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I. INTRODUCTION

Wing the singularity expansion method

time domain scattering characteristics of a

of a summation of damped sinusoids [1]. In

(SEM) one can determine the

conducting object in terms

the evaluation of the SEM

solutions che natural resonances or frequencies of the scattering object

must be calculated. Here SEM is applied to a study of perpendicular

crossed wires over a perfectly conducting ground plane. The results are

of interest for at least three reasons: 1) the SEM solution provides

insight into the IMP interaction of an atrcraft with a ground plane,

2) SE21can be used with success for reasonably complicated geometries

(compared to single cylinders) over ground planes, 3) the resonances are

:. located using the Cauchy integral theorem which definitely enhances the>

* usefulness of SEM [2].

This paper is the sequel to an earlier paper co-authored by two of
.r=- .“

the present authors [3]. The previous paper considered the crossed wire
,...

configuration in free space.

II. FORMULATION

In this study the exact field expressions [4J for both axial and

radial components are used in conjunction with a sinusoidal current expan-

sion to derive a system of linear equations of the following form [3]

z(s) T(s) -E(s)

where ~(s) is the square system ~trix, ~(s) is a COIUIIII-I matrix whose elements

are the unknown c“lrrentexpansion coefficients, and ~(s) is a column matrix

whose elements are particular values of the incident field components.
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The SEM problem described herein is formulated in exactly the same

manner as that described by Crow, Craves, and Taylor [3]. The following

considerations are made in addition to the previous ones:

1. The free space equations are modified to account for image

currents parallel to the ground plane having image currents antiparallel

to the object currents.

2. If one is interested in .tjheactual calculation of currents and..,, ,=:=~.., - .+--,:,. .-.,

charges, the ground reflected wave must be included in the excitation terms.~... .

3. The King-Wu junction conditions [5] are imposed at the junction of
~1

the crossed wires. For n wires at a junction

$i = 2[ln(2/luii) - y],

4. The Kirchhoff

The equations and

y- = 0.5772.
. .

current law is enforced at the junction.

techniques

so they will not be repeated. In

of the scatterers were located by

Newton-Raphson technique [6] or a

of SEM are well-documented [e.g. 1,3]

earlier studies, the natural frequencies of

numerical routines based on either a

Muller iteration scheme [7]. ,In this

study an algorithm based on the Cauchy integral theorem [2] is used to

locate the natural resonances of the scatterer. The greatest advantage of.—

this technique is that one does not have to make initial guesses for the

natural frequencies (zeros’of the determinant of the system matrix) nor

worry about the rate at which the f~ctions approach their zeros (e.g. in

the Pluller routine it is easy to miss a zero as one moves about in the

complex s-plane if the resonance is very narrow).

The basic ideas of this zero search routine can be outlined as follows.

Assume there exists a mesomorphic function f(s) in a domain D bounded by a



contour C such that no poles or zeros of f(s) lie on the contour. Al130

assume f(s) has only first order poles and zeros: it follows that

f

(2)

c

where NO(NP) is the number

within C. If there are no

of zeros (poles) of f with respect to s contained

poles within C, then {2) can be used to detemine

No. Nexk one forma the equations

L

f

Sk f’(s)
lk=~ f(s)

ds =

c k.

kk k
‘1 ‘s2 ‘--- + ‘N.

1, 2, 3, ---, No

(3)

is the location of che ith zero
..where.si,.;., -.,>.; .,.

the Ik’s by means of Gaussian quadrature

set of ,N equations for the No unknowns.
% . ...s

p
....

? .. .
%>.

111. RESULTS AND CONCLUSIONS
-,- ..”.- ------. .
*

in the complex plane. Evaluating
‘. .> .:.-.:.~.~

along a chosen path Cl one has a
.,., .

...= -,

The basic geomet~ of the system being considered is shown in figure 1.

In tablelfive sets of the first six natural frequencies are given for refer-

ence. ~The m;de desi~ation Is based on the required excitatf.onsymmetry

with respect to’the”yz plane (Wetric or _etric), number of half

wavelengths per linear element (n = 1,2,3, etc.) and multipole moment

of the current mode (dipole n? = 1, quadruple n’ = 2, ccc.). The

rationale for this designation is given by Baum et al.[llJ. Note that for

the antisymmetric modes there is no current on wire no. 1. The singularities

s and s have been calculated independently by Shumpert and Galloway
as,l as,3

[8] using a different numerical method. Figure 2 exhibits the variation

of the natural frequencies as the height, h, above the ground plane varies.
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As has been so dramatically illustrated in previous work [9], the trajectories

of the singularities become complicated and~ in some cases) difficult to

follow as h varies. Due CO time limitations, the trajectory of s
sy,3,1

has been stopped at h/L = 0.33. Here it is noted that the real parts of

the natural frequencies decrease significantly as the wire configuration

approaches the ground. This indicates that the Q’s of the natural resonances

increase as the wires approach the ground. Also shown in figure 2 are

six natural frequencies calculated using a transmission line approximation

[10] - the real parts of the natural frequencies for the transmission

line formulation vanish for the-perfectly conducting ground case.

Figure 3 shows the variation in the natural frequencies as all variables
;.

remain the same as the reference case @; +“~”1=“U2 = L, al = a2, L/a2 = 20,

h/L = .2) except the crossing point (~~/~’1)of the two cylinders varies.

As would be expected the-l;cat-io”~~”ovf”thg <c%o”nances‘SaS,l and sa9,”3are

>-r
unaffected by this change. Fi&;e 4 results are.for the reference case

(li/1~ = 0.5) but the length of the “y-wire” varies such tbt ~2/(~; +~1)

varies. Again, since ti2 is held coristant,it is reasonable to expect

that s and s
as,l remain constant. Figure 5 traces the resonance

as,3

trajectories as the radius of the elements varies from the reference case.

Figures 6 through 8 are plots of the real components of the natural

current modes for the crossed wire structure above the

(In figure 7 the mode vector on the negative y-wire is

ground plane.

very small compared

to the elements shown but not identically zero.)

IV. THE EXCITATION VECTOR AND CURRENT CALCULATIONS

The excitation vector iS defined in te~s of one of the two

polarizations shown in figure 9. In the x,y plane, the incident fields are
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expy[ct +x sin f3icos #i+ y sh~i Sin$i+ z c~seil (4)

%: = [ix E2 sin(m/2 - Oi) cos #i + ~y E2 sin(r/2 - Bilsin $i]*

exp y[ct + x sin 9i cos $i + y sin Bi sin$i + z cos ei] (5)

while the ground reflected waves are

~~ = [-ix El cos (I$i+ m/2) - ~y El sin($i + T/2)] ‘

exp Y(ce + x sin of cos $i + y sin Oi sin ‘$i - z cos ‘i] (6)

~; . {-ix B2 sin(x/2 - Oi) cos $i - ~y E2 sin (fi/2- Bi)sin ~il”

exp y[ct + x sin ei cos $i + y sin et sin $i - z cos @i] (7)

where y = :=:+j(:= k). For example, El polarization with $i = O,

8i = O, the total excitation vector, ~~ =~f+~, becomes at z =h

fif=?yE1 ey[ct+hl [l _ e-2Yh1

It is convenient to define Xm = maxlx sinei cos~i~ and ym = max Iy sin9i sin$il,,...,.-

and q = max {x~ or Ym) . If t’ %s defined such that t’ = O when the incident o

wave first strikes a point on the structure, then
.. --4.= -+*-%. ~.. .

t=~l’- q+h COS8i
-..— . .

c

The incident wave is multiplied by the unit

‘i [Ct’ -q+xsineicos$i+y

Heaviside function

sin flisin +i] (8)

and t$e reflected wave by

Ur [cc’ - q - 2 h cos Bi + x sin Oi cos $i + y sin Oi sin $i] (9)

where u(R) = 1 220

“o ~<().

With a notation similar to that of Umashankar et al [9], the current
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expression becomes

——
Mi ciT siT1/c siT21c

I(t) = ~ 8
~is;

[Ei u(T1)e - Er u(T2)e 1 (lo)

‘1 = Ct’ -q+xsin Oi cos $i + y sin Oi sin #i

T,=ct’-q -2hcos0, +xsin8, cos~, +ysine. sin~d
_i, r

L L A

E are column vectors; the elements of these vectors

tangential field terms evaluated from the first square

(4) - (7): e.g. if element number 1 of the mode vector

1. L J.

are the appropriate

brackets of equations

represents the zone

on wire 2 nearest the intersection point on the negative x-axis, it follows

that the first element of the E vectors will be the x-component of the

corresponding field expression. Figure 10 shows the results of one such

current calculation for junction currents for El polarization, 0 = 0°,

$ = 0°, and the incident wave is the unit step where E, or Ee = 1 v/m.

Several comments are

Heaviside function in the

written each entry in the

function. As soon as one

L L

in order concerning the placement of the

expression for the current (10). As (10) is

excitation matrix~ is multiplied by a Heaviside

Heaviside function becomes non-zero, the current

at every point on the structure becomes non-zero (unless of course ~i has

some zero entries) for a particular Si. Since causality is a part of the

original theory, it follows that the sum of i in (10) should lead to

zero currents at appropriate places and times if one considers all

natural resonances. In practice however one normally sums over only

four to ten or so terms, and numerically it appears causality is lost.

Causality can be presemed by moving the Heaviside function from the

excitation matrix to the mode vector ~trix but in this case the product

-T-
CiE iS calculated as though all zones are excited simultaneously and

7



the arrival times of the incident wave(s) are ignored.
These problas

are not unique to our problems but have existed from the beginning

of SEII [61.
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.
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13Lfc sL/C

resonance free space, free space [4] free space [8]
this study ‘

approx. exact

Sy,l,l

as,l

ay,l,2

sy,2,2

sy,3,1

as,3

Sy,l,l

as,l

ay,l,2

Ey,2,2

sy,3,1

as,3

~0.2935 +j 2.292.-o.2923-.+j 2.319 ~~

/’
-0.4242+j 2.503 ~O<4203,+j 2.508

-0.3426+j 3.726 ;O.3346+j 3.839

-o.6786+j 6.066 ~~(6609+j 6.066
. .

-1.0166-tj 8.139 {1.0065*+j 8.156
~.,:,.,,

-0.9852 + j 8.305 ‘;O.9528~j 8.294

1

ML =$0.2 “ ;;

this study ~! -.

-0.0513 +j 2.361
,.

-0.0898 + j 2.5”92

-0.1021 + j 3.769

-0.3909 + j 5.740

-0.6691 + j 7.581

-0.6478 + j 8.034

...-

-0.4279+j 2.5377

,... -. f,.
. .. .. . . ..- . . . ,.

-0.8167 +j 8.1833

h/L = 0.2 [8]

approx. :,

-0.091 + j 2.617

-0.4380 +j 2.5847

-0.7866 +j 8.4120

exact

-0.1085 +j 2.611

Table 1. Natural frequencies for n creased wire structure.
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Figure 2: Variation of the natural frequencies with
change in height of the crossed wires over
a perfect ground.
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Figure 6: The sy,l,1 and the as,1 natural current modes
a crossed wire structure over a ground plane.
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assumed for positive current.
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Figure 10: Junction currents versus time for a normally
incident plane wave.
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