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Abstract

A novel technique is developed for evaluating the Sommerfeld-
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element over lossy ground. The integration results;are compared
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Abstract

A novel ﬁechni@ue'is dévelopédrfdf évéluatihg the Sommerfeld-
type integrals encountered when analyzing a horizontal current

element over lossy ground. The integration results are compared

with their asymptotic values, making it possible to efficiently
compute the currents of a horizontal antenna over lossy ground.
The frequency domain results are compared with those available in
the literature, and the Fast Fourier Transform (FFT) technique is
used for obtaining the current transient response due to an input
pulse excitation. The effect of loading is also investigated for
reducing the undesirable ringing behavior present in the late time
“antenna current. ExteﬁsiVé;ﬁﬁmériéal results are cdﬁbuted and
repeated by using an efficient user oriented computer program
developed for this work.
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1. INTRODUCTION

An electromagnetic pulse (EMP) generated by a nuclear burst typically
has a fast rise time (V10 nsecs), a slow decay time (~100 nsecs) and a high
peak amplitude (on the order of several kilovolts per meter) [1]. Such a
pulse has deleterious effects on most systems, such as transmission lines,
transmitting and recelving installations, and missiles, causing temporary B
or permanent damage. In recent years, several designs have been proposed
and built for EMP testing of vulnerable systems. Simulators may be clas-
sified as open or closed types depending on the nature of propagation
mechanism they support. For example, a parallel-plate structure is con-
sidered as a closed simulator while a horizontal antenna is referred to as
an open simulator.

A need for an accurate analysis of these simulators 1s apparent as
their construction is very expensive. In this report, we investigate the
performance of an open simulator which is composed of a horizontal antenna
over lossy ground. The radiated field of this structure behaves differ-
ently from the driving pulse mainly because of the multiple reflections
occurring at the two ends of the antenna, which, in turn, cause the
undesirable ringing phenomenon in the time domain (transient) response.
This ringing effect may be suppressed by employing an extremely long
antenna in which the source current pulse becomes negligibly small as it
travels to the end points. Such a long simulator has in fact been built
and has a length of approximately 300 meters [1]. However, lengthening
the size of the wire is not the only way to reduce the ringing effect. 1In
this report we investigate an alternate approach based on ;ppropriately
loading the anteona to suppress the ringing effect. This approach has the

merit of keeping the antenna size to reasonable length.



over lossy (imperfect) ground has not yet been reported in the literature.

The radiation characteristics of loaded and unloaded linear antennas
in free space have been studied in great detall in both the frequency and
timerdoqging: A rgceqt bqpkiedited byVFelsen [2] covers ;hese topicg in
depth, and contains pertinent references. Frequency domain responses of

linear antennas over lossy ground have originally been investigated by

Miller, et al. [3,4] and more recently by others [5,6]. The basic diffi-

culty observed iniincorporafihéiéhergrdund effects isrthe accurate and effi-
cient eval;Ztion of Sgﬁﬁérféld:typéwintegralé. 'These integralé appear in
the exact solution of the radiated field of a current element over ground,
and their original forms were first obtained by Sommerfeld [7] almost 70
years ago. Since that time, these integrals have been studied extensively
and approximations for their evaluation have been developed for them by
many authors [8-13]. Since the integral equation for the antenna current
requires the repeated computation of these Sommerfeld integrals, an effi-
cient and accurate numerical method for their evaluation would be extremely
useful. Moreover, oﬁe must repeat the frequency domain calculation for
many frequencies in the process of constructing the time domain (transient)
response making the computation even more time-consuming. To the best of
our knéwledge a thorough study of the time domain responses of antennas

The present work is an attempt to address the aforementioned problem,
i.e., to investigate the transient response of a loaded horizontal antenna
over lossy éro&ﬁd. Viﬁitiéily; in Séciion 2, Qe derive théivector potentials
due to a horizontal current element in terms of Sommerfeld—type integrals.
A novel and efficient brocéduré is then outlined in Section 3 for numerically
evaiuatingrfheéé inﬁegraié. Also included in this section is the asymptotic

evaluation of the integrals in terms of Fresnel reflection coefficients.



Extensive results are presented to justify the accuracy of the technique .
developed along with a comparison between the asymptotic solution and the
numerical evaluation of the integrals. Section 4 develops an integral
equation formulation for the antenna current in the frequency domain and
discusses the numerical procedure used to solve this integral equation,
based on the application of the method of moments and the finite difference
technique. The results obtained are compared with the available data to
verify the accuracy of the method. In the final section, the Fast Fourier
Transform (FFT) algorithm is used to convert the frequency domain results
into the time domain responses. Extensive numerical results are presented
for the transient current induced on both the loaded and unloaded antennas
placed over a lossy ground. Also included is Appendix III, a self-contained
report which investigates the loading characteristics of linear antennas

over lossy ground. .



2, DERIVATION OF ﬁ FOR A HORIZONTAL CURRENT ELEMENT

The geometyy of a current element*Pl over an imperfect ground is
depicted in Figure 1. Regions 1 and 2 are characterized by
(el = €., T uo) an@ (62 =€, EqoHy = uo), respectively, where €0 and
My are free-space parameters. The current element is in the x-direction
(horizontal) and its coordinates are (0,0,h). The geometrical image of Py
with respect to the interface is designéted by PZ’ and the distances of
Plggnd P2 to the observation point 0, with coor@inates (x,y,2z), are

labelled as PlO =1 and PZO = T, respectively. Our objective is to .

determine the field radiated by‘Pl'at the observation point O in the
presence of the imperfect ground.
Starting with Maxwell's equation and the suppressed time convention

exp(jwt), viz.,

vV xH= jweoe—ﬁ‘+ ki - (2.1a)
r
> >
VxE=- jprH R (2.1b)

-
one may define the vector potential Il as

e vV ox 1 ] (2.2)

‘ﬁ_.
—JUJEOr

Introduction of a scalar potential ¢ from

i (2.3)

VeT-0=0 |, (2.4)

allows one to finally express Magwellls equation as



Figure 1. Geometry and the coordinate systems for the current element P

radiating over imperfect ground. L

10



(V2 + k2) T = —(jmeoer)_l 3 (2.5)
A= jwaoar v x T (2.6)
: Eeqverrh 1 (2.7)

where k2 = wzuosoer. The preceding fésults are generél and valid for both
regions 1 and 2. To solve the vector differential equation (2.5), one

determines the proper boundary conditions by simply enforcing the conti-

nuity of the- tangential E and H fields at the interface resulting in

: O U
Coax M Y s Tz 7o Tox oz Do (2.8a)
Hlx = KHzx (2.8b)
le = KHZZ (2.8¢c)
3 - . 9
9z Hlx - K 3z H2x ’ (2.8d)

where k = £, /¢

2 The unique physical solution is then obtained by

1r’

imposing the radiation condition.

For the horizontal current element Pl with moment I dx', the source

+
current J may be set as

31 = xI dx' §(x) &(y) &8(z - h) (2.9)

where h is the height of the current element from the interface. As
originally observed by Sommerfeld [ 7], two components of the Hertz
potential T are needed for a complete description of the horizontal

current element problem. This, however, is not the case for the vertical
current element, in which only one component is needed. The two components

are chosen to be in the x and z directions, i.e., along the current element

S S S



and along the normal to the interface, and are designated as follows

T=nx+12 (2.10)

2.1 Solution in the Transform Domain

To determine HX and HZ from (2.5) and (2.8), respectively, the Fourier
transform technique is used. This technique has been employed extensively
in the literature for solving infinite-interface-~type problems. Here, the
technique is only briefly discussed and the final results are presented.

The two~dimensional Fourier transform pair is defined as

foc]

i = j I T exp{-j(ax + By)] dx dy (2.11a)
i = "1—2 I I T exp[j(ox + By)] do d8 (2.11b)
4 —co : )

The transform of (2.5), in terms of its components, takes the following

forms in regions 1 and 2, viz.,

<1 -I. &6(z-h)
2
R 1 B N (. 0 (2.12)
3z2 -
le 0
and
- . |
2
(2= 4y 2x _ (2.13)
322 2 ~ -
sz 0

where Yyq (i = 1,2) and I have been defined as

12




1/2

vy = [k - a? - 821770 Im(y) <0 (2.14)
0 L
, Iy = (Jmeoslr) Idx (2.15)
2 = .2
where 7 ki - w Uoslreoi

The general solution of (2.12) and (2.13) which satisfies the

radiation condition may be expressed as

1x IO exp(—JYl!z—hl)/(ZJYl) Alx

- = + exp(-jv,2),
le 0 'Alz

Z i 0 (2.16)

2xX A2x ‘

- = exp(ivy.z) z <0 (2.17)

2 J—
A
2z 2z

wheretA's are constant coefficients in terms of o and B. The Fourier

transform of the boundary condition (2.8) is

B a ™ i
3 . 3 -
L T1x
1 0 -k 0 le
= (2.18)
0 1 0 -k HZX
3 -
" 2 0 - 9z 0 HZz
3z
L J L B

13



Substituting (2.16) and (2.17) into (2.18) and solving the resulting equation .

for A's, one finally arrives at

1Y (2.19a)
T Yo Ty Gy SREINY 1o
1 1 '2
a(k-1) .
AL =1 - exp(~-jv.h) (2.19b)
1z 0 J(Y1+Y2) (KYl"'Yz) 1 -
- 1 . (2.19c¢)
AZX = IO S0y ) exp(—JYlh) -
1 2
a (k=1) (2.19d)

' ~iv.h
227 Yo Felytr,) Gevgrvy) exp(-jy;h)

Having obtained thebA's, one can then determine the 's from (2.16) and

(2.17) and find

T g 172
| =1 T =3y, |z=h]) + I, T
]\ N J 0 J exp ( JYilz ) 0 J(Y1+Y2) o (<-1)
» exp[-Jy, (zth)] (2.20)
and
. = -\
} HZX i 1 1 W
A "0 3k(y.*y,) -3 v, z) . 2,21
V- o Fety *y,) exp(-jv,h) exp(jv,z) ( )
[ 12 a(k-1)
. HZz/ E§71§—
12

It is worth mentioning that the counterparts of (2.20) and (2.21) can
easily be obtained for a vertical current element. Using (2.20) and (2.21)

in the transform versions of (2.6) and (2.7}, one finds

14 -



r- ~ — ? ~ I
- 2.2 _ 9 -
Ex ke-a aB ja 2 Hx
- _ 2 2 ., 0 .
B, | = -o8 kR“-g% 38 = 0 (2.22)
- R I 2 é& =
Ez jo 5~ 38 P (k=+ gi;) .Hz.
- - - - - ..a
and
- - d . -
HX J " Bz 38 Hx
‘ﬁ = jwe,.€ 3 0 -ja 0 (2.23)
v 0r dz J T
Hz -jB jo .0 HZ
L. - -t L rt

2.2 Space-Domain Integral Representations

"To obtain this form, one first splits I

Since in this work the primary interest lies in the evaluation of
the fields in region 1, attention is therefore focused on the determination

of space-domain integral representations for I and le. These integral

1x
representations take many different forms and a comprehensive discussion is
given in [ 9]. 1In this paper an attempt is made to use the form which has

the contributions from the incident and reflected parts in an explicit manner.

1x from (2.20) "into

ot (2.24a)

It
=
+
=}

1t = 1t o+ ot (2.24b)



where

~i
I

o 1x

“r
Onlx

and then redefines T

In the preceding equations, n

when no ground is pr
g perfect conductor,

for the imperfect gr

The objective is to determine the inverse Fourier transforms of

. -
I's by using €2.11b)

N 1
1x - o 23y,

exp (-3, |z-h|)

exp[-jyl(z+h)}

as
lz

1x

‘vr
esent, lex

-~

and finally Onix and T

1z

ound.

r

. By substituting wﬂl

introducing the following spherical-type change of variables:

2

y = r, sind sin¢2 =

2

X = r, sin€ cos¢2 = p2 cos¢2

2

2 0, sing,

z+h = r2 cose2 = z2
o = -} cosg
g = -» sing,

16

are the correction terms

(2.25a)

(2.25b)

(2.26)

may be interpreted as the source contribution

is the image contribution when the ground is

. from (2.25b) into (2.11b) and

(2.27)



|

’r:'fd Ce T, T i VkZ = A2
i T A T (R R a (2.29)
w 1% —
] 0 k2 . }\2
1

In deriving'the preceding
equation the foullowing identity was used, viz.,

! T ' o
cos(nr)Jn(z) = ﬁ—%ﬁf— [ e jzeos(t T)f:os(nT ydT (2.30)
=
where Jn is the nt -order Bessel function. Expression (2.29) can be
integrated in a closed form to yield
y ,e‘Jklrz S
M = 7o e, T T o (2.31)

-~

Similétlygithéﬁinversé Fourier transform of ﬁix’ defined in (2.25a), can

be constructed to give

o 0 '/w A 5 (. 0)e _jlzll' 1 da (2.32)
1x  4nj 5 voiPrIe '
0 - A
1
or - R Co- - -
~jk.r
i e ) lrl
T = U SOOI S e LT Tl Tl Tl . -
Tlx IO 4ﬂr1 (2.33)

In (2.33) and (2.31), (rl,61,¢l) and (rz.ez,bz) are the spherical coordinates



erected at the source and its image point , respectively. The geometry of

these coordinates 1s shown in Figure 1.

Although, as was expected, Hix and mnix could be expressed in a
) r r “r
.. ] ; . £
closed form, this is not the case for OHlx and le Substituting OHlX rom

(2.25b) into (2.115) and incorporating the transformations given in (2.27)

and (2.28) along with (2.30), one finally arrives at

o A -z, /kf-A%
oMk = T f I, M)e o dr . (2.34)

0 W) 757
¢kl A+ /Kkl A

Similarly, after some manipulations, it is found that

21 o VEZA2 - VikZ-A2 ~jz VKIRZ
1L = - dycose, [ A2 — L ANCIRSE 2l .
z 1 0 <VKZAZ + VikZ= 27
(2.35)

where in (2.34) and (2.35) relations Iq/ag:if_i 6 and Iﬁ/Kki—Az iVO hold.
_Integral.reﬁresentations (2.345 and (2.35) are the well~known Sommerfeld's
integrals for a lossy ground [7]. Attempts have been made to employ

these equations in numerical evaluations, and some degree of success has
been achieved [3-6], [10]. In this work, however, other forms of these
integrals that appear to be numerically more tractable are used.

Incorporating the well-known identities between Bessel and Hankel

functions, viz.,



[

3,6 = 3 [Hil) (x) + Hiz) x)] ; i=0,1 (2.36a)
Hél)w(x? - -gé?) (%) . | (2.36b)
H{l) (x) = Hiz) (-x) (2.36¢)

Wintd k2.34)7and (2.35), one arrives at

I . ®© : -jz
: A 2
L N 120 0e 21 a (2.37)
Olx A3 AISZ s iz 02
, 1 1
and S .
I © . .
noo= -~——§g»cos¢ [ a2 YRIZAT - YekioA 1% (o0
1z fmky 2 VKINZ + Jekze 1 2
- 1 1
- S —szVEE:XZ
' . e - dr . (2.38)

The behavior of (2.37) and (2.38) at o, = 0 is discussed in Section 3, and
it is shown that these integrals are indeed bounded at Py = 0, which can
be observed directly from (2.34) and (2.35).

To recast (2.37) and (2.38) to yet another form which is of

considerable interest in this work, thefollowing change of variable 1is

introduced.:

A=k sin & | (2.39)



Substituting (2.39) into (2.37) and (2.38) and simplifying the result, one

finally arrives at

r _ 01 sinf cos g (2) .
n, =—— | H ™" (k. p, sing)
0 1x 4n ] r cos § + vk-sin“g 12
~jk.z cosg ‘
ce 12 dg (2.40)

and

T IOkl cos€~¢K—sin2§

i = - cosd f sin? fcosg -
Lz 4w z T K cos§ + VK—sin%;
-jk.z, cosg
. Hiz)(klpz sinf)e T 2 e, (2.41)

where the integration path T' is depicted in Fig. 2, and on this path the

following conditions are enforced
Im(cosg) < O irlm(VK—sinzg) <0 . (2.42)

Some discussions on the proper interpretation of the location of poles

and branch cuts of the integrands of (2.41) and (2.42) in the proper

Riemann sheet are given in Section 3. Since in constructing the integral
T

equation for the horizontal antenna problem the knowledge of g%'nlz is

important, one evaluates this term using (2.41) along with the fact that

z, = z + h to cobtain

2

20



» Re
-T7/2 0] > 772 ¢

Fig. 2. Integration path I' in the complex Zw=plane.

21



2
ro_ 3N
1z 4y

cos & - VK~sin2g
K cosg-FVK—sinzg

KB + 22 2
py I cosqyz f sin” g cos“ g

T
—Jk122 cosg

. 3(22k sinf) e édr (2.43)

1 1P2

In the following section, asymptotic and numerical evaluations of (2.40-43)

are presented.

22



3. EVALUATION OF THE INTEGRALS

In this section, an analysis is given for asymptotic and numerical

evaluation of the integrals obtained in the preceding sections. In

‘particular, a novel numerical procedure is presented for the evalution

of (2.40) - (2.43). A comparison is then made between asymptotic and
numerical results to evaluate the domain of their validities.

3.1 Asymptotic Evaluation

The asymptotic expansion of (2.40) is obtained by employing the

results summarized in Appendix I. Using (2.27) in (2.40), one may express

it as
Ik ~-jk.r,cos(g-8,)
r _ 0 l 172 2
where _ ) i o
P(E) = sin £ cos % Héz)(k r, sin 0, sin £)
. /_2— 1°2 2
cos § + ¥k —- sin” & ) - B i
siné 51n£
172 . (3.2)
Let 82 = 8 designate a critical angle for which the steepest descent path

(SDP) of (3.1) is near the branch points of vk - 51n £ (see Section 3.2).

For the 51tuatlon in whlch kl 2 is large and the domaln of 5]

5 belongs to
0 < QZ < ec, one may use the results glven in Appendix I to determine the
dominantvasymptotic expression of (3.1). In this Appendix the result of
the higher-order asymptotic terms is included along with a discussion
regarding the behavior of the asymptotlc solutlon at 62 = 0. The final

result for the domlnant term, which is commonly referred to as the

Fresnel reflection result, takes the following form



2 cos 6 -Jker

r 2 e :
OHlX v I0 4rr ¢ (3.3)

cos 8, + K = sin2 6

Similarly, one can determine the asymptotic expansion of sz and-ﬁ% H;z

from (2.41) and (2.43), respectively, to arrive at

"/ . 2 -3k T
. cos 62 - K - sin 82 e 172

I n 21, cos ¢2 sin 6, cos @

1z ¢ 2 2 47T
: / . 2 2
K cos 62 + K = sin 82

(3.4)

and

4 .Tr . T
Y le o —Jkl cos 62 m, (3.5)

The preceding results are valid when klr is large and 82 < ec < 7w/2.

2

For cases in which klrz is sufficiently large, one may extend the domain

of (3.2) - (3.4) to 6, < w/2 by noting that the contribution to the

2
integral from the portion of the path near the branch points is of the

second order [14].

3.2 Numerical Evaluation

A survey in the literature reveals that numerous attempts have been

, . r r
concentrated on the numerical evaluation of I and NI, . Most of the

071x 1z
available techniques are based on the application of Sommerfeld's integrals,
given in (2.34) and (2.35). It is noted that the integrand of these
integrals is highly oscillatory for large Py orrzz, and, therefore, special
consideration must be given for an accurate evaluation of the integrals.
In order to avoid the inaccuracy observed in the results when the pole of
the integrand of (2.35) approaches the real axis (integration path), some
authors [3,4,6] have deformed this path to ome which first travels along the
imaginary axis and then runs parallel to the real axis. Though on this new

path the effect of the pole singularity will be decreased, nevertheless,

the decay rate and the oscillatory nature of the integrand would not be
24
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of fﬁesébeéﬁéh poiﬁ%s is derived as

changed appreciably. It is worth mentioning that for solving the antenna

problem, one has to evaluate Onix and Hi; repeatedly. Therefore, application

of_an accurate and efficient numerical technique is indeed of great

importance.
"In this section a novel numerical technique is presented for
. r r . e . s .
determining OHlx and le in a highly accurate and efficient manner. This

technique is also advantageous to other available techniques as it can be

easily related to the asymptotic results given in the previous section.

Y and Ji,nr are evaluated using

In contrast to other techniques, Oﬂiy, le 5z Mz

their integral representations as given in (2.40), (2.41) and (2.43),
respectively. Here, computational details are given only for 0H§x'

At first, Bnix from (2.40) is expressed in the form given in (3.1),
then the iﬁtegratfan path I is deformed to the'steepeét descent path (SDP)

passing through £ = 6,. Since in this deformation one has to guard

2,'

. . . . . 2 .
against intercepting any of the branch points of /Q - sin~ &, the location

g, = [1/2 +-iln(/k + ¥k - D] (3.6) .
where, as before, k = €2r/€lr' Taking region 1 as air and région 2 as a

lossy ground with a relative dielectric constantfsg and conductivity o,

one finds _

=,_._‘Ci_= C s p
K Eg 3 eg 318000 (0/£) (3.7)

where ¢ and f are in mho/m and MHz, respectively. It is clearly evident that
gb is a function of frequency. For different sets of (gg,o) the location of
the &b's are plotted versus frequency in Fig. 3. In evaluating (2.41)

and (2.43) care must also be exercised in locating the poles of their

25
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~ shown in Figi”4 .

integrands. These poles are the roots of k cos & + Vg =+ sin2 & = 0, and

a simple calculation allows one to express them as

o . ,,gp = +3 {Ln{il+j/iz)-Ln(/K+l} (3.8)

The location of Ep's versus frequency for different choices of (eg,o) are

- Assuming that no poles or branch points are intercepted, one deforms
the integration path T into the steepest descent path (SDP) defined by
Re[cos (& - 62)] = 1, On this path, the following change of variable is

introduced

cos (5~ 8,) =1~ jt° (3.9)
allowing one to finally express (3.1) as
T A e
Onl = — J Q(t) e dt (3.10a)
X 2/ -0
where
- - E - 62
e Q(t) = P(&) sec -5 (3.10b)
in which & is replaced by
g={%+jLn(t2+j+ltl»/t_2+2j>]+ez S (3.11)

Expression (3.11) is used to construct a universal plot for steepest

descent path (SDP) in the complex plane £ with 62 as a parameter.. This

plot is depicted in Fig. 5 , and can be used in conjunction with Figs. 3,4
to determine the critical agglgﬁec, beyond which (3.10a) would not- hold
in general. Tor 92 = 0, P(&) from (3.2) diverges and therefore, (3.10a)

is not ‘defined. To circumvent the difficulty, one can use the result of

27
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satisfied in the Ul and U2 regions.

2 The condition Im(cos £) < O is



Appendix II to TFewrite .(3.10a) in a more suitable fashion by employing

P(&) as

sin £) , for 8, =0 . ¢3.12)

P(E) = sin £ cos & -2 Ln(klr

5 T 2
cos £ + vk - sin” £

Clearly for 82 = 0 and £ = 0, one obtains P(£) = 0. This fact can be
used when evaluating the integrand of (3.10a) for 82 =0 and t = 0,
Similarly, one can construct integral representations in .the form

(3.10a) for both it and Ji-Hr . Using (2.41) and (2.43), one finds that

lz dz "lz
[ mr (£ 2
j 1z Iokl —jklrz—jw/4 o J/Ql —klrzt
= ——= g cos ¢ e dt (3.13a)
\ 2/3 -~ 2 e g, (e)
BT " \2,
3z " lz ,

where

Q, (¢ -3 T
L 2 cos & — VK = sinz_g_

= sin £ cos §

Qz(t) kicos 2 K cos & + vk -~ sin2 £

jik,r,sinB sing E -8
(@) . . S ER5EY, ST
Hl (ker sin 8, sin £) e sec 5 e
(3.13b)

and £ is replaced with t from (3.11). Though at 82 ; 0, the preceding
expression diverges, nevertheless, the result of the integration is
bounded and as observed from (2.35) would be zero.

For a sufficiently large klr2’ integrations (3.10a) and (3.13b) can
be asymptotically evaluated to give the results obtained in Section 3.1.
For other values of k.r, one has to evaluate ;hese integrals numerically.

172

In order to demonstrate the accuracy achieved in the numerical integration,
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the integrands of the aforementioned integrals are plotted as a function

of t for different values of klr2 and 62 in Figs. 6 ~ 17. TFor this

evaluation, a newly developed routine for the computation of the Hankel

functions with complex argument was used [15]. The plots of the integrands

clearly déﬁbnsﬁ%éﬁe fﬂatﬂéﬁése integfands décay very rapidly with
relatively smooth behavior. Due to these observations, integrations
(i.lla)?é;ai?3.léé):cantge7g;éluat;ér§éry gccuratel§ and efficienﬁiy by
employing the Gaussian quadrature integration algorithm. Also in

Figs. 18 - 19, the integration results are compared with the corresponding
asymptotic values for a wide range of frequencies. Note that the
difference error between the exact and the symptotic evaluations of the

vector potentials vanishes rapidly as the frequency is increased, and for

the examples in Figs. 18, 19, the error is consistently below 5% for

 frequencies above 60 MHz.

Thé coﬁbﬁ%ation time on a CDC-CYBER-175 digital computer is less than
1000 us for an asymptotic evaluation, for a given point on Figs. 18 and 19,
and about 35 ms for the integfation result using a SQ point Gaussian

quadrature approximation. Even though the integration time is improved
by that of reported in [13], the computation time can be further reduced
by relaxing the number of points needed for the integral evaluation since,

as seen in Figs. 6-17, the integrands are smooth and well behaved.
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4., TLOADED HORIZONTAL ANTENNA OVER AN IMPERFECT GROUND

In the previous sections, detailed discussion was given for deriving

‘the vector potentials due to a horizontal current element radiating over

imperfect ground. A numerically accurate and efficient method was devel-

oped for evaluating the Sommerfeld-type integrals wﬂich ?ere'encountéreé:
Also presented was an asymptotic evaluation of these integrals and their
comparisons with the exact integration results. At this point, we will :
formulate an integral eéuation for an arbitrarily loaded horizontal antenna
over imperfect (lossy) ground. The method of moments will then be applied
to transform the integral equation into a numerically manageable matrix

form. Finally, our procedure will be tested by comparing some selected

i

results with those reported in the literature.

4.1 Integral qugtion Formulation

The geometry of a thin, linear, horizontal antemna of length 2L,

radius a, and mounted with height h over imperfect ground (sg,c) is

shown in Fig. 20. The antenna is assumed to be resistively locaded with

a functional distribution of A(x) along the antenna, and is driven by a

inc

finite gap source located at the midpoint of the antenna. Let E and

E5®? refer to the tangential electric field components of the incident

field (the gap source) and the scattered field on the antenna, respectively.

The total tangential electric field may then be written as

EtOt(x) - Einc(x) + Esca(x) i (4.1)

' Application of Ohm's law allows one to relate Etot and the induced

current I(x) as -

EF9N (%) = A(x)I(x) ’ C(4.2)
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where A(x) is the loading function. Using (2.7), one can express the x
component of the electric field of the current element defined in (2.9) as

2 2
S 2 8
E G0 = N R IR T v

(4.3)

A simple application of the superposition theorem allows one to finally

determine the integral equation for the induced current I(x)

L ,
; 2 . ; -
217 (%) = ~(Jued) 7t i—2—+ 2 G, (6, x" ) I(x")dx' - (Juey) 1
dx : :
~-L
L
d | ; : -
I Jr Gv(x,x YI(x)dx' + AR I(x) L<x <L
=L - - (4.8
In the above equation, Gh and Gv are the following functions
S R r r ' :
G, (x,x") = I, (Hlx *allie *oolix -~ (4.5)
S B Y- , (4.6)
Gv(x,x ) = L 3z le
' L o '
where Hlx Ss o7 le and IO are defined in (2.31), (2.33), (2.40), (2.43)

and (2.15), respectively. The numerical and asymptotic evaluations of
these expressions have already been discussed in great detail inm the previous
section.

4.2 Matrix Equation Formulation

As in many similar problems, the method of moments is émploye&}td'
recast (4.4) into a numerically manageable matrix form [16]. Based on our

previous successful results with the half-patch finite difference scheme
2

{17, this technique is here applied to the %;-and 9—7 operators. Further-
dx

more pulse and delta functions are used as the basis and weighting functions,

respectively. The resultant matrix equation can then be written as

[viney - {[za“t] + m} [1] .7
48



where [Vlnc] and [I] are column vectors containing the gap voltage and the

induced current on the antenna, respectively. Furthermore, [A] is a

‘diagonal matrix representing the'loading.function, and finally [Zant] is
the impedance matrix in which element Z??t is defined as
X, + Ax/2 x, + Ax/2
2 2 ; d ;
ant _ _ . -1 d ' ' a : ' '
Zij (Jweo) Ax dx2 + kl .Jf Gh(x,x ) dx' + i Jr Gv(x,x Ydx
‘ x, - Ax/2 x, — Ax/2
- - - ,j’J S ) 7_1 = }‘:i
(4.8)
Note that the *éj‘and Eg_ operators are approximates such that
dxi
d _ f(x + Ax/2) - f(x - Ax/2)]
dx, [£(x)] = Ax ’ _ (4.9
i : X = X,
1.
a° CE(x F Ax/2) - 2f(x) + £(x - Ax/2)
LG ] = 5
dx (ax/2) X = x, (4.10)
R L L - R B B — 1
. Expressions (4.9) and (4.10) are the results of the direct application of
the half=patch finite difference scheme where Ax is the full patch size
used in the method of moments approximation. 1In evaluating Gh from (4.5),
we use the thin wire approximation to express Ial Hlx along the antenna'as
. -jkr
-1 i e ) _ i 2 2
IO Hlx = AW?W ,7r f /(x -x") 7+ a 7 | ' (4.11a)

-1 g e—Jkr
0 «'1x 4mr

I

(4.11b)

; r o= V(% - x')2 + 4h2

where a is the antenna radius and h is its height from the ground. These
approximations allow one to compute the direct and perfect reflection
ant,

components of Zij s, which are the results of integrating (4.1la) and

(4.11b) over a patch, in a closed form as described by Harrington [18].
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Performing a simple matrilx inversion, one can finally solve (4.7) for
[1] to arrive at

[1] = [¥**F7 v | (4.12)
where

.[Yant] =<[Zant] + [I\]}-l )

4.3 Numerical Results and Discussion

Based on the analytical developmenﬁs inrﬁﬁé ?re#ioﬁé'éécﬁibﬁs, a
Fortran digital computer program has been developed for calculating the
current along a loaded horizontal wire antenna mouﬁted over lossy ground.
To conserve computing time, only one row of the impedance matrix has been

computed, since [zant] takes the following general form (Toeplitsmatrix)

~ -
al 3.2 3,3 e ¢ a an
8 & % fn-1

(720t = |83 3 & ) (4.14)
a a a . a
k-.n n-~1 n-2 1 B

and thus expresses the inherent symmetry of the problem. Also note that
when (4.14) is modified by the diagonal loading matrix, it still remains
symmetric, so a more efficient inversion routine has been employed in
obtaining [Yant].

In order to test our integral equation formulation, the case of a
linear antenna in free space (eg =1, g = 0) is considered. Figures 21 and
22 show the input impedance values as a function of frequency. These
results agree well with available reported data [19], therefore, indicating
that the finite difference approximation does indeed provide an accurate

result. The perfect ground case (¢ = .«) is investigated nexﬁ; Fig. 23
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clearly demonstrates excellent agreement between our result and that

reported by Miller et al., [4], in which a three-term sinusocidal current
expansion with delta matching was used to generate the matrix equation.
This result is quite compatible with the conclusion drawn in [20] where
it was shown that the procedure based on finite difference and pulse
expansion is closely related to the three-term sinusoidal expansion
approximation.

There are not many experimental and/of numeriééirdataravaiiable
for the linear horizontal antenna over an imperfect ground. Millér et ai;
[4] have reported some numerical results using three~term sinusoidal
expansioﬁ functions and a different approach in eﬁaluatingrthe Sommerfeld
integral. Bere, we compare the results of our method with those of
Miller's in Figs. 23, 24. The agreement is excellent and provides a good

check for both of the numerical methods.
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5. TRANSIENT BEHAVIOR OF THE ANTENNA CURRENT

In this section the frequency domain results of the previous sections
are used to investigate the transient behavior of the antenna current ' -
mounted over lossy ground and driven by a puiser. As a first step, the
transfer function (impulse response) of the antenna current is computed
using the results of Section 4. This transfer function is then mﬁltiplied
by the spectrum of the input pulse, and finally the Fourier inversion 1s
performed numerically via a Fast Fourier Transform (FFT) routine to obtain
the transient response.

The pulser is assumed to drive the antenna at the mid-point with the

following Gaussian Form

v(e) = empl-(c - D%/0 ] . RNCRS

Using the transform pairs defined below .
V(f) = I: v(t)e—jZﬂft dt (5.2a)7
v(t) =_z v(£)ed?TEE g¢ (5.2b)

one readily finds thati ) B .
V(£) = /27 Up exp[-wzci/ZJexp[—jZNET] (5.3)

I
¥
i

where £ = w,/2m designates the frequency. Figure 25 displays v(t) and

V(f) for T = 0 and two different values of Qp'

At a point x on the antenna the current transfer function may be
defined by H(x,f), which is the delta-reSpohsé ofithe éﬁtenna at point X.
The transfer function can be constructed discretely using the developments

of the previous sections. Using the superposition theorem, : .
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the transform of the current at point x due to the inpdt pulse V(t)
can be written as

b

I(x,£) = V(£) H(x,£) . | s

Using the transform convention in (5.22), the transient response of the

antenna current at point x can be expressed as

o«

i(x,t) = f I(x,£)ed?TEE 46 (5.5)

-_—

Since i(x,t) is a real function, one concludes that

I(x,£) = I (x,f) (5.6)

where * denotes conjugation. Furthermofe, because v(t) is itself a real
function the following is true 7 ) 7

V(-£) = V() | ' I
which finally results in

H(x,~£) = H (x,£) . (5.8)
In other words the knowledge of I(x,f) for positive frequencies is enough
to enable one to determine 1(t) from (5.5). This final step is done
numerically using the FFT routine. Note that‘;owﬁére in ourrdeyelopﬁent
have we.enforged the causality condition which, for example, states that
for an input pulse starting at t = 0, there cannot be any current excited
at a distance x before time x/c, where c is the velocity of light. This
fact can be used as a valuable check point for the final result, 1i(x,t),
and as seen later on, is indeed satisfied by our results.

As previously discussed, by loading antennas one can shape their

time domain responses. It has been found that a resistive loading with the

following functional distribution

A

A = T - 6
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providés tﬁg’ﬁb;EAHesirébieMéahEréiﬂfor reducing the end point reflections
at a given frequency. References [21] and [22] discuss the suitability

of (5.9) for loading antemmas in free space.  Appendix III is a self-

contained recent report for determining the Aj

parameter for a hori-

zontal antenna over Imperfect ground. This appendix primarily considers
the Fresnel reflection coefficient—approximation for determining the
antenna currents, and is used in this work for obtaining an optimal value

for A,.
0
In the following subsections, we provide extensive numerical results

for a 10m antenna of radius 0.05m mounted 5m above an imperfect ground

characterized by Eg = 10, and o = .01 mhos/m.

5.1 Current Transfer Function H(x,f)

- The current transfer function is simply the antenna current values,

at—a given observation point, due to ome volt excitation at several
o L ant
7]

frequencies. For each frequency, the impedance matrix [Z of

Equation (4.7) is computed regardless of loading. Sample integrands

encountered in evaluating the impedance matrix elements are shown in
Figs. 6~17. 1In ofder to conserve time, the exact numerical integration
is used only up to 60 MHz, where the asymptotic approximation is shown

to be within 5% error (see Figs. 18 and 19). As explained in Section

4.3, only one row of the impedance matrix is computed because of the

symmetries involved,

Fortunately, for the considered parameters, no poles encounter the

-

steepest descent path deformation (see Fig. 26) for 0 < 0, < 45°. However,

as seen in Fig. 26, at higher frequencies (f » 7.5 Miz) a branch point does
enter the path deformation for higher 6? values. Note that Figs. 12, 13, 16

and 17 demonstrate that—the integrands have decayed to negligible valuus

around where the branch cut is intercepted. It is concluded that thc branch

point contribution is of second order and can be neglected. This approxi-

mation is also verfified and shown by [14].
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function of frequency and the steepest descent path for
minimum and maximum 82 values.
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The antenna transfer function H(x,f) is computed at the total of
127 frequencies in the range of 1 < f < 400 MHz with more samples
concentrated at the resonance frequencies. Figures 27-29 show the
transfer functions of the unloaded antenna at three observation points.
Using the loading function given in (5.1), and choosing a proper loading
of AO = 40 ohms/m, based on the results of Appendix ITII, the loaded
transfer response is computed and shown in Figs. 30-32.

5.2 Computation of i(x,t)

The input pulse of Fig. 25 is shifted by T = 30 nsec so that the

0 and reach its peak at t = 30 nsec.

]

applied voltage would start at t

The trénsférﬁ:af fhéfiﬁ§ﬁt7ﬁu1ééwiéimﬁifipliéa byrihé ;htenna transfer
functions shown in Figures 27-32 to obtain the corresponding I(x,f)'s which
are shown in Figs. 33-38. Note that at f = 400 MHz, the resultant
frequency domain currents have decayed sufficiently so that zeros can be

added for f > 400 MHz. Also using (5.6 - 5.8), the negative frequency

'domain76urfenté7ééh'béidireéfly constructed as the conjugate of the

positive frequency values.

Now that the entire frequency domain is constructed numerically, a

i(x,t). Since many pcints are needed to assure proper sampling, a linear

interpolation is made through the available I(x,f) data points, and from

that, 2048 equi-distance samples are fed into the FFT routine. Figures

39-41 contain the unloaded tiﬁé”rééponse at. three observation points,
while Figs. 42-47 demonstrate the corresponding current transient responses
when,Ao = 20 ohm/m and AO = 40 ohm/m loading parameters are employed.

It is interesting to point out that the causality is satisfied very

convincingly in Figs. 39-47. Also note that the sharp peaks in Figs. 39-41
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can be justified if we assume that the feed excitation travels along the
antenna as a TEM mode while being multiply reflected from the antenna end-
points. For example, at the center of the antenna (Fig. 39), the
reflections from both ends return simultaneously and only one peak is
detected per reflection. However, in Fig. 40, the observation point is

midway between the feed and the end so that the reflections from the two

ends are clearly distinct.

The ringing effect pfesent in the unloaded current transient responées
of Figs. 39-41 is partially overcome by the AO = 20 ohm/m loading
(Figs. 42-44) and has éractically disappeared for the AO = 40 ohm/m case
(Figs. 45-47). This gesult agrées’well with those reported in Appendix

IIT in which the latter loading seemed to be a good approximation to

the optimal loading parameters computed for a wide range of frequencies. -
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6. CONCLUSIONS .

A novel procedure has been developed for accurately evaluating the
Sommerfeld~type integrals and the integration results are compared with

that of the asymptotic approximations. An efficient and fast user-

oriented computer program is then developedrfeffcomputingdthe current
transient response of an arbitrarily loaded, horizontal, linear antenna

over a lossy ground. Selective results have compared convincingly with

those reported in the literature. This program is currently accurate as

long as no poles are intercepted during the path deformetions, and the

possible branch cut contribution is negligible. Note that for larger

82 (see Fig. 5) and as o + 0 (see Fig. 4), chances of capturing a pele and/

or a branch point increases, therefore, adeitional aﬁalytieel ené 7
numerical analysis is needed to take their contributions into account. ’
This work can then be extended to compute the near field of the antenna

and will be reported in the near future.
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" APPENDIX I

ASYMPTOTIC EVALUATION

In this appendix a general formulation is developed for higher-order

asymptotic evaluation of an integral with the following format

1

1 f P(£) e—jkrcos(i—e)
T

u = I3 de s (I.1)
where it is assumed that kr is a large parameter, -m/2 < 8 < 1/2 and P(§)
is a slowly varying function. For large values of kr one is usually
interested inrdetermining the asymptotic expression of (I.1). This is
done by employingréﬁe mégg;d of ﬁhéré£éépéét aeéceﬁt pafgriﬁtegféfion;

At the saddle point § = 8, one can deform the integration path I to the

steepest descent path (SDP) defined by Re[cos (£ - 8)] = 1. 'Assuming that
|

in this deformation no poles or branch points are encountered, one may

express (I.1) as

-ikrcos(&-6) de

- - T Lyg = T stP P(&) e . (1.2)

Since on SDP the relation Re[cos(& - 6)] = 1 holds, one introduces

the change of variable

N LAt (1.3)

in which t is a real variable taking the domain [-«,»]. Substituting (1.3)

into (I72), one arrives at

~jke-ju/4 (o 2
" = e________J Q) e krt de (I74)
2V2 7 —o
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where

Q(t) = P() sec 2520

in which £ is replaced with

£ = i{% + jLn(t2 + 3 +,|t|Jt2 +'2j£]+ e ,

(1I.5a)

20 (1.5b)

and Ln is interpreted as being its principal value. The complete asymptotic

expansion procedure {23] is now used for the asymptotic evaluation of (I.4).

In this procedure, one first expands Q(t) in a Taylor series

©  (n)
Q(t) = z Q____(_Ol__ tn

(1.6)
120 T'(n + 1)
n
where Q(n)(O) = JiE-Q(t) and T is the Gamma function. Then (I.6) is
.9t £=0
substituted into (I.4) to finally result in
~jkr-jm/4 o -2 -
e el N (DR (1.7)

1
2V2n n=0

In constructing the preceding equation, the following identity was used,

viz.,

I tne—krt dt = «

The task is now to determine Q

(2n)

's in terms of P.

differentiating (I.5a) and arriving at
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for n even

.fér n odd

This is achileved by
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O ‘

Q(0) = P(8)
2
<Q(2)(0) - Zj[g-lz(—ZQ—-F%P(gﬂ
dE Jg=o
* ) a*p) |5 d%R® L 9
Q (0) = -4 A +"'2— 5 + 16 P(&) . (L.9)
N ag’ dg £=6

The higher—order terms can also be determined in the same fashion. It is

worth emphasizing here that in deriving the preteding equations, the
following assumption has been made: neither the poles nor the branch
points of P(£) are near the path SDP.

To present an example, the higher-order aéymptotic expansion of the

fdllowing Hankel function of the second kind and order v is derived.

[ | 12 () = }l‘j e IVERIVI/Z mffleost 4 (1.10)
i

Comparing (I.10) with (I.1), one obtains

e—jv£+jvw/2

P(E) = 4j , (I.11)

where it is assumed that Q ?>7v.178ubsti;uting (I.11) into (I.9) and

simplifying the result, one finally arrives at

, (@ = 43 VT2
o? 0y = —8{}\)2 +—£1; JVT/2
— 1™ = —16j[\)4 - % v+ —136—] IV1/2 (1.12)
\ o
" The -asymptotic expansion of H\Ez) is then determined using (I.7) to be
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(2) ~3(Q-vr/2-T/4) i 2y 1la 5 2.9
(2) J\JF; [i + 5o (4 v ) o2 {v 5 v g

+ow % ' (1.13)

The purpose of this appendix has been to formulate the necessary steps
for determining the asymptotic expansion of (3 0. "Compar{ngiTB 1) and
(3.2) with (I.1) and using (I.13) in (3.2), one can then f1nd the asym;Eotic
expansion of (3.1) from (I.7). Since the final results take a complicated
form, the following notations are introduced for the ease of representation,

namely,

cos 92 (I.l4a)

e}
i

s = sin 62 (1.14b)

q =k - sin2 82 . (I.l4c)

Using (I.9) and performing a rather tedious differentiation, omne finally

arrives at

2 jn/4 3 c
Q(0) = / L + (1.15)
0 1 Trklr2 l 8k r s2 c+q
_ 172

and

3 2
(2) 2 jn/h jf c 2¢” - 3cq
(0 = Tok¥mi o, © (23) T hqcr o

172 L~ 4s (c+4q)

2 2 2
+ (1-x) 4gs” + 3cq” + 2cs /} ) (1.16)

2
2¢7(c+q)
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Clearly, the terms for Q4(O) get very involved and therefore are not-
included here. It is interesting to note that both the second term in (I,15)

and the first term in (I.16) are singular at s = 0, i.e., eé = 0.

Substituting (I.15) and (I.16) back into (I.7) and simplifying the result,
one clearly observes that these singularities together produce a bounded

result at 62 = 0, 1In other words, though the asymptotic construction was

not originally valid for 62 = 0, the final solution can be used for this

angle. This solution takes the following form

o T

T 2¢c e 172 -2 =2
L = T .17
- OHlx IO c + q 41Tr2 + O<kl T2 ) ’ (1.17)
and L ~
-jk.r 5 ’
nt 2c e 12 j ce - g) 4bgs” + 3eq’ 4—2c52
0lx =14 c+q 4mr 21 qlc+q) + (L= 3 2
p— LT — I LS PP q (C+q‘)
—jklr2 4 s
& 40 kT . (1.18)
Sl i M
Tk T,

It must be realized that the preceding asymptotic results are valid only

for observation angles 62 < BC, where e is the critical angle for which

the saddle path of (3.1) 1ntercepts the branch point of the integrand. For

the cases where the 1nterceptlon happens, one has to determlne the

asymptotic contribution of the branch p01nt near the saddle point. The

procedure is dlscussed in [14] and it—can be shown that the final result-

would be of the orderfklzrgz, i.e

., the same order as the second term in
(I.18)." Therefore, as far as k. 1% is large and the branch points and

poles are sufficiently away from the saddle point, one can use (I.17) with

confidence for almost all angles of observation.
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APPENDIX II.

EVALUATION OF .- AT 6. = 0
0'1x 2

In this appendix the behavior of (2.37) and (2.40) at 0y = 0 is

studied. In their present forms, these integrals are not defined at

0, = 0, although it is clear that their equivalent form in (2.34) is

bounded. Equation (2.37) may be expressed here for convenience as

— Ry
o0 -jZ k=X
= 0_ f A Héz)(pzl) e 2/{ 1 da (II.1)

where Py =T, sin 82. From Fig. 1 it i1s observed that r, > h and

0 < 6, < ©/2, and therefore the difficulty arises at 6, = 0.
)
To circumvent this difficulty, cne replaces Héh) with its expansion
from [ 24 ]
(2) ] J2  YeRt
Hy o (e,2) = J5(o,0) = §1 2 dn —5— J(e,0)
2 -
> ) (_l)m+l {D,)/\ m 1
+= ] 3 5 ¢ (m) | (11.2)
m=1 {(m!) \ - j

where y is the Fuler's constant and ¢$(m) represents the harmonic series,

i.e., -
p(m) = 1 + 1/2 + 1/3 + ... + 1/m . (I1.3)

Using the fact that 0, =T, sin &,, one may express the "&n" term as

YO LA Y sin ©
&n -
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It is noted that both the JO and the summation terms in (II.2) are even
fpnctions of A, hence, their contributions to the integral (II.1) will be
zero,

Using (II.4) in (II.2) and substituting the result into (II-1), one

finally arrives at

I @ a
r _ 0 A ~23 .
OHlX - 477 f_m ) > — T Jo(rz sin 62 )
/’kl - %, +7/ Kkl - A
. -iz, ki—kz
o e Qn(rzk) e dx (II.5)
which is obviously bounded at 62 = 0. Introducing the change of=variable
A= kl sin & into (II.5) and setting 62 = 0, one finds
I .k
r _ 071 sin & cos & -2 i .
Onlx - 4mj JT . 5 v 2n(ker sin £)
cos & + vk = sin” &
"~ Z3k.r.cos8.cost S ’
ce PP Tae ey =0 (11.6)
The above result was used in (3.12) for defining P(¢). In a similar
fashion, one can show that the following results also hold at @2 =0
j niz =0
{ (11.7)
3 _r
I =0
\\BZ lZ
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LOADED HORIZONTAL ANTENNA OVER
AN THMPERFECT CROURD
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Depariment of Electrical Engineering
University of Illinois at Urbana-Champaign
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ABSTRACT .

The Fresnel reflection coefficicnt.tgchniqughisrcmployed to establish
an E-{ield integral cquation for the antenna current. A resistive leoading
of the form £(x) = & /{1-1x{/L) is used to load the antenna.  An optimiza-

A

tion techiiique is discussed for determining the value of gritical loading,

c . - . ) o .
A, whici, enforces Ta traveling wave currvnt on the antenna.  Results are given

for the vritical loading parvameters, ant.nna arrents, input impedances and
radiation patterns versus different antcenna dimensions and ground permitti- .

vities and conductivities.
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I. INTRODUCTION

Loaded wire antennas, which have attracted attention in designing EMP
simulators, often are regarded as open simulators. The basic design
requirement is to generate a temporal signal which matches the Qaveform
of an exocatmospheric burst [ 1] which is typically characterized by rise and
fall times of approximately tens and hundreds of nsecs, respectively. The
basic obstacle in using any pulse radiating finite antenna>ié the undesirable
effect due to the reflection from the ;ntenna endsf::The effecF of these

reflections is predominantly seen in the early time behavior of thergadiatéd

pulse. Usually the antenna dimension (leng;h)gﬁs SEQeral'A/Z(ﬁéveiengEh),
for the upper part of the frequency spectium of‘thérpulse.r Ohe possibie way
to overcome these difficulties is to load the antenna with a non—unifor; W
resistive loading (frequency independent) which eliminates the end N
reflections to a great extent. |
Many different locading functions have been proposed and tested for
antennas in free space. Liu, Sangupta and Tai [ 2] have analyzed and compared
the effect of different loadings and have concluded that the following
continuous loading is the most suitable.one:
AO: VT - R S N
Alx) = T [=[/L (1)
where x is measured zlong the antenna from its cen%er aﬁd 2L is the antenna
length. They used the method of momentsrwith quadfatic basis function ay&
determiﬁed the critical wvalue of AO by trial and error algorithm, ;:e:f,by
looking at the current distribution and searching for a traveling wave-

type behavior. Tesche [ 3] has arrived at almost the same conclusion by

applying the singularity expansion method.
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In this paper, we analyze the effect of loading with characteristic
function (1) for antennas over an imperfect ground, and specifically devise
a novel approach for the determination of the critical loading. We use the
Fresnel reflection coefficient approach and derive an E-integral equation
for the antemnna current. The effect of loading then appears as a diagonal
term iﬁ the matrix equation formulation. Since for the critical loadings,
the current phase distribution is almost linear along the antenna [ 2]; we

use' this fact to develop our procedure. For a given value of AO’ the current

phase distribution is determined. On one side of the feed, the phases are

interpolated numerically by a best fit straight line and the resultant

least square error is then associated with the,AO parameter. The procedure

then 1s simply a search for an optimized value Qf,AQ eritical loading) by

minimizing the least square error. The phase obtained in this manner is
almost linear except at the feed and end points where radiation occurs,
which guarantees an almost reflectionless current distribution on the
antenna. Results are given for the critical loading parameters, antenna
currents, input impedances and radiation patterns, versus various different

antenna dimensions and ground paramters.
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I1. BASIC FORMULATION

In deriving an integral equation for the antenna current, knowledge

of the radiated field from a current element is needed. The major steps

in constructing this field will be briefly discussed in this sectilon.

The geometry of a current element P

in Figure 1. Regions 1 and 2 are characterized by (81 =

91

are free—space parameters.
(horizontal) and its coordinates are (x7, v7, z7).
geometrical image of P

observation point 0 (x, y, z) are labelled as PlO‘= R

= () and (52 = e,

1

TE€gs Hy T Mg Gy = G), respectively, where ¢

1

o0 M1 T

0

Uoi

and UO

The current element is in the x-direction

Furthermore, the

l'and P

2

0 =R

23

over an imperfect ground is depicted

is designated by P2 and their distances from the

respectively. Our objective is to find the radiated field of P1 at the

observation point 0 in the presence of the imperfect ground.

As originally observed by Sommerfeid [ 41, two components of the

Hertz potential are needed for a complete description of the horizontal

current element problem.

would be sufficient.

However, for the vertical case only one component

The two components are chosen to be in the X and z

directions, i.e., along the current element and along the normal to the

interface, and are designated as follows

Later in this paper,

- ~ ~
N=NTx+10 2z
b's z

quantities 1like T, ,
: 1x

(2)

n2x’ etc., will be used which

specifically define these guantities in regions 1 and 2, respectively.

Employing Maxwell's

equation and using the Lorentz guage, one arrives at

2ﬁ = —(jws)_lj

2
T+ k
5> . >
‘H = jue Vx I
E=v - T+ K%
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> > -
where E, H and J are the electric field, magnetic field and current source
respectively. Furthermore, throughout this work, the time convention
exp(jwt) is used and suppressed in the {ormulations. For the problem at

hand, the only source term is

I = xlax” 6(x - x) 8y -y sz - 27) , (&)

where I dx” is the current element moment.
3 . . '+ _-> - )
The continuity of the tangential E and H fields at the interface

results in the following boundary conditions;

"éi,nlx * g% le ) éi an * g% H22 (5a)
nlx = K HZx (5b)
T, - “zz_ “ 7 o)
g% ITle - K é%;nzx 7 (5d)
where k = ez/el = Er - jo(mao)—l. Our.goglrgeithisrpoint is to déterm%ne”
nlx and le. The boundary value prob%em‘(Bléjr(S) ;;;f;n exactkéolutign

in terms of the well-known Sommerfeldrintegféls. ‘These integrals take many

different forms [5,6,7], and the following versions will be used for

simplicity
_ L1 r
Hlx - nlx + Hlx (6)
where .
—Jle
i _ €
nlx I0 47R 7
1
and -jkR
T e 2 Iok sin £ cos §
Il = -1 + :
1x ¢ 4w R, 47 T y 5
cos & +‘/K - sin~ &

2) .. . » a1 :
'Hé )(KR2 sin 8, sin £) exp(-jkR, cos e, cos &) di
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where k = mVuoaO, IO = (jm&:o)ﬁl I dx~, 92 is shown in Figure 1, and Héz)

is the Hankel function of zero~order and second kind. The integration
path T is shown in Figure 2. We have split 1

. i r .
to Il
1x into 1x and Hlx in order to

emphasize the contributions obtained from the source at point 1, i.e., inci-
dent, and from its image at point 2, i.e., reflected, respectively. Further-

more, I. takes the following form

1z )
T - _ ;Ok ° f inz £ £ cos £ - vk - sin2 £
CARETE T o
Kk cos £ + Yk - sin §
o ’H<2) (kR, sin 6, sin &) exp(-jkR, cos 8, cos &) d& (9)
P | 2 2 2 2.
where Hiz) is the Hankel function of first order and second kind, and ¢2

shown in Figure 1. 1In (8) and (9), one must retain Im[/K ~ sin? £l < 0.
Expressions (8) and (9) cannot_be evaluated in a closed form, and
recently there have been spme attempts to evaluate an equivalent version
of them in the numerical sense [5,6,7]. The present authors have also
developed an efficient method for numerical evaluation of (8) and (9). The
results of—this investigation will be reported in their future work .
In this paper, only the asymptotic determination of (8) and (9) would be of
interest, because it is assumed that the current element height z = h > A/2
and the observation point are away from the interface. It is'known that
under these conditions asymptotic values of (8) and (9) would be an accurate
approximation [5,6,8]. To this end, one replaces the Hankel functions in (8)

and (9) by their asymptotic expressions and employs the standard saddle-

point integration technique to finally arrive at

I r . 2 cos 62 e—ijZ
T
Tlx 0 T | 4mR (10a)
. ee e _._ . _.| cos 82 +“/K - sin” © 2
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and

— .
cos 62 -‘/K - sin2 62 o JkRZ
le " 2;0 cos ¢2 sin 82 cos ?2 - 4WR2 (10b)
K CcOS 62 + /k - sin 62
2 i ~v -jk cos 8 ‘H (10c¢)
3z 1z 2 "1z ’

Since for angles 62 ~ 0 the argument of the Hankél functions in (8) and (9)
is small, it might appear that these Hankel functions cannot be replaced by
their asymptotic expressions. However, if one proceeds to use the
asymptotic expressions and then finds ;he limit as 82 n 0, the results of
(10) will be recovered. Therefore, (10) is valid for all 62 as long as the
aforementioned conditions for asymptotic approximations are satisfied.
Substituting (10a) through (10c) into (3c¢c) and employing the far-field

. N . . +
approximation, one arrives at the following expression for the ET (reflected)

field:
r o~ ' Kk cos 6, - /@ - sin? 8, e—ijZ
E. 6, = -k I_. cos 8 cos - s 3
v 0 R ST 3 | 4Ry ) (11)
LK cos 92V+>/;< - sin 62
and
————— .
- 5 cos 6? —)/K - sin? 82 . JkR2 )
E¢ ¢2 = —k IO sin ¢2 = 4ﬂR2 ¢2 ) (12)

cos 6, +)/% - sin2 62

In (llijaﬁir(ifiigz énd'$2 are the unit vectors of the.éphericéi coordinates
centered at the iﬁage point 2, shown in Figure 1, and the expressions in the
brackets are the well-known Fresnel reflection coefficients [ 9]. It is, of
course, an easy exercise'to find the Cartesian components of EY from (11)

and (12). Furthecmore, substituting (7) into (3c), one can readily arrive

~at” the fdllowing far-field approximation for the current element
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-3kR
i 2 B
1

B ~ . _7;~?. i:'re
ET =k IO [81 cos 61 cos ¢l ¢l sin ¢l] IR

where (R 81, ¢l) are the spherical,coordinates‘ééhtéred at

l’

point 1, shown in Figure 1.
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" III. INTEGRAL EQUATION FORMULATION

The geometry of a thin linear antenna of length 2L and radius a mounted
horizontally with height h over an imperfect ground is shown in Figure 3.
It is éssumed that the antenna is loaded with a resistive loading function
A(x), given in (1), and is fed from a finite source gap located at the mid-
point of the structure. 1In this section, our objective is to establish an
E-integral éqﬁaﬁioﬂifor Eﬁé é%teﬁna cu;feﬁﬁ.

Let us denote the incident tangential electric field produced by the
source gap as Eiéc and the tangential scattered field by g°°2, The total

tangential E-field may then be expressed as

E = E + E (14)
‘I' Application of Ohm's law allows one to relate the ES°Y and the induced
current I(x) as
t
EY = A(x) I(x) (15)

where A(x) is defined in (I).
To find Esca, we first define some new functionals. Since both the

observation and source points are on the antenna, from (6), (7) and (9),

de define tﬁéh%biiSWihgti

—l bl - el
“ = = -— +
G (%, x ) = I M= el x7) - g (%, x7) + g (%, x7) (16)
where
-3jkR — - -
- . _ B e Srw _ w2 2
T glx, x7) = ey s R=/(x-x)"+ a (17a)

e_ij / 2 2
" 8,06 x7) = T s R= Ax - x)7 + 4n (170)
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Fig. 3. Nonuniform resistively loaded horizontal antenna over an
imperfect ground.
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2 cos 92

'. gh(x, x7) = gi(x, x7) (17¢)

/ , 2
cos 82 + /x - sin 62

and 8, = Arctan (x - x7/2n). 1In (16) subscripts h and i are used to demote

"horizontal" and "image' terms, respectively. Furthermore, it should be

mentioned that in defining (17a), we have incorporated the usual thin-wire

approximation. Finally, from (10b), the following functional (vertical)
is defined

-1 5"ﬂ”””"*"‘j'kg‘j‘;;;ﬁ**"' S ces e, - ok - sin” g

‘ = - . 2 2 2
Gv( , x7) I oy le = 2JkT;—:—;TT sin 62 cos 62 /f______i_im_ L
. K cos 68, + Yk - sin” 8 _
2 2 :
c gL (x, x7)_
g ) (18)

where (x - x‘)/[x - x’] accounts for the change of the sign of cos ¢2 in
" (10b). It is apparent that for the perfect ground, i.e., k - ®, both 8
and G vanish.
v
The tangential scattered field ESCa can be determined by substituting
(16) and (18) into (3c¢). Finally the desired integral equation for the-

antenna current is obtained from (1l4) as follows

L
in -1 { & 24
E C(x) = -(juwe.) —+ k J G, (x, x7) L(x") dx~
0 2 h
dx -L
L

~Gueg™t L] 6 Gx, %) 1) @x” + AG0) TG0,

o o o (19

In the next sectlon,'we describe the numerlcal steps employed to— solve (19)

for the determination of I(x) and the critical loading AO’ defined in (1).



IV, NUMERICAL CONSIDERATIONS

Standard numerical techniques based on the application of the method
of moments [10] are used to transfer the integral equation (19) into a
matrix equation. Two different schemes are used to generate the matrix
equation. First, Harrington's triangular basis function [10] and point
matching are employed. In this case the differential operators are trans-
ferred inside the integral sign and calculated in the manner described by
Harrington [11]. The details of this'proceduré with a ﬁorking computef
program is also givenrin [12]. Second, the pu}se basis function and point
matching are used. In this case, the differential operators are evaluated
outside the integral sign by applying a finite difference algorithm in the
manner used in [13,14]. In all the cases, attempts are made to exploit

the symmetries involved in filling the matrix elements in order to reduce

. . . inc .
computation time. Furthermore, the gap generator, i.e., E (x), is
modeled as a column matrix with zerc elements except at the center element

where 1t takes the value one divided by the gap size.

As M. approaches the critical loading value, the current matrix I(x )}
0 _ = — : " n

will take a linear phase shift among its:elements, x&s being coordinates

of the patch centers, since one expects no reflection from the antenna ends
due to the travelling wave nature of the current distribution. Based on
thié simple concept, we introduce the error function, hereafter denoted as

ER(AO). For a given wvalue of A first the current matrix is computed,

0’

then the current phases are interpolated by a straight line such that the
least square error is achieved (see Figure 4). This value of the least
square error is the defined value of ER(AO) which is associated with the

given AO. It is apparent that as ﬁo approaches the critical loading,

ER(AO) will approach zero. Since perfect reflectionless behavior cannot
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Fig. 4. Determination of least_square error for current phases,

i.e., ER(AO) = Min § 6j
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be achieved, we define the critical loading as AS which minimized ER(AO),

that is

=0 . (20)

There is now sufficient information to numerically compute the optimal Ag.
Initially three consecutive values of AO’ i.e., AOl < AOZ < AO?’ are sought

such that ER(AOl),

the interval [AOl’ AOBI' Note-that we are interested in the first local

- c C . o o,
minimum as the smallest value of ﬁo, which is most desirable. Successive

parabolic interpolation through the three points and the finding of a new
minimum will finally converge to the optimal Aé.i It has been found tﬁaﬁ
better convergence is obtained by ignoring the fced and thg end patchgs in
computing ER(AO). This observation is mot, too surprising as the radiation

occurs mainly at these points and we expect the current behavior to deviate

from its characteristic traveling wave.
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and ER(AO?) > ER(AOZ). This condition states that Ag is within

I

[

[ T



V. NUMERICAL RESULTS AND DISCUSSION

The first example will consider a two-meter dipole antenna rad;ating
in free space at frequency f = 50 Miz (A = 2/3 m). Figure 5 shows the
magnitude and the phase of the induced current for three different loading
parameters KB.' TE; critical loading AS = 247.2 Q was determined in the
manner described earlier. As the loading para@eters take the no-loading
value AO‘= 0, the intermediate,vélue AO = 120, and finally the critical

loading A, = 247.2, the phase behavior becomes more linear. On the other

0.

hand, the‘aﬁgliﬁude curve assumes a ndn—oséillatory behavior and vafies
similar to the current of a nonreﬁlectiﬁg struéture. We have chosen the
example in order to compare our results with those given in [2]. In this
reference the value of the critical loading was reported as AS = 318 Q,
though no specific procedure fp; thé determi?ation of'AS was described.
We believe that the main difference between our result and the one in
reference [ 2] lies in the application ofdifferent numerical schemes for
reducing the integral equation into a matrix equation.

In order to fully investigate the effect of ground and loading on the
antenna performances, we consider a center-fed dipole antenna of length
2L = 10 m located at a height of h = 5 m above an imperfect ground
(e = 10, ¢ = .01 mhos/m). Table 1 contains the values of critical lbading
AS as a function of frequency for two different radii of ﬁhe antenna in free

space. In this'table, the minimum error, i.e., ER(AS), is also tabulated.

It is interesting to note that for the entire frequency range, a smaller

AS is needed as the radius chahges from .025 m to .05 m. Table 2 shows the
variation of*Ag as a function of £, and o for a fixed antenma radius a = .05 m.

To illustrate the functional dependence of*ER(AO) on A two plots are

O’
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Fig. 5.

Magnitude and phase of the current for three different loading
parameters. 2L = 2Zm.and X = 2/3m.
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TABLE 1

c
0

VERSUS FREQUENCY FOR TWO ANTENNA RADII. 2L = 10 m.

CRITICAL LOADING PARAMETER A- AND THE MINIMIZED ERROR ER(AS)

€Tt

Radius = .025 (m) Radius = .05 (m) Radius = .025 (m) Radius = .05 (m)

Freq. AS ER(AS) AS ER(AS) Freq. AS ER(AS) AS | ER(AD)
(MHz) @Jm) 0 (@Jm) 0 (Miiz) (@9m) 0 (29m) 0
18 35.3 3.2 28.4 4. 54 89.0 2.94 72.3 2.40
21 47.6 6.4 39.2 7.9 57 88.2 1.94 69.7 1.75
24 5.8 9.6 46.0 11.6 60 88.2 1.81 70.6 1.19
27 61.7 12.3 52.7 14.5 63 85.2 1.50 70.7 1.38
30 67.0 14.3 59.8 16.2 66 82.8 1.63 67.4 1.43
33 75.1 16.7 63.4 16.5 69 82.5 1.63 64.6 2.06
36 82.3 16.4 70.0 15.3 72 82.8 1.94 64.0 2.31
39 81.6 11.9 71.9 11.0 75 80.6 2.2 63.1 2,88
42 86.3 9.98 73.1 9.75 78 80.3 2.38 63.2 3.06
45 88.9 7.81 4.4 7.67 81 80.1 2.63 62.0 3.56
48 89.6 5.56 74 .4 5.5 84 78.2 3.31 60.6 4.56
51 89.8 4.5 73.1 3.9 87 79.5 3.38 59.6 | 5.06
- 90 76.3 4.18 59.6 5.56

95 74.8 4.94 60.1 7.0

100 73.6 6.56 40.3 | 10.1




#TT

TABLE 2
CRITICAL LOADLING PARAMETER Ag AND THE MINIMIZED ERROR ER(AS) VERSUS FREQUENCY

FOR DIFFERENT GROUND PARAMETERS. - 2L = 10 m, AND h = 5 m.

€. = lﬁnﬁ5§7ﬁ) € = 5, 0 =001 e = 10, o = .0l €. =80, 0 =4 e =1, 0= o
E;ﬁgi , (g§m) ER(AS) <ﬁ§m> Eﬁ(AS): (g§m) ER(AS) (gém) ER(AS) (gém) ER(AG)
30 59.8 | 16.2 | 59.4 6.9 53.5 15.9 49.9 15.1 49.5 15.1
33 63.4 16.5 60.6 16.4 64.5 18.9 60.9 20.0 60.1 20.8
36 70.0 15.3 65.9 18.0 72.6 | 18.6 | 68.1 20.0 67.8 19.9
39 71.9 11.0 76.2 13.2 79.2 | 147 | 77.2 16.2 80.9 17.9
42 73.1 9.75 | 79.6 11.6 | 83.0 | 12.0 91.0 14.3 89.7 14.4
45 746 | 7.67 | 82.1 8.2 85.9 | 8.5 | 100.1 10.0 97.4 10.1
0 | 744 5.5 9.8 | 5.6 | 6.3 5.6 | 160.2 2.9 151.1 3.4
51 73.1 3.9 79.2 3.6 84.8 3.3 | 139.6 } 1.1 | 130.5 19 |
se o723 | 2.4 | 81 | 2.6 79.6 1.9 sl 1.6 104.0 | 1.9
57 69.7 | 1.75 | 70.1 1.6 69.9 | 2.3 | 69.2 | 4.0 71.8 i 4.1
60 70.0 1.2 66.6 2.4 61.3 3.4 60.9 8.8 59.7 9.0




constructed in Figure 6. These plots show the effect of the imperfect
ground on,ER(AO). Since the antenna height is h = X and the ground has
low cenductivity, the two results do not differ markedly.

The effect of AO on the input resistance of the aforementioned antenna
is depicted in Figure 7, where the two cases of no ground and imperfect
ground are considered. This figure suggests that as AO becomes larger, in
this case for instance'AO > 30 Q/m, the input resistance levels off and
does not—vary significantly. TFor yet—another example, figure 8 displays
the variation of the input resistance versus frequency for locading parameters

0 0

grournd case,(ar = 1, ¢ = 0 mho), it is clearly seen that when the antenna is

A, =0, i.e., no loading, and A = 40 Q/m, though this figure is for the no-

not loaded, the input resistance varies with the resonant frequencies of the
antenna, whereas when it is sufficiently loaded, the input resistance does
not vary markedly as the antenna ends are not seen from the feed point.

To investigate the radiation pattéfﬁnchafééténiétic of a loaded

p -
antenna over an imperfect ground, a center—fed\&ipole antenna of length

~

2L = 10 m and radius a = .05 m located at the height\h = 5 m over an
imperfect ground (Er = 10, o = .01 mhos/m) is considered. Furthermore, it is
assumeé that the antenna is radiating at frequency f = 60 MHz (A = 5 m).

From Tables 1 and 2, it is found that the critical loading is AS = 70.6 (Q/m)

0

¢ = 61.3 (2/m) in its presence,

0

in the absence of the ground and A
respectively. Figure ?ﬁ%h@ﬂ§m£b§@§222}59ée and phase dispributioné of the
antenna éurreﬁﬁ I‘for the caseé of—both norloading aﬁd critical loading.
Again the linear phase behavior is obtained for the critical loading case.
The radiation patterns of the aforementioned antenna are plotted in
Tigures 10, 11, and 17. All patterns are normalized to the maximunm value

of the E-rield shown in Figure 10. 1In each figure radiation patterns of
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Fig. 6. Effects of imperfect ground on ER(AO).
2L = 10w, h=5mand » = 5 m.
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. Fig. 8. Inpuf resistance versus frequency for loaded and unloaded antenna in free space. 2L = 10 m




—~
(@]
\'
C
(0))
@)
~
3

AIC,?

180

135

135

-180°

Fig. 9. Magnitude and phase of current for

no loading and critical loading.
2L = 10 m, and A = 5 m.
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CRITICAL LOADING
Snmm—— ———— NO LOADING

-» X

IMPERFECT GROUND
& =10,0=001{mhos/m)

NO GROUND

U =180° ) =180°

Fig. 10. Radiation pattern in plane X-Z for no ground, imperfect ground,

no loading and critical leading. 2L = 10 m, h=35=, and X = 5 m.
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CRITICAL LOADING
——- -~ — NO LOADING

NO GROUND
IMPERFECT GROUND
€,=10,0 =0.0l(mhos/m)

Fig. 11. Radiation pattern in plane Y-Z for no ground, imperfect ground,
no loading and critical loading. 2L = 10 m, h = 5 m and A = 5 m.
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E

IMPERFECT GROUND
€, =10, 0=00!(mhos/m)

NO GROUND

Fig. 12. Radiation pattern in X-Y plane for no ground, imperfect ground,
no loading and critical loading. 2L =10 m, h = 5 m and X = 5 m.
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the anéennérinﬂbAtﬁ tﬁégbfééeﬂgérgﬁdwéﬁégné; of the grouﬁd for no loading
and critical loading are plotted. This allows the reader to compare the
results simultaneously. Except for the antenna pattern in the plane
perpendicular to the antenna (Figure 11), the shape of the pattern is
changed due to the loading effect. Except for the anﬁenna pattern in the
plane parallel to the ground interface (Figure 12), the pattern is

effectively influenced by the presence of the imperfect ground. These

results can intuitively be verified for most cases.
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