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Abstract

The excitation of a parallel-plate electromagnetic pulse (EMP) simu-

lator by an electromagnetic pulser via a conical.transmssion line is

analyzed. The analysis first establishes an exact formulation of the prob-

lem by use of the technique of electric-field integrodifferential equations.

It then goes over to a simpler, approximate formulation in the form of an

integrodifferential equation for the total longitudinal surface current

flowin~ on the simulator. This equation is further transformed into an

integral equation, and the modal structure of its solution investigated.

A self-consistent method for solving the integral equation is developed.

An analytical formula for the current in the transverse-electromagnetic

(TEM) mode is thereby obtained. The analysis concludes with a numerical

study of the TEM current and its variation with the parameters of the simulator

geometry.
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SECTION I

INTRODUCTION

Bounded-wave electromagnetic-pulse (EMP) simulators utilize a pair of

conductors to guide and confine the electromagnetic fields in the test

volume. A portion of the conductors is often in the form of two parallel,

rectangular plates or strips. Figure 1 shows a typical geometry of the

bounded-wave simulator. It consistes of two identical, long conductors

joined together at one end to an electromagnetic pulser, and at the other

end to a load termination. This conductor configuration can be regarded

as made up of a section of a finite-width, parallel-plate transmission line

sandwiched between two conical transmission lines. The test volume is

located between the plates straddling the intersectionof the input conical

transmission line and the parallel plates.

When the pulser is fired, electric currents rush out from it onto

the two conductors. These currents are accompanied by electromagnetic

fields which propagate from the pulser toward the load. Because of the

special geometrical design of the conductors, the electromagnetic fields

will be predominantly in the transverse-electromagnetic (TEM) mode, This

feature is highly desirable since the TEM mode closely resembles the plane-

wave nature of the actual nuclear EM!?. The load is suitably chosen to

minimize reflection from the termination.

One approach to achieving an overall understanding of the performance

of the bounded-wave simulator consists in isolating and analyzing specific

aspects of the simulator operation. Such aspects include the electromagnetic

propagation characteristics of the parallel-plate and conical transmission

lines. These have been studied in references 1, 2 and 3, Another aspect

of special importance is the propagation of the electromagnetic excitation

from the conical transmission line onto the parallel plates. The manner

of transition of the excitation across the junction directly affects the

electromagnetic fields in the test volume.

This report presents a theoretical study of the simulator junction.

The analysis is based on a geometrical model shown in figure 2. The model

consists of a semi-infinite section of a parallel-plate transmission line

7
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Figure 1. Typical Geometry of a Bounded-Wave EMP Simulator.
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Figure 2. Model for Studying the Junction in a Bounded-Wave EMP Simulator.



connected to a finite section of a conical transmission line. Both trans-

mission lines are assumed to be made out of infinitely thin and perfectly

conducting sheets. The conical transmission line is excited at the apex

by a given pulser. It is required to calculate the resulting electromagnetic

excitation propagating onto the parallel-plate section.

The model clearly reproduces exactly the geometry of the pulser end

of the simulator. One has, however, exploited the weakness of the reflection

from the termination to replace the load end with a semi-infinite continuation

of the parallel-plate section. The geometry becomes sufficiently simple to

permit an approximate analytical solution.

10



SECTION 11

GEOMETRY

!

In studying the bounded–wave simulator model of figure 2, it is

mathematically convenient to consider instead an equivalent model consisting

Of a single conductor over an infinite, conducting ground plane. The image

of the conductor below the ground plane replaces the second conductor. The

apex of the conductor in this equivalent model is to be driven against the

t ground plane by an equivalent pulser.

.
r One sets up a rectangular coordinate system such that the x-y plane

coincides with the conducting ground plane, as shorn in f“igure3. Let the

conductor be situated in the upper half-space z > 0. Its apex is located

at the coordinate origin. Its semi-infinite-strip section is parallel to

the ground plane along the positive x-axis. Let the width of the strip

be denoted by 2a and its height above the ground plane by h. The conical

section is actually an isosceles triangle of height d and base length 2a.

It is inclined to the ground plane at an angle 0 such that

sine.; (1)

It will be convenient to introduce at the same time a two-

dimensional rectangular coordinate system on the surface of the conductor

itself. In this system a point on the conductor is uniquely defined by

a pair of coordinates (C,y), as shown in figure 4. Here y is the same as

the y-coordinate of the three-dimensional rectangular coordinate system,

while ~ is related to x and z by linear relations. Let the triangular

plate be denoted by S1 and the strip by s
2“

The entire surface of the

conductor will be denoted by S (= S1+S2). Then these linear relations are:

(2)

11
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2. On S2(d<E <~)

x= &-d+d COS (3 (3)

z =h

One may call ~ the longitudinal coordinate and y the transverse coordinate.

Note that the apex of the conductor is situated at Z = y = O.

14
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SECTION III

ELECTROMAGNETIC POTENTIALS

The bounded-wave simulator model of figure 3 can be analyzed in the

frequency domain. One considers the pulser as a time-harmonic voltage

source driving the apex of the conductor against the ground. Its variation

with time t is described by the time factor e
jut

with angular frequency u.

For simplicity it will be assumed that u is positive. Results corresponding

to negative u can be obtained from those for positive ,Uby complex conjugation.

Under this excitation a time–harmonic electric current flows on the conductor

as well as on the ground. It suffices for the analysis to calculate the

surface current density on the conductor.

In this study the current on the conductor will be calculated by

using the electric-field integrodifferential equation. This approach has

great methodological appeal in that it enables one to obtain an exact

formulation of the problem, despite the difficult geometry of the conductor.

This exact formulation serves as a solid base from which approximations can

safely proceed. The idea of the formulation is to relate the electric

field outside the conductor to the current on the conductor, and then impose

boundary conditions on the electric field at the surface of the conductor.

For this purpose it is convenient to introduce the electromagnetic potentials.

Let ~ denote a point in the upper half-space z > 0:

~ = (X,y,z) (4)

and let E(r) and ~(~) be the electromagnetic fields at ~ generated by the——

currents and charges on the conductor and the ground plane. Then E and B— —

can be derived from a pair of scalar and vector electromagnetic potentials

~(~) and A(r):——

E(r) = -Vcf(~) - juA(r)—— ——

B(r) = VxA(r)—— ——

(5)

15
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In the Lorentz

equation:

where

gauge these potentials individually satisfy the Helmholtz

(V2+k2)~(r) = O—

(V2+k2)A(r) = O——

(6)

(7)

and e and p are the permittivity and permeability of free space. By use
o 0

of suitable Green’s functions the solutions of equations 6 can be represented

as integrals over the surface charge density o and the surface current density

~ on the surface S of the conductor alone:

qJ(Q =:
/

GD(~,~’)c@ )dS’

0s

Ax(r_)= U.
I

GD(~,~’)Kx(~’)dS’

s

Ay(r_)= PO
/

GD(~,r’)Ky(r’)dS’— —
s

(8) o
AZ(Z) = PO

~
GN(r,r’)Kz(r’)dS’—— —

s

In these expressions ~’ denotes a point on the surface S:

r’ = (X’,y’,z’)—

and dS’ is a surface element of S at r’.—

The functions GD and GN are Green’s functions of the Helmholtz

equation in the half-space z > 0:

(v2+k2)GD(I,l’)=- ~3(r-r’)—_

( )V2i-k2 GN(r,r’) = - 63{&~’)——

(9)

(10)

16



● They satisfy, respectively, the homogeneous Dirichlet and Neumann boundary

conditions on the ground plane z=O:

GD(~,:’) = O

(11)

By introducing the image ~“ of ~’ with respect to the ground plane, such

that

r“ = (X’,y’,-z’) (12)—

one can construct G
D

and GN from the free-space Green’s function Go:

e-jk]r-r’l
Go(~,~’) =

47rlr-r’l

The results are:

GD(q~’) = Go(q:’) - Go(~;~”)

GN(r,r’) = Go(~,r’) + Go(r,r”).— — ——

(13)

(14)

The free-space Green’s function Go in equation 13 already has a simple,

closed form. Nevertheless, in later calculations, it will be advantageous

to work also with its Fourier-integral representation:

+~”~’ ~’e #+,2+&k2

-j [ci(x-x’)+ f3(y-y’)+y(z -z’)]
Go(~,~’) = (15)

-m -CO

For this expression to be identical to equation 13, it must be understood

that k has an infinitesimal, negative imaginary part:

k+k-jc &>cl (16)

17

$



The surface integrals in equations 8 take on a simpler form if one goes

over from the three-dimensional coordinate system (x,y,z) to the two-

dimensional coordinate system (E,y) set up on the conductors surface S,

as defined in equations

surface current density

Kx and Kz in the former

2 and 3. In the latter coordinate system the

ghas only two components K and Ky. The components
E

coordinate system are both related to K
<“

1. on S1

Kx = Kgcos O

Kz = K sin 0
6

(17)

2* on S2

Kx =K
E

KZ=O

In terms of Kg and K the vector potential ~ reads
Y’

Ay(r_)= u
1
GD(#)Ky(~’) dS’

‘s

(18)

(19)

AZ(L) = P
/

GN(r_,~’)sin0 K5(~’)dS’
0 S1

In these expressions the components of ~’ are related to the source coordi-

nates (5’,y’) according to equations 2 and 3, while

M ‘ = d~’dy’

18

,

(20)
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The surface charge density a is related to the surface current density

~ through the equation of continuity:

By use of this

The expression

relation one can eliminate o from further consideration,

for the scalar potential then becomes

v(~) =*
1

GD(r_,~’)V’oK(r’)d5’.—
0s

(22)
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SECTION IV

EXACT FORMULATION

There are two electric-field integrodifferential equations for this \

problem. They are formulated by imposing appropriate boundary conditions
1

on the two tangential components E (r) and Ey(~) of the electric field at
<–

every point ~ on the conductor’s surface S. To derive these boundary

conditions one regards the pulser as the supplier and maintainer of a
-!

definite tangential electric field with components E~(~) and E~(@ on the

conductor. One then requires that EG(~) and Ey(~) assume these prescribed
n
I
,

values on S, that is, .

‘L@=‘:‘Q
I

,

Ey(@ = E;(~)

1’

<23)

for ~ lying

In its

generates a

between the

on S.

idealized form the pulser is a localized voltage source. It
+

finite, time-harmonic voltage V. across the infinitesimal gap t

two triangular plates at the apex of the conical transmission f
I

line in figure 2. The tangential components of the pulser electric field i

are therefore given by

I

E;(z) = - Vo6(~)

E;(E) = O

The d-function is normalized to make

(24)
!

(

I

$

,

Therefore the voltage across the apex of the conductor and the ground plane

in figure 4 is $ V. since

20



(26)

The integration over g from O to m picks up only one half of the contribution

from the 6-function in E;.

Combining equations 5, 23 and 24 one obtains the following pair of

boundary conditions for the potentials:

(27)

for ~ lying on S. The component A< is related to Ax and Az as follows:

1. on sl

= Axcos 0 + Azsin 0 (28)
‘c

2. On S2

“5 =Ax (29)

Substituting equations 28 and 29 into equations 27 and eliminating the

potentials by use of equations 19 and 22, one transforms the boundary

conditions into a pair of coupled integrodifferential equations for the

two components K and K
c

of the surface current density:
Y

=-. YJEovom) (30)

a
I

GD(r,r’)V’*K(r’)ds’ + k2~ –– ‘– 1
GD(r,r’)Ky(~’)dS’ = O——

s s

21



The quantity GH(r_,r_’)is a hybrid Green’s function. It is a linear

combination of the Dirichlet and Neumann Green’s functions GD and GN, and

is defined in the following manner:

1. For ~ and ~’ on S1

GH(~,~’) = GD(~,~’)cos2e + GN(~,r_’)sin2$

2. For r on S1 and y_’on S2, or vice versa.

(31)

(32)GH(~,~’) = G=(r,r’)cos 0.—.

3. For r and r’ on S2— .

GH(z,~’) = GD(~,~’) (33)

Equations 30 are in part differential equations. They must be supple-

mented by additional boundary conditions. These can be taken as the

I

I
—.

!
I

requirement that the components of the surface current density normal to

the edges of the conductor be zero. On S1 the edges are given by y=f(a/d)~.

On S2 they are given by y=* a. The boundary conditions on these edges are:

1. On S1

(34)

2. On S2

KY=O fory=ta (35)

The integrodifferential equations 30 and the boundary conditions 34 and 35

provide an exact formulation of the bounded-wave simulator model of figure 2.

22
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e SECTION V

APPROXIMATE FORMULATION

Equations 30 are a pair of coupled, two-dimensional, partial integro-

differential equations. Their solution constitutes a formidable mathematical

problem. At the moment it does not appear possible to forge ahead with the

solution without introducing approximations. In the following calculations

a number of approximations will be made. They enable one to obtain an

approximate solution of the problem in analytical form.

One type of approximation to be applied is aimed at simplifying the

basic equations of the problem. What one essentially does is to smooth out

the transverse variations of the surface current density by an averaging

process. In this way one is led to an approximate integrodifferential

equation for the total longitudinal current flowing on the conductor.

This equation constitutes an approximate formulation of the bounded-wave

simulator problem.

Consider the first member of the two basic equations 30

C9

H
A(g’)

+ k2 d<’ dy’GH(C,y,g’,y’)Kc(g’,y’) = - jusoVod(C) (36)

o -x(g’)

The quantity ~(~’) appearing in the limits of the y’-integration is defined

as follows:

I
a~’/d O<g’<

A(c’) =

a d<~’<

The difference in the functional form of 1(~’) for

reflects the fact that for ~’ < d the conductor is

(37)

d

m

the two ranges of ~’

a triangular plate, while

23



for gf > d it is a rectangular strip. The left-hand side of equation 36

is proportional to the E-component of the electric field on the conductor

generated by the surface current and charge densities on the conductor.

The kernels GD and GH can be regarded as coupling functions relating the

surface current and charge densities at the source point (g’,y’) to the

longitudinal component of the electric field at the field point (g,y).

One can extract from equation 36 an approximate equation for the total

longitudinal current by first neglecting the .tr,ansversesurface current

density K and then averaging out the dependence in the two kernels GD
Y

and GH on the transverse coordinates y and y’.

The two specific approximations can be justified on the ground that

one has under consideration a very long conductor which is driven at one

end by a voltage source. In this situation the surface current will be

flowing predominantly in the longitudinal direction. One can expect the

following inequality to hold generally:

lKg

The discarding of Ky from equation

a

>> pJ (38)

@

36 will therefore incur only a small

error. Furthermore, precisely because the conductor is long, i~ will be

a good approximation to replace the two coupling functions GD and GH by

their averages in the transverse direction. That is to say, one lets

and

(39)

(40)

In this way equation 36 becomes an ordinary integrodifferential equation

for the total longitudinal current I(C):

24
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where

~

A(c)
1(:) = dy K$y)

-A(G)

(42)

Equation 41 is a closed equation for the total longitudinal curren~.

Although by no means trivial, it is significantly ,simpler than the pair of

exact equations 30. The calculations in the following sections will be

based on this approximate formulation of the bounded-wave simulator problem.

25
.



SECTION VI

REDUCTION TO INTEGIUILEQUATION

The integrodifferential equation 41 can be reduced to a pure integral

equation by Fourier transformation. Introduce the double Fourier sine and

cosine transforms FD and FH of the kernels 17Dand rH:

‘D(pyp’)=(+)’f“ [ d$’rD(Z,C’)sin pt sin P’C’

FH(,,P1) =($)’j;‘g [ dE’rH(?,g’)cos pg Cos p’c’

The inverse Transforms are

03

H
w

rD(E,C’) = dp dp’FD(p,p’)sin p~ sin p’~’

o 0

m

H
m

rH(C,~’) = dp dp’FH(p,p’)cos p?.cOS p’~’
o 0

(43)

(44)

—

Substituting equations 44 into equation 41, one obtains

Hdmw
m

1/

m

ZOdqo
dp’FD(q,p’)sin q~ P(p’) +k’ M dp’FH(q,p’)cos q~ Q(P’)

o 0

= -jLlJEovo6(0 (45)

(46)

For these two integrals to exist one must assume that the conductor is slightly

resistive, so that the total current I and its derivatives vanish at infinity.

26



Next, multiply both sides of equation 45 by cos p< and integrate

over c from O to ~. The operator d/dC can be handled by integration by

parts. Then, making use of the identities

(47)

u

valid for p, p’ > 0, one obtains

H 1

jucoVo
= dpf pFD(p,p’)p(p’) +k2FH(p,p’)Q(p’) = - ~
o

(48)

The two functions P and Q are closely related to the Fourier cosine trans-

form A(p) of the total current I:

with the inverse transform

(49)

(50)

From equations 46 one easily sees that

(51)

P(p’) = -;p’A(p’)

Q(P’) ‘;A(P’)

Therefore, substituting equations 51 into equation 48, one obtains

m

\[ 1
2jh.Kv

dp‘ ‘pp’FD(p,p’) + k2FH(p,p’) A(p’) = -
T; 0

(52)
o

27



Equation 52 has the appearance of a Fredholrnintegral equation of the

first kind for the unknown function A(p’). AcCually it is an integral

equat~on of the second kind. In the following section it will be shown

that both FD and FH in the kernel contain a 6-function:

FD(P,P’) = P(P)~(P -P’) + fD(P,p’)

(53)

FH(P,P’) = P(P)~(P -P’) + fH(P,P’)

The coefficient of the d-function is the same in both cases. Upon substitution

of equations 53 into equation 52, the latter becomes

\

m 2jOEOVO

(k2-p2)p(p)A(p) + dp’A(p,p’)A(p’) = -
0

2
T

where the new kernel A{p,p’) is given by

(54)

A(P,P’) = k2fH(p,p’) - PP’fD(P,P’) (55)

Equation 54 is an exact consequence of equation 41. Being essentially

an integral equation of the second kind, it is a convenient starting point

for constructing an approximate analytical solution.

.

28



SECTION VII

EVALUATION OF FOURIER TRANSFORMS

Before proceeding with the solution of equation 54, it is necessary to

obtain explicit expressions for the two quantities p(p) and A(p,p’). This

is done by calculating the double Fourier transforms FD(p,p’) and FH(p,p’)

defined in equations 43.

The evaluation of the two double integrals in equations 43 is complicated

by the fact that the kernels ~D(t,$’) and rH(~,c’) have different functional

dependence on their arguments over different parts of the domain of

integration. This situation can be appreciated by examini~g the ~-~’

plane in figure 5. The double integrals are over the first quadrant of the

plane. This quadrant has been divided into four areas labeled 1,2,3 and 4,

with ths boundaries located at ~=d and <’ =d. Across these boundaries

the functional relations between (x,z) and ~, and between (x’,z’) and c’,

undergo a change according to equations 2 and 3. The change produces a

● corresponding discontinuity in the functional forms of r
D

and r
H“

This

discontinuity is of course a reflection of the geometrical discontinuity

at the junction of the triangular plate and the rectangular strip.

The kernels rD(g,C’) and rH(E,5’) can be regarded as averaged coupling

functions between the field point at E and the source point at E’. Area 1

in figure 5 corresponds to the situation in which both the field point and

the source point are on the triangular plate S1, while area 2 corresponds to

that in which they are both on the rectangular strip S2. For areas 3 and 4

the two points are on different sections of the conductor.

Of the four areas, area 2 is the most important, being the most

extensive. By equation 33 I’Dand I’Hare identical in area 2:

rD(g,c’) = rH(c,c’) =w(E -E’) for t,~’ > d (56)

By equations 14, 39 and 40, one has

29
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Figure 5. Division”of the First Quadrant of the ~-~’ Plane into Four

Areas of Integration.
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a a

J~[J

~-jk (g-~ ’)2+ (y-y ’)2
W(~- &’) =% dy dy’ ~

4a -a -a
/(c- g’)2+(y-y ’)2

~-jk (5-~’)2 + (y-y ’)2+4h2 1-- I (57)

J(g- E’)2+(y-y ’)2+4h2 I

Although introduced initially in area 2, this

continued to all the other three areas in the

For the evaluation of Fourier transforms

rD and rH as follows:

A

function W can certainly be

~-~’ plane.

it is convenient to decompose

rD(c,c’) =w(E- L’) +UD(LG’)

rH(c,g’) =W(g- g’) +UH(E,.5’)

(58)

By equation 56 the

In the other three

of them has a very

two functions UD and UH vanish identically in area 2.

areas they are both expressible as a difference. Each

complicated form and will be written out in full in the

appendix. The advantage of the decompositions in equations 58 lies in the

fact that the dominant part W is relatively simple and continuous throughout

the entire range of integration in the 5-<’ plane. The discontinuities

in r
D and I’Hare left behind in UD and UH.

The Fourier transforms FD and FH of I’Dand I’Hhave the following

corresponding decompositions:

FD(P,P’) = wD(p,p*) + UD(P,p’)

(59)

FH(P,P’) = WH(P,P’) + UH(P,P’)

(60)
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and e

It will be shown below that both wD(p,p’) and wH(p,p’)

proportional to ~(p- p’).

The funccion W(E -~’), as defined in equation .57,

sin p’<’

(61)

Cos p’c’

contain a part

can be converted

to a form more suitable for Fourier transformation. This is achieved by

applying the Fourier integral representation of the free-space Green’s

function given in equation 15. The integrand in equation 57 is essentially

made up of free-space Greents functions. Expressing the integrand in

equation 57 as a Fourier integral, one can immediately perform

and y’-integrai-ions. The result is

the y-

Furthermore, one can carry out the a-integration and obtain

where the square root is defined to make

- +k (64)

as k goes to CO. Equation 63 offers a more convenient representation of

function W(E-5’) than equation 57, since the C- and C’-dependences are

contained in a simple exponential function. The Fourier transform of W

the

all

can

be obtained by first calculating the Fourier transform of this exponential

function.
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Consider first the double Fourier sine transform. One can show by

straightforward integration that

‘5’1 ‘2j~sin p~!
sin p{ = ~

k -B2-Y2-P

(65)

In deriving this expression one must keep in mind that k has a small negative

imaginary part, as indicated in equation 16, so that the integrand vanishes

at infinity. Note especially that the right-hand side contains a term

proportional to sin p<’. Multiplying both sides of equation 65 by sin P’5’

and integrating over ~’ from O to CO,one obtains explicitly the following

double Fourier sine transform:

Jo Jo

=- mj
-

k2-i32-’y2-p2
&(p-p’) +

The

The

fm

6-function comes about as a consequence of equations 47.

The double Fourier cosine transform can be evaluated in a similar way.

result is

~ ,(P-P,) , k’-~’-y’= -~j

k’ -f32-Y2-P2 (k2-i32- y2-p2)(k2- 62-y2-p’2) “7)

Note that the coefficient of the 6-function in equation 67 is the same as

that in equation 66.
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Having isolated the &–function in the Fourier transforms in equations

66 and 67, one is in the position to write down explicit expressions for the

functions p(p) and A(p,p’) defined in equations 53 and 55. The resule for

9(P) is

The y-integration can be further carried out, and one obtains

P(P) = ,;,j ~ dB(si;:a)’l -;z-h
-m

-P2-B2

The result for A(p,p’) is

(68)

(69)

!

[

+ kLuH(p,p’) - PP’UD(P,P’) (70)

If one wishes, one can write out explicitly the two functions UH and UD

with the help of equations 61 and the appendix. They are made up of a set

of complicated four-dimensional integrals.

I
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SECTION VIII

MODAL STRUCTURE OF EXCITATION

In this section the properties of the integral equation 54 will be

examined. The findings wtll not only provide valuable qualitative informa-

tion on the solution, but will also suggest the appropriate method for

constructing an approximate solution.

A very common technique for solving an integral equation of the type

of equation 54 is iteration. Using this technique one can immediately write

down the following first-iterated solution:

where

Although this

A(p) =
M(p)

(k2-p2 ),(p)

2jticovo
M(p) = -

[~

A(p,p’)

T2 1-: ‘p’ [k2-p’2)p(p’) 1

(71)

(72)

approximate solution is not expected to be very accurate,

and will not be used in the quantitative calculations of this study, it

does reveal many of the general properties of the true solution.

The behavior of the solution in equation 71 is dominated by the zeros

of the denominator. These zeros give rise to infinities in A(p). Each of

the infinities corresponds to a discrete mode of electromagnetic propagation

along the simulator structure in figure 2. Besides these discrete modes,

which are infinite in number, the solution also exhibits a spectrum of

continuous modes, as will be seen below.

The first two zeros of the denominator are easily found to be at

P =ik. They correspond to the TE1lmode of propagation. All the other

zeros are contained in the function p(p). Inasmuch as p(p) is presented

in the form of a definite integral in equation 69, these zeros are not as

easy to locate accurately. For the purpose of a qualitative investigation,

however, one can use an approximate evaluation of the integral. When the
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half-width a of the rectangular strip can be considered large relative to

the height h, the factor (sin Ba/$a)2 in the integral in equation 69, as

compared with the remainder, is sharply peaked at f3=0. As an approximation,

one can replace the remainder by its value at 6 = O, and obtain

/ \

The zeros of p(p) in

sin (~ h) /AT,

tnfinite number of:simple

P

~k~ - p~ “ ‘-M

equation 73 are all contained in the factor

which is an entire function of p. It has an

zeros located at

=t~k2-(~)2 n=l,2,3,... (74)

Note that because of the square root in the denominator of the factor the

case n= O is not included. These values of p correspond to the propagation

constants of the higher-order modes. They are seen to be either purely a

real or purely imaginary, implying thereby that some higher-order modes

are unattenuated. However, if one had used equation 69 instead of

the approximate equation 73 to compute the zeros, one would have obtained

complex propagation constants. One would have concluded that all higher-

order modes are more or less damped.

In addition to the zeros, P(P) b-s branch points at p = i k, as the

exponential factor in equation 73 shows. The branch cuts of p(p) in the

complex p-plane correspond to a continuous spectrum of propagation constants.

The existence of continuous modes is typical of open waveguide structures.

Thus, based on the analytical properties of the denominator tn

equation 71, one concludes that the excitation on the simulator can be

decomposed into certain discrete and continuous modes. One can show that

these modes are in fact the propagation modes of an infinite, parallel-strip

waveguide. The propagation constants of the lowest modes of this waveguide

have been computed accurately in reference 4. The simple, approximate
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formula for the higher-order propagation constants in equation 74 compares

very well with the accurate values.

From these findings it is clear that the free term on the left-hand side

of the integral equation 54 describes the properties of a parallel-strip

waveguide. The role of the integral with kernel A(p,p’) is to bring into

consideration other aspects of the simulator geometry. According to

equation 70, A is made up of two parts. The first part is written out

as a two-dimensional definite integral, and does not involve the linear

dimension d of the triangular plates. Its occurrence in the kernel is a

result of the fact that the simulator is a semi-infinite, rather than an

infinite, waveguide. The second part of A in equation 70 involves the

parameter d, and further elaborates the simulator geometry. It describes

the fact that the simulator has a discontinuity in the form of a junction

between a section of a conical wave.guideand a parallel-strip waveguide.

In equation 71 these effects of A enter in the numerator M(p). They affect

the amplitudes and phases of the modes which make up the complete solution.
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SECTION IX

SELF-CONSISTENT SOLUTION

The recognition that the solution is made up

m’
—,

,

of modes with well-defined

propagation constants suggests a self-consistent method for solving the

integral equation 54. In this method one first expresses the total current

flowing on Ehe simulator as a linear combination of the propagation modes

of the parallel-strip waveguide. Each mode is represented by a simple

exponential function of C involving a definite propagation constant. Such

an expansion contains a number of unknown expansion coefficients. One then

evaluates the Fourier cosine transform of this expression and substitutes

it into Che integral in equation 54 as a trial solution in place of the

unknown function A(p’). The resulting equation can be solved for A(p), I

and the solution is of the form in equation 71. As one has already seen,

this solution itself is again a linear combination of the propagation modes
I
1

of the parallel-strip waveguide. Consequently, the expansion coefficients
,

can be determined self-consistently.

A self-consistent calculation can be performed with an arbitrary degree

of elaborateness, depending on the number of expansion coefficients entered I

in the trial solution. In what follows, the integral equation 54 will be
!

solved using the simplest self-consistent scheme. That is to say, the I

trial solution employed will involve only the TEM mode of propagation. i

In view of the geometry of the simulator and the manner in which it is

excited, the current will be predominantly in the TEM mode. Hence, a T.EM

trial solution is expected to be satisfactory. One must emphasize, however,

that this in no way means that the resulting solution exhibits only a T.Eil

mode. It means simply that only the TEM component is determined self-

consisten~ly.

The current associated with the TEM mode is given by
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e
where the amplitude 10 is to be determined

cosine transform of the TEM current can be

self-consistently. The Fourier

easily evaluated:

(76)

on account of equation 16. Substituting the right-hand side of equation 76

into the integral of equation 54 as a trial solution for A(p’), one obtains

the following approximate solution of the integral equation:

where

A(p) =
N(p)

(kz )-P2 P(P)

2juzoVo 2jkIo m
N(p)=- z -—

~
dp ‘ A(P,P’)

T
T

,2-k2
o P

The total current is given by

r’I(g) = dp-
N(p)

(k2 )

Cos p~

o -P2 P(P)

(77)

(78)

(79)

This expression provides an approximate solution of the problem up to an

unknown constant I One then determines this constant self-consistentlyo“
by separating out the TEM,part of I(c) and substituting it into the left-

hand side of equation 75.

It can be shown that both N(p) and p(p) are even functions of p, so

that equation 79 can be rewritten as

~

CQ

1(:) =+ N(p)
dp- — e-jp~

-co (k2 )-P2 P(P)

(80)

With I(g) in this form one can evaluate the TEM part by the method of residues.

The value of the integral is dependent on the singularities of the integrand
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in the complex p-plane. As has been discussed in section VIII, the

denominator of equation 80 gives rise to simple poles and branch cuts.

They correspond to the discrete and continuous modes of the parallel–strip

waveguide. These singularities are shown in figure 6. The singularities

of the numerator N(p), if any, need not be considered here.

The coordinate < is always positive. For C sufficiently large, the

path of integration in equation 80 can be closed by a large semicircular

arc in the lower half of the complex p-plane. Then the TEM part of I(g)

is given by the residue at the pole p = k:

SubstLtuCing equation 81 into equation 75 and using equation 78 one can

solve for l., and obtain

v
To=-# 1

I
m

A(k,p’ )
0 p(k) + dp’ —

o k2-p’2

(81)

(82)

where

/

No
Z. = — = 377 ohms

&o
(83)

With the value of 10 determined, equation 80 becomes an explicit, approximate

formula for the total current flowing on the simulator.

It is possible to improve systematically the accuracy of the solution

by including more and more higher-order modes in the brial solution.

The physical content of the self-consistent solution in equation 82

can be more easily appreciated if one rewrites it in the following form:

V.
10 = z1+z2i-z3 (84)
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Figure 6. Singularities in the Complex p-Plane.
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where 21, Z2
and Z are three quantities with the dimension of an impedance.

3
They are defined by

‘1=mp(k)zo

(85)

and

/

CO

= X2‘3 o
dp‘

o

k2~(k#)-kp’y$k, p’)

k2-p’2
(87)

22 and Z3 represent the integral of A in equation 82. Z2 comes from that

part of A that is expressed as a two-dimensional integral in equation 70,

while Z comes from the remainder.
3

These impedances are functions of the

three dimensionless parameters hfa, kh and dfh of the problem. It can be

shown that Z1 depends only on h/a, Z2 depends on h/a and kh, and Z3 depends

on h/a, kh and d/h:

()&‘1=‘1a

(88)

(& ~
‘3 = ‘3a ’kh’h )

Equation 84 interprets the TEM current 10 as equivalent to that resulting

from the application of a voltage V across the terminals of three impedances
o

Z and Z3 conneeted in series.
‘1’ 2

The physical origin of these impedances

can be traced among the findings of section VIII. 21 is the characteristic

impedance of an infinite parallel-plate transmission line. Its expression
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in equation 85 is of course not exact, but obtained under the approximation

of averaging over the transverse direction. Z2 is a correction to Zl, and

takes account of the fact that the simulator model considered in this study

has a semi-infinite, rather than infinite, structure. Z3 is an equivalent

impedance for the junction between the two different sections of the

simulator, and embodies the effects of the junction discontinuity. It

alone depends on the dimension d of the conical transmission line section.

The integral in equation 85 can be evaluated analytically. One obtains

and, with the help of equations 61, equation 87 can be rewritten as

= 2j~o [d’f’’”[ 1-jkg’
‘3 Cos kc UH(LE’) - j sin kc UD(C,g.’) e (90)

where the functions U
H

and U
D

are provided in the appendix.

..
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SECTION X

NUMERICAL RESULTS

This section presents the results of numerical calculations on the

three impedances Z1, 22 and Z3. In these calculations the following sets

of values of the three parameters in the problem are considered:

kh = 0.1, 1, 10 (91)

L
-= 2, 4, 8, 12, 16, 20
h

L =dcosf3 (92)

L can be regarded as the length of the conical transmission line section.

The ratio d/h is related to L/h by the simple equation

.—

49
r .

For a typical value of 50 meters for h,

equation 91 correspond approximately to

10 MHz, respectively.

+1 (93)

the three chosen values of kh in

frequencies of 100 kHz, 1 MHz and

The impedance 21 is purely real, and depends only on the ratio h/a.

It can be computed easily from equation 89. The results are shown in

table 1. As has been pointed out earlier in section IX, 2. is in fact

the characteristic impedance of

line. It has been investigated

mapping in references ‘5and 6.

reference 6 are quoted in table

1

an infinite, parallel-plate transmission

extensively by the method of conformal

The numerical values of 21 obtained in

1 for comparison. A glance at the table

reveals that the two sets of impedance values calculated by the two totally
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Table 1

VARIATION OF IMPEDANCE ZL WITH SEPARATION-TO-WIDTH RATIO hla (Z. = -o = 377 OHMS)

Zllzo
h—
a

From Equation 89 From Reference 6

1 0.50000 0.47264

2 0.70443 0.67116

3 0.83005 0.79525



different methods are in uniform, good agreement with.each other. The

difference is only about .5%. The agreement is also found to be equally

good for values of hfa other Ehan the three listed.

The numerical results for the impedance Z2 are shown in table 2.

It is seen that the real part of 22 is negative. But the combination

Z1+Z2, which can be regarded as the characteristic impedance of a semi-

infinite parallel-plate transmission line, is passive as it should.

Table 3 shows the numerical results for the impedance Z3. They are

obtained mostly for kh = 0.1. This is because, at higher values of kh, the

integrand in equation 90 contains a large number of oscillations. The

numerical calculation then becomes very time consuming. The table does

include, however, two cases at kh=l and 2.5, and at values of h/a and L/h

that are comparable to the dimensions of an existing simulator.

At kh = 0.1, table 3 shows that Z3 is mainly imaginary. Its magnitude

decreases with increasing L/h for all three values of h/a. Based on these

data one can say that the transition across the junction is smoother the

larger the ratio L/h becomes.

46
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Table 2

VARIATION OF IMPEDANCE 22 WITH PARAMETERS kh ANO h/a (Z = -o = 377 OHMS)
o

kh h]a Re(Z2/Zo) Im(Z2fZo)

1 -0.00157 -0.0234

0.1 2 -0.00157 -0.0269

3 -0.00157 -0.0284

1 -0.127 -0.162

1 2 -0.132 -0.203

3 -0.133 -0.218

1 -0.246 -0.0163

10 2 -0.344 -0.0311

3 -0.404 -0.0440



..” f’

Table 3

VARIATION OF IMfEDANCE Z3 WITH

PARAMETERS kh, h/a AND L/h (Zo=~Vo/eo = 377 OUMS)

0.1

k1.0

2.5

&
a

1

2

3

3

3

2

4

8

12

16

20

2

4

8

12

16

20

2

4

8

12

16

20

4

4

‘3
Re y

o

0.0028

0.0030

0.0030

0.0029

0.0028

0.0027

0.0028

0.0030

0.0030

0.0029

0.0028

0.0026

0.0028

0.0030

0.0030

0.0028

0.0027

0.0026

0.18

0.47

‘3
Im y

o

0.035

0.033

0.029

0.027

0.026

0.025

0.040

0.037

0.034

0.032

0.031

0.030

0.042

0.039

0.036

0.034

0.033

0.032

0.27

0.20

I

!

I

#
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SECTION XI

DISCUSSIONS

In this study one has succeeded in obtaining an approximate analytical

formula for the total electric current flowing on a parallel-plate EMP simulator.

This formula enables one to examine both qualitatively and quantitatively the

nature of the excitation on the simulator. Contacts with previous work on

different aspects of the simulator have been established. The formula, however,

cannot yield directly the electromagnetic fields in the simulator~s test

volume. In order to determine the field components one will have to make

further approximations.
One approximation consists of synthesizing the fields in the parallel-

plate region from the field patterns of the discrete modes of an infinite,

parallel-plate waveguide. These field patterns have been caluclated in

reference 4. The fields in the parallel–plate region can be expanded in

terms of these patterns. It remains to determine the expansion coefficients.

As an approximation the coefficients can be taken as identical to the expan-

sion coefficients of the total current in terms of the model currents.

That is to day, they are given by the residues of the integrand in equation

80 at the poles in the complex p-plane corresponding to the discrete wave-

guide mf>des.

Another method consists of constructing approximately an expression for

the surface current density from that for the total current in equation 80.

The variation of the surface current density on the simulator in the transverse

direction is largely determined by the edge condition. One can distribute the

total longitudinal current across the breadth of the simulator according to

some simple analytical function which satisfies the edge condition.

electromagnetic fields can then be obtained from the surface current

by integration.

The

density
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FUNCTIONS

The functions UD(g,~’) and

APPENDIX

uD(L&’) AND uH($>G’)

uH(&,$’) first occur in wa~ions 580 They
can be calculated from the relations

UD(W’) = TD(C,C’) - W(g-g’)

UH(5,C’) = rH(W) -w(& -E’)

(Al)

I’Dand I’Hare certain averages of the Green’s functions GD and GH defined

equations 14, 31, 32 and.33 , while W is given in equations 56 and 57.

in

UD and UH have different forms in the four different areas of the

C-Cf plane shown in figure 5:

1. In area 1 (O < ~,~’ < d) one has

[:

e-jk (g-g’)2+ (Y-Y’)2

GD(~,Y,~’,Y’) ‘~

(&-&’ )2+ (y-y ’)z

e-jk ~2+~’2-
2

2gg’cos 20 + (y-y’) 1
Y’)2 J

~ e-jk (E-51)2 + (y-y’)2

GH(~,Y,~’,Y’) ‘~

7(c-? ) + (Y- Y’)2
b.

2
e-jk ~2-t-~’ - 2CE’COS 26 + (y-y’)

2

Cos 2Q (A2)

/&2+&’2- 2gc’cos 2e + (y-Y’)2

Then
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UD(W)
‘4 C:;d “ r:;;, “’’JEyyyg’’y’) - ‘(’-”)4a2cc’

UH(E,E’) =
ba$? ~::;d ‘y ~:::d “’G~(’’y3’’’y’) - ‘(’-”)

2. In area 2 (d < g,g‘ < m) one has, by equation 56,

UD(C>E’) = o

uH(G,g’) = o

3. In area 3

GD(LYYC’YY’)= &

(0 < ~ < d, d < g’ < CO)one has

[ --jk (EcosO- g’+d-dcos 8)2+(y-y’)2+ (~sinO-h)2

1
e

(gcos9- C’+d-dcos0)2+ (y-y’)2+(Esin8-h)2

._ J-jk (Zcos8-&’+d- dcos8)2+ (’-’’ )z+(@I10+m’ Ie

(~cose-~’+d - dcos0)2+ (y-y ’)2+ (Esin0+h)
2

1

GH(~,y,E’,y’) = cos B GD(~>Y>~’,Y’) (A5)

Then

1

,

I
!

!

I
I

I

I

W)
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4. In area 4

G~(LY,&’,Y’) ‘~

(d<~<=, O < g’ < d) one has

[ -jk~(E- d+dcos Q-t’cosf3)2+ (y-y ’)2+ (h-? ’sin 9)2e

L/ (:-d+ dcos6-&’cos 6)2+ (y-y ’)2+ (h-~ ’sintI)2

1 n Q n 7
~,jk~(g-d+dcos f3-&’cosB)L+ (y-y ’)’i-(h+g’sin8)L I

(~-d+ dcose-~’cosfl)z+ (y-y ’)2+ (h+~’sine)2 1

GH(~>Y,~’ ,Y’) = cos 0 GD(~,y,~’,y’) (A7)

Then

Hda a<’/d
UD(g,gv = — dy dy’GD(&,y,E’,y’) - W(C-&’)

4a2E’ -a -aEt/d

(A8)

Hda
a~’/d

IJH(W) = — dy dy’GH(Ly, L’,y’) - W(&-&’)
4a2g’ -a -a~’/d

Note that the

those in area

form of UD(c,~’) and UH(g,g’) in area 4 are obtainable from

3 by interchanging the variables E and ~’.
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