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Abstract

The experimental measurement of charge densiﬁy induced on conducting
surfaces often makes use of a short monopole as the charge probe. Measure-
ments on structures containing jdnctions of unequal radii cylinders have
been hampered by incompletg knowledge of the probe characteristics. An
investigation of charge probe response as related to the radius of the
cylinder on which it is mounted is reported here. An experimental determin-
ation of the ratio of probe response when mounted on two different radii
cylinders has been conducted using a coaxial line geometry with a step
change in radius of the inner conductor. In addition, a theoretical solution
in numerical computations of the probe response in relation to the radius of
the cylinder upon which it is mounted has been conducted. The results of

these studies are presented in the following report.
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Chapter I

~ INTRODUCTION

The measurement of the current and charge distributions on
antennas and scatterers is important in order to gain an under-

standing of their electromagnetic behavior and to aid in developing

-and checking of theoretical solutions. The basic techniques for
i

making these measurements have been established for some time and

used by many investigators. However, during a fecent experimental
project, to be déscriBed gelb@ it became obvious that more accurate
knowledge of the response characteristics of charge probes was
necessary. The resulting investigation of charge probe response
forms the basis of this thesis.

The experimental project which leads to the investigation re-
ported here, ébncefﬁedrthe‘measuremenﬁ of charge distribution
induced on structures containiﬁg junctioﬂrof tHinrwires of unequal.
radii. The purpose of that investigation was to experimentally
determine the appropriate condition on charge which should be
applieauigitheoretical solution of this type of structure.

A theoretical analysis and discussion of the junction has been
presented by T.T. Wu and R.W.P. King [3]. The probe used for the
measurement of charge distribution consisted of:a very short mono-
pole mounted on the surface of the cylindrical structure. For

the experimental determination of the charge condition at the

«



junction, an accurate knowledge of the probe resﬁonse as a function
of the radius of the cylinder upon which it is mounted is necessary.
A charge probe mounted on a cylindrical structure has been analysed
theoretically by R.W.P. King [1] and experimentally by Whiteside [2].
However, these investigations do not provide sufficiently accurate
solutions fof the probe response as a function of the radius of the
cylindrical structures. An independent experimental and theovetical
investigation of the charge probe response has been conducted, the
results of which are presented in this thesis.

Chapter II deals with the measurement technique by which the
probe calibration factor can be determined. This probe calibration
factor has been determined for 3 different probe heights for 2
junctions of thin wires of 5/16" to 1/8" radii and 3/16" to 1/8"
radii. To make sure that the probe calibration factor is the same
for all charge conditions at the junction, the probe calibration
maximum, minimum, and a condition in between maximum and minimum.
The experimental data was analysed by using ?odified Prony's method.

A numerical solution for the current induced in the probe
has been carried out using moment method techniques [4,5]. The
analysis models the probe as a monopole receiving antenna perpen-
dicular to an infinite plane conductor, but includes the incident
E field variation which is to be expected when the probe is mounted

on a cylinder. Chapter III deals with the methods used for this

numerical analysis.



Finally, in Chapter IV, the experimental dafa, the results and

the conclusion are presented.



CHAPTER I

MEASUREMENT TECHNIQUE

(i) Introduction
The measurement of the surface charge density on a conductor may

be related to ameasurement of E field by using the boundary condition,

fe E=1n (2.1)

where 80 is the relative pgrmittivity, fi is the unit normal vector to
the surface of the test structure under consideration and n is the
surface charge density. It is therefore possible to obtain the surface
charge density by using a sensor whose output is proportional to the
normal component of the E field at the surface. The most common method
uses a short monopole receiving antenna, as shown in Fig. (2.1),which
is perpendicular to the surface of the test structure. The signal
induced in the load is however related to the E field along the entire
length of this monopole rather than simply the field at the surface.

If the normal component of the E field is constant over the length of
the probe there is no problem. But generally this is not the case.

In order to relate the monopole probe response to the charge density
on the test structure it is therefore necessary to have some knowledge

of the manner in which E varies over a short distance away from the

surface.
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The present work considers only test structures composed of
electrically thin conducting cylinders. The field produced by a
uniformly charged infinite cylinder is known to vary aS‘l. If the
test structure {(a cylindrical antenqa} isgpf electrically thin radius
and the probe is electrically short, then E over the length of the
probe is controlled primarily by the local charge distribution. The
field then becomes essentially the same as that of an infinite cylinder
and E is very nearly proportional tO‘%. This aséumption is not wvalid
near discontinuities of the conducting surface, however. The effect
of this variation on the response of the probe depends on the radius
of the test structure. To illustrate this effect, Fig. (2.2) presents
%-plotted as a function of (p-a) for three different cylinder radii.
For a given probe height, the variation of Ep over the length of the

-probe is less when the probe is mounted on a large radius cylinder.

The effect of the %-variation may be reduced by reducing the
probe height. However, the signal induced across the load is also
reduced and so the signal to noise ratio. A second effect of changing
the radius of the test étructure isrtﬁat Ehe image blané fér Eher
monopole probe is of different radius of curvature. The fact that the
charge probe is of finite size and it responds to fields a&ay ffom the
surface of the test structure makes it necessary to determine a probe
calibration factor as a function of cylinder radius in an exact manner.

To determine the probe calibration factor experimentally, a system
containing cylinders of different radii and for which the variation of

the charge density as a function of cylinder radius can be predicted

10
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is needed. The system chosen was a coaxial line with step change in
the radius of the inner conductor. This system is shown in Fig. (2.3)
and has been analysed by Marcuvitz[6]. The TEM mode E field dis-
tribution of the above system is shown in Fig. (2.4). The E field is
uniform and proportional to %-inside the coaxial line except near the
junction. The local effect near the junction can be replaced by a
shunt capacitance so that the Kirchoff's current law is satisfuied.

At the junction the voltage is continuous making it easy to analyse

the charge condition at the step in the following way.

(ii) Analysis of Coaxial Transmission Line

Fig. (2.5) illustrates a coaxial transmission line with a TEM
mode propagation. In cylindrical coordinates the two dimensional
Laplace equation is,

2
L ¢ _
)+-p-§'-—2— = 0 (2.2)

Q2
L=
Q2

l

1 3
o 3p (P

Q2

P

Q2

¢

For a potential function independent of aﬁgulé: coordiﬁater¢,

eq. (2.2) reduces to
i 2 :
o 3p (p =)= 0 (2.3)

The solution of equation (2.3) may be expressed as,

¢ = ¢y fn(p) + ¢, (2.4)

Imposing the boundary conditions ¢ = V at p=aand =0 at p = b,

0
eq. 62.3) yields the final solution for the potential as,

12
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Fig. (2.5) Coaxial transmission line.

E field
H field




an associated charge density which differs from tﬁat of a TEM mode as
indicated in Fig. (2.4)(b).

The voltage is continuous at the junction but because of the
different radii, a difference in the magnitude of charge density exists
at the junction. The ratios of linear and surface charge densities at

the junction are given by

b
9 Y o (3_2')
— . — o -C—-\T— = —Tt)— (2.9)(&)
L) 20 in (—
a
1
b
N 8,y 5 (3?
e (2.9)(b)
) 1 fn (=)
.2

(iii) Description of the Measurement System

A block diagram of the measurement system is giyen in Fig. (2.6).
The commercial instruments used in the system are given in the block
diagram itself.

The power at 300 MHz is fed to the amplifier. The amplifier sig-
nal is fed to the coaxial system through a balanced feed to avoid
higher order mode propagation. Matching of the amplifier output to
the coaxial system is done through a single stub tuner. The reference
signal to the vector voltmeter reference channel is taken from the
amplifier output with proper attenuation. The signal to the frequency
meter is also is taken from the amplifier ocutput with proper attenua-

tion. The signal from the charge probe is fed to the test channel




- 2 21 |
o] VO n( b Y/ &n( 5 ) (2.5)
E field of TEM mode in +z direction,
E=-v, 0¥ (2.6)

where k is the propagation constant,
Using eq. (2.5) E may be expressed as,

ce ey, &

E - ———Ob—- B m3kz 2.7)
RSO
1
The surface density of charge nl on an inner conductor of radius al,
at z=0 may be obtained from eq. (2.7) and the boundary condition
eq. (2.1) as, -~
€0
Mm% Y% (2.8)
alln(z—)
1
Equation (2.8) can be written as,
9 =G Y

where Cl is the capacitance per unit length and‘ql = ZWalnl is the

linear charge density. The same relationship applies to the inmer

2

It must be remembered that the above analysis assumes that only

conductor of radius a,.

TEM mode fields exist and that the junction is represented by a lumped
shunt capacitance. The effect of the step change of radius is actually

distributed over some short distance on either side of _the junction with

17




of the vector voltmeter. The power level is monitored by the broad-
band sampling meter to compensate for the drift in power level.

The magnitude or the phase of the signal is switched to the
digital voltmeter by means of the relay actuator. The calculator
samples this output 5 to 10 times and takes the average to minimize
the effect of the minute fluctuations in the probe signal. The magni-
tude and phase qu§ntities are stored in the calculator for latear
plotting and for further use. |

The'stepped radius coaxial line was constructed from cylindrical
brass tubing. The three different inner conductor radii 0.3125"

- (0.79375 cm), 0.1875"(0.47625 cm), and 0.125"(0.3175 cm) were selected
as being availagle readily. Two inner conductor systems were con-
structed one composed of 0.3125" and 0.125" radius tubing, the other
of 0.1875" and 0.125" radius tubing. A tube of 1.0" inside diameter
was used as the outer conductor. The space between inner and outer
conductor was filled with styrofoam. A slot of 1/19"(0.13368 cm) was
cut axially in the inmer conductor tubing to allow movement of the
charge probe along the structure. The probe carriage was designed

to slide inside of the inner conductor tube and extend through the
slot to the surface of the tube so that the structure is electrically
continuous. The charge probe was construéted on arprobe cafriaéei
using a semi rigid coaxial cable. The charge measurement was con-
ducted on two different radii tubes. If two different probes had been

used it would have been necessary that they be constructed identically.

18



Othergise, it would have become necessary to calibrate them indepen-

~dently. To avoid this problem, a single charge probe with two different

probe carriages was used. The wall thickness of the tubes had to be
taken into consideration while making the probe carriage. TFor example
for the 0.3125" radius tube wall thickness was 0.06"(0.1524 cm) and the
0.125" radius tube was 0.04". The probe carriage fit exactly inside

of the tubg”andrthrough thg s}otrtorthe s;rfgce sorthat the charge
probe was effectively mountéd én ghe surface of the inner conductof
tube. The cable used for making the probe was UT 20 manufactured by
Uniform Tubes, Inc., with ghe following specifications.

Impedance: 50 Ohms

Outside diameter: 0.023"(0.05842 cm)

Cénter conductor diameter: 70.0045”(0;01143 cm)

The o&té£fééﬁductor ofgfhe cébleiwasrsoldered té the probe carfiage and
cut at the surface. The dielectric insulator on the inner conductor
was removed so that the inner conductor extended beyond the surface to
form the monopole antenna. It was necessary that this monopole be
straight and perpendicular to the test structure. The signal from the
probe was carried by a coaxial cable contained inside of the inner
conductor tube. Care was taken to see that stray pickup did not affect
the signal by shielding the signal cables. A 1/8" diameter tube
attached to the probe carriage was used both to protect the signal

cable and to provide a means of positioning the probe.



The charée density measurement was made at intervals of 1 cm. The
actual E field distribution near the step due to local effect made the
measured result unreliable in this region. Moreover the charge probe
was mounted at the center of the probe carriage which made it impos-
sible to reach the step in the large radius tube. For analysis of the
data, a few data points were eliminated near the junction to eliminate
the local effect and the data was analysed by using a modofied Prony's
method to fit curves to the TEM mode distribution. This procedure
will be discussed separately.

Measurements were made for probe heights of 0.10"(0.2540 cm) to
0.06"(0.1524 cm) at an interval of 0.02"(0.0508 cm). The charge
condition at the junction was varied by using the movable short and
the experiment was carried out for three charge conditions at the
junction, namely charge maximum, charge minimum and a case in between
maximum and minimum. The experiment was repeated for consistancy.
Even though frequency drift was observed, the change in electric lehgth
of the test structure was of only of the order of + 0.00IX which was
considered negligible. Any change in the power output of the oscil-
lator was compensated for by monitoring the oscillator output using a
broadband sampling meter.

Care was taken while making the probe to see that the top of the
probe carriage fits flush with the test structure. To achieve good
electrical contact between the probe carriage and the test structure,

silver conducting grease (Eccoshield, manufactured by Emerson & Cuming)

20



was applied along the sides of the probe carriage and the sidewalls

_of the probe. The signal carrying probe tube was coated with an

absorber (Eccosorb by Emeysonr&VCpming) to avoid the possibility that
the probe tuberﬁould bécome the éenter conductér of a TEM structure
inside of the inner conductor of the test structure and give rise to
propagation and unwanted resonances.

After obtaining the extrapolated value of ;he probe reading at the
junction the probe calibration factor was obtained as described in the
folioﬁingréection. 7

(iv) Determination of Probe Calibration Factor
Let Pl and P2 be the probe reading obtained by extrapolating the

measured data to the junction of—the large and small tubes of radii a,

1
and ay. Let Nl and N2 be the normalizing factors.
Pl = Nlnl (2.10)
P2 = NN, (2.11)
therefore B 7
RS
o BN
M
from eq. (2.9)(b) the ratio of ﬁ—‘is given by,
2
b
fn ()
N2 % g ()
a
. 1
21



N
The probe calibration factor, §l~is then given by,

2
'b -
N Pyoay . Q;;)
=t — (2.12)
2 2 22 n (&
gy

(v) Curve Fitting: Modified Prony's Method

The experimental data obtained has magnitude and phase so that it
is a complex quantity. Curve fitting to the exﬁerimental data is done
by using a modified Prony's method. Prony's method [7] fits a set of

data to a series of exponentials. By assuming a function of the form

f(z) = AleYz + Aze—Yz (2.13)

because of the TEM mode transmission, only two terms are selected from

the exponential series of the general Prony's method with

y=(+38 (2.14)
where o is the attenuation coﬁstant, B is the propagation constant.

£(z) = Ale(O‘+J'B)Z+ Aze‘(“+j8)z (2.15)

where A, and A, are complex constants, A

1 2 AZ’ 0, B are to be determined.

l)

Let Az be the spacing between the data points and

YAz

u, = ¢ (2.16)

uy = o YAZ (2.17)

22



L

.k ko
then | fk+l(kAz) = Ajup+ Aju, (2.18)
Assume ul and u2 are two roots of
wtou+a, = 0 (2.19)
1 0 *
where o and'ul are unknown. )
Equation (2.18) can be expanded to
fl f Al +‘A2 - | (2.18)(a)
fz = Alul +7A2u2 : (2.18) (b)
Cau2 27 ’
f3 = Alul 4 A2u2 (2.18) (c)
_ k--1 k-1
fk = Alul + A2u2 (2.18) (d)

Since the above set of equations satisfy equation (2.19)

f3 + fzal + flao = 0

f4 + f3al -+ fzao = 0

The unknowns 0gs @y can be determined from the above egquations. Once
ao, al are known, the roots u;, u, can be determined from equations
(2.19). Once uy and u, are known, Y may be obtained from equations
(2.16) or (2.17) or,

Y = ln(ul)/Az (2.20)

=Y Rn(uz)/Az (2.21)

23



1 and Az are then determined from (2.18)(a) and (2.18)(b).

Since the roots uy and u, are reciprocal by definition, u, =-£; . Sub-
1

With vy known A

stituting in (2.19) we get

ul + qlul + ao = @
L +o—+a,= 0 (2.22)
2 1u 0 )
u 2
2
1+au +au’= 0 (2.23)
172 02 ‘
Comparing (2.19) and (2.23) we obtain,
ao =1
2
u + alu +1= 0 (2.24)

If we determine Oy then the roots can be found easily in the following

way,
£, 0+ f,00 + £5=0 ; fao, = —(£, + £3)
£, + £50, + £, = 0 : ' f3a1‘= -(f, + £,)
£, + f,0, + £5=0 : £, = (£, + £0)

With three datapoints one can easily determine oy from which uy and u,
can be determined. -

The method descrived so far is not satisfactory for the set of

data where experimental noise is present. A larger number of datapoints

24



‘. is used and a least square curve fitting technique is employed.
Let MAz be the spacing between datapoints. When 3M=N, where N

is the total number of datapoints,

£f .0 =—(fl + £

— Bt T 0 5 g 2m+1)
fz + fm+2c1 ,+ mej_z =0 ; ,, fm+2a =7—(f2 + f2m+2)
Byt By T gy =0 5 f e =-(Eg + £y 19)
fm, + f?_ma + f3m = 0 7 : ,,f:2ma =--(fm + f3m)
In general
[Flo = -(G)

,,_[FTF]OL = —[FT] [G] where [FT] is the transpose matrix of [F]

Therefore o = - [F F]™* [F1] [G] (2.25)

i
!
i

The residues Al and A2 can be determined in the following way

fl=Al+A2

£, = AT 4 g1

27 1 2
) 'fN - Al(eYAz)N—l + A2>(e—YAz)N-j-l'
¥l = [c] [a] o
[l = (65617t 6Ty 7] (2.26)



With A., A and Yy thus determined, a continuous curve may then

1> B0 Y1

be computed from equation (2.15) and extrapolated to the junction.

value of Pl and PZ in equation (2.12) were obtained by this procedur

26
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CHAPTER III

NUMERICAL ANALYSIS

(i) Charge Probe as a Scatterer: Theory and Solution

The preceding chaptef discussed the éxperimental determination of
the response of a charge probe. A theoretical analysis an& numeficalﬂi
solution for the probe response and calibration factor are presented
in the present chapter. For the purpose of this analysis,itherprobe
is modeled as a monopole scatterer perpendicular to an infinite plane
qonductor and planar image theory is employed. As discussed in
Chapter II the major effect of the cylindrical conductor upon which
the probe is mounted is the %-variation of the E field produced by

~the charge on the test structure. In the treatment of the probe as a
scatterer the correct %-dependence of the incident field is imposed.
It is recognized, however, that some error is introduced by using
planar image theory rather than the Green's function for a source ex-
terior to a cylindrical conductor.

From the specification given in Chapter II, for the cable from
which the probe is comstructed, the electrical radius, ka, is found to
be .00036 for an operating frequency of 300 MHz. It 1s therefore

appropriate to make the usual thin wire approximations.

28
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(ii) Formulation of Straight Wire Integral Equation

The charge probe of'leuéth-% slides in a charged conductor of
radius al in a homogeneous medium characterised by (u, €, ¢ = 0) is

shown in Fig. (3 1). The z axis of a cylindrlcal coordinate system

lies at the center of the charged conductor as shown in Fig. (3.1).

' The probe is perpendicu}ar to the charged conductor and extends frcm

p = al to p = al 2 ‘For convenience a coordlnate transformatlon is
used with a new varlable T = (p a ) measured along the probe axis as
shown in Fig. (3.2).

The current and charge on the probe produce an electric field

E° (C) on the probe surface whlch has a C component ES (C) given by,

| 9
B B3(Z) = —i . 5+ k2 )4, (2) (3.1)
2 st

~where A_ is the vector potentlal evaluated on the probe surface and k

4

- is the propagation constant. Since A (C) is produced entirely by the

current on the probe, it is given by,
“H/2
A (C) = £ IC(C')K(C-C')dC' (3.2)

L'=-H/2

where IC(C) is the total axial current on the probe and

R
+ ik [(Z-2") 24 4a? sinz(%-)] z
e

VN (3.3)

[(E—Q’)2+ 4a2 sJ’.nz(%L-)];5
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where a = radius of probe, and Y = angle variable of a cylindrical
coordinate system with T as the axis.
Applying the boundary condition that the tangential electrical
field on the probe surface be zero, we obtain,
i s
E + E = 0 -
C(C) C(C) )
"and therefore
i s
E = -E
' C(C) C(C)
Thus the integro-differential equation becomes,
2

o @7, 2 -
2 (Bcz + k™) AC(C) EC(C) (3.4)

(iii) Charge Probe with 50 2 Load

The charge probe sees the 50 Q inpﬁt impedance éf the coaxial
cable, so that loading on the probe should be considered. For a .
lumped load of impedance Zload inserted at £ = 0 as illustrated in
Fig. (2.3), the current IC in Zload causes a scalar potential drop

A¢2 across the load of 7 -

A¢£ = IC(O)'zload

The approximate electric field on the surface of the locad element ,

which must be added to the E° is,

A¢2

EQ(O) =335 - IC(O) z

1
load AL !

To achieve more useful representation for the electric field due

to the IC in zload’ we look upon the effect of the load at & = 0 as a
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local behavior at T = 0 and write,

E.(0) = 1,(0) 2 - S ()

In the case of a scatterer,

2
3w o, 3 2 , _ i
7 (5 EDA (@) + 1,002 4 6(8) = E; (%) (3.5)
k ag C
As explained in the beginning Eé(z) has been selected to be propor-
tional to %-where o = (C+al). Equation (3.5) with (3.2) is the final

form of the integral equation for the probe current. Equatiom (3.5)

has been solved numerically by the method described in the next section.

(iv) Numeriéél Solution Technique

- In this égétiaaré?EZéhniqu Egr solving the ihtegro—différential
equation 1s presented. This technique uses piecewise linear testing
énd pulse expansion. One performs the testing of the equation to be
solved with elements tm of the selected testing set{_tﬁ} before the
unknown current is approximated as a linear combination of the elements
i of the basis set iin}.

Leéding to the numefical soiﬁtion of equafion (3.5), one equates
the corresponding projecticns of the two sides of (3.5) onto the space
spanned by‘{tms.which implies that the scalar products formed by tm
and two sides of (3.5) are equated for each m. The piecewise linear

testing scheme is shown in Fig. (3.4)
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where the scalar product is o
o - o +H/2
<G, g>=f £ g% dg (3.6) (b)

g=-H/2
For a real testingset{}%}of the subdomain type considered here where

tﬁ(g) is zero outside

m-1

Equation (3.6) becomes
) 52 Corkl
jw - 2
X Co+ KA @ g @ a +f 1£0) 2, .48(8) t (%) dt
C=Cm_l C=Cm_l
Cm+l
- . i
E EC(C) tm(c) dg (3.7)
g =C__
,m 1 I3 A_I c- Cm l
Setting tm ='Au1= N (3.8)
in the above, the equation beqopes
' 7 ' - - o ;m+l
2 2
o1 _ (_)>+ka<c>A<c>dc
k2 [A( AC(cmﬂ) ZAC (cm) + Ay Cm-1 z m
) ' o ) 7 77A ' €=Cm-l
Sl | b
U 2/ _
. C=Cm—l ' ,A =t

35
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and 24 = (Cm+l a1’

For a function f sufficiently smooth over the interval (Cm-l

one employs the approximation

N

f (D) AL ()T = MECE)
&=L -1

The final equation becomes

. 2
Jw L - 2(1-KAY
2 B A (Egy) = 2095 a8 + 4, )
lo z

. _ i '
0 2 0q T (080, = LB (5

where 6mn is the kronecker delta

1, m=n
mn 0, m¥n

m=0, +1, +2, + 3, +4,..., + (M-1)

(v} Expansion of Current and Formulation of Matrix

(3.10)(a)

(3.10) (b)

(3.11)

(3.12)

The current I_ is represented by expanding in known expansion

g

functions each weighted with an unknown coefficient. These unknown

coefficients ultimately determine I,.

4

In terms of a pulse basis set,

{PAB’ as the known functions and the complex unknown coefficients In’

the current becomes

-
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L@ =) Ip (D (3.13)

The pulse arrangement for approximating the current on straight wire
is shown in Fig. (3.5).

The vector potentlal can be wrltten as

- A= nZ_N LA ® N (3.14)
where 7777‘77 H/2
ENORS = p, (C")K(z-g")dg’ (3.15)
¢'=-H/2

is a partial vector potential contrlbuted by the pulse basis element

P, (C) In convenience, the following quantities are defined:

Cn+A/2 9
Jw -z') - 2(1- LAY -
o ™2 @ = f fcce o - 2a 55 OR(E_-0)
et “n-0/2
+ R, =t R+ “roasosPa ) (3.16) (a)
_ i
Vm = A E;(Cm) (3.16) (v)

In terms of the above definition equation (3.12) becomes

-y )
T Zanln = Va

n=- m=0, + 1, + 2,..., + (M-1) (3.17)
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The boundary condition that the current goes to zero at the

ends is incorporated by directly setting Py = Py = 0. Equation

(3.17) can be conveniently written in matrix form as,

Therefore [1] = [Z]-l[v]

The total scheme of testing and expansion is shown in Fig. (3.6).

(vi) Determination of Probe Calibration Factor

Once thé currénfrinducediin Fheriéad canrbe fognd as a function
of a;s Fhe probg calibratioq faptor can be determined as follows.
Let Il be the cqrrent induced in the load when the probe is mounted
‘on the iarger radius tube and Iz.be the current induced in the load

when the probe is mounted on the smaller radius tube, then relating

these to surface charge density

Il = Nlnl (3.19)
;2 = Nz”a (3.20)
If the linear density ofréharge is the same for both tubes then
4, =9
or
gwaln 1= 2ma 9Ny
n a
1 2
== (=) (3.21)
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From eq. (3.19) and (3.20), the probe calibration factor EL is
2
obtained as,
N I a
ot (3.22)
2 2 2

The compﬁtéd value of this ratio for different probe heights for two

different radii of cylinders are shown in Fig. (4.19) and (4.20).
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CHAPTER IV

PRESENTATION OF DATA AND CONCLUSION

(1) Introduction

Chapter II and III have discussed the measurement technique and
the numerical analysis respectively. It is the purpose of the
present chapter to present the data resulting from both approaches

and discuss these results.

(ii) Measured Data for the Charge Distribution

As explained in Chapter II on measurement the charge density
measurement was made for 3 charge conditions at the junction near
maximum near minimum and a condition in between minimum and maximum.

The figures (4.1) to (4.9) present the charge distribution of
= 5/16" and a,= 1/8" for 3 different

1 2
probe heights 0.10", 0.08", and 0.06". For each probe height,

the step radius system with a
measured data for 3 different charge conditions at the junction are
presented along with the curve determined from the modified Prony's
method for the magnitude of the measured data. Similarly the

Figures (4.10) to (4.18) present the data for the step radius system

with a,= 3/16" and a,= 1/8".

(111) Probe Calibration Factor

The probe calibration factor (NllNz) as a function of probe
height as computed from the measured data is shown in Fig. (4.19) for

a,= 5/16" and a,= 1/8". The theoretical probe calibration factor
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obtained by the technique expléined in Chapter IIT is also shown in
Fig. (4.19). Similarly Fig. (4.20) presents the probe calibration
factor for a, = 3/16" and a, = 1/8".
Exgmination of Figs. (4.19) and (4.20) reveals differences of about
8% in the experimental values of Nl/NZ for different charge conditions
are the junction. With the assumption that the probe responds to the
local charge density at its location on the cylinder leN2 should be a
function of probe height and cylinder radii only. The observed effect
of the position of the junction with respect to the standing wave pattern
is believed to result from inaccuracies in the extrapolation of the data
to the junction. The extrapolation,rand hence determination of Nl/N2
is accomplished by fitting the curve to the measured data. Since the
data is available over a distance of only A/2 each side of the junction
the accuracy in determination of the parameters for this curve is
limited. For these reasons the data obtained for the case of maximum
charge at the junction is the most reliable since the slope of the curve
in the extrapolation region is near zero. In future use of these experi-
mentally determined probe calibration factors greatest weight will, there-
fore, be given to the values determined for the maximum charge condition,
Examination of Figs. (4.19) and (4.20) also reveals a consistent
difference between the measured and theoretical values of Nl/Nz. The
reasons for this difference are not fully understood; however, it must

be remembered that the theoretical solution is based on a planar image

theory. The effects of the cylindrical geometry are the most likely
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source of the observed differences between experimental and theoretical
values. Until more accurate data and theoretical solutions are available,

the experimental value of Nl/N2 will be used as the most reliable.

(iv) Conclusions

The results of this iInvestigation have clearly demonstrated the
effect of cylinder radius on the response of charge probe and have taken
a considerable step toward better understanding of charge measurements.
The probe calibration factors obtained can now be used to correct charge
distribution measurements on structures containing junctions of unequal
radii cy;inders.

Further work, however, is needed for complete understanding of the
response of monopole probes on non@lanar:;urfaces. In particular, an
effort should be made to include the cylindrical image plane geometry
into the theoretical treatment presented here. In addition, other probe
configurations should be examined and évaluated with respect to theié

response on nonplanar surfaces,
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