘density
on the surface of the wire is obtained,

I, (b,¢,s) = H¢<b,¢,s)
1 g , ’ -
= ‘j C(Pro,8) I (v, Db) ed™? (A.18)
OW m=-cw ,
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On the surface of the cylindrical wire, we have the surface .

impedance boundary relationship,

E,(b,6,8) = Zg_(s) J,(0,4,8) (4.19)

Substituting (A.17) and (A.18) into (A.19) and enforcing orthagon-
ality of the modes

I (v b)
5 _ m-'w
Z, (s) = 2, ——— (A4.20)

. | PP
W, Im(wwb)

Hence for any given mode excitation m on the wire, the mode sur-

face impedance isw (s) is associated.
m
4. General Hollow Circular Cylinder

The impedance characteristics of the general solid cylindri-
cal wire can also be extended to the case of a hollow circular
cylinder, figure A-2, with the current density jét)(c,¢,s) on the
surface as a function of angle ¢, but is independent of z- .
coordinate variable. On the surface of the hollow cylinder, we

have the sheet-impedance boundary relationship,
E (c,0,8) = 7 (s) 38)¢c,s,s) (4.21)
Z 2 bl S Z rv .

where the current density is ob{ained by the difference in the

tangential magnetic field

SS)(C,q;,s) = I“{QE2)(C,¢,S) - f{él)(C,cb,S) . (A.22)

Hence for any given mode excitation m on the hollow cylinder, the
associated mode sheet impedance ZSm(s) is given by
Z. (s) = YCC Z

S
m

oc In(YcC) Ky(v,0) (4.23)
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APPENDIX B

FAR-FIELD EXPRESSION

The ¢-component of the magnetic field radiated by the
infinitely long thin solid wire is given by the expression (2.17a),

~ 3~ K, (u¥)
B (¢,2,8) = 350F j G(z) = &7 a (B.1)
"% e, T D(z,s) |

In fact the expression (B.1l) reduces to the (2.18) for the total
axial current i(z,s) = 2?bﬁ¢(v,z,s) evaluated on the surface of
the infinitely long wire ¥ = b. 1In the expression (B.1l), the
integration is along a Bromwich contour in.the z-plane, figure
2.2, and

u = [v2 - CZE% ) (B.2)
D(z,s) = uk_(ub) + hy(s) Ky(ub) | (B.3)
h(s) = 27b(c + se) Z'(s) (B.4)

and 2&(c,s) as given by the expression (A.5) has the form,

2 _ .23 2 _ 2.3
(v = 2707 I by, - 27)7]

Z1(z,s) = (B.5)

21b(oc._ + se_) I [b(Y2 - Cz)%}
W w 1 w

and ?W(;,s) would be independent of ¢, (A.6), in the qu%si—static
region. Assuming an ideal slice generator excitation, d - O and
G(z) ~ 1. |

It is possible to obtain the general solution to the inte-
gral (B.1) by closing the contour, figure 2.2, in the left half
of the r-plane for z + 0, but this procedure involves some

numerical work. However, as ¥ -+ «, in the far-field region, an
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explicit expression for ﬁ¢(W,z,s) can be obtained based on the
13,14 With the substitution
g =¢g!' + 3z", t' = 0 and vy = jp, the integral (B.1l) reduces to

saddle-point method of integration.

the form discussed in reference 14 and hence we have for z > 0,

- e % K, (u¥) s
H,(‘{’,Z,S) = 2§“Zf f :_j;—'—'__e JC”Z d‘:” (3.6)
¢ o - D(C”:S)
and
. L 2 2.3
u = jv=jip~ - ¢g"]* (B.7)
15

In the far-field region as ¥ + =,
3

R r \ —j[v¥ern 37

K (u?¥) e Je7z o, (Eﬁ?) e 3l c"z] , larg(u¥)] < 5 (B.8)
The saddle point Co ig obtained by solving the equation obtained
from the exponent of (B.8),

é%{v? + z'z] =0 (B.9)

1=y
PN
The expression (B.9) yields cg = p sin(a), with the proper substi-
tution ¥ = r cos(a), z = r sin{au) and 8 = 90 - ¢ where r and & are
the spherical coordinate variables and o is the angle measured
from z = 0 plane, figure B-1. Calling the exponent term in (B.9)

as
T(EY) = -3v¥ + gz} : (B.10)
and at " = :8
£(2")|  uapn = =3P(¥ cos(a) + z sin(a)) C (B2
O -~
In the neighborhood of the saddle point g' = cg, f(z") can

be expanded in a Taylor series,
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Figure B-1l. Coordinates for Far-Field Calculation
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£(z) = —j[p(‘é’ cos(a) + z sin(a)) - ——‘y—g"—— (z" - Cg)z] (B.12) .
p cos"(a)

Hence, according to the expression (B.12) the path of the saddle
point integration is obtained by forcing the imaginary part of
(B.12) to be constant along the path. With the substitution

" - ¢S =R eI%1 gng p = |p| 8362, the path of the saddle point
integration is given by the imaginary part (Im) as
: . v g 32(83-65)
Im|~3ip{(¥Y cos(a) + z sin(a)) - ‘3 R e = constant
lplcos”(a)

(B.13)

and (B.13) is satisfied only when

J(8,-85) '
Re[e 172 ] -0 (B.14)

The expression (B.14) yields (61 - 62) = zn /4. Only the positive
value of (61 - 62) = w/4 represents the correct slope of the inte-

gration path through the saddle point ?;'O' = p sin(a), which is also ‘

obvious from the further transformations used in reference 14.
Changing the variable of integration ' in the expression (B.1)

to T by the transformation ' = p sint, and T = oy + jaz, the

1]

swddle point is located at Oy o on the real axis of the complex
t-plane. The reader may refer to reference 21 for the complete
details of the various transformations from r'"-plane to t-plane
and the paths of the integratioﬂ. Hence the expression (B.8) can

be written as

it

. -jz"z i ) ~jrpcos(t-a)
Kl(uv) e N <32p?cos(r)) e . (B.15)

In the far-field region, the expression (B.1) for ﬁ¢(¥,z,s)

becomes,

— p cos(t) drt
Ly(y,a) (B.16)

Hy(¥,2,8) v 3 35p¥cos (T)

m

[

. Ty B -
Ty fa+2+3w( . ) e jrpcos(t-a)
Z
o

a-g—jm
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Most of the contribution to the integral (B.18) comes from the

vicinity of the saddle point T = o, and with the approximation

cosx= 1 - x2/2, and T - o = ejﬂ/4, the expression (B.16) reduces
to,
= Vv D % ™YY € —-Lprn2 |
H(¥Y,z,8) (-) —_— e “ dn (B.17)
Mo . 2772 \2r
‘ o Ll(y,a) -£
and the integral in (B.17) as v » «, ¢ -+ w,15
© 2 %
~%prn _ (21)
J‘w e dn = o7 (B.18)

Hence ﬁé (r,a,s) in the far-field region has the form

_"V I‘
e~V

ﬁ@(r,u,s) ;g ~ 1 - (B.19)
' o L(y,a)
where the dénominator term is
L(y,a) = D(z" = )
= Y coso K_(Yb cosa) + h(s) K, (Yb cosa) (B.20)

where B(s) is defined in the expression (B.4).
We note that ﬁ(s) in the éxpression (B.20) holds good only
in the quasi-static frequency ranges, or when the wire is loaded
uniformly by external impedances. For very large frequencies
ﬁl(s) in (Bféé)”Shéufa be féblééédhby ﬁ(cg;s) where

h(z],s) = h(z",s)
~ =g =-jysina

2mb(c + sg) g&( g,s) (B.21)
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APPENDIX C
DIFFERENT FORMS OF THE EQUIVALENT-RADIUS EXPRESSIONS .
IN THE QUASI-STATIC LIMIT

It is interesting to note the different forms of the equiva-
lent radiusl—S of a circular wire cage derived in guasi-static
1limit are one and the same, and check with the result obtained in

section IV. In the earlier studies,

(i) a cage consisting of conical wires equally spaced over
surface of a cone is studied, and compared with respect
to a solid cone of same characteristic impedance so
that there is only a transmission line mode excited,l’lo

expression (4.8)

(ii) an equivalence between a single charged conductor and
number of equally spaced concentric charged conductors
is studied based on conformal transformation,B expres-—

sion (4.8)

(iii) a wire cage antenna consisting of closely spaced paral- .
lel and identical conductors placed around a circle is
compared to a single conductor antenna, so that the
total axial assumed current distribution is approxi-

mately the same,2 expression (4.7)

(iv) far-field equivalence of the canonical infinitely long
circular wire cage and hollow cylindrical antenna

structure, section IV, expression (4.7).

In the following, the expression (4.7) for the circular wire

cage equivalent radius

v(C) = raa 1/N (C.1)

eq_ 1,281 341 !

is shown to be eguivalent to the expression (4.8)
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w(e) )
"o - (5§> " (c.2)
A A '
Normalizing (C.1) with respect to A,
,(c)
Y 1/N
eqo _ [aAl,ZAl,S"'Al,N] .3
A N )
A —
) o 1/N , - o o
aR
[7?} | (C.4)
where the mean inter-chord distance is
A. oA oA |
p= 21,3 71N (C.5)
Ah—l ,

The various inter-chord distances Al ne 0= 2,3,...,N, are defined

in (2.30). Omn substituting Al n into (C.5)

(24 sinl)(2a sin%? ... (2A sin

AN—l

(N—l)w)
N

R =

CoN-1
oN-1 T sin(&%) (C.8)
n=1 - : »

But we have the product expressi—on,22

- N-1
sin(Nx) = oN-1 1T sin(x + %%) (C.7)
n=1 S

Hence, from (C.8) and (C.7) .

R = sin(Nx)
sin(x)

x-+0

- N cos(Nx)
cos(x)

x~+0 ,
= N . (C.8)
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