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ABSTRACT
The singularity expansion method (SEM) has been applied to
determine natural resonances of a set of perpendicular crossed
wires over a perfectly conducting ground plane. The variation
of the natural resonances and the mode and coupling vectors have

been studied as parameters of the system varied.
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I. INTRODUCTION .

Using the singularity expansion method (SEM) one can determine the
time domain scattering characteristics of a conducting object in terms
of a summation of damped sinusoids [l1}. In the evaluation of tﬁe SEM
solutions the natural rééonances or frequencies of the scattering object
must be calculated. Here SEH is applied to a study of perpendicular
crossed wires over a perfectly conducting ground plane. The results are
of interest for at least three reasons: 1) the SEM solution provides
insight into the EMP interaction of an aircraft with a ground plane,

2) SEM can be used with success for reasonably complicated geometries

(compared to single cylinders) over ground planes, 3) the resonances are

locaCea using ti\e Cauchy integral theorem which definitely enhances the

usefulness of SEM [2]. ‘;
This paper is thﬁeﬂseguel to ;n earlier paper co-authored by two of

the present authors [3]. The previoué pape;:i considered the crossed wire

configuration in free space.

II. FORMULATION

In this study the exact field expressions [4] for both axial and
radial components are used in conjunction with a sinusoidal current expan-

sion :r.o derive a system of linear equations of the following form (3]

Z(s) T(s) = E(s) (1)

where Z(s) is the square system matrix, J(s) is a column matrix whose elements
are the unknown cirrent expansion coefficients, and E(s) is a column matrix

whose elements are particular values of the incident field components. .




The SEM problem described herein is formulated in exactly the same
manner as that described by Crow, Grav;s, and Taylor [3). The following
considerations are made in addition tb the previous ones:

l. The free space equations are modified to account for image
currents parallel to the ground plane having image currents antiparallel
to the quegF cgrrents.

:2., If one is intetested in the actual calculation of currents and

charges, the ground reflected wave must be included in che excitation terms.

3. The King-Wu junction conditions [S] are imposed at the junction of

the crossed wires. For n wires at a junction

ERT q2¢2 - == =aq
IR trgiavd LwmEmnlr XBIooE AY s % 531 37t 3o oo . I
where q is the charge per unit 1ength on the conductor i, radius ai, and
s o W Aire mgods s gends Lorutezbean nteon ceEe el w

wi = 2[In(2/kay) - v}, v = 0.5772.

4., The Kirchhoff current'i;;ii;hénfor;ed at the juhctioh;

The equations and techniques of SEM are well-documented [e.g. 1,3]
so they will not be repeaféd.v‘in e;ZIiéf étudies, the natural frequencies of
of the scatterers were located by numerical routines based on either a
Newton-Raphson technique [6] or a Muller iteration scheme [7].  In this
study an algorithm based on the Cauchy integral theorem (2] is used to
locate the natural resonances of the scatterer. The greatest advantage of
this technique is that one does not have to make initial guesses for the
natural frequencies (zeros of the determinant of the system matrix) nor
worry about the rate at which the functions approach their zeros (e.g. in
the Muller routine it is easy to miss a zero as one moves about in the
complex s-plane if the resonance is very narrow).

The basic ideas of this zero search routine can be outlined as follows.

Assume there exists a meromorphic function f(s) in a domain D bounded by a
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'f‘where .si

contour C such that no poles or zeros of f(s) lie on the contour. Also

assume f£(s) has only first order poles and zeros: it follows that .
Ll £ 4.y -
) 10) ds No NP (2)
c

where NO(NP) is the number of zeros (poles) of f with respect to s contained
within C. If there are no poles within C, then (2) can be used to determine

No. Next one forms the equations

.1 k £'(s) ok, k. k&
Ik 713 8 £(s) ds Sy + s, + + SNO (3)

C k=1, 2, :}: e NO
‘is the location of the ith zero in the complex plane. Evaluating

2780 ¥ =,
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the Ik's by means of Gaussian quadrature along a chosen path C, one has a
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ITI. RESULTS AND CONCLUSIONS

set of,No equations for the No unknowns.

The basic geometry of the system being considered is shown in figurevl.
In table 1:five sets of the first six natural frequencies are given for refer-
ence. :The mode designation is based on the required excitation symmetry
with réspect to the yz plane (symmetric or asymmetric), number of half
wavelehgths per linear element (n = 1,2,3, etc.) and multipole moment
of the current mode (dipole n' = 1, quadrupole n' =2, etec.). The
rationale for this designation is given by Baum et al.[ll1] Note that for
the antisymmetric modes there is no current on wire no. 1. The singulavrities
sas,l and sas,3 have been calculated independently by Shumpert and Galloway
[8] using a different numerical method. Figure 2 exhibits the variation

of the natural frequencies as the height, h, above the ground plane varies, .




As has been so dramatically illustrated in previous work [9], the trajectories
of the singularities become complicated and, in some cases, difficult to
follow as h varies. Due to time limitations, tbe trajectory of ssy,3,1
has been stopped at h/L = 0.33. Here it is noted that the real parts of
the natural frequencies decrease significantly as the wire configuration
approaches the ground. This indicates that the Q's of the natural resonances
increase as the wires approach the ground. Also shown in figure 2 are
six natural frequencies calculated using a transmission line approximation
[10]) - the real parts of the natural frequencies for the transmission
line formulation vanishrfor che'pe;féétly conducting ground case.

Figure 3 shows the varia;ion in the néturai frequencies as all variables

[

remain the same as the reference case (li'+¥81 =2 =1, a, = a,» L/a, = 20,

2 1
h/L = .2) except the cr%ssing ﬁoihc (Z{/i}) of the two cylinders varies.

"'As would be expected the locations of the resonances s__ , and s__ . are
as,l as,3
unaffected by this chahge. Figufé 4 results are for the reference case
(ﬂi/ﬂl = 0.5) but the length of the "§¥wire" varies such that 222/(31 + 21)
varies. Again, since 222 is held coﬁstant, it is reasonable to expect
that Sas,1 and Sa1s,3 remain constant. Figure 5 traces the resonance
trajectories as the radius of the elements varies from the reference case.
Figures 6 through 8 are plots of the real components of the natural
current modes for the crossed wire structure above the ground plane.

(In figure 7 the mode vector on the negative y-wire is very small compared

to the elements shown but not identically zero.)

1V. THE EXCITATION VECTOR AND CURRENT CALCULATIONS

The excitation vector is defined in terms of one of the two

polarizations shown in figure 9. 1In the x,y plane, the incident fields are

5




i »
Bl = (1 E, cos(é, +7/2) + 1y E, sin (¢, +7/2)]
exp y(ct + x 8in 8, cos ¢i + y 8in ei sin ¢i + z cos 81} (4)
i i - .
ﬁz - lix Bz sin{n/2 - 91) cos ¢i + iy Ez sin(u/2 Bi)sin ¢i]

exp ylet + x 8in 6, cos ¢, +y sin 9 sin¢i + 2z cos ei] (5)

i
while the ground reflected waves are

Ef = I-ix B, cos (¢, +7/2) - 1y E, sin(¢, +7/2)]:

exp y[ct + x sin &, cos ¢i +y sin 61 sin ¢i ~ z cos 81] (6)
B} = (-1 E, sin(x/2 - 8)) cos ¢, - i, B, sin (/2 - 8 )sin §,1-
exp Ylet + x sin 8i cos ¢i + y sin 81 sin ¢i - z cos 61] (N

where 7_=-% --% + 3 GE = k). For example, El polarization with ¢i = 0,
T

,ai = 0; the total excitation vector, El = ﬁi + gi, becomes at z = h

. T _ 3 Y[ct + h) _ _~2Yh
EI i g e (1 - e “TM
I;Vis conveq%gpg tonefiqg x, = maxlx sinei cqséi‘ and Vo = max Iy sinei sin¢i|.

~and q = max {;m or ym} . If t' {8 defined such that t' = 0 when the incident

e RS s e e o

wave first strikes a point on the structure, then
t=t'-q+h cosei
c
The incident wave is multiplied by the unit Heaviside function
. —
u, [et q + x sin 8, cos ¢, +y sin 6, sin ¢,] (8)

and tﬁe reflected wave by

v |
u_ [ct q - 2 h cos 8 + x sin 8 cos ¢, +y sin 8, sin ¢i] (9)

i
where u{f) =1 £ 2 0

= 0 £ < 0.

With a notation similar to that of Umashankar et al [9], the current




expression becomes

s T,/c s8,7T,/¢
(gt u(r)e U _% u(t,e L2

_ e _
i(r) = % Bi S;

i

s ct' - q + x sin 8, cos ¢i + y sin 51 sin ¢i

i

T, = ct' - q -2 h cos 91
i,r

E are column vectors; the elements of these vectors are the appropriate

+ x sin ei cos ¢i + y sin Gi sin ¢i

(10)

tangential field terms evaluated from the first square brackets of equations

(64) - (7): e.g. if element number 1 of the mode vector represents the zone
on wire 2 nearest the intersection point on the negative x-axis, it follows
that the first element of the E vectors will be the x-component of the
corresponding field expression. Figure 10 shows the results of one such
current caleculation for junction currents for El polarization, 6 = 0°,

¢ = 0°, and the incident wave is the unit step where El or E, =1 v/m.

2
Several comments are in order concerning the placement of the
Heaviside function in the expression for the current (10). As (10) is
written each entry in the excitation matrix'f is multiplied by a Heaviside
function. As soon as one Heaviside function becomes non-zero, the current
at every point on the structure becomes non-zéro (unless of course Ei has

some zero entries) for a particular s Since causality is a part of the

g
original theory, it follows that the sum of 1 in (10) should lead to
zero currents at appropriate places and times if one considers all
natural resonances. In practicé however one normally sums over only
four to ten or so terms, and numerically it appears causality is lost.
Causality can be preserved by moving the Heaviside function from the

excitation matrix to the mode vector matrix but in this case the product

—T—
CiE is calculated as though all zones are excited simultaneously and




M LR

the arrival times of the incident wave(s) are ignored.

are not unique to our problems but have existed from the beginning

of SEM [6].
|
o - e - 7
T . LomaFec e sd3opmro e oot oond e
Si =1 ti

These problems
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sL/C sL./C

resonance free space, free space [4] free space [8)

chis study : .

approx. exact
5y,1,1 ~0.2923 + 3 2.319 _ .—’b._‘_2935 + 34 2.292 -
as, 1 ~0.4242 + § 2.503 -0.4203 # § 2.508 -0.4279 + 1 2.5377 © -0.4380 + § 2.5847
8y,1,2 —0.31426‘+ § 3.726 . -70.-3‘34‘6'1+j 3.839 " -
ov.2,2 ~0.6786 + 6.06_6‘. {2.'5609 +3 6.066 | ,
8y,3,1 ~1.0166 + § 8.139 ~1.0065™F § 8.156 e o . ”
as,3 -0.9852 + § 8.305 ,,.‘.;-“10‘9528 + 1 8.294 -0.8167 + § 8.1833 ~0.7866 + § B.4120
. | E
WL =02 h/L = 0.2 [8]
this study : ;wf L
‘ . 8pprox. Hy _ exact

sy,1,1 - ~0.0513 + § 2.361 |
as,1 -0.0898 + 1 2.592 -0.091 + § 2.617 ~0.1085 + j 2.611
ay,1,2 -0.1021 + j 3.769
6Y,2,2 -0.3909 + § 5.740
sy,3,1 -0.6691 + 3 7.581
as,3 ~-0.6478 + j 8.034

Table 1. Natural frequencles for a crossed wire structura,
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~—=- Real Component (Right Scale)

Imaginary Component ( Left Scale)

e Imaginary Components from
Transmission Line Theory

1 - _ o - - =
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Figure 2: Variation of the natural frequencies with
change in height of the crossed wires over
a perfect ground.
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——— Real Component ( Right Scale)
—— Imaginary Component ( Left Scale)
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Figure 3: Variation of the natural frequencies with
change in crossing point for crossed wires
over a perfect ground.
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———- Real Component ( Right Scale)
— Imaginary Component (Left Scale)
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Figure 4: Variation iﬁfzhewnathrai frequencies with
change in relative wire lengths for crossed
wires over a perfect ground.
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Figure 5: Variation in the natural frequenciles with
change in wire radius for c¢rossed wires over
a perfect ground.
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sy,l,| Mode Left wing

Front fuselage
Rear fuselage

Right wing 2> )

- “~as,l Mode

Figure 6: The sy,l,l and the as,l natural current modes
a crossed wire structure over a ground plane.
1 = = = = '
il 21/2, h L, L 222 21 + 21,
a = ay = L/20. Arrows indicate directions

assumed for positive current.
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sy,},2 Mode

Figure 7:

The sy,1,2, and the sy,2,2 natural current modes
for a crossed wire structure over a ground plane.
ii = 11/2, h=_.1L, L = 222 = ii + 11,

a =a, = £/20. Arrows indicate directions

assumed for positive current.
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sy, 3, Mode

Figure 8:

The sy,3,1 and the as,3 natural current modes for
a crossed wire structure over a ground plane.
N = = = = '
2 21/2, ho= 1L, L =28, = 2) + &,
a; =~ a, = L/20. Arrows indicate directions assumed

for positive current.
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Figure 9: Incident field angles and polarizatioms.
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