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Abstract
The discrete (referred as modes) and continuous spectra of finite-

width, parallel-plate simulator's fields are investigated. Formulas suit-~
able for numerical calculation are obtained for both the transverse-magnetic
(TM) and transverse-electric (TE) fields. Numerical results for the propa-
gation constants and the field distributions of the higher order TM modes
are presented. It is found that in the parallel-plate region of the
parallel-plate simulator some of the higher-order TM modes resemble those
of a closed waveguide, and the field of the continuous spectrum decays at

-2 . . .
least as z for waves propagating along the z-direction.
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SECTION 1

INTRODUCTION

The bounded-wave electromagnetic-pulse (EMP) simulator makes use of
two parallel finite-width plates as the guiding structure for the simulated
EMP (figure 1). One reason for employing two parallel plates is that they
support a transverse-electromagnetic (TEM) mode. Another reason is that
over a significant portion of the region between the plates, the TEM-mode
fields provide a good approximation to the free-space, plane-wave fields.
Unfortunately, such a structure can also support higher-order transverse-
magﬁetié (fﬁ) and transverse-electric (TE) modes and a continuous spectrum
(refs. 1,2,3, and 4). The TEM mode alone is not sufficient to completely

describe the total simulator field.

The properties of the TEM mode on two parallel plates have been
investigated extensively by the method of conformal mapping (refs. 5,6, and 7),
whereas the higher-order modes and the continuous spectrum have been inves-
tigated only in some limiting cases. In reference 2, integral equations
for the higher-order modes are formulated by using Green's theorem. The
integral equétions are analytically solved under the condition that ‘the
separation of the plates is much larger than their width (i.e., narrow
plates). In reference 3, alternative integral equations for the higher-
order modes are formulated by employing Laplace transforms and the Wiener-
Hopf technique, and are solved for the plates with small separation-to~-width
ratios (i.e., wide plates). The integral equations derived in reference 2
are most useful for numerical treatment when the separation of the plates is
comparagble to or larger than their width, whereas those derived in reference 3
are most useful when the separation of the plates is comparable to or smaller
than their width, The plate geometries discussed in this report have
separation-to-width ratios of one, two and three. The integral equations
derived in reference 2 are thus more appropriate. In this report, numerical
results for the propagation constants and field distributions will be given
for the IM modes. The TE modes, which are more highly attenuated away from
the launching region (ref. 2), will be discussed in an appendix.
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There is not much information available regarding the continuous
spectrum of the two-parallel-plate simulator. In reference 1, an
asymptotic analysis has been given to calculate the contribution of the
continuous spectrum to the total field of two infinitely long parallel
wires, which may be considered as a limiting case of a two-parallel-plate
simulator. In this report, a preliminary asymptotic estimation of-the
continuous spectrum contribution to the TM field at a fixed frequency will

bé given.

To solve the integral. equations derived in reference 2, one first
transforms the integral equations into the Fredholm integral equations of
the second kind by using Carleman's formula for singular integral equations
(ref. 8). The resulting integral equations are transformed further into
matrix equations which can be solved numerically by expanding the unknown
functions in terms of Chebyshev polynomials. From the numerical solutions
of the matrix equations, the propagation constants and field distributions

of the higher-order modes as well as the properties of the continuous

‘spectrum can be obtained by some straightforward calculations.

It should be mentioned that although the results in this report are
obtained for the infinitely long plates, they can be directly applied to the

real simulators where the lengths are finite.



SECTION II

INTEGRAL EQUATION FORMULATION

Two infinitely long, perfectly conducting, parallel plates of finite
width are shown in figure 2. The width of each plate is 2w and the distance
' separating the plates is 2h. A coordinate system is introduced such that
the z-axis coincides with the axis of the structure and the x-y plane is

the transverse plane, with the x-axis parallel to the plates.

The transverse field components Et(x,y,c,s) and Et(x,y,g,s) in the '
Laplace transform domain (i.e., s, ¢ domain) are related to the longitudinal

field components, Ez(x,y,;,s) and Hz(x,y,c,s), via (ref. 2)

-2 -2 A
E (%,5,5,8) = - gp "V E (%,¥,5,8) - sup zx VH(XY,5,8)
(1)
H(xycs)=-—§p—2VH(x gs)+sep-2£><VE(x z,s)
Zp\EsYshs £z VALY o toz 3¥sG,
' 2_2,2 2
where the factor exp(zz + st) has been suppressed, p =s/fec" -z, ¢ is the .

vacuum speed of light and Vt is the gradient in the transverse direction.

From equation 1, it is obvious that the fields can alwdys be decomposed
into two parts, the TM fields with HZ==O and the TE fields with Ez==0. Each

part will be discussed separately in the sequel.
1. TM FIELDS

As has been discussed above, a knowledge of Ez is sufficient for the
determination of the TM field distributions. From reference 2, Ez(x,y,z,s)

is given by '

W
Ez(x,y,;,s) = [ G(x,y,x',h;p)f(x',h)dx"' + IW G(x,y,x",~-h;p)f(x',-h)dx' '

G(x,y,x',y"3p) = 51,; Ko(p Jx-x? + -2 ) (2)

9 © 3
f(x,th) = lim (—— Ez(x,ih-ke,c,s) - 5§-Ez(x,ih-e,;,s))

oy
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Figure 2. Two, Finitely Wide and Infinitely Long Parallel Plates.
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where Ko is the modified Bessel function of the second kind and f(x,%h)

satisfy the following set of integral equations

W W
J G(x,h,x',h;p)f(x',h)dx"' + f G(x,h,x',~h;p)f(x',~-h)dx' = a(x,h)

-W -w (3)

[W G(x,-h,x',h;p)f(x',h)dx" + JW G(x,-h,x',~h;p)f(x',~h)dx" =a(x,-h)

- -W
for lx‘ < w, with o(x,*h) = - Einc(x,ih,c,s) being the incident longitudinal
electric fields at the plates.

2. TE FIELDS

The TE field distributions can be derived completely from Hz(x,y,c,s)

which is given by the following formula (ref. 2)

-
su H (x,y,2,8) = - r gs. (x,y,X',y‘;p)g(X‘,h)dX']
-w E y'=h
(4a)
W r
- J —g% (x,y,x",y' ;p)g(X',—h)dX‘]
~-g = y| = __h
where g(x,+h) are defined by
(suo)-lg(x,ih) = lim (Hz(x,ih4-s,c,s) - Hz(x,ih-s,c,s)) (4b)

e

and satisfy the following se% of differential-integral equations

d2 2 W w
—5-P J G(x,h,x",h;p)g(x',h)dx" + f 3(x,h,x',~h;p)g(x',-h)dx"'
- -W

= B(x,h), for |x[ <w (5)
é2 2 W w
—5-P [ G(x,-h,x',h;p)g(x',h)dx"' + I G(x,-h,x',-h;p)g(x',-h)dx"'
- -W

= g(x,-h), for lx| <w
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with B(x,%h) = szinc(x,ih,c,s) + CBE:nc(x,ih,c,s)/Bx being the source terms.
Although equations 3 and 5 look extremely complicated, they can be

simplified by observing that for most parallel-plate simulators the source

terms on the right-hand sides of equations 3 and 5 satisfy the following

conditions

a(x,h) = - a(x,-h) = a(-x,h) = a “(x)
(6)
-0

B(x,h) = - B(x,-h) =-B(-x,h) = B (x)
Accordingly, one has

£(x,h) = - £(x,-h) = £(-x,h) = £ “(x)
for the TM fields, and

-0
g(x,h) = - g(x,-h) = - g(-x,h) = g (x)
- -0 -2 -0

for the TE fields. The superscript "-"dina , 8 , £ ~, g 1s used to

indicate that all these functions o, B, £, g are antisymmetric with respect

" n.n

to y, while the superscript "e'" or "o" is used to indicate that the functions
are either even or odd functions of-x. Under the above conditions of equation 6,

the two equations of either integral equation set 3 or 5 become identical.

In the following sections, the simplified equations will be used to
investigate the properties of the higher-order modes and the continuous

spectrum of the two-parallel-plate guiding structure.



SECTION III

MATRIX-EQUATION FORMULATION FOR THE TM FIELDS

In this section, the integral equations given by equation 3 for the TM
fields will be transformed into matrix equations by expanding the unknown

functions in terms of Chebyshev polynomials.

On account of the source condition of equation 6 the coupled integral

equations 3 are reduced to a single integral equation

fW (G(x,h,x',h;p) - G(x,h,x',—h;p)) f—e(x')dx' = aue(x), IXI <w (7
-w

It is easy té.see that the kernel of the integral equation 7 has a loga-
rithmic singularity. After separating out the singular term and normalizing

the variables in the following manner

x =wg, x'=wg'
(8)
p=v/w, h=vwH
the integral equation 7 becomes
1 -e
[ an(|E-g"[DE T (E")dg"
-1 (9
1 -e -e
- znf (1CE-5"51) = N(E-E" 37)E 2 (NaE" - 2na7%(8),  for [g| < 1
-1
where
M(E-E'37) = o= K (v|E-E']) + o= an(]E-£'])
> 27 "o 2w
NG5 = v (Wheen? + )

Here, both M and N are regular functions of £-¢'.
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To facilitate the numerical solution of the integral equation 9, it
1. is desirable to transform it into a Fredholm integral equation of the
second kind. To do this, Carleman's formula for integral equations with

logarithmic kernels is used to obtain (ref. 8)

1
£7°(8) +f (k@£ - LE,Esm) £8E0ae = s7%@, gl <1 Qo)
-1
where
1 "no_ ozt
K(E,E"3y) = 2 J MET = E5Y) ypen
wi-£% 2 "1 g2
2 f UG AROL TR L
/ g - g"
ﬂvl-é‘;’z -1
o 2 Lo -eny
L(E,E";3y) = f et o SV ggn
“ m’l-gz gn2 —1 1—g"2
+ 2 }l N‘ (E"_E';Y)l l—gnz dE"
2 -1 g—gl
m/l-¢£
S'e (g") dE"

/1l - z‘-; n2 -l1v1- E;"

—at
F o (gMA-g?

2
M E-g"
nl—gz -1

Here, f denotes the principal-value integral and the prime in M', N', o c
denotes differentiation with respect to the first argument.

The integral equation 10 can now be reduced to a set of algebraic

equations suitable for numerical computation. The mathematical properties

o

11



of K(£,&8";y), L(&,8";y) and S—e(E) together with the edge conditions and
symmetry properties of f—e(%;) suggest the expansion .

) = —— ] £°1, (® (11)

/1'__;2 n=0 ‘

where T?_n(g) are Chebyshev polynomials of the first kind. Then, with the aid )
of the orthogonality of the Chebyshev polynomials, the integral equation 10

is transformed to the following set of algebraic equations '

£°+ <Ke - 1.8 )f'e =5 © (12)
n neg \ DE nm / m n
where
o =‘2—fl r R(E,8"5T, (8)T, (8%) 0t ag
nm - me 1L 1/_—-5'2
1 (1 L(E,E';Y)T, (E)T, (§")
Lim = ;r—z—— J [ 2n " 2m dg'de .
n. "'l "'l /1_512
-e 2 1 -e
s =;T-€—f 8 (2)T, (E)4s
n -1
and
2, n=0
€, =
1, n#0
Or, in matrix form
e e -el _| .-e
[anm + Knm - an] [fm ] - [Sn -.\ . (13,)

where 'Snm is the Kronecker delta, which is zero when n is not equal to m

and unity when n equals m, and [rnm] is a matrix whose elements are lrnm‘

12



Both Kﬁm and Lﬁm are complicated triple integrals. They can be
‘. simplified by first integrating over & and then by making the change of
variables £" - &' = 2n and £"+&' = 2n', to get

1
8 e _
T ( M(Zn,Y)Gm(n)dn n=0
kS = 0
nm 1
16 M' (2n37)FC (n)dn n>1
T 0 ’ nm -
: B (14)
8 1 e
. T in 2 J N(Zn;‘Y)Gm(n)dn n=0
an = 10
16 ' . e
= J N (Zn,Y)an(n)dn n>1
0
where
- LI \
o = [1 [n] T, (' =n) + T, (n'+n) it
m
0 vf(l-(n'+n)2>,<1—(n'-n)2>
(15)

‘. e 1-|n] (1- (n' +n)2)U2n_1(n' +n)T, (n'-n)
an(n) = ‘( dn'

-1+ n| /11— 0ﬂ-+n)2)<1— (n' -n>2)

and Un(n) is the Chebyshev polynomial of the second kind. By using the expli-
eit formulas for the Chebyéhev polynomials in the integrals of equation 15,
G:l(n) and Fﬁm(n) are further transformed into sums of complete elliptic

integrals which are more suitable for numerical computation, viz.,

Go(n) = 1 E teb; 0,207, (n)
| k=0 j=0 J
e mon k+2-1 2
Fe (n) = kZO zzl S jZO (b, 28-1, 20) - by s, 20) % (16)
x T H T () —nby 2041, 20D, ()

13



where

e n—-% (n+2-1)! 2%-1
Y T (-1) (n=-2)t(2e-1)! 2
e m-k _(m+k-1)!m 2k e _
tx = D @-0iQO! 2 fool *
)
_ oy AHi-23 323
byk,) = I D) (k-0 1(2) - DI(L+L-23)1
1 ll
i, = nax{0,23 - ¢} i, = min{k,2j}

and the functions Dj(n) are determined from the following recursion formulas

. s 2
P .3 Y (l-&nz)D.+l( y - 24+ (; 2] D£n)

Dyppm) 21+ 3 23+ 3
D (n) = 2(1+n) {F((l—n)/(1+n)) - E((l-n)/(1+n>)} (17)
D (n) = 2F ((L-m)/@+n)/(+n)

Here, F(n) and E(n) are complete elliptic integrals

TT/2 1
F(n) = f l n Zsin ¢) d¢

0 .

1r/2 L
E(n) = l n sin ¢) d¢

0

The solution of the matrix equation 13 is simply given by

[f;le] ) [Gnm +'K§m B L:m]—l[s;e] (18)

Insertion of this solution into equations 11, 2 and 1 gives the Laplace

transform domain TM fields.

14
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In the next two sections certain important properties of the TM fields

will be discussed by studying the singularities of equation 2 in the

complex g-plane at a fixed s = juw.

15



SECTION 1V

PROPAGATION CONSTANTS AND FIELD DISTRIBUTIONS OF DISCRETE TM MODES

In the previous sections, the formulas required to calculate the TM
fields of two parallel-plates are obtained. At a given frequency w, the
field distributions are calculated from the inverse Laplace transform
integrals
E(X,7,2,]w) E(x,7,2,30)

= e %az (19)
H(x,7,z,]w) g | H(x,y,2,3w)

3

!

where-Cc is tho path of integration in the complex g-plane shown in figure 3
and E(x,y,%,jw) and H(x,y,,jw) are given by equations 1 and 2. An examina-
tion of equation 2 shows that in the complex g-plane, there are branch points
at £ = * jw and poles at Ck,z where det [Gnm + Kﬁm - Lﬁm:]= 0. For the
branch cuts shown in figure 3, the contour CC can be deformed to the left
half-plane for field points at z > 0 and sources at z < 0. The contour
integral along CC is thus reduced to the integral along the branch cut B_
(the so-called continuous spectrum contribution) plus the residues at the
poles ;k’g(the so-called modal fields). The reason wh, two indices are

assigned to Ck . will become clear later when numerical results are obtained.
2

Each modal field is required to be outgoing iﬁ.the transverse direction
and decaying in the +z direction. Thus, in the branch shown in figure 3, the
poles can exist only in the region where -w/c < Im(z) < 0 and Re(g) < O.

It is also observed that pk,i have negative real parts, so that the modal
field distributions increase indefinitely in the transverse direction.
Hence, the branch shown in figure 3 is appropriate only when the field
points are close to the plates. In the remaining part of this section, the
propagation constants and field distributions of the TM modes will be
discussed, while an estimation of the continuous-spectrum contribution will

be relegated to the next séctiom.

"To calculate the propagation constants of the TM modes, one has to

find first Pp. g from the equation det [Gnm + Kﬁm - Lﬁm:l= 0. With these
3

16
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Py g values (the so-called transverse propagation constants), the corresponding
»
longitudinal propagation constants Ck g are simply given by
2
_ . 2 2,2
Ck’g - J /Pksz + w /C (20)

When H = h/w >> 1, i.e., the plates are extremely narrow, there exist
. T . — e -— e =
possible Pk,£ s for which iYk,zl = ka’gwl << 1 and det Gnm + K an 0.
Actually, under the comndition iYk gi << 1, one can show that the Yy z's
bl 3
satisfy

det[a + k& - 1% ]:det[a +6 & (k% -1f )]
nm nm T nm o mo 00 Qo

=1 + (.Q,nZ- R,n(I’Yk’g) - KO(ZYk,va)) /tn2 =0 (21)

where ' = 1,781 is the exponent of Euler's constant. Equation 21 is the

same as that obtained in vreference 2, where its solutions are also given.

When the width of the plates is comparable to their separation, which
is the case of interest here where H = 1,2,3, one must resort to numerical
e e

- L ] = 0.for the transverse
nm m
propagation constants Pr g The method selected is first to locate the
s

methods to solve the equation det Lanm + K

approximate positions of the zeros of the determinant from the constant-
magnitude contours in the complex p-plane. Then these approximate positions
are used as the starting points for the Newton-Raphson method, used to
search for more accurate solutions for the transverse propagation constants
Pk,E' It is found that three terms in the expansion 11 for £7°() are
sufficient to obtain resonably accurate transverse propagation constants

of the first several modes for H > 1, ¥For each transverse propagation
constan; Pk,z’ the f;e are thgn determined within a multiplicative constant
from the homogeneous equation of equation 13. These f;e values can in turn
be used in equations 1, 2 and 11 to calculate the corresponding modal field

distriputions.

18



The transverse propagation constants pk’z of the first several TM
modes for H = 1,2,3 calculated by the above described approach with the
aid of a CDC 6600/7600 computer are tabulated in table 1. The Ck,l
values as functions of w for the lowest TM modes with k=0,1 and 2=1,2
are plotted in figures 4, 5 and 6. Four curves of pO,Q’ 2 =1,2,3,4 are
also presented in figure 7 for H-values ranging from 50 to about 2. The
numerical results of the modal field distributions for the TMk,z modes
with k=0,1, 2=1,2 are given in figures 8 through 19. The field distribu-
tions are plotted in terms of constant-value contours of the real parts,

imaginary parts and magnitudes of the normalized field components.

From the‘field distribution plots of the TMk,z modes, especially the
modes with 2 > k, it is observed that in the working volume of the simulator
(i.e., x/w, y/h < 1) the fields vary almost sinusoidally as functions of x
and y with periods of 2w/k and 2h/% respectively. The indices k,{ used in
the TMk’z‘modes thus characterize the field variations in the x,y directions;
and the use of two indices is justified. 1In this report, results are given
only for k=0 and 1. It is believed that if one goes even farther away from
the imaginary axis, more TMk,l modes can be found for k > 2. However, for
the modes with k > 2, the corresponding longitudinal propagation constants

ck Iy will have decay constants so large that those modes become less
E] .

dimportant.

.19



Table 1

TRANSVERSE PROPAGATION CONSTANTS OF TM MODES

v |, k=0 k=1
(H) Re (PO, E,W) Im(po,g’w) Re (pl, Qw) Im(pl’ Qw)
1 -0.1274 3.2879 ~1.5701 1.1930
2 ~0.0590 6.3890 -0.9827 4.3512
: 3 ~0.0353 9.5060 ~0.5034 '7.1986
4 ~0.0245 12.6321 -0.2935 10.1311
1 -0.1834 1.6686 ~1.2325 0.7914
2 ~0.1260 3.2448 ~1.1963 2.2510
* 3 ~0.0778 4.8067 ~0.9098 3.9028
4 ~0.0575 6.3662 ~0.6898 5.4269
1 ~0.1779 -1.0974 ~1.0351 0.5888
2 | .-0.1299 2.1721 -0.9925 1.4961
’ 3 ~0.1006 3.2207 -0.9207 2.5827
4 -0.0814 | 4.2662 ~0.7896 3.6733

20
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Figure 4.
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Frequency Variation of Longitudinal Propagation Constants

K, 2

of Higher-Order TM Modes for k=0,1, 2=1,2 when h/w=1.
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Figure 5. Frequency Variation of Longitudinal Propagation Constants
Ck,ﬂ, of Higher-Order TM Modes for k=0,1, £=1,2, when
h/w=2. ‘ )
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Figure 6. Frequency Variation of Longitudinal Propagation Constants
Ck,z of Higher-Order TM Modes for k=0,1, 2=1,2 when
h/w = 3.
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Figure 7.

Im (po lW)

The Normalized Transverse Propagation Constants Pg.g¥ s
3
Functions of h/w for & = 1,2,3,4.
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Figure 8a.
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- - = -

Constant Value Contours for Normalized Field Component Re(Ez/w)
of the T™™ Mode when h/w = 1. The Fields are Normalized so
2 0,1 2 2 '
that |p /Cl/ﬁEx] -+|Ey| = 1 at x=y=0. Broken Lines are
for Negative Values.
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Figure 8b.

Constant Value Contours for Normalized Field Component Im(Ez/w)

of the TMO 1 Mode when h/w = 1. The Fields are Normezlized

3
so that |p2/z| IExlzi-[Eylz = 1 at x=y=0. Broken Lines are
for Negative Values.

26



Figure 8c. Constant Value Contours for Normalized Field Component IEZ/W) ,
' of the TMO 1 Mode when h/w = 1. The Fields are Normalized
. ’
so that |p2/c|¢|Ex|2+|Ey|2 =1 at x=y=0.

®
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Figure 8d. Constant Value Contours for Normalized Field Component

2
reE /)% + Reo?E [0)F = Jre@H Jse)? + (Re(@H, /5c,))
of the ™, 4 Mode when h/w = 1. The Fields are Normalized

A 2 2
so that iPZ/Ch/IEx[ +‘Ey[ =1 at x=y=0,
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Figure 8e. Constant Value Contours for Normalized Field Component

/e /)2 + (G’ /0)? = /anGE fse))? + (ue’H [se))’

of the TM Mode when h/w = l. The Fields are Normalized

so that |p2/?;|/ E ' +|E =1 at x=y=0.



y/h

Figure 8f. Constant Value Contours for Normalized Field Component
Ipzlclr/E |2+lE 1 < |p2(se )_l[}/IH |2+lH |2 of the ™

Mode when h/w = 1. The Fields are Normallzed so that

IP /CI}‘E |“+[E at x=y=0.
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Figure 9a.

®

X/w

Conétant Value Contours

Re(Ez/w) of the T™™ Mode when h/w
Normalized so that IP?/QiquXIZ'*lEy

2
|

1,

Broken Lines are for Negative Values.
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Figure 9b. Constant Value Contours for Normalized Field Component

Im(E /w) of the T™ Mode when h/w = 1. The Fields are

0,2
Normallzed so that |P /Clr 4—|E =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 9c, Constant Value Contours for Normalized Field Component
|E_/w| of the ™ Mode when h/w = 1. The Fields are

z 0,2 5 5 5
Normalized so that |p /t;|/|Ex| + lEy| =1 at x=y=0.
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Figure 9d. Constant Value Contours for Normalized Field Component

Jre 075, /002 + (Reo7E, /c))z - /(Re(pzn fse )P + (Re(p?H /s ))?

of the TM Mode when h/w = The F:Lelds are Normalized so

that[p/c[/E[+[E[ =1 at x=y=0. | .

34



®

Figure Oe.

Constant Value Contours for Normalized Field Component

2 2 2 2 2 2 L2
/(Im(p EX/C)) + (Im(p Ey/C)) = /(Im(p Hy/seo)) +(Im(p2Hx/seo))
of the T™ 9 Mode when h/w = 1. The Fields are Normalized so

2,3 2 2
that |p“/z|/[E_| +|Ey[ =1 at x=y=0.
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Figure 9f. Constant Value Contours for Normalized Field Component

et e, 1+ (5 12 = (pPee) M /iy P+ [, 1% of che

Mode when h/w = 1. The Fields are Normalized so that
2 2 2 _ o
[p%/c1/le,|* + 15" = 1 at x=y=0.
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Figure 10a.

X/w

Constant Value Contours for Normalized Field Component

Re(E_/w) of the ™ Mode when h/w = 1. The Fields are
z 1.1, 2 2

Normalized so that |p /;l/qul -+|Ey| =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 10b,
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Constant Value Contours for Normalized Field Component Im(Ez/w)

of the TM Mode when h/w = 1. The Fields are Normalized

bl
so that |p2/C‘/[Ex[2-+[Ey|2 = 1 at x=y=0. Broken Lines

are for Negative Values.
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Figure 10c. Constant Value Contours for Normalized Field Component IEZ/WI
of the TM; , Mode when h/w = 1. The Fields are Normalized so
2,3 2 2
_that |p /C|»[|Ex| +|Ey| =1 at x=y=0.
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Figure 10d.

Constant Value Contours for Normalized Field Component

2 2 2 2 2 2 2
Jre @7 /07 + (Re 7w /D)7 = /Re (7R 15027 + (Re o7 fs2,)
of the TM Mode when h/w = 1, The Fields are Normalized so
that p/clf' lEyl =1 at x=y=0,
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Figure 10e. Constant Value Contours for Normalized Field Component

2 2 2 2 / 2 2 2 2
/(Im(p Ex/?;)) + (Im(p Ey/C)) = ¥ (Im(p Hy/seo)) + (Im(p HX/SEO))
of the ™ Mode when h/w = 1. The Fields are Normalized so ’

2 bl 2
that |p /C|/|Ex| +]Ey|

1 at x=y=0.
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Figure 10f. Constant Value Contours for Normalized Field Component

2 2 2 2 -1 /.. 12 2
| /c|/|Ex| +[Ey| = |p"(se )7 [V]u | +|Hy| of the TH) )
Mode when h/w = 1. The Fields are Normalized so that

2 2 2
|p /C|'/|Ex| +|Ey| =1 at x=y=0,
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Figure 1Vla. Constant Value Contours for Normalized Field Component Re(Ez/w)
of the T™ Mode when h/w = 1. The Fields are Normalized so

2,73 2 2
that |p /cl»/|Ex( +|Eyj

for Negative Values.

= 1 at x=y=0. Broken Lines are

®
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Figure 11b. Constant Value Contours for Normalized Field Component
Im(Ez/w) of the TM, , Mode when h/w = 1. The Fields are
b4
Normalized so that Ipz/cl/lEX|2-+lEy[2 =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure llc, Constant Value Contours for Normalized Field Component IEz/w]
of the TM; , Mode when h/w = 1. The Fields are Normalized so
2 b
that [p?/z]V]E %+ IEyl2 = 1 at x=y=0.
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Figure 11d. Constant Value Contours for Normalized Field Component

/e (05, /037 + (Re (0B /20 = /(Re 071 /5e )7 + (Re (%M, /5e )
of the TM Mode when h/w = 1. The Fields are Normalized so

1,2
tnat [p?/c]VlE | %+ |5 |% = 1 at x=y=o0.
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Figure lle.

Constant Value Contours for Normalized Field Component

/anGo’8, /0 + (tne e 1) = V1ntes fse ) + Tn(e7, /52))
of the T™ Mode when h/w = 1.

1,2 :
2,712 7
that |p“/¢[V|E_| +—]Ey| =1 at x

The Filelds are Normalized so
=y=0_
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Figure 11f. Constant Value Contours for Normalized Field Component

le/Cl“[Ex12+ nylz = lpz(seo)_llv/fﬁxlz + |Hy|2 of the TM

Mode when h/w = 1. The Filelds are Normalized so that
2 2 2 _ o w
lo“/iVlE, |7+ [Eyl =1at x=y=0.

1,2
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Figure 12a, Constant Value Contours for—Normalized Field Component
Re(E /w) of the T™™ Mode when h/w = 2, The Fields are
z 0Ly 2 2
Normalized so that [p“/z[/[E |"+ (Ey| =1 at x=y=0.

Broken Lines are for Negative Values,

®
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Figure 12b.

X

Constant Value Contours for Normalized Field Component

Im(E /w) of the TM Mode when h/w =

2.

The Fields are

Normalized sothat Ipzlclf |E | +-|E =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 12c. Constant Value Contours for Normalized Field Component[EZ/w[

of the TMO 1 Mode when h/w = 2., The Fields are Normalized
’

so that Ipzlcfr/IExJZ+ {Ey}z =1at x=y=0.

®
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Figure 124.

X/ W

Constant Value Contours for Normalized Field Component

/Re7E, /)% + (Re pE /c>)2=/<Re<pzay/seo>)2+ (Re(p%H, /se_))?
of the TM Mode when h/w = 2, The Fields are Normalized so

that |p /cl/lE | [E =y =0,
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Figure l2e, Constant Value Contours for Normalized Field Component

(e’ /0) 2+ (nG7E /1D)? = in(e2 /se )2 + (1nto2, /e )

of the TMO Mode when h/w = 2. The Fields are Normalized so

1
> that |p2/z]| IEx|2+[Ey|2=latx=y=0.
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Figure 12f. Constant Value Contours for Normalized Field Component

p%/c)/|E, |? +lE = |p? (se)” l»/lH |12 +|R, 12 of the ™, 1
Mode when h/w = 2. The Fields are Normallzed so that

ipzlclr‘lEx[z+ |Ey[2=l at x=y=0.

~
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Figure 13a.
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X/w

Constant Value Contours for Normalized Field Component

Re(Ez/w) of the T™™ Mode when h/w = 2. The Fields are

0,2 7 7
.Normalized so that 1p2/C|V|EXl -+|Ey| =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 13b.
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Constant Value Contours for Normalized Field Component

Im(Ez/w) of the TMO 5 Mode when h/w = 2. The Fields are
Normalized so that lp2/;]¢[Ex|2-+|Ey|2 =1 at x=y=0,

Broken Lines are for Negative Values.
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Figure 13c. Constant Value Contours for Normalized Field Component IEz/w[
of the T™™ Mode when h/w = 2, The Fields are Normalized
0,2 f 5 5
so that |p2/z| ]Exi +|Ey| =1at x=y=0.
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Figure 13d.

X/W

Constant Value Contours for Normalized Field Component

2
MR %E 122 + (R, /0) = ViR % /52 ,))” + (Re(p7H [52,))
of the ™, 5 Mode when h/w = 2. The Fields are Normalized so
2,17 2 2
that |p“/z|V|E, | ""Eyl =1 at x=y=0,.
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Figure 13e. Constant Value Contours for Normalized Field Component

2 2 2 ,
(anG e, /) + (mp7E /27 = HaneH fse )% + (% /e ))
of the TM 2 Mode when h/w = 2. The Fields are Normalized so
2,17 2 2
that [p“/z|/[E| +[Ey| =1 at x=y=0.

o
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Figure 13f. Constant Value Contours for Normalized Field Component

lpz/CI\/[Ex|2+ \Eylz = |p2(s&:o)—l(r’[HX|2+ nyfz of the T,

Mode when h/w = 2. The Fields are Normalized so that
2 / 2 2
|9/ 2| 'Exl +|Eyl =1 at x=y=0.

2
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Figure léa.

x/w

Constant Value Contours for Normalized Field Component

Re(Ez/w) of the ™ Mode when h/w = 2. - The Fields are

l’12 /| 2 2
Normalized so that [p /;‘ ‘EX( -+|Ey‘ =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 14b.
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Constant Value Contours for Normalized Field Compomnent

Im(E /w) of the TM Mode when h/w =

1, l

The Fields are

Normalized so that fp /c|V[E [ -F[E [ =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure l4c. Constant Value Contours for Normalized Field Component [Ez/w]
of the T Mode when h/w = 2. The Fields are Normalized
1,1 7 5
so that [p,2/t;{»[|Ex| + [Eyl =1 at x=y=0.

®
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Figure 14d.

Constant Value Contours for Normalized Field Component

/{;e(szx/c))z + (Re(szy/c) )2 = -/ae(pzﬂy/sso))2 + (Rea(szx/seo)}2

of the TMl 1 Mode when h/w = 2. The Fields are Normalized so

that [p?/c]/]E |%+ 5 [2 = 1 at x=y =0,
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Figure l4e, Constant Value Countours for Normalized Field Component

2 2 2 2 2
v/(Im(p Ex/c)) + (Im(szy/c)) = v/(Im(p Hy/seo))2 + (Im(szx/seo))
of the TMl 1 Mode when h/w = 2. The Fields are Normalized so

2, 07/ (2 2 _ e
‘. that |p“/z| ‘Exl +|Ey[ =1 at x=y=0,.
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Figure 14f. Constant Value Contours for Normalized Field Component

2, 1 fio 12 2 2 -1 _/—2'—2
lp®/z| /e | +|Ey| = lp%(se) T IVl |7 + 1| ° of the T,

Mode when h/w = 2. The Filelds are Normalized so that
2 2 2 o
[p“/cl/[E | +lEy[ =1 at x=y=0.

1
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Constant Value Contours for Normalized Field Component
of the T™ Mode when h/w

Re(E /w) 1,2
Y|E Zy [E

Normallzed so that lp /g V|
Broken Lines are for Negative Values.

. The Fields are
=1 at=x=y=0.
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Figure 15b. Constant Value Contours for Normalized Field Component

Im(E /w) of the TM Mode when h/w = 2. The Fields are

Normalized so that [p /5| /|E -F\E =1 at x=y=0. )

Broken Lines are for Negatlve Values.
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Figure 15c. Constant Value Contours for Normalized Field Component ]Ez/wl
of the TM; , Mode when h/w = 2. The Fields are Normalized
so that |p2/C|V[EX|2+ |Ey|L =1 at x=y=0,
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Figure 15d. Constant Value Contours for Normalized .Field Component

2 2 2 z2_/ 2 i 2
/(Re(p E /2))" + (Re(p Ey/c)) ='/(Re(p Hy/sso))z-i-(Re(szx/seo))
of the T™™ Mode when h/w = 2. The Fields are Normalized so
2 2 2
that |p /CI/IEX[ + [Ey| =1 at x=y=0, .
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Figure 15e. Constant Value Contours for Normalized Field Component

»/(Im(szx/c) )2 + (Im(szy/c) )2 = v/(Im(pZHy/sso))z + (Im(szx/sso) ) 2

of the TMl ) Mode when h/w = 2. The Fields are Normalized so

‘. that |p2/r,|\/]Exj2+ }Ey\z =1 at x=y =0, .



X/W

Figure 15f. Constant Value Contours for Normalized Field Component

lpz/clVlExlz-flEylz = lpz(seo)'l[/lﬁx|24ilﬂy|2 of the T

Mode when h/w = 2. The Fields are Normalized so that
2 / 2 2 _ ‘ o o
|p°/z] IExi +IEyI =1 at x=y=0.

2
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Figure l6a, Constant Value Contours for Normalized Field Component
Re(E,/w) of the ™, 1, Mode when h/w = 3. The Fields are
Normalized so that Ip /e|¥|E 24 \E =1 at x=y=0.
" Broken Lines are for Negative Values
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Figure 16b. Constant Value Contours for Normalized Field Component
Im(E_/w) of the TM Mode when h/w = 3. The Fields are
z O,l2 5 5
Normalized so that |p /C|Y[Ex[ -+|Ey| =1 at x=y=0,

Broken Lines are for Negative Values.
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X/w

Figure 16c. Constant Value Contours for Normalized Field Component |Ez/w|
of the T™ Mode when h/w = 3. The Fields are Normalized so
that ,PZ/CIVIEXIZ'*"IEYIZ =1 at x=y=0.
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Figure 1l6d.
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Constant Value Contours for Normalized Field Component

/(re (o2 /2% + eG’E, /c>)2=fRe<p2H Jse )%+ (Rep?H, /se )’

of the TM Mode when h/w = 3. The Fields are Normalized so

that|p/g|t/E[+|E| =1at x=y=0.
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Figure 16e., Constant Value Contours for Normalized Field Component

/(Im(sz /C))2+(Im(p2E /o = /(Im(pZH Jse )+ (In(o™H, /sc )

of the TM Wode when h/w = 3, The Fields are Normalized so
that |p? /z;|/E| +[E} =1 at x=y=0.
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Figure 16f. Constaat Value Contours for Normalized Field Component

[Pz/Cl‘/lExiz*‘[Eylz = |p 2 (se )—1|f [H [ of the TH,

Mode when h/w = 3. The Fields are;NormalizedA so that
lpz/Cl‘/|Ex[2+ IEy|2 =1at x=y=0,

s 1
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Figure 17a. Constant Value Contours for Normalized Field Component_

Re(E_/w) of the TM Mode when h/w = 3. The Fields are
z 022 /——7—_?:
Normalized so that Tp /C[ [Ex' +—lEy( =1 at x=y=0.

Broken Lines are for Negative Values.



X/w

Figure 17b. Constant Value Contours for Normalized Field Component

Im(E,/w) of the ™, Mode when h/w = 3. The Fields are
Normalized so that IPZ/EIV'EX(Zia[Ey]Z =1 at x=y=0,

Broken Lines are for Negative Values.
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Figure 17c. Constant Value Contours for Normalized Field Component |EZ/W|

of the T™M Mode when h/w

052 /F______—__f
so that |p2/g]| |Ex|+-|Ey]

81

3. The Fields are Normalized

1l at x=y=0,



Figure 17d.

Constant Value Contours for Normalized Field Component

2
Jre e, /0% + Re(?E 1007 = Yire(o7H fse )P+ (ReGoH f56))
of the TMO 9 Mode when h/w = 3. The Fields are Normalized so
2,3 T . 12 '
that |p /El‘[IExl +|Eyl =1 at x=y=0.
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Constant Value Contours for Normalized Field Component
2 2 2
Ame?e,/2)% + (G e /0)7 = /mG 1 /se ) + (In(p%H /se )

of the TM Mode when h/w = 3. The Fields are Normalized so
2 0,2 2 2 '
‘. that |p /c[[[Ex! +|Ey( =1 at x=y=0,

Figure 17e.
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Figure 17f. Constant Value Contours for Normalized Field Component

2 2 2 2 “L /e (24w 12 .
Ip /Cl'/igx| +[Ey! = |p"(se ) /]| +|Hy| of the T
Mode when h/w = 3. The Fields are Normalized so that

Ipz/Cl'lEsz'{- |Ey|2 =1 at x=y =0,
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Figure 18a.
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X/w
Constant Value Contours for Normalized Field Component

Re(E_/w) of the T™ Mode when h/w = 3. The Fields are
z Ll — 2
Normalized so that |p“/g] IEXI +—lEy[ =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 18b. Constant Value Contours for Normalized Field Component
In(E_/w) of the ™ Mode when h/w = 3. The Fields are
z Li, 2
Normalized so that lp /§| [Exl -#IEy[ =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 18c. Constant Value Contours for Normalized Field Component lEz/wl
of the T™™ Mode when h/w = 3, The Fields are Normalized so

1,1
that lpzlcl/IEX|2+|Ey|2 =1 at x=y=0.
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Figure 18d.
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Constant Value Contours for Normalized Field Component

2 2 2
/re (67, /o) + (Re(o7E 10117 = Re (07, f52 207 + (Re (0P, f52,))
of the TM Mode when hjw = 3, The Fields are Normalized so
2,12 7 _ L o
that |p“/¢| lExl -+1Ey| =1 at x=y=0,
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Figure 18e. Constant Value Contours for Normalized Field Component

Man®?e, /00" + (m67E /0)7 = /10678 /sc )2 + (78 /s,))

of the TMl 1 Mode when h/w = 3. The Fields are Normalized so
, ,
‘. that |p2/§lv/|Ex|2+|Ey|2=lat x=y=0.
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Figure 18f. Constant Value Contours for Normalized Field Component

2, 77200 12 1.2 LA 2w (2
/e /e |7+ B 1% = [ Cee )T IV]u, [ + [0, % of the m
Mode when h/w = 3. The Fields are Normalized so that

[pz/t;[n’IExlz—i- ny[z =1 at x=y=0. .

1,1
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Figure 19a.
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Constant Value Contours for Normalized Field Component
Re(E /w) of the TMl ’ Mode when h/w = 3. The Fields are

Normalized so that Ip /glf |E =1 at x=y=0.

Broken Lines are for Negative Values.



Figure 19b.
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Constant Value Contours for Normalized Field Component

Im(E /w) of the TM

Mode when h/w =

3. The Fields are

Normallzed so that lp /g|/|E 4-|E lz 1at x=y=0,

Broken Lines are for Ncgative Values.

92



I}

®

X/w

Figure 19c. Constant Value Contours for Normalized Field Comp,onent”'Ez/w‘

of the ™ 2 Mode when h/w = 3. The Fields are Normalized so

1
‘. that |P2/CTY|EX‘2+|Ey'2=lat x=y=0.
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Figure 19d.

2

X/w
Constant Value Contours for Normalized Field Component

2 2 2
Jre (678, /0)7 + (Re (072, /00)% = /(Re (08 /se )7 + (Re (71 [52,))
of the TMl 2 Mode when h/w = 3. The Fields are Normalized so
that Ipz/t‘;l/l-Exiz+ lEy]2 =1 at x=y=0,
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Figure 1l9e. Constant Value Contours for Normalized Field Component

Min@?e /0% + @G /o) = /ne?H /52, )7 + (6P /sc )

‘. of the 'IMl 2 Mode when h/w = 3. The Fields are Normalized so
that |p2/<:|/{Ex[2+ [Ey[2 =1 at x=y=0.
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Figure 19f. Constant Value Contours for Normalized Field Component

2,0 /e 12+ e 12 2 S ) 2
lp®/z|Y|E | +|Eyl = [p"(se ) |/]n | +[Hy[ of the TM ,
Mode when h/w = 3. The Fields are Normalized so that .

lpz/l;lv‘iEx{z—{— [Ey[z =1 at x=y=0.
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SECTION V
.- CONTINUOUS SPECTRUM CONTRIBUTION

In this section, an asymptotic estimation of the continuous spectrum

contribution to the TM fields at a given w will be presented.

From equations 2 and 19, the continuous spectrum contribution to Ez

for a fixed w is given by

W
c R | 1
EZ(X,}’,Z,JN)—Zﬂj J J 27

Ko<p/éx—x')2+-(y—h)2>-Ko<p/Qx—x')2+(y+h)2>§

B_ -w
X f—e(x'/w)eczdx'dg (22)

where p = - j/;z + w2/c2, B_ is the contour shown in figure 3, and f—e(g)
is calculated from equations 11 and 18. Along B_, it can be shown that
the p~values above and below the branch cut are related by p(above) =
ejﬁp(below). Thus, with the variable change from 7 to - jw/c - «,

equation 22 becomes

. W @
E;(x,y,z,jw) = i%—e_sz/C J dx"[ dx e_Kzf—e(x'/w)
v 0 (23)

bed

Io<p\[(x-x')2+ (y—h)2> - Io(p»/(x—x')2+ (y+h)2>;

where IO is the modified Bessel function of the first kind and the parameter

p_is given by p = - j¢K24<2ij/c.

The asymptotic behavior for large z of the continuous spectrum contri-
bution E;(x,y,z,jw) can now be estimated. Due to the exponential term
exp(-xz), it is clear that the k-integral in equation 23 comes mainly
from the region where 1 > xz > 0. For field points in the working volume
of the simulator, the arguments of the Bessel functions are small for
1 > xz > 0, provided that z >> w(h24-w2)/c and z2 >> (h2+-w2). The small-

argument expansion can be applied to the Bessel functions to get (ref. 9)
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r{p/-xn? 4 -w? )- 1 (o/ie-xy? + gam? )

(Kz + 2ij/c)yh

~

(24)

For the term f'e(g), one obtains, under the same conditions, from equations

11 and 18

o) = 2= 1,0 | [6., +

Y
[
| S——
H
[y
=}
~
[
~—
| ESS—|
3
| p———
g(D—)

. 1 3 .
) [ Zo (l T %on 2
1-g° ™

1

S T, (&) (25)

where [Tzn(E)]T is the transpose of the column vector [Tzn(i)] (i.e., a row

vector with Tzn(i) as the elements).

Combining equations 23, 24 and 25, one has

wyh e—jwz/c

c .
EZ(X,Y,Z,JU.}) = 4

-1

for z >> w(h24-w2)/c and z2 >> h2 + w

1 T
X [ dg! 2

1-¢

(-

(g"
'20

1
6nc in

-1
_2_@)

2 n Tw
(26)

=]
J dx S;ee-Kz(Kz + 2jkw/c)

2

-e . P
Now, if one assumes that Sn has no singularities close to the branch cut,

which is generally true, equation 26 immediately becomes

1
EZ(x,y,z,jm) = i—(l +

1
tn 2

n

an\™
I'w
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From equation 27, it is seen that the continuous spectrum contribution
to Ez(x,y,z,jw) decays as 2—2 when the wave propagates along the +z direc-
tion. The above asymptotic estimation can also be applied to other field
components‘to obtain similar results. Hence, within the region where
22 >> yhww/c, (h24-w2), wz(hz-sz)z/cz,the continuous spectrum contribution

is negligible compared to the TEM mode contribution.
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APPENDIX

MATRIX-EQUATION FORMULATION FOR THE TE FIELDS

In this appendix, the matrix equation for the TE fields of the two
parallel-plates will be formulated. The procedure will be the same as

that used for the TM fields given in section III.

Under the source condition 6,7the coupled differential-integral

equations 5 are simplified to the single equation

a* 2\( (" | -0
5 - f {G(x,h,x',h;p) - G(x,h,x',—h;p)} g (x')dx'

dx w

= 8 %) for |x| <w (A1)

To solve equation Al, one first integrates the equation to yield the

following integral equation

W
J {G(x,h,x',h;p) - G(x,h,x',-h;p)} g O (x")dx’
-W

w -
= B °sinh(px) + J (2p)_lsinh<p|x-x'I)B-o(x')dx' for |x| <w (a2)
-y
where the integration constant B~ ° will be determined from the edge conditions.
Equation A2 has the same form as equation 7. Hence, by following the

same procedure used to solve equation 7, one can transform equation A2 into

a Fredholm integral equation of the second kind given by

- 1 -
g (&) +J (K(a,i';y) - L(E,E';Y)> g o(g')dg!
-1
- 2vB~° ! cos@g')/l-g'zd, 2 ! v_o‘(a')»’l—«i'z '
Y g + £ dg
g2 -1 al-g? 1

for |g| <1 (A3)
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where the variables are normalized according to equation 8, K(&,&";y)

and L{£,£";v) are defined in equation 10, and

. |
Vo) = w f 2v) Fsinn (v|g-¢']) 870 Nag"
-1

The unknown quantities in equation A3 are g'°(g) and B—o. By
applying the edge conditions, one can derive a relationship between them.

The edge and symmetry conditions for g_o(g) suggest the following expansion

o) = V1- ZgU

=0

2oy (8) (a4)

After using the expansion A4 in equation A3 it is observed that both
left-hand and right-hand sides of equation A3 contain the term &/V1-¢
which is the dominant term when £ - +1., By letting & > £1, one can equate
the left-hand and right-hand coefficients of the term &/¥1- &~ and thus

obtain

1 1 | w2
f f (M= gtsm) - N -t 2 ST L Uiy (813848
m'-—‘-'.

l gtt
-1 -1

1 y 1
= yB °[ cosh(yE") 1"2. dg’ +j ° e l‘“g - ag!
-1 -1

Or, after simplification

-0 _ 0 -0 _ -0
B~ = mZO 4nn Vedge (45)
where
1
a; = z(wYIO(Y))_l J—l (M'(ZH;Y) - N‘(Zn;Y))R;(n)dn
1-|n] (1- ' -m?) oy 1 M)

Rm(n) dn

U
-1+|n| /(1 () 2 L= (-n) 2)
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Having determined B in terms of g , the matrlx equation for g

can then be derived. By removing the term &/v1 - E from both sides of

equation A3, it is easy to see that the equation can be cast into the

following form

1
g0 + /1-£° f [P(g,8";v) - Q(&,2"5v) te (M) dg!

-1

=g (B'°H°<a> + v“°<a>> (A6)
2y fl cosh(Ya')/l—a'2<
1-¢g2

where

£ )dg'

Ho(g) E—E' r_l_£|

ﬂ
-1

= Z‘Y l cosmg') dg'

k3 :
1 (g-gyi-g 2

{pCe,e"sv) - Qg,e"m)}

.2 f M (8" = £'y) - NG Em) g

™
-1 (c-egmA-g"

1 ) .

VO (6) =%f
-1 (g-gn/1-¢'2

- By inserting the expansion A4 into equation A6 and using the orthog-

onality of the Chebyshev polynomials, one finally obtains the desired

algebraic equations for g;o given by

-0 -0 -0 .0 -0
-+ ( — — = -
&n 2 an Qnm Hnam >gm VedgeHn + Vn (a7)



Or, in matrix form,

o ) oo -07 _ -0 0 -0
[6nm * P T Qnm - Hoap ] [gm } h [— vedgeHn V5 ] (48)
where
1/ :
o _ 0 _2 /.2 Lo s12 '
an Qnm T [J.—l -8 U2n+l(g) -t U2m+l(g ) x
{pce,e'sv) - aee,e'sy) fdeae
16 L o
== J (M' (2nzy) - W' (ZH;Y))an(n)dn
0
1
o _2 _ 2 o
B =2 [1 M-, R (0)a
8 /2
= - 7} f cosh(y cos ¢)cos<2(n-¥l)¢)d¢
Q
1
-0 _ 2 fo_ 22 -0
Vn == f]- 1-¢ U2n+l(€)v (£)dg
=_§. 1 _0'(')T (') (1 - ‘2)—1/2d'
)Y £ Tons2 (8 ¢ ¢
P %y fl—lnl (l-(n‘-n)z)U2m+l(n‘-n)T2n+2(n'-+n) ;
n) = n'
nm
~L+|n] /(l-(n‘-n)z)(l-(n'+n)2)
nt+tl m o o -tk 2
- kZO QZO w e Z (bj (2K, 2041) - n'b, (2K, 2z+3)) x

(2t 2k- 2541

X

D (2k, 22+3)nD

3= Pt per (W
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o _ m- £ (m+ 2+ 1)! 2241
u, = 1 oG+t 2
o _ n-k+1 (@+k)!{n+1l)
the = D (n-k+1)! (2K) 1

. ) . .-0 o .
and bj(k,l), Dj(n) are given in equations 16 and 17; Vedge and a_ are given

in equation A5 with

m 2
2 — .
R = § w2, 1T (6,00, 2040) - b 0, 2043 )07 T2 ()
-n b£+l(0’ 2£+3)D£+l(n)

The solution of equation A8 is simply given by

-0 0 o o) o]"l -0 -0 0

= L — - -
[gm ] [Snmzf a7 Qum T Halp [ Y VedgeHn] (A9)

This solution can be used in equations A4, 4 and 2 to calculate the TE fields

of the two-parallel-plate simulator.
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