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Abstract
5—//9/97

The discrete (referred as modes) and continuous spectra of finite-

width, parallel-plate simulator’s fields are investigated. Formulas suit-

able for numerical calculation are obtained for both the transverse-magnetic

(T?4)and transverse-electric (TE) fields. Numerical results for the propa-

gation constants and the field distributions of the higher order TM modes

are presented. It is found that in the parallel-plate region of the

parallel-plate simulator some of the higher-order TM modes resemble those

of a closed waveguide, and the field of the continuous spectrum decays at

least as z
-2 for waves propagating along the z-direction.

—— .---B %+2-W .—.+.



CONTENTS

Section

I INTRODUCTION

11 INTEGRAL EQUATION FORMULATION

1. TM Fields

2. TE Fields

111 MATRIX-EQUATION FORMULATION FOR THE TM FIELDS

IV PROPAGATION CONSTANTS AND FIELD DISTRIBUTIONS OF

DISCRETE TM MODES

v CONTINUOUS SPECTRUM CONTRIBUTION

REFERENCES

APPENDIX

3

6

6

8

10

16

97

100

101



*

1

SECTION I

INTRODUCTION
—-=

The bounded-wave electromagnetic-pulse (EMP) simulator makes use of

two parallel finite-width plates as the guiding structure for the simulated

~ (figure 1). One reason for employing two parallel plates is that they

support a transverse-electromagnetic (TEM) mode. Another reason is that

over a significant portion of the region between the plates, the TEM-mode

fields provide a good approximation to the free-space, plane-wave fields.

Unfortunately, such a struct-urecan also support higher-order transverse- —

magnetic (TM) and transverse-electric (TE) modes and a continuous spectrum

(refs. 1,2,3, and 4). The TEMmode

describe the total simulator field.

The properties of the TEM mode

alone is not sufficient to completely

on two parallel plates have been

investigated extensively by the method of conformal mapping (refs. 5,6, and 7),

whereas the higher-order modes and the continuous spectrum have been inves-

tigated only in some limiting cases. In reference 2, integral equations —

0
for the higher-order modes are formulated by using Green’s theorem. The

integral equations are analytically solved under the condition that ‘the

separation of the plates is much larger than their width (i.e., narrow

plates). In reference 3, alternative integral equations for the higher-

order modes are formulated by employing Laplace transforms and the Wiener-

Hopf technique, and are solved for the plates with small separation-to-width

ratios (i.e., wide plates). The integral equations derived in reference 2

are most useful for numerical treatment when the separation of the plates is

comparable to or larger than their wideh, whereas those derived in reference3
4 are most useful when the separation of the plates is comparable to ot smaller

than their widthf The plate geometries discussed in this report have
v

separation-to-width ratios of one, two and three. The integral equations

derived in reference 2 are thus more appropriate. In this report, numerical

results for the propagation constants and field distributions will be given

for the TM modes. The TE modes, which are more highly attenuated away from

the launching region (ref. 2), will be discussed in an appetidix.
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There is not much information available regarding the continuous

@ spectrum of the two-parallel-plate simulator. In reference 1, an

asymptotic analysis has been given to calculate the contribution of the

continuous spectrum to the total field of two infinitely long parallel

wires, which may be considered as a limiting case of a two-parallel-plate

simulator. In this report, a preliminary asymptotic estimation of-the

continuous spectrum contribution to the TM field at a fixed frequency will

be given.

To solve the integral,equations derived in reference 2, one first

transforms the integral equations into the Fredholm integral equations of

the second kind by using Carleman’s formula for singular integral equations

(ref. 8), The resulting integral equations are transformed further into

matrix equations which can be solved numerically by expanding the unknown

functions in terms of Chebyshev polynomials. From the numerical solutions

of the matrix equations, the propagation constants and field distributions

of the higher-order modes as well as the properties of the continuous

‘spectrum can be obtained by some straightforward calculations.

(B It should be mentioned that although the results in this report are

obtained for the infinitely long plates, they can be directly applied to the

real simulators where the lengths are finite.



SECTION 11

INTEGRAL EQUATION FORMULATION

Two infinitely long, perfectly conducting, parallel plates of finite

width are shown in figure 2. The width of each plate is 2W aridthe distance

separating the plates is 2h. A coordinate system is introduced such that

the z-axis coincides with the axis of the structure and the x-y plane is

the transverse plane, with the x-axis parallel to the plates.

The transverse field components ~(x,y,~,s) and ~t(x,y,g,s) in the

Laplace transform domain (i.e., s, L domain) are related to the longitudinal

field components, Ez(x,y,3,s) and Hz(x,y,g,s), via (ref. 2)

gt(x,y,c,s) =
‘2 A

- CP-2VtEz(X,Y,C,S)- Spop 2X vtHz(x,Y$<?s)
(1)

~(x,y,c,s) = - cp-%tHz(x,y,3,s) + s&op
-2 A

zx VtEz(X,Y,C,S)

22
where the factor exp(gz + st) has been suppressed, p2 =s /c -<2, c is the

vacuum speed of light and Vt
o

is the gradient in the transverse direction.

From equation 1, it is obvious that the fields

into two parts, the TM fields with H =0 and the TEz
part will be discussed separately in the sequel.

1. TM FIELDS

As has been

determination of

is given by

discussed above, a knowledge

the TM field distributions.

of Ez

can always be decomposed

fields with E =0. Each
z

.

is sufficient for the

From reference 2, Ez(x,y,L,s)

w
Ez(x,y,~,s) =

f
G(x,y,x’,h;p)f(x’,h)dx!+ r G(x,y,x’,-h;p)f(xt,-h)dx’

*

-w
J
-w

(~G(x,y,x’,y’;p) =*KO p (X- X’)2 + (y-y ’)z ) (2)

6
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where K. is the modified Bessel funccion of the second kind and f(x,th)

satisfy the following set of integral equations

f

w

J

w
G(x,h,x’,h;p)f(x’,h)dx’+ G(x,h,x’,-h;p)f(x’,-h)dx’= a(x,h)

-w -w (3)

rG(x,-h,x’,h;p)f(x’,h)dx’+
r

G(x,-h,x’,-h;p)f(x’,-h)dxr=a(x,-h)

-w
.

-w

for lx~ SW, with a(x,fh) = - E~c(x,fh,~,s) being the incident longitudinal ‘

electric fields at the plates.

2. TE FIELDS

The TE field

which is given by

distributions can be derived completely from Hz(x,y,<,s)

the following formula (ref. 2)

slJoHJx,y,L,s) = -
r[

~ (x,y,x’,y’;p)g(x’,h)dx’
-w 1Y’ =h

(4a)

-/[

w ~G 1 ●~ (X,Y,X’,Y’ ;p)g(x’,-h)dx’

-w y! =-h

where g(x,fh) are defined by

(spo)-~g(x,fh) (
= lim Hz(x,th+~,C,s) - Hz(x,ih-~,C,s) )

&*

and satisfy the following se: of differential-integral equations

()d’—- P2
dx2

()

i2 2
~-~

(4b)

w

/ f

w
G(x,h,x’,h;p)g(x’,h]dx’+ G(x,h,x’,-h;p)g(x’,-h)dx’

-w -w )

= fl(x,h), for Ix[ ~w (5)

tw

J G(x,-h,x’,h;p)g(x’,h)dx’+
-w

= f3(x,-h), for

~

w )G(x,-h,x’,-h;p)g(x’,-h)dx’
-w

xl ~w



‘nc(x,ih,~,s)/~x being the source terms.2 ‘nc(x,th,<,s) +OEz
(0

with e(x,ih) = p Ex

Although equations 3 and 5 look extremely complicated, they can be

simplified by observing that for most parallel-plate simulators the source

terms on the right.-handsides of equations 3 and 5 satisfy the following

conditions

o

a(x,h) = - a(x,-h) = a(-x,h) = Ct-e(X)

~(X,h) = - @(x,-h)=-@(-x,h) = ~-O(X)

Accordingly, one has

f(x,h) = - f(x,-h) = f(-x,h) = f-e(x)

for the TM fields, and

g(x,h) = - g(x,-h) = - g(-x,h) = g-o(x)

-o
for the TE fields. The superscript “-’r in a-e, $ , f-e, g

-o

indicate that all these functions u, 6, f, g are antisymmetric

to y, while the superscript “e” or “o” is used to

are either even or odd functions of-x. Under the

the two equations of either integral equation set

(6)

is used to

with respect

indicate that the functions

above conditions of equation 6,

3 or 5 become identical.

In the following sections, the simplified equations will be used to

investigate the properties of the higher-order modes and the continuous

spectrum of the two-parallel-plate guiding structure.

.



SECTION 111
0

MATRIX-EQUATION FORMULATION FOR THE TM FIELDS

.

In this section, Che integral equations given by equation 3 for ~he TM

fields will be transformed into matrix equations by expanding the unknown

functions in terms of Chebyshev polynomials.

On account of the source condition of equation 6 the coupled integral

equations 3 are reduced to a single integral equation

r(G(x,h,x’,h;p) - G(x,h,xP,-h;p)
)
f-e(x~)dxt = a-e(x), Ixl < w (7)—

-w

It is easy ~o see that the kernel of the integral equation 7 has a loga-

rithmic singularity. After separating out the singular term and normalizing

the variables in the following manner

(8)

P ‘y/W, h ‘W~

the integral equation 7 becomes

where

N(c-Er;y) =&K. (/Y (~-~’)2 +4H2 )

Here, both M and N are regular functions of ~-~!.

(9)

1



To facilitate the numerical solution of–the integral equation 9, it

(o is desirable to transform it into a l?redholmintegral equation of the

second kind. To do this, Carleman’s formula for integral equations with

logarithmic kernels is used to obtain (ref. 8)

1
f-e(g) -1-

J(
K(c,~’;y) - L($,C’;y)

)
f-e(~?)d~! = s-e(~), IEI S1 (lo:)

-1

where

●

✌

Here, ~ denotes the principal-value integral and the prime in “1, Nf, CY-e’

denotes differentiation with respect to the first argument.

The integral equation 10 can now be reduced to a set of algebraic

equations suitable for numerical computation. The mathematical properties.

11



Of K(g,E’;Y), L(g,E’;Y) and S-e(g) together with the edge conditions and

symmetry properties of f-e(~) suggest the expansion

f-e(g) = 1 ~ f:eT2n(C)

r1-5
2 Il=o

(11)

where T~n(g) are Chebyshev polynomials of the first kind. Then, with the aid ,

of the orthogonality of the Ghebyshev polynomials, the integral equation 10

is transformed to the following set of algebraic equations
t

f
)‘e + mio(% - L:m f;= = S;e11=

where

\

1

S;e = +- S-e(C)T2n(HM

~ -1

and

(
2, Il=o

c =
n

1, n#O

(12)

Or, in matrix form

where dnm is the Kronecker delta, which is zero when n

and unity when n equals m, and lrnml is a matrix whose

,

is not equal to m

elements are “ru.

12
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Both K= and L~m are complicated triple integrals. They can be

@
simplified by first integrating over E and then by making the change of

variables ~“- ~’ = 2q and ~“-t-~’= 2~’, to get

where

“1
q-d T2m(n ‘ -~) + T2m(~’+q)

G@ = d~‘

o <(1- T1’+n)2)(l-(@l)2)

(14)

(15)

/

+1] (1-(n’+T02)U2n_l(n’+n)T2m(n’-rI)
F:(n) = dn‘

-l+I?-11 L- (n’+n)2)(l - (n’-n)2)

and Un(n) is the

cit formulas for

Chebyshev polynomial of the second kind. By using the expli-

the Chebykhev polynomials in the integrals of equation 15,

are further transformed into sums of complete elliptic

integrals which are more suitable for numerical computation, viz.,

G~(~)= f ~ t~kbj(oj2k)n2k-2jDj(~)
k=O j=O

I‘~m(q)=! !‘~~t~‘+i-l(bj‘2k-1,2k)j )-rt2b(21+1, 2k) x (16)
k=O 2=1 “ j=o

~ ~22+2k-2j-l
Dj(n) -nbk+J2fl+l, 2k)Dk+@

I

13”



where

e
u
n!?

= (-l)n-t

t:k = (-1)
m-k

‘2
bj(k,l) = ~

i=i.,

(n-!-l-l)! ~2R-1
(n-i) !(21- l)!

(m+k-l)!m ~2k
(m-k) !(2k)! ‘ ‘~or 1

~_l) li-i-2j k~~!

i!(k-i)!(2j - i)!(~+i-2j)!

L,

‘1
= max{0,2j- ~}

‘2 =
min{k,2j}

and the functions D4(~) are deter-minedfrom the following recursion formulas

I@) = W+n){F((k2)/(l+n))- @n)/(~+n))~

Do(n) = 2F((l-~)/(l+~))\(l+ ~)

and E(q) are complete elliptic integrals

lT/2
F(q) = J( l-~2sin2$ )$

-%d

o

J(
T/2

E(n) = )l-~2sin2@ ‘d$

o

The solution of’the matrix equation 13 is simply given

F~el=[’rim‘“K:m-‘:ml-l[~el

by

(18)

Insertion of this solution into equations 11, 2 and 1 gives the Laplace

transform domain TM fields.

14



In the next two sections certain important properties of–the TM fields

(.
will be discussed by studying the singularities of equation 2 in the

complex ~-plane at a fixed s = ju.

15



SECTION IV

PROPAGATION CONSTANTS AND FIELD DISTRIBUTIONS OF DISCRETE TMllODES

In the previous sections, the formulas

fields of two parallel-plates are obeained.

field distributions are calculated from the

integrals

I
~(x,y,z,ju)

I?(x,y,z,ju)~--
‘1

required to calculate the TM

At a given frequency u, the

inverse Laplace transform

g(x,y,<,jw)
1=—

q Ieczd<
2rj c<~(x,y,tj,jw)

(19)

where C= is th.>path of integration in the complex g-plane shown in figure 3
5

and ~(x,y,g,jw) and ~(x,y,c,jw) are given by equations 1 and 2. An examina-

tion of equation 2 shows that in the complex ~-plane, there are branch poinbs

branch cuts shown in figure 3, the contour CC can be deformed to the left

half-plane for field points at z > 0 and sources at z sO. The concour

integral along Cr is thus reduced to the integral along the branch cut B-

(the so-called c~ntinuous spectrum contribution) plus the residues at the
o

Poles $,l(the so-called modal fields). The reason wh~ two indices are

assigned to Ck ~ will become clear later when numerical results are obtained.
1

Each modal field is required to be outgoing in the transverse direction

and decaying in the -1-zdirection. Thus, in the branch shown in figure 3,

poles can exist only in the region where -u/c < Ire(C)< 0 and Re(C) < 0.

It is also observed that pk ~ have negative real parts, so that the modal

field distributions increas~ indefinitely in the transverse direction.

Hence, the branch shown in figure 3 is appropriate only when the field

the

,
points are close to the plates. In the remaining part of this section, the

propagation constants and field distributions of the TM modes will be

discussed, while an estimation of

be relegated to the next section.

‘To calculate the propagation

find first pk ~ from the equation
>

the continuous-spectrum contribution will

constants of the TM modes, one has to

[ 1
det dnm+ K~m - L~m = O. With these

16
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Figure 3. /The Branch of p = -j ~2+u2/c24 In this Branch, Re(p) < 0

for {C: Re(z) < 0 and -u/c < Ire(g)< O} and {c: Re(~) > 0

and u/c > Ire(<)> 0}.
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‘k,f v
alues (the-so-called transverse propagation constants), the corresponding

longitudinal propagation constants C.k~ are simply
9

2
Lk,R =

22-j pk,g+ulc

given by

e

(20)

When H = h/w >> 1, i.e., the plates are extremely narrow, there exist

possible pk ~’s for which Iy
[ 1~gl=lPkLwl ~<landdet 6 +Ke -Le =0.

Actually, u~der the condition’ly~ ~1 <~ 1, one can show th% then~k ~’~
s 5 1

satisfy

[ ~ml‘det[’rim+‘no’mo(K:o-‘:0)1det d + Kim - Le
nm

‘ 1+ (kn2- kn(17yk~) -Ko(2yk ~H)) /Ln2 = O
> ?

(21)

where 1’= 1.781 is the exponent of Euler’s constant. Equation 21 is -the

same as that obtained in reference 2, where its solutions are also given.

When the width of the plates is comparable to their separation, which

is the case of interest here where H = 1,2,3, one must resort to numerical.

1methods to solve the equation det 6nm -i-K~m - L~m
1
= O.for the transverse

propagation constants pk ~. The method selected is first to locate the
9

approximate positions of the zeros of the determinant from the constant-

magnitude contours in the complex p-plane. Then these approximate positions

are used as the starting points for the Newton-Raphson method, used to

search for.more accurate solutions for the transverse propagation constants

‘k,R”
It is found that three terms in the expansion 11 for f-e(~) are

sufficient to obtain resonably accurate transverse propagation constants

of the first several modes for H ~ 1. For each transverse propagation ,

ConStan!‘k,$’ ‘he ‘;e
are then determined within a multiplicative constant

from the homogeneous equation of equation 13. These f-e values can in turnn
be used in equabions 1, 2 and 11 to calculate the corresponding modal field

distrimtions.

18



The transverse propagation constants pk ~ of the first several TM
3

(~ modes for H = 1,2,3 calculated by the above described approach with the

aid of a CDC 6600/7600 computer are tabulated in table 1. The Lk,i

values as functions of u for the lowest TM modes with k=O,l and 8=1,2

are plotted in figures 4, 5 and 6. Four curves of p..~, % = 1,2,3,4 are

also presented in figure 7 for H-values ranging from ~0 to about 2. The

numerical results of the modal field distributions for the ~,1 modes

with k=O,l, ~=1,2 are given in figures 8 through 19. The field distribu-

tions are plotted in terms of constant-value contours of the real parts,

imaginary parts and magnitudes of the normalized field components.

From the field distribution plots of the ~ ~ modes, especially the

modes with k > k, it is observed that in the work~ng volume of the simulator

(i.e., x/w, y/h < 1) the fields vary almost-s-inusoidallyas functions of x

and y with periods of 2w/k and 2h/L respectively. The indices k,flused in

the ~,i modes thus characterize the field variations in the xjy directions;

and the use of two indices is justified. In this report, results are given

only for k=O and 1. It is believed that if one goes even farther away from

the imaginary axis, more

@

%,R modes can be found for k >2. However, for

the modes with k ~ 2, the corresponding longitudinal propagation constants

ck,L
will have decay constants so large that–those modes become less

important.

;19



Table 1

TRANSVERSE PROPAGATION CONSTANTS OF TM MODES
o

I I I 1
h/w

(H)

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

k=O

Re(po,~w) Im(pO,Lw)

-0.1274 3.2879

-0.0590 6.3890

-o;0353 9.5060

-0.0245 12.6321

-0.1834 1.6686

-0.1260 3.2448

-0.0778 4.8067

-0.0575 6.3662

-0.1779 I “1.0974

.-0.1299 I 2.1721

-0.1006 I 3.2207

I
-0.0814 4.2662

k=l I

-1.5701

-0.9827

-0.5034

-0:2935

-1.2325

-1.1963

-0.9098

-0.6898

-1.0351

-0,9925

-0.9207

-0.7896

1.1930

.4.3512

“7.1986

10.1311

0.7914

2.2510

3.9028

5.4269

0.5888

1.4961

2.5827

3.6733

20
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Figure 4. Frequency Variation of Longitudinal Propagation Constants

Ck,8 of Higher-Order TMModes for k=O,l, 1=1,2 when h/w=l.
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Figure 5. Frequency Variation of Longitudinal Propagation Constants

Ck ~ of Higher-Order TM Modes for k=O,l, L=1,2, when

h/i=2.
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6. Frequency Variation of Longitudinal Propagation Constants

Ck ~ of Higher-Order TM Modes for k=O,l, !=1,2 when

h/i = 3.
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Figure 7. The Normalized Transverse Propagation Constants PO,flwas

FuncEions of h/w for R = 1,2,3,4.
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Figure 8a. Constant Value Contours for Normalized Field Component Re(Ez/w)

‘f ‘he fi,l
Mode when h/w = 1. The Fields are Normalized so

that 1P /C\fi~=latx =y=O. Broken Lines are

for Negative Values.
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Figure Sb. Constant Value Contours for Normalized Field Component Im(Ez/w)

of the TMO ~ Mode when h/w = 1. The Fields are Normalized

so that ~p~/c~J~= 1 at x=y=O. Broken Lines are

for Negative Values.
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Figure 8c. Constant Value Contours for Normalized Field Component lEz/wl,

of the TM~ ~ Mode when h/w = 1. The Fields are Normalized

so that lp~/Ll-= 1 at x=y=O.
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Figure 8d. Constant Value Contours for Normalized Field Component

~(Re(p2Ex/L))2 + (Re(p2Ey/C))2= Re(p2Hy/sco))2+ (Re(p2Hx/sso)~2

of the TMO 1 ~fodewhen k/w = ~“ The Fields are Normalized

so that lPi/Cl~~= 1 at ‘=y=oo
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Figure 8e. Constant Value Contours for Normalized Field Component

~Im(p2Ex/C))2+ (Im(p2Ey/L))2=

of the TMO ~ Mode when h/w = 1.

so that lp~/c\~~= 1

29
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Figure 8f. Constant Value Contours for Normalized Field Component

“ rlP2/Cl~~= \P2(SCo) \ IHXI + ~Hyl Of the ~0 ~s

Mode when h/w = 1. The Fields are Normalized so Chat

lP2/311~= 1 ac x=y=O.
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Figure 9a. Constant Value Contours for Normalized Field Component

Re(Ez/w) of the ~0 ~ Mode when h/w . ~.
The Fields are

Normalized so that ~pz/cl~~= 1 at x=y=O.

Broken Lines are for Negative Vaiues.
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Figure 9b. Constant Value Contours for Normalized Field Component

Im(Ez/w) of the TMO * Mode when h/w = 1. The Fields are

Normalized so Ghat ip2/<lJ~= 1 at x=y=O,

Broken Lines are for Negative Values.
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Figure 9c. Constant Value Contours for Normalized Field Component

IE /w1 of the TMO ~ Mode when h/w = 1 The Fields arez .
Normalized so tha~-lp2/~1~~= 1 at x=y=O.
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Figure 9d. ConstanC Value Contours for Normalized Field Component

~(Re(p2Ex/C))2 + (Re(p2Ey/C))2= ~(Re(p2Hy/sso))2+ (Re(p2Hx/s~o)~2

of the TTIO* Mode when h/w = 1. The Fields are Normalized so

‘~=1.tx=Y=o*that lp2/c\ IEX[ +byl
o
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Figure 9e. Constant Value Contours for Normalized Field Component

(Im(p2Ex/C))2+ (Im(p2Ey/L))2 = (Im(p2Hy/sco))2+ (Im(p2Hx/sso)’jT

‘Yw= 1“
‘f ‘he p 2 The Fields are Normalized so

that 1P /cl IEXI +IEYI =lat x=y=O.
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lJ/,1== lP&Mi7@ 0’ ‘he‘0,2
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lP2/Cl-= 1 at x=y=O.
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Figure 10a. Constant Value Contours for Normalized Field Component

Re(Ez/w) of the TMI ~ Mode when h/w = 1. The Fields are

Normalized so that ~p2/c\-= 1 at x=y=O.

Broken Lines are for Negative Values.
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Figure 10b. Constant Value Contours for Normalized Field Component Im(Ez/w)

‘f ‘he‘1,1
Mode when h/w = 1. The Fields are Normalized

so that lp2/cl~~= ~ at x=y=O* Broken Lines

are for Negative Values.
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Figure 10c. Constant Value Contours for Normalized Field Component lEz/wl

of the TMl ~ Mode when h/w = 1. The Fields are Normalized so

that lp2/Cj~Ex12+lEy12= latx=y=O.
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Figure 10f. Constant Value Contours for Normalized Field Component

lP2/Cl- = lP2(SCo)-11-of the ~ ~s

Mode when h/w = 1. The Fields are Normalized so that

lP2/Cl-= 1 a~ x=y=O.
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Figure llb. Constant Value Contours for Normalized Field Component

lm(Ez/w) of Che TMl ~ Elodewhen h/w = 1.
The Fields are

Normalized so that ~P2/Clm= 1 at x=Y=O.

Broken Lines are for Negative Values.
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Figure llc. Constant Value Contours for Normalized Field Component ~z/w\

of the TMl ~ Mode when h/w = 1. The Fields are Normalized so

that_lp2/<jfiEx12+ IEY12 = latx=y=O.
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Figure llcl. Constant Value Contours for Normalized Field Component

~(Re(p2Ex/L))2+(Re(P2Ey/C))2 ‘~ (Re(p211y/sEo))2+(Re(P2Hx/sco~)2

of the TMl z Mode When ‘/w = 1* The Fields are Normalized so

-that lp2/C\m= latx=y=o.
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Figure he. Constant Value Contours for Normalized Field Component

<Im(p2Ex/;))2+ (Irn(p2Ey/C))2= J(Im(p2Hy/sco))2+ Im(p2Hx/seo))2

of the TM~ z Mode when h/w = 1. Tke-Fields are Normalized so

that lp2/c~ /Ex12+-lEy12= 1 at x=y=O.
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Figure l~f. Constant Value Contours for Normalized Field Component

IP%lH = tP2(sEo)
‘lIH of the ~l,z

Mode when h/w = 1. The Fields are Normalized so that

lP2/d4@m = lat X=y”o.Y
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Figure 12a. Constant Value Contours for–Normalized Field Component

Re(Ez/w) of the TMO ~ Mode when h/w = 2, The Fields are

Normalized so that ~p2/<1- = 1 at x=y=O.

Broken Lines are for Negative Values.
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Figure 12b. Constant Value Contours for Normalized Field Component

Im(Ez/w) of the TMO 1 Mode when h/w = 2“ ‘he ‘ields are

Normalized sothat 1~2/<[- =latx=y=O.

Broken Lines are for Negative Values.
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Figure 12c. Constant Value Contours for Normalized Field ComponentlE_/wl

of the TMo ~ Mode when h/w = 2. The Fields are Normaliz~d

so that lp~/L\~~= 1 at x=y=O.
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Figure 12d. Constant Value Contours for Normalized Field Component

~(Re(p2Ex/C))2+ (Re(P2Ey/~))2= J(Re(p2Hy/s&o))2+ (Re(p2Hx/sco))2

of the TMo 1 ~~odewhen ‘/w = 2* The Fields are Normalized so

‘r=l’’’=y=O*that lP2/Cl Exl +IEYI
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Figure 12e. Constant Value Contours for Normalized Field Component

41m(p2Ex/L))2 + (Im(p2Ey/<))2= ~(Im(p2Hy/seo))2+ (Im(p2Hx/sso))2

‘f ‘he ~,1
Mode when h/w = 2. The Fields are.Normalized so

~that 1P /c1 IEXI +lEyl =latx=y=O.
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Figure 12f. Constant Value Contours for Normalized Field Component

lP2/Cl- = lP2(SCo)-11- of the ~0,1

Mode when h/w = 2. The Fields are Normalized so that

IP21CI-=1 at x=y=O.
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Figure 13a. Constant Value Contours for Normalized Field Component

Re(Ez/w) of the TMO ~ Mode when h/~ = 2. The Fields are

1Normalized so that p2/<l~Ex12 + ]EY12 =latx=y=O.

Broken Lines are for Negative Values.
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Figure 13b. Constant Value Contours for Normalized Field Component

Im(Ez/w) of the TMO ~ Mode when h/w = 2.
The Fields are

Normalized so that ~P2/C.l- = latx=y=O.

Broken Lines are for Negative Values.
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Figure 13c, Constant Value Contours for Normalized Field Component lEz/wl

of the TM* ~ Mode when h/w = 2. The Fields are Normalized

so that lp~/cl IEX12+IEY12 = latx=y=O.
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Figure 13d. Constant Value Contours for Normalized Field Component

~Re(p2Ex/<) )2+ (Re(p2Ey/C)}2= ~(Re(p2Hy/seo))2+ (Re(p2Hx/s~o)~2

of the TMo z Mode when h/w = 20 The Fields are Normalized so

that \p2/C\-= latx=y=O.
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Figure 13e. Constant-value Contours for Normalized Field Component

\(Im(p2Ex/G))2+ (Im(p2Ey/C))2-=LIm(p2Hy/sso) )2+ (Im(p2Hx/seo))2

‘f ‘he p,2 Mode when h/w = 2. The Fields are Normalized so
that Ip /Zl~Ex]2-I-lEy12 = latx=y=O.
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Figure 13f. Constant Value Contours for Normalized Field Component

lp2/C~- = lp2(sco)-l\m of the T% zY

Mode when h/w = ~. The Fields are Normalized so that

lP2/cl_= 1 atx=y=o.
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Figure 14a. Constant Value Contours for Normalized Field Component

Re(Ez/w) of the TMI ~ Mode when h/w = 2@ The Fields are

Normalized so that ~p2/cl~Ex12+\Ey\2 = 1 at x=y=O.

Broken Lines are for Negat-iveValues.
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Figure 14b. Constant Value Contours for Normalized Field Component

Im(Ez/w) of the TMI ~ Mode when h/w = 2“ The Fields are

Normalized so that lP2/~I- = latx=y=O.

Broken Lines are for Negative Values.
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Figure 14c. Constant Value Contours for Normalized Field Component lE_/wl

‘f ‘he‘1,1 Mode when h/w = 2.
L

The Fields are Normalized

so that lp2/Gl~Ex12+lEy12 = latx=y=O.
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Figure I&d. Constant Value Contours for Normalized Field Component

j(Re(p2Ex/<))2+ (Re(p2Ey/G)~z= J(Re(p2Hy/sco))2+ (Re(p2~~x/s~o)~2

of the TMl 1 ~fodewIlen~~/w= 2“ The Fields are Normalized so

that lp2/G~m =latx=y=O.
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Figure 14e, Constant-Value Contours for Normalized Field Component

<Im(p2Ex/<))2+ (Im(p2Ey/<))2=J(Im(p2Hy/s&o))2 +(Im(p2Hx/see))T

of the TM1 ~ Mode when h/w = 2. Th-e-Fiel& are Normalized so

that lp2/c~ IEX12+IEY12 = 1 at x=y=O.
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Component
Re(Ez/W) Of the ~fl ~ ~Iodewhen ~/Ir= 2.

The Fields are
Normalized so that ~p2/<]~Ex~2+lEy12 = 1 at–x=y =().

Broken Lines are for Negative Values.
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Figure 15b. Constant Value Contours for Normalized Field Component

Im(Ez/w) of the ml ~ Jlodewhen h/w = 2’ The Fields are

Normalized so that lP2/ClfiEx\2+\Ey\2 = 1 at x=y=o.

Broken Lines are for Negative Values.
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Figure 15c. Constant Value Contours for Normalized Field Component lEz/w]

‘f ‘he ‘1,2 Mode when h/w = 2. The Fields are Normalized

so that lp2/cl IEX12+IEY12 = 1 at x=y=O.
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Figure 15d. Constant Value Contours for Normalized<Field Component

~(Re(p2Ex/<))2+ (Re(p2Ey/<))2=~(Re(p2Hy/sco))2+(Re(p2Hx/sco))2

of the T14~ ~ Mode when h/w = 2. The Fields are Normalized so

that lp2/Ll~Ex12+ lEy\2 = latx=y=O.
●
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Figure 15e. Constant Value Contours for Normalized Field Component

~Im(p2Ex/;))2+ (Im(p2Ey/<))2=~(Im(p2Hy/sco)~ +(Im(p2Hx/sso))2

of the TMl 2 Pfodewhen_,h/w= 2, The Fields are Normalized so
that lp2/gi_= 1 at x=y=O.
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Figure 15f. Constant Value Contours for Normalized Field Component

1P2/31m

Mode when h/w = 2.

lP2/Gl_

. \p2(sco)-l[m of the ~1,2

The Fields are Normalized so that

=latx=y=o.
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Broken Lines are for Negative Values.
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Figure 16b. Constant Value Contours for Normalized Field Component

Im(Ez/w) of the TMO ~ Mode when h/w = 3. The Fields are

~Normalized so that ipzhl ~Ex\ +{Ey\ = 1 at x=y=o”

Broken Lines are for Negative Values.
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Figure 16c. Constant Value Contours for Normalized Field Component ]Ez/wl

of the ‘ill~ ~ Mode when h/w = 3. The Fields are Normalized so

that lp2/L~ ]EX12+-lEy\2 = 1 at x=y=O.
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Figure 16d. Constant Value Contours for Normalized Field Component

~(Re(p2Ex/G))2+ (Re(p2EY/C))2=4Re(P2Hy/sso)) 2+(Re~p2Hx/sso))2

‘f ‘}~ey),l Mode when k/w = 3. The Fields are Normalized so

that 1P /G1-= I at x= y=o.
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Constant Value Contours for Normalized Field Component

J(Im(p2Ex/L))2+(Im(p2Ey/<))2 = ~(Im(p2Hy/sco))2+(Im(p2Hx/sso))2

of the ~1 Mode when h/w = 3. The Fields are Normalized so

that lp2/~~~Ex12+lEy\2 = latx=y=O.
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Figure 16f. Constant Value ConEours for Normalized Field Component

lP2/Cl- = lp2(sso)-llm of the TMO ~9

Mode when h/w = 3. The Fields are Normalized so that

lP2/Ll-= lat x=y=O.
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Figure 17b. Constant Value Contours for Normalized Field Component

Im(Ez/w) of the TMO ~ Mode when h/w = 3. The Fields are

\ 2/ \~E 12+IE ]2=latx=y=0Normalized so that p L ~ .
Y

Broken Lines are for Negative Values.
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Figure 17c. Constant Value Contours for Normalized Field Component /Ez/wl

‘f ‘he ‘0,2
Mode when h/w = 3. The Fields are Normalized

so that lp2/cl-= 1 at x=y=O.
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FiEure 17d. Constant Value Contours for Normalized Field Component

~(Re(p2Ex/C))2+(Re(p2Ey/C)}2 = ~(Re(p2Hy/seo))2+ (Re(p2Hx/sso))2

of the TM. z Mode when h/w =

that lp2/ci-= 1

3. The Fields are Normalized so

at x=y=O.
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Figure 17e. Constant Value Contours for Normalized Field Component

~Im(p2Ex/C))2 + (Im(p2Ey/<))2 = ~Im(p2Hy/seo))2 +(Im(p2Hx/seo))2

~ z Mode when h/w = 3.of the TM The Fields are Normalized so

that lp2/C~fiEx12+lEy12 = Iatx=y=().
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Figure 17f. Constant
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Figure 18e.
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Figure 18f.
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{0 SECTION V

CONTINUOUS SPECTRUM CONTRIBUTION

In this section, an asymptotic estimation of the continuous spectrum

contribution to the TM fields at a given u will be presented.

From equations 2 and 19, the continuous spectrum contribution to Ez

for a fixed u is given by

X f-e(x’/w)eCzdx’dC (22)

where p = - j= _B is the contour shown in figure 3, and f-e(~)

is calculated from equations 11 and 18. Along B-, it can be shown that

the p-values above and below the branch cut are related by p(above) =

ejmp(below).
(D

Thus,

equation 22 becomes

with the variable change from c to - ju/c - K,

f(x,y,z,ju) = &e H-jf-ozlcw ~x, ‘dK e-kcz-e
f (x’/w)

-w o (23)

] (JX Iop (x-x’)2+(y-h)2 ) (~- 10 p (x-x’)2-t-(y+h)2 )1

where I is the modified Bessel function of the first kind and the parameter
o

, .~p_is given by p = - J ~ +2JKU/C.

The asymptotic behavior for large z of the continuous spectrum contri-
,

bution E~(x,y,z,ju) can now be

exp(-Kz), it is clear that the

from the region where 1 ~ KZ ~

estimated. Due to the exponential term

K-integral in equation 23 comes mainly

o. For field points in the working volume

of the simulator, the arguments of the Bessel functions are small for

l~Kz ~0, provided that z >> u(h2+u2)/c and Z2 >> (h2+u2). The small-

argument expansion can be applied to the Bessel functions to get (ref. 9)

(D
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u10 p (X- X’)2 + (y-h)z )

= (K2 +

(f”- 10 p (X- X’)2 -t(y+h)2 )

2jKw/c)yh
●

(24)

For the term f-e($), one ob~ains, under the same conditions, from equations

11 and 18

f-e(~) =
1> [T2n(g’lT[’n~+‘:ID-‘:ml-’[siel1-<2

(25)

where [T2n(t)] T is the transpose of the column vector [T2n(t)l (i.e., a row

‘ector ‘ith ‘2n(~) as the elements). o

Combining equations 23, 24 and 25, one has

Now, if one assumes that

which is generally true,

for z ~> u(h2+w2)/c and Z2 >>

S;e has no singularities close to

equation 26 immediately becomes

I
(26)

2jKU/C)

h2 +W2

the branch cut,

t
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From equation 27, it is seen that

to Ez(x,y,z,jo) decays as z-2 when the

t ion. The above asymptotic estimation

components to
~2

>> yhwtilc,

is negligible

obtain similar results.

(h2+w2),~2(h2+~2)2/c2,
compared to the TEM mode

.

the continuous spectrum contribution

wave propagates along the +Z direc-

can also be applied to other..f.ield

Hence, within the region where

the continuous spectrum contribution

contribution.

-—
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APPENDIX

MATRIX-EQUATION FORMULATION FOR THE TE FIELDS

In this appendix, the matrix equation for the TE fields of the two

parallel-plates will be formulated. The procedure will be the same as

that used for the TM fields given in section III.

Under the source condition 6, the coupled differential-integral

equations 5 are simplified to the single equation

($-~)(~ ,G(x,h,x!,h;p) -G(x,h,xrch;p)} :O(x)dx)

= 6-0(x) for lx] < w— (Al)

To solve equation Al, one first integrates the equation to yield the

following integral equation

w

j{ G(x,h,x’,h;p) - G(x,h,xr,-h;p)} g-o(x’)dxf
-w

f

w
= B-Osinh(px) + (2p)-lsinh(plx-x’ l)~-o(x’)dx’ for 1x1 sw (A2)

-w

where the integration constant B-o will be determined from the edge conditions.

Equation AZ has the same form as equation 7. Hence, by following the

same procedure used to solve equation 7, one can transform equation A2 into

a Fredholm integral equation of the second kind given by

(A3)

1.01



where the variables are normalized according to equation 8, K(C,C’;y)

and L(g,~’;y) are defined in equation 10, and

[

1
V-”m = W2 (2y)-lsinh (yl#- c.’])B-o(&’)d&’

‘-1

The unknown quantities in equation A3 are g-o(~) and B . By
-o

applying the edge conditions, one can derive a relationship between them.

The edge and symmetry conditions for g-o(g) suggest the following expansion

AfCer using the expansion A4 in equation A3 it is observed that both .

left-hand and right-hand sides of equation A3 contain

which is the dominant term when C + il. By letting E

the left-hand and right-hand coefficients of the term

obtain

the term E/n - c’

+ kl, one can equate

~i~and thus

B-0 = ~ aog-o _ v-o
mm edge

ra=o
where

o )[(-1 1
2(ITYIJY) _l M’(2n;Y) -“ N’(2n;y))R’’(n)dna =

m

.

.

(A5)

I
1-M (1-(n’-n)2)u2fil(n’-n)

R:(H) = d~‘

- (n’+r-l)z)(l- (r$-1-l)z)
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)

v ‘“” = (Wo(y,)-l[ v-”’(~f,(l-(y~ ~,fedge

Having determined B-o in terms of g--o,the matrix equation for g-o

‘v

m
can then be derived. By removing the term ~/ 1- g from both sides of

equation A3, it is

following form

g-o(c)

where

easy to see that the equation can be cast into the

=(1 {P(W;Y) - Q(W;y)}g_O(,’)M’
‘-1

~-~’(B-OHO(~) +V-O(~) )

f

1
Ho(E) ‘~

-1

/

‘y 1=—
n

-1

;Y)-

cosh(y~’)

r’ ‘“(:-E’) l-c

/(’ESE’;Y)}

(A6)

V-o(E)

By inserting

‘1

f

-o’(p,=—
T vP’dc’-1 (E-g’) l-~

the expansion A4 into equation A6 and using the orthog-

onality of the Chebyshev polynomials, one finall’yobtains the desired

algebraic equations for g~“ given by

-v ‘0 Ho + V:”
edge n (A7)
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Or, in matrix form,

where

{P(W;Y) - Q(L&y)]d5’d&

J(16 == -— M’(2~;y)
)
~m(~)d~- N’(2rI;y)FO

T
o

J
d 2

=_ 8J
‘IT

cosh(y COS $)cos(2(n+@d$

0.

J
1-M (1- (n’ - n)2)U2m+1h’- TI)T2n+2(Ii +d

Fn:(n) = dri‘

-l+~n]
/(1- (TM)2 )(1- (T-I’ +?I)2)

rt+l m 1Q+k= ~ ~ “~~t:k ~ (bj(2k, 2L+1) - q2bj(2k, 2L+3)) X
k=O ,8=0 j=0

~ ~21+2k-2j+lD (n)
j - bl+k+l

(2k, 2L+3)~D%Fk+l(q)
I

(A8)
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o (m+ fl+l)!
= (-1)”- L —-—

~zm
u
m~ (m- 9.)!(2R+-1)!

t
‘o =-(-l)n -k+l (n+k)!(n+l)
nk (n- k+=l)!(2k)!

and bj(k,k), Dj(~) are given in equations 16 and 17; v-o o
and a are givenedge m

in equation A5 with

The solution of equation A8 is simply given by

This solution can be used

of the two-parallel-plate

in equations A4, 4 and 2 to calculate the TIZfields

simulator.
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