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Abstract

A source-region EMP simulator with a source sheet at a distance h
above the ground and a conducting medium in between is investigated.
The simulated magnetic field and the total current density (conduction
plus displacement currents) are explicitly calculated for two cases of
simulator media: (a) only one uniform medium below the source surface,
and (b) a perfectly conducting ground; and for two special simulator
electric source fields: .(a) V &8(ct -x)exp(~x/x ), and (b) E U(t -x/c) x
exp(—x/xo). ° : ° - °
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I. 1INTRODUCTION AND SUMMARY

The EMP environment of a nuclear source regibn is different from that
outside such a source region. In the source region, there is a Compton
current source throughout‘and the air has a nonlinear time-varying conduc-
tivity. These additional features make the EMP simulation for the source
region considerably more difficult. 1In Reference 1, several simulators
have been suggested for producing some, but not all, of the desired source-~
region features. One such simulator is to usé a distributed source sheet
at a distance h above the ground and to fill up the region in between with
a medium of constant conductivity. At the source sheet, one may specify a
tangential magnetic field (Reference 2) or a tangential electric field.

The latter source specification is exclusively treated in the present report.
From the engineering point of view, the electric source field can be realized
by an array of slats excited by a set of pulsers triggered in an appropriate

sequence (Reference 3).

The theoretical model of the simulator and the coordinate system are
shown in Figure 1. The idealized ﬁodel assumes the simulator to have an
infinite extent in both the x- and z-directioms. This is a reasonable
assumption if the region to be simulated is at some distance away from the
edges of a finite-sized simulator. The medium permittivitiés and conductivities

are assumed constants, and the tangential electric field is specified at the

source surface y=h.

In the following sections, the relationship between the socurce field
(distributed or discrete) and the simulated field will first be formulated
in terms of Fourier integrals. Based on this relationship, the simulated
field will be explicitly calculated for two special simulator media: (a)
only one uniform medium below the source surface, and (b) the lower medium
is perfectly conducting; and'for two special simulator source fields:

(a) Voﬁ(ct-x)exp(—Y/xo), and (b) EOU(t-—x/c)exp(—x/xo). The factor
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Figure 1. The theoretical model and the coordinate system.
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exp(—x/xo) and the (ct -x)-variation in the source field are introduced to
simulate the decaying and propagating properties of the Compton source
current propagating away from the blast. The impulse response can also
be used to calculate the response of an excitation field of the form
f(t-—x/c)exp(-x/xo) by convolution. The case with f(t-=x/c) = U(t-x/c)
given in this report is an example. The solutions of a single-medium
simulator can aléo be used to construct the solutions of a two-medium
simulator by a superposition of the direct illumination and subsequent
reflections at the medium interface and the source surface, an example of
which is the simulator with a perfectly conducting lower medium considered

in this report.
The results of this report are expressed in terms of formulas, figures

at ot
quantities are the driving terms in determining the effects of the EMP on

and tables of the ﬁormalized Hz,<o+-a-§—> Ex and (o%—s-g—-)Ey. These three

a test object (Reference 4) and thus are generally the quantities to be

simulated.
From the results, it can be concluded that

(a) exp(—x/xo) appears as an overall factor times the result for

the case where x0==m, under most practical situatioms,

(b) for a single-medium simulator with e==so, the responses are

determined by diffusion,
(¢) when e > so,vCerenkov phenomenon is important, and

(d) at late times, the responses are independent of the medium
permittivity.

RN

The simulated Hz that can be generated by the type of simulator discussed
in this report are summarized in the fcllowing two tables. The detailed
descriptions of Hz’ and othér quantities such as <c4—e i—-)Ex and (o-+a é—) Ey

ot ot
can be easily found in the text.




HZ/HO AT y=0 FOR SIMULATORS

WITH VOG(ct-x)exp(—x/xo) SCURCE FIELDf

‘Medium Parameters Approximate Behaviors
* rise time = tenths of td
€y T €, = €/ +» fall time = several times of rise time
o =0,=0 + peak value g 3 Fr/td
« late time value = 0
= . = . : 1
= €y, T € switched on at tt
= E.E, 2 10 €4 * peak value 5 0.5
{at T between t;: and t‘::+0'3td)
9p 59 %¢ + late time (tr > 10t , 10t!) value = 0
» rise time = tenths of td
g, =+ ® - peak value = 1, or 6 tr/td,
€4 =€, 0{ =0 whichever is larger
’ » late time (t > td) value = 1
o, > ® » initial value at té < 0.5
= = : . 1 = v =
€1 € srsole ey sudden jumps at T (2n+ l)tt’ n=0,1,2...
o, =0 R * late time (r > 10t , 10t,) value = 1
TH =V exp(-x/x)/(hZ), t_=¢c /o, t.=y oh>
o .o §) o’’ x o'”* d o’
£l = thr—l/c, t]': = e e - Dfo, ©=rt-x/c




Hz/Hé AT y=0 FOR SIMULATORS WITH EOU(t-X/c)eXp(—X/XO) SOURCE FIELD

+

Medium Parameters Approximate Behaviors
« monotonically increasing when tr/td < 4
- pass a local maximum = O,.S(tr/td)l/2 at
€1 % €y = £, T = td’ and a local minimum < 1.5 at
ol = 02 =g T = 0.5 tr, then become monotonically
increasing, when tr/td > 4
+ late time value = VQT/(ﬂtr)
= = . 5 =~ - ' \ _ 1
€] =€, = € jump from 0 to = Ve exp ( O.Stt/tr) at T=t;
= ersoz 10 €5 + menotonically increasing
= = » 1 ~
G, =0,=0 late time value V4T/(ﬂtr)
Oy > = . monotonically increasing from 0 at T = 0
€1 T 85 = € | 1
= . late time value = t/(t_/t.)>
°1 9 r'd
« jump from 0 to = Ve, exp(—OfSté/t;) at T= té
O T 7 + monotonically increasing
€17 8p T Eo5y + sudden jumps at T = (Znﬁ-lgté, n=0,1,2,...
g, =0 . L
1 . =
et s 10 late time value T/(trtd)
T
+

| -
L, = eo(er-l)/d,

A = —
Ho Eoexp( x/xo)/ZO,

_ = 2 N Sy
tr = €O/0, ty = uoch st = h . i/c,




II. CENERAL FORMULATION

The model of the simulator under consideration is shown in Figure 1 , in

which the x-axis is the propagation direction and y=h is the source plane with

a specified tangential electric field. The space below the source plane is
divided into two regioms: region 2 is the ground with conductivity Oy and
permittivity €95 and region 1 is filled with material with conductivity oy

and permittivity £y Both G €7 and Gy, E, are assumed to be constant.

To find the field distributions in regions 1 and 2, one may use the

Fourier-transform technique. The transform pair is defined as follows:

%(m;k) = é%—J J F(t,x)e—Jwtekadtdx
€1 © (1)
» 1 . . s
CF(t,x) = EE-J J F(w,k)ejwte :kxdmdk
€1 C2
Here, " ~" is used to indicate the quantity in the transformed {w,k) domain
and Cl’ CZ’ El’ 62 are the appropriate contours for the transform integrals.

Since all quantities are z-independent, only éx’ Ey and ﬁz are the non-
vanishing field components, which can be calculated by solving the following

.differential equations derived from Maxwell's equationsi

L s T

(oi + Jm€i)EX =3y

{(c. + jwai)ﬁ = Jkﬁ (2)
2

i - 2 2 . >~ _

E;E HZ + (w BoEs T kT - Jmuoai Hz = 0

(i==l,2), with +the boundary conditions that




(a) ix’ ﬁz are continuous at y=0,
(b) Ex equals the known field distribution ﬁi at y=h,

(e) All field components become vanishingly small as y -+ -=,

In the above equations, the subscript i= 1,2 denotes quantities respectively
in regions 1,2; Hy is the permeability for both regions; and ﬁz is the Fourier

s e
transform of specified EX at the source plane.

Equations 2 are solved in a straightforward manner and the following

(w,k)-domain quantities are obtained.
(a) In region 1 <(h >y > 0):
HZ = AlCOSh(ClY> + B151nh(cly)
(ol + jwel)EX = ClAlsinh(zly) + clBlcosh(gly) (3)

(ol + jwal)Ey = jkAlcosh(Cly) + jkBlsinh(Cly)

(b) In regidn 2 (y<0):

Hz = Aze
] - Lo¥
(02 + Jwez)nx = C2A2e (4)
, - ) Loy
(02 + jweZ)Ey = jkA,e

Here,

(Glﬁ-Jwel)(czi-Jwez) e

27 ;l(ozé-jwez)sinh(;lh) + cz(cl%-jwsl)cosh(clh) Ex

A, = A

1




_ €2(0—1+jmsl) A
1 cl(cz-fjwaz) 1

L2 2 . .
k™ - w uoES + Jou 04 (i =1,2)

-
]

with Re('gz) > 0.

From the (w,k)-domain solutions 3 and 4 one can obtain the desired
(t,x)-domain solutions by evaluating the appropriate inverse Fourier-transform

integrals. In the next sections, several special cases will be considered.
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I1I. IMPULSE SOURCE FIELD

In this section the consideration is restricted to the following special

cases:

e
(a) G =0, =0, € =€, =¢, Ex = Vod(ct-x)exp(—x/xo)

‘ e _ _
(b) Oy * =, Ex = Vos(ct x)exp( x/xo)

Case (a) can be realized by applying an impulse source field immediately above
the ground, while case (b) assumes that the ground is perfectly conducting.
The impulse response due to the source of the form §(ct —x)exp(—x/xo) can be
used to calculate the response of any excitation field of the form f(ect - x) X
exp(—x/xo) by convolution. The case of unit step source field will be

considered in the next section.

The solutions for the above two cases in the (w,k)-domain can be easily

obtained from Equations 3 and 4, namely

e

A. for 0, = o, = o, € =g, =€, E_ =’VO6(ct—x)exp(—x/xo), vy <h

17 %

H = ﬁ§(0+jws)c—le-€(h_y>

Z
(O+jwe)1:3 = }Ee(0+jme)e~;<h_w
p-4 X
‘(c+jme)ﬁy = ﬁi(o+jwe)jk§~le—g(h_}7) (5)

C2=k2 - wzuoe + jwuoc, Re(z) > 0

“e _ _ .
Ex Voé(k w/e + j/Xo)/C

. e
B. for 6, *®, E_= VO6(ct—x)exp(—x/xo), 0,0, g =6 0<y<h

ﬁz = ﬁi(o+jw€)§—l<sinh(§h)>f_lcosh(c:y)

11




)—l

fl

(o%—jme)ix i;(o-kjwe)(sinh(gh) sinh(zy)

]

(G-%jme)iy ﬁi(cﬁ-jws)jkc_l(éinh(gh)>_lcosh(gy) (6)

2 2 2 , e A
rm =k Wy e + Jur o, EX = Voﬁ(k wfc + J/xo)/c

Using the second equation of Equation 1, one can calculate the (t,x)-
domain fields from their corresponding (w,k)-domain solutions given above.
Due to the presence of the term §(k-w/c + j/xo), one can easily perform the
k~integrals to reduce the two-dimensional Fourier integrals to one-dimensional
integrals, the evaluation of which generally -requires some contour deforma-—
tions in the complex w-planes. Here, the evaluation will be performed for

the special cases (a) and (b) described above.

— = = — e: —_ —_
A. oy = 0, g, &y £y €, EX Voé(ct x)exp( x/xo), y < h

For this case, two different situations may arise depending on
whether or not ¢ equals the free-space permittivity €y"
§l) e = g, |
For this case, one finds from Equations 1 and 5 that all the

w~ integrals are of the following form:

-Vg;ﬁoo(l-Z/R) - 1/xi (h-vy)

j’ fl(m)e

Cy

3T

where T = t~x/¢c, R = H 0Cx and C1 is the integration contour. Obviously,

the integrand of the above integral has a branch point at —j(c/xo)(R-2)~l.

A branch cut can be drawn from this point to infinity along the imaginary

axis, so that in the proper Riemann sheet Re (ijuoc(l-—2/R) - l/xi ) > 0.
The integration path él can then be deformed to either the upper or lower

complex w-plane. The value of the original integral then becomes a

12




‘ summation of residues at the poles and an integral along the branch cut.
After carrying out this procedure, one obtains the following expressions for

the field distributions:

T
Bt X
1 d Bt - —
v € 2 t Bt t -— dx X
H =E§—<-——QB—> 1—2—r+ r2d+—l—2—>e bt e e OU(T)
z o N1 T bt BR
T
s Bt X
v Bt3 ———C—i— Btdx T x
3 o) d 4t 0 o
O+EO§:— EX—- 5 ‘—'§ e e e U(t)
2h 2 TT .
(o]
N
><< } 3t +Btrtd+ 1 )
2t 412 BR?
1 T
2\? Bty Bt - X
H t t - — dx X
o+ei—E=—Z——O rd eaTe © e c>U('r)
o 3t v X 2 3

I

where Z_ ,/uo/eo is the free-space impedance, L= eo/o is the relaxation

time, t, = u th and t u oxz are, respectively, the diffusion times for
d o] dxg o o 21

the distances h and X B=1-2/R=1 - 2(uoocxo) , and U(t) 1is the unit-

step function. Although Equation 7 gives the field and current density only

at y=0, one can directly obtain the field and current distributions at an

arbitrary v < h by simply replacing h and ts with (h-y) and td(l—y/h)z.

To derive Equation 7 it has been assumed that R > 2, i.e., B > 0.
When 2 > R > 0 (i.¢., B < 0), one can show that all three quantities become

infinite at a finite h. This is due to the fact that the source field is

13




unrealistic in that it increases exponentially in the negative x-direction,

and the conductivity of the medium is not large enocugh to damp the infinitely
large fields created by the infinitely large source field at x/xo - -,
However, for the source region to be simulated, one expects that %, is in

the order of 200 - 300 meters. The R-value will then be larger than 2 if the
conductivity of the simulator is larger than 3 x lo_smho/m which is a relatively
low conductivity. Thus, from a practical point of view the case 0 < R < 2

can be excluded.

An examination of Equation 7 shows that the field and current densities
become infinitely large as 1t + = at a finite x, say x=0. ‘This arises because
the source field goes as exp(—x/xo) and this infinitely large source field
at x + —© will diffuse into the finite-x region as T > =. However, for a
gimulator, h is of 1 toc 2 meters, i.e., xo/h > 100. If one is mainly
interested in the range of T up to lOthB or even lOBtdB, T is still too
small to allow this unrealistic phenomenon to occur.

The field and total current density are presented in Figures 2, 3, and 4
for xo/h = 200, 103 tr/td = 10, 5, 1, 0.5, 0.25, 0.01; and for T up to a few
ty As can be seen, the results are quite different for XO/h = 200 and 10.

The case for xo/h = 200 is more realistic for scurce region simulation and,
thus, its corresponding curves are more interesting. For xe/h > 100, %2 200m,

g > 3><10—4mho/m , and T < 102t one can approximate Equation 7 by

d’
. 2 .
setting B = 1, R™ =+ o, T/tdxo -+ 0 and retaining only one or two terms for the

field and current distributions.

From the approximate equation and the curves in Figures 2,3 and 4, one
obtains the feollowing approximate and accurate expressions for the field and
current densities in Tables 1 and 2. In the tables, the rise and fall times
are respectively the t-values where the peak value and 1l/e of the peak value
are obtained. When 0.01 < tr/td < 0.5, one expects the behaviors of the field

and current densities to be somewhat between the tabulated extreme situations.

14
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Figure 2. (a) HZ/HO, (b) (td/tr)Hz/HO at y=0 as functions of r/td_for xO/h==200 and 10, and various tr/td’

1 = = = .= aez — — : = 5% —_ X
for the simulator with ;= 0,= 0, €17 & =€, Ex Vod(ct x)exp( x/xo). Here, H VOOXD( X/XO)

-1 _ L _ ~ k
(hZO) > L, = (uo/eo) s t.= 50/0, by = uooh , T = t=x/c.
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(a) JX/JO, (b) (td/tr)Jx/Jo at y=0 as functions of T/td for xO/h = 200 and 10, and various
tr/td’ for the simulator with G =0,%=0, gy =€,
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Figure 4. (a) (td/tr) Jy/.)o, (b) (td/tr) Jy/JO at y=0 as functions of -r/td for xD/h 200 and 10, an

e
various tr/t , for the simulator with gl=02=0, €1 =€y = E Ex = VOG(ct—x)exp(—x/xO). Here,
J, o= {ote o8, J =V exp(-x/x)(h

2
z2Y Lz =(u /e )lﬁ,t =¢ /o, t,=p oh”, t=t-x/c.
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TABLE 1. TFIELD AND CURRENT DENSITY FOR tr/td < 0.01 (¢h > 10 "mho)

Quantity Rise Time Fall Time Peak Value Noréacltzzrlng
TE
X
Ve 70
HZ/HO 0.5 td 9.5 td 0.5 q = _©
o} hZO
- X
3 Voe o
-— . .7 . J =
(o+so at>E/J 0.17 ty O;td 0.9 o hzz
' )
-2
5 , 3 5 Ve Eo
: ‘ 5 _
v(c + el 5% )Ey/Jo 0.1 ts 0.4 ty 3(tr/td) Jo hZZ
o o
4 B ’ "_ . _ _ . e
t, = eo/o,,, P uoc_h4 » 0] T 0y =0, 81 =6, =€, —}:;X = Voa(ct—x)exp(—.x/xo),
X2 200, o 2 3x10 ‘mho/m, y=0, 1 < tdxo = U 0%, xo/h 2 100.
TABL};'I 2. FIELD AND CURRENT DENSITY FOR tr/td > 0.5
(4% 10 mho > o)’
Quantity ‘Rise Time Fall Time Peak Value Noﬁiiii;?ng
X
several EN
H /H 0.09 t tenths 3.3(e_/t.) Voo
Z [e] d T ad H = ———
of t o hz
d
- X
9 ) Ve Xo
(U + EO t EX/JO 0.06 td 0.1 td ll}(tr/td) I o= <2)
° n‘z
o
X
X
- Ve "0
2 3/2 _ _©o
(c + g, °T )Ey/JO 0.05 ty 0.08 ty 80(tr/td) Jo = hzz
o)

~.rSame as that of Table 1.
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(2) e/eo =e. > 1

The w-integrals to be evaluated are of the form

J" f2 {(w) e—g<h -y eijdw
€1

2 _ (2 . 2 -
where ¢~ = (w uoeo(l-er) + Jmuoc(l—Z/R) - l/xo )ilIZe(c) )ifo, and Cjzls the
+ '
1z l+4tr/(B tdxo)),

where t]’: = ao(er— 1)/o. A branch cut is drawn between these two branch points,

integration path. The branch points are at j(ZtT':)

so that Re(z) > 0 along Ell. By a proper deformation of the controur Ell the
following expressions for the field and current density distributions at y=0

are obtained:

x _ Bt

, X Bt
Nt T L T At '
<o+ai—>E =__Y°_<id;\)2 o xoe Ztr 4t
3t/ Tx hZZ t]': 4(5 —l)
o)
(2 -B) er—Z EBT 4t'
X I.(A) + ———— I A ) U(t-thH)
7 1 —t' t
T -t
t
_x B
H v t e B X 2t!
(o+z—: a—)E =——£——q~d r e oe r o«
5t/ Ty x 2 ! 3/2
o t ZO r4(er—-l)
( 4
2-8-2 - B(14+ X I_(4)
r 2 th
dx
19




2 4t T
+(ZB - 2+ E—) 1+ 5 Il(A)
‘ ? B?&( 'rz—t'2
(8]
5 4e! T2+t;2
- — 1
2 1+ th 2_-t'2 IZ(A) Ut tt)
dxo T t

1
dtr’

and In(A) is the modified Bessel function of the first kind of order n.

WANRY, o /0,0 22 2
where A = B‘/& -—t; w/i + 4t;(B tdxé) //(Qt;), t% = h (sr-l)/c = t

In Equation 8, the responses of the form-G(T-té) and § < - té) at
T = té have been omitted. They should be included if one uses the above
results for the calculation of the field and current density by convolution
due to an arbitrary source field f(ct-x), such as a unit step U{ct - x),

which will be considered in the next section.

To derive Egquation 8 it has been assumed that R > 2 (i.e., B > 0). The
case where 2 > R > 0 is df,no practical interest, as has been discussed before,

since X = 200 - 300 meters.

Another point to be mentioned is that Equation 8 shows that, in addition
to diffusion, the Cerenkov process also plays an important role. This should
be borne in mind when a medium with e # €y is used in a simulator with the

source field propagating at a speed faster than c/Vsr.

Based on Equation 8, several curves are presented in figures 5, 6, and 7
for xo/h = 200, 10; (td/t;)li = td/té = 10, 5, 1, 0.5, 0.1, 0.05. In the
figures, €. = 20 is used. From Equation 8, one can see that the field and
current densities do not change much for 40 z_er > 10 (say, within a factor
of 2), once td/té is fixed. Thus, these curves can also be used for a simulator
with 10 <.e. < 40. As can be seen, Equation 8 is extremely complicated.
However, for the practical situation with X =.200-300nh o> 3x lo—amho/m
and €. 10 - 40, one can generally approximate Equation 8 by setting B = 1 and
1+ &t;/(thdxo) = 1, :.Jd the early- and late-time (defined respectively by
/ZETTZ€§'%< 2t; and 12-t£2 >> Zt% ) approximations are obtained as follows:

20
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normalized H,

.25

normalized H,

Figure 5.

) ) - T |
1
i 5 - —————X/h=200 .
| _— ‘Xe/N = 10
!ﬁl\a)\\\\ :
] — | | |
0 1 (q) 2 5 one 4 5
. Xe/h= 200
i\ —_ x/h= 10
.\.
| tg_/tf .5
o1 S ——
.05
2.1
Q.05
|
o (b) 10 20 /g 30 40

(a) H /H , (b) (t'/t')HZ/HO at y=0 as functions of T/td for
X /h"700 and 10, er-ZO, and various t'/t' for the simulator
Wlth 01=0,=0, €1 TE, =€~ € €, E =V G(Ct—x)exp(—x/x ).

Here H_ =V exp( x/x )(hZ y-1, Z, (u /e ) a= ¥ ch

té=h’/r 1/c, '—s(a —1)/o,t/t'~t/t'—(t /t )’i,r—t—x/c.
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% @@6 — 1
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2 1/t 0.1 - !
|
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|
7 295 J

1) " ( b) 1@ T/td 20

W
Q

2
] 1] - .
Figure 6. (a) JX/JO, (b) (tr/tt) JX/JO at vy=0 as functions of -r/td for

xo/'n=200 and 10, er=20 and various t'/t'

with 01 0,=0, El €y SETE_E s EX—\27 6(ct X)exp(—x/x ) Here
=(c+s4—)E -—V exp( x/x)(hZ) (u /s)

ty=u chz, t' —h/—_——/c, t' = so(er—l)/c, tt/t:’r = td/t"c =

(t /t! )2, T= t-—x/c. (Note, the difference in J}‘{/J0 between

xo/h 200 and 10 is small for té/t; > 1).

for the simulator
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(b) 0 /14 30 40

Jy/Jo at y=0 as a function of T/td for xo/h = 200 and 10,

€. = 20, and various t'/t' for the simulator with cl=02=o,

5e 9
€E1=e,Te=e e, X—V S(Ct—x)exp( x/x ). Here, = (og+¢e Et—)Ey,
JO=V exp (- x/x )(hZZ )"l Z=(u /i—:) ,td—u oh,t'-hv 1/c,
ti=e (e, —1)/0, t! /t' =t /t' = (ty/t] )’5, t=t-x/c.
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(a) at early times (Jrz—téz << 2t;, T > t": >:

R S
' v, (td >/2 X 2t ] €.~ 2 ( €. .
H == -%] e e 1+ S
2 hZO' tr ' 2(.sr—l) 4(er-2) t;__)

H

X
3/2 - T -~ 5 :
‘ v t X 2t e_-2 €
(c-%—a—?—;)Ex: 20 (E$> e Oe r_____l6(r ) (l+~-——-~—-—8 rz T_v
h Z \'r &7 (ar* ) tr
(9
X T
- _
(U+€§_>E ~fiz__vo_fée *o o “fr fr y
1]
4t ¥ X5 hZZ tr 8(e -1)3/2
o r
1 T Er T2+t1‘:2
i+ 22— _
e -4t 32(e -8B 2
’r
(b} at late times 12~t'2 >> 2t! T > t! ]
‘ t r’ t/°
X
- o[22
v 1 - - R 1
LY td 5 . Xoe (T T tt )/(Ztr) (ar_z)
z hZ — %
o TI/_Ez_t‘,zz 2(e~ 1)
x[1+—=5 T
r /TZ__tt,:Z
X
( \ v_ ey 3/2 "% —(T—/Tz-tt':z)/(Zt;:) (e~ 2)
c+e — | E = e e — X
at) X 2
Rz /Tz_téz 4/17(er—1)
Er T
x l-l-E _ (10)
r 2~t'2
T t
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<O-Fe 2 =2 2 e e S S
3t Tx L2 Lo 372
/ o w7z (ﬂt; /Tz_té.z) 8(e.- 1)

, . T2+tt,:2
x bl -4) + 46 ———-¢ —
r QZ_tﬂ rv:?‘—t'2
t
2 2 ,
. ! o Ft]
4. T (Er"4> _ 2t 15¢_ 5 tz (10)
_ g
4*/12—tt':2 rz—t‘z t e
I1f, furthérmore, T >> td’ one has
X td
- e
4 VO .Ei x, T
z hZ TT € €
t
X .4
3 A 1 td 3/2 - X T4t
<G+€ —a—E>EX= 20 —\ — e e (1L
Rz 2v/m \ T
1 X EQ
s - -
3 z 0 1 td tr Xo 4t
o%—s-gg E #—-—F——"—\—/ e e
M *o Wz 2v/m ° *

Equation 11 is similar to Equation 7 when 1 >> tr’ B~ 1, R2 -+ o, Thus,

td,
at very late times, one expects that the diffusion is the dominant process.
From Figures 5,6,7 and Equations 8, 9, 10 and 11, one can summarize
the approximate behaviors of the field and current quantities in Table 3.
. y 1 + ; .
Fo;(c + e(B/Bt))EX/JO with 5 = td/tt > 1 and <o e(a/at))Ey/Jo with

5 > td/té > 2, the hehaviors are expected to be approximately between the

tabulated extreme situations.
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TABLE 3. TIELD AND CURRENT DENSITY FOR e = 10-40, x_ % 200m, ¢ 2 3x 10“5‘mho/m, x, /b 2 1007

9z

Quantity ' Rise Time (rr) Fall Time ’ Peak Value ) : Condition
’ b
f 1 ! - [, f
. eet0.3 647 1> €] 8 t, 0.5 (td/tr) td/tt tt/trzl
_Z
v, :
1 1 1 : t
ty 8tr 0.5 td/t:t 1z td/tt
‘ L} 1 - T
(O+€§_)E tt+0‘2 tdz'rritt 0.5 td 1 td/ttgs
ot X
JD 3
1 - 1 T r
£l Str (td/tt) /16 1> td/’tt
1 2 r?-' E 1 1
(U .. 3—)1: " ty 0.3 ty 0.002 td/tr exp{-0.5 td/tt) td/tt > 5
ot v
JO .
1 A - 1 - 1 ]
te several L 0.025 td/trexp( 0.5 td/tt) 2> td/tt > 0.1
* 1 3 . .' !
For 0.1 > td/tt, (G+E EE)Ey/Jo is in the order of (Hz/Ho) b (h/xo), which is very small.

For ;;d/'t£ > 5, the peak value has a maximum = 0.15, at td/té =z 8.

]

1 2 . _ a
£ woht, tl o= hve -1 e, tl =e e ~1/a, 0)T9y =0y ey Tey=e=cee, B o=V &let - x)exp(-x/x ),

=
]

hJO = VD(hZO)—lexp(ux/xo) y T < tdxo = W OX _, ¥ 0, and the é-function responses at T = t": are excluded.




B. T, T ol'= G, €1 % € EX,= Voﬁ(ct-x)exp(—x/xo), 0<y<h

" Two cases will be considered depending on whether or not e equals ¢

(1) ¢ = €

From Equations 1 and 6 it is seen that all the w-integrals are of
the form _ ) )

f f (w)c_l<sinh(ch))_lcdsb(;y)eijdw

and (12)"7

c,
j f (w) 31nh(§h)> lsinh(;y)eﬂwwa
E

where 7 = Vg;uOOB - l/xi , and El is the integration path. The integrands

have poles at the zercs of sinh(zh), i.e., at w = j(mzﬂz - h2/x§>/(tdB),

The integration path él can then
be deformed and the following results are obtained:

m=20, 1, 2,. .., but no branch points.

, - : o m2ﬂ2 - h /X2
y o= o, o z (-1) cos (mmy/h) 1 - °© _¥ )«
. L 1+6 B

_’)V oo
3 - o) m
ct+e —IJE = e -1) mn sin(mny/h) X
(o+e0 2) By = I D) (mry /h)
h“Z B m=1
0 2 2 2,2
mr-h"/x
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X
, SE 22 2,2
‘ 3 _ —ZVO *o (-1)"cos (mry/h) mw —h /Xo L.
oteo ) By = 5o e L T35 l-—s 1 | *
‘ h ZOB m=0 mo d
. mzﬁz-hz/xi .
1 ——— e e
mzwz-hz/xi t. 2 h B ty (13)
“| T3 \%;) "= |° BN
d 0

where Smo is the Kromecker delta function, which is zero when m # 0, unity
when m = 0. From Equation 13 one observes that when T > t; one requires
only a couple of terms with small m's to obtain good approximatioms for
the field and current demsity. But, when 0 < 1T << tys one can see that
the‘series representation of Equation 13 converges very slowly and one has

to look for alternative representations.

One alternative representation good for 0 < T << td can be obtained
by deforming the priginal integration path 61 to the lower half plane, and

the following expressions are obtained.

Bt ()
. @\ - -2 L _X
VO ( td 2 e £ 1 BtrthA, 4t Btax X
__ot{t_4a _ L 0
H, =17z _ \7Bt L\l 5 | e e Ul
i i n=—o0 BR bt
pe ()
4 d T _X_
; - v Btz o 4t Bty i X
— e]
(O’+€O -B—t)EX = > 3 X (2n+1—y/h)e e e U{t) %
: 2h™Z T n=-—w
o
3t, 1 Btrtén)
x {1 -5+ =5+ 2y
T BR 4t
T X
‘ 2\% Bt T x
2 VO trtd dxo 0
(o+eo 3o ey =~ 5 S A
y o) 2h ZO BT
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t(n)

' (n)
o 3t Bt
' 2 __ 2t 1 _ r dy dy
x ) <l + N 2) Bt <l * . 2) 7w T tT o )7

n=-w R dx R TR
o
B (%)
3Btrt§n) 12»21:rt§n)2 - —7%?—
+ 2_y - 3y e (14)
27 8t
where tég) = td(2n4—l-y/h)2. As is obvious from Equation 14, when T < Ly

one needs only a couple of terms with small n's to get good approximations for

the field and current density distributions.

To derive Equations 13 and 14, it has been assumed that R > 2 (i.e., B > 0).
The situation with R < 2 will be excluded from the discussion since it is of

no practical interest.

From Equations 13 and 14, one finds that the fields and current densities
are determined by the diffusion process and the bounce between y = 0 and vy = h
planes. Based on Equations 13 and 14, several curves for xo/h = 200; 10;
tr/td =1, 0.3, 0.1, 0.08, 0.03, 0.01; y/h = 0, 0.5 are presented in ~
Figures 8-12, for T up to ty Cf course, one is mainly interested in the
case with xo/h = 200 so that R >> 2, and B = 1, From the figures, one can
see‘that all quantities reach their maximums in a few tenths of td. In this
range of 1, Equation 14 is a good representation for the field and current
density. Actually, one needs only the term with n = 0 for the region
L <y/h < 1, and possibly, the terms with n = 0,-1 for the region ¥ > y > 0
to get good estimates of the three field quantities. That is, one needs only
to consider the direct "illumination" for the region relatively far away from
the ground plane y = 0, and possibly has to include the first reflection from
y = 0 for the region close to the ground plane. And, definitely, for these
n = 0,-1 terms, one can approximate them further, similar to what has been

done on Equation 7 for the case (A-1).

Based on these ~onsiderations and the curves in Figures 8-12 , the

field and current densities are obtained and summarized in Tables 4 and 5.

23




normalized

0g

1 0 O Sy

120 : - : -

- HZ

xg/h = 200 yh=o - , y/h=2 Xg /h = 200
—— Xy /h =10 _ ’ ‘ ey /h= 10
=0 g - 1
b
— p*;
a
N
5
E
3
o
48 — | 5
0.03 .
e s e R
0 /t g Y | /4
T/ig /4
1 @ 5 1
(b)

Figure 8. (td/tr)Hz/Ho at y=0 as a function of T/td for xo/h = 200, 10 and various tr/td’ for the simulator
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Figure 11. JX/J0 at y/bh = 0,5 as a function of 1/t for xO/h = 200, 10 and various tr/td’ for the

simulator with Uy > ®, 0 =0, €17 €, E

J = Vn(hZZn)—lexp(r-x/xn), Z.o={u /e )2 t, =c¢c fo, t, = uncrhz, T =t-x/fc.

~ o i (4

]
Voexp(—x/xo)ﬁ(ct -x). Here Jx = (g+ € 3r )Ex’

(S A1 3=N




EBDB

e 3y /% 200
. ke lt = 1@
¥/h=05
200
ol =
- <
% é 190
: 3
5 &)
. c C
e
; )
1] R S ‘ -5@
0 : o1
o) e 0.2 ) 0.1

(b) 7ty

1
Figure 12. ./t )?2 = (), ' i
g { d/ r) .Iy/JO at v/h = 0.5 as a funetion of -|:/td for xolh = 200, 10 and various tr/td, for |
the simulgtor ﬁ{lth Gy T =, 0,70, €1 =€ E:e{ Voexp(-x/xo)ﬁ(ct ~%), Here J = (g+¢ 2 JE
_ _ ¥ o 3t !
I, Vo(h Z.) exp(—x/xo), ZO = (uofeo);i, t. eo/cr, t !

i

1l

2
q= uoah s T = E~%x/c.



TABLE 4,

FIELD AND CURRENT DENSITY AT y/h= 0 FOR o, - ®, T < tdX
2 -4 + o
U OX s 012'3x 10 "mho/m, XOE;ZOOm AND xo/h > 100
Quantity Rl?e Time Fa%l Time Peak Value Condition
(in td) (in td)
Hz 0.5 does not fall 1 tr/td < 0.01
H 0.09 0 5*
o . . 6.6 tr/td 0.5 < 1;1:/1:d
<c+ —8—>E 0.1 0.25 6(t_/ 2
€5 3¢ /By . . (£, ty) tr/tds 0.01
J
° 0.05 0.08 160 3/2
. . (tr/td) 0.5 < tr/td
t. _ 2 a_) _ e _ _
t. eo/c, td = uoch s <o+ € 3% Ex =0, EX = Voé(ct X)exp(—x/xo).

Here, the fall time is the t-value where Hz/Ho reduces to approximately

unity.
TABLE 5. FIELD AND CURRENT DENSITY AT 1 > y/h > 0.5 FOR 02 - @,
xo/h > 100, AND 0y 2 3 ><lO-_l*mho/m, X, 2 200 m'
Rise Time Fall Time .
Quantity . v ‘ Peak Value Condition
(in tdy) (in tdy)
Hz 0.5 does not fall 1 t /td < 0.01
H_ t N\ -3 t
° 0.09 0.5 3.3?5<1- %) 0.5 st—r-
d dy
-2
. - t_/t 0.01
(O+€ s_>E 0.17 0.7 0.9(1-y/h) ./ dy <
0 dt X T t
- T
Io 0.06 0.1 14t—r<1- %) 4 0.5 $ -+
d dy
e
0.1 0.4, 3 — <1— ) t /t. < 0.01
—_— h d -~
<cr+eo 5t )Ey £4 r y
J € \3/2, _\-5 t
° 0.05 0.08 80<§> \1—%) 0.5 ¢ —
d td
Yy
e =t (1-y/m)=yuoh-y° ES = V s(ct - x)exp(-x/x )y T < t
dy 4 y "o yro X o P o”? dx

*
Here, the fall time is the T-value where HZ/HO reduces to approximately unity.
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(2) ele_=¢e_>1.

For this case,’one finds that the w- 1ntegrals are of the forms
of Equatlon 12,but with cz = o° M€ (1-—5 ) + 3mu oB - l/x . The 1ntegrands
have poles at the zeros of 51nh(§h) whlch are now at w = jB(2t )

( /l-ln:'(z —h/x )/(Bt)),m—012...,butnobranchpomts.

By deformlng the integration path, one gets the following representations for

the field and current densities.

.
- e o
, ZVO X | (-1) cos(mny/h)U(x tty)
H = e z X
z hZz B / 2 9 5
(1+s J) Y 1- 4ty ( - h/x )/ (B ty)
—w_T € -w_ T € +
xle ™ 1- wie' l-e ™1 - LI
-1 mr 1 mr
- X m
- © - : _ gt
v 5 . ZVO xo (-1) mw sin{mry/h)U(z tty)
o+ e 3t EX— 7 e Z ' X
R'zBs w1l S 4o @2n? - n2/x2)/ (82t
r . o d
(13)
~ +
~w T €, _ —w T €. +
x| e 1i- wt!]-e 1 - wot!
e -1 mr e -1 mr
r r
_ m
- o - — !
5 ZVO X (-1) cos(mmy/h)U(T tty)
g+ e T Ey = =5 e X
h“Z B m=0 ~ ., 22 2.2 2
o (1+6m0) v/l 4tr(m T b /xo)/(B td)

where t, = h/c, and t‘y = (h-y) er—l /c.

(2
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As in quation 8, the infinite responses (i.e., §-functions) at T=t{:y
in Equation 15 are not included. Equation 15 reduces to Equation 13 when
SIS 1, as expected. Fiom Equation 15, one observes that only a couple of
terms with smaller Re(w;)'s are required for good approximations to the field
quantities when T >> Zt;, td. But, when 1 < 2t;, the series representation
of Equation 15 does not converge at all and one has to seek for alternmative

representations.

An alternative representation can be obtained by expressing the hyper-
bolic functions in Equation 12 in terms of exponential functions, using the
Taylor expansions and then applying the techniques used to get Equation 8.

The results are given as follows (for T > téy’ of course):

, _ X BT
A < £y > 2 %, 2t zio )
H =—/ 1| < e e ' Ut ) x
z hZo tr A= Yn
srB erB 4t]’: .
S B T el e iy e S I iy e P TS
Bt yn
dx
X _ BT
< 2 > Vo %5 Zt}': ozo 2
o+e -] = e e Ut ) x
ot / 'x hzz e YD
o
td(2n+l—y/h) €rB'L' 4t;
X - [(Z—B)er—Z:IIl(AA) + 1+ 5 IZ(AA)
yn yn B tdx
-X _ B
B v t € B X 2t =
d > z o d o r 2
<U+E_E — - — e e ZU(T )y %
ot /'y R 4(e_ - 1)3/2 n=—e 0
o T
(2-B)e -2 4t
x r __B{:4 r I (AA)
£ 2 2 o
r B t
: dx
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-+

. _B r yn
2 1+ . ' IZ(AA) (16)

s mr A+ s/l , - (2o @2 (o) _
where AA BTyn 1+ 4tr/(B thO) /(Ztr), Tyn T tty and tty

/((Znﬂfl)h-?y )2(er-l)‘/c. From the above equation, one can see that the
smaller T is, the fewer terms are required for the calculations. In Equation
16, the infinite responses at 1 ='té§n) (i.e., 6(1-—t;§n)), etc.) are not

shown.

To derive Equations 15 and 16, it has been assumed that R > 2 (i.e.,
B > 0). The results for the situation with 2 > R > 0 are different. However,
for most of the practical situations, R >> 2 and the approximations B = 1,

1+ 4t;/(32tdxo) = 1 can always be made to simplify Equations 15 and 16.

In the series representation of Equation 16, one can see that every

term (i.e., with a specific n) is exactly the same as Equation 8, if t;:;n) is
replaced by t!. That is, in addition to the diffusion and Cerenkov processes,

t
the field and current density distributions are determined by the bounces

between y=0 and y=h planes. And, the field and current density distribu-
tions of the present case can be easily constructed from the solutions
represented by Equation 8. One set of example curves given for'ti‘:/t]': = 0.2

€.= 10 and y=0 is presented in Figure 13. The ti':/t;' value given for this
example is relatively small. Thus, as can be seen from Figure 13, one needs
severél bounces to reach the late-time behaviors of HZ/HO + 1, (cr+e -a—> Ex/ -
Jo -+ 0, (0'+ £ —g—g
However, when t;/té is large, one does not need many bounces to reach those

)Ey/JO+O which can be implied from Equation 15 when T >> t]':_, ty-

late-time values., .
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for the simulator w1th Ty > @5 0y =0, gl =g E ) E
v cS(ct—x)exp( x/x ). Here H o =hl =V, (hZ )"lexp(-x/x ),
= (n /e ) =y crhz, té h»’a - /c, t;‘c " so(ey—l}/c,
£! /t' =ty /t' = (td/t )2 T = th/cg
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IV. UNIT-STEP SOURCE FIELD

In the last section, the field and current density disgributions for two
special simulator geometries with a 6—function source field Ei = Voﬁ(ct-x) X
exp(-x/xo) have been obtained. In this section, the corresponding distribu-
tions for. the same special simulator geometries, but with a unit-step source

field Ei = EOU(t - x/c)exp(—x/xo), will be sought.

For the simulator with a unit-step source field, one finds that the
(w,k)~domain solutions are still given by Equations 5 and 6, except that ﬁi
has a new value Eoﬁ(k - w/c + j/xo)/(jw). The (t,x)-domain solutions can
then be calculated from the inverse Fourier-transform integrals, the second
equation of Equation 1. Due to the presence of the term §(k-uw/c + j/xo),
the k-integral can be easily performed. To calculate the remaining w-integrals,
one can either deform the integration paths as was done in Section III or

compute convolution integrals of the form

J' Fl(T')U(TfT')dT' A H

— o

where Fl is the solution with a §-function source field.

From Section III, it is observed that for the situations of practical
interest the approximations R ='uoocx0-*w, B=1~-2/R-+ 1 and T/tde + 0 can
always be used. That is, the field and current density distributions in a
simulator with a source field centaining the factor exp(—x/xo) can be. approxi-
mated with exp(—x/xo) times the distributions derived for a source field which
does not contain this factor (i.e., L ©), This argument will now be applied
throughout this section to simplify the calculations. The approximated solu-

tions are presented as follows.

- - e = e _ _ -
A, 0y =0, =0, € €, £, Ex EOU(t x/e)exp( x/xo), vy <h

. The two cases will be considered depending on whether or not ¢

equals to €,e
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For this case, the following expressions for the field and

current .density distributions at y=0 are obtained.

L o B
y .o <&2+_4f_2 G
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(ore, 25 . o t_d<t_r> s
\(j EO ot X hZo 2t \ 11T
(17)
x
L _ s
t t X
d d o]
+<tr> l—erf( A ) e U(t)
_t_é .
HZ Eo<td>1/2—4r_xo
<U+EO§:‘>Ey~~X—O-+——hZ Py e e U(r) x

where erf (z) is the error function defined as

. K _ 2
erf(z) =—J epdp

%

The field and current density distributions at an arbitrary y < h can be

calculated by simply replacing h and ty in Equation 17 with (h-y) and tdy'

4




Based on Eduation 17, several curves are presented in Figures 14— 16
for various tr/td' At very early and late times (defined respectively by
T << td and T >> td), Equation 17 can be simplified by using the asymptotic
approximations for the error function and retaining only one or two terms in
the equation. From the simplified equation‘and the curves in Figures 14 - 16,

one can summatrize the behaviors of the field and current densities in Table 6.

@) efe =c_>1

In section III, it was mentioned that some S-function responses
have to be added to Equation 8 to obtain complete solutions for this simulator
gebmetry with a é-function source field. These &-function responses are Now

given as below.

1
_ e
_ v, e 2t! ‘
H, — —— e 6(1—1:&)
¢ oz /e -1
o °r
1
_
3 Vo Zt; 7
‘ L . L et 1 ot
(U%—E St >EX : o e od {1 tt) + er806 (t ttﬁ (18)
! . R t'
' ] o] 1 ) 2t; ' |
-+ —_— : —_— = - L 1 — 1
(c £ Bt)jEy - sr_-l e‘ [06(1 tt) + areOS (T tt)

By using the combination of Equations 8 and 18 for Fl in the convolu-
tion integrals, the following expressions for the field and current density

distributions at y=¥O are obtained:
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Figure 14. Hz/Hé at y=0 as a function of T/td for XO/h > 200 and various tr/t
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TABLE 6. FIELD AND CURRENT DENSITY FOR UNIT—STEP. SOURCE FIELD AT y=0 FOR

EN

00,0, €, E,=E_y X 2 200 m, > 3x lO—Amho/m AND anhizoof
i XL L [+] O a

. ek ) R ) , S
Quantity First Maximum First Minimum Lgte Time Value Condi tion
T Value T Value tdxo > T 2> tr’ td
ty t.\?
" tgz T2 0'5(;EA 0.5 t, | Less than 1.5 1 Lty 2 4
Bz d ( 4t
' — Tt
¢ Monoctonically increasing g t /t, <4
r d
t t t \% (e, /t )%:,Value
d d r d r 4
(a+€ -a——)E 3 2T2% t, 1>ty L £ \% tltg By
A 0 3t/ x d > 0.5(t,/c )" ( d )
b8t % 4
J0 . tr .
Monotonically increasing tr/td <3
7 Fall to 1/e of
( 3y k% 0.09 ¢, 3 tr/td the maximum at t /td 20.5
d+eo§€)Ey T ~ 0.5 t3
J! . 0
o
Fall to 1/{2e)
L] t 3 *
0.5 t, 0.5 at 95 L t./ty £ 0.01
L 2 - . -1 -1 )
by = ugoh™s & 50/0, HO——Eoexp(—x/xo)Zo , Jé =h TH, tdXD = X,

*
See Figures 14 - 16, referred to the local maximum and minimum.

*¥e
For 0.5 > tr/td > 0.01, the behaviors are between the tabulated extreme situations.,
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5 X 2t!
= ~ _ 1 R |
(o%—e 8t> EX E e e [e 805(T tt) + oU(T tt)J
- x -
E £ X t t!
e ) e e [ /A
o s:r—l T2__1:1,:2 r
T'
e -1 ¢t £y - Zt; 1 5 5
+ = e I ls5vY 17 -t dr'
e t 142t t
T o Ty2 _ t,Z r
t t
' (19)
L S S T
" E t . \"° (e_-2) x t!
9 - o (_d o r et
<O4‘E 3t )Ey X + 2hZ <t' > (e_-1) e € Uz tt) X
[¢} T
£
I l‘ /TZ t,2 + T T I l' /TZ__t,Z
o] Ztr t Er-Z /7?~——§ 1 Ztr
T - té
1
Eo 2t]':
—_— - \i
+ — €€, € S(T tt)
T
The results at an arbitrary y < h can be calculated by replacing h, td and té

in Equation 19 with (h-vy), tdy and té(l-—y/h), respectively.

Equation 19 involves integrals of Bessel's functions which in principle
can be evaluated by numerical integrations. However, instead of going through
this complicated, time-consuming process, only the asymptotic approximations
of Equation 19 at early and late times will be analyzed, from which together
with the results for the 8-function source field case (see Table 3 and Figures
5 ~- 7), the approximate behaviors of the field and current density distribu-

tions are summarized in Table 7.
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TABLE 7. TIELD AND CURRENT DENSTTY FOR UNIT-STEP SOURCE FIELD FOR 0, = 0,=0, €] =€,=6=€ €,

40 x ez 10, 0 » 3x 10"4mho/m, x’O > 200 m AND x /b z 200"
Initial Value Late Time Value Approximate Behavior
Quantity at for Between t
= g1 '
T = tt t‘,lxo> T > tr, tes td and the Latg Time
tl
, t '
EZL i Zt]':‘ At * Monotonically increasin
H' Ye_ e Tt ] 7 &
o T T
1 F 1 [V SN e i | £ e :
% 3 MOTLOTONACaLLY 1NCTredsSing,
: ( 4 1{"a 1
—_— i P ;, iy ~ .
(0+5 g_)E . 1+o{e c 5 reach (Ed/tr) at approximately
ot X T T d v '
- T B tens of t! or tens of t/,
' Jo -c'/2e") tr o r : ¢
. xe t T whichever is larger
t 71 ¥ .
/ \ l(_g\’i( te \ Same as that of H_/H_ of
ste 2o u 2\t Ly 2 ©
\ ot / v \*r/ \ r/ 0 Table 3 (i.e., results due to
J'
o —té/(flté) a §—function source field)
X e .
t. _ \ _ 2 22 2 . - . -1
tr EO/G', tr e:o(x-:r /o, td = uocrh . tt = h (er)/c L L HO = hJO = EOZ0 exp(-—x/xo).
And the S-function responses at té are excluded . tdxo = 1, 0%
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£€=€

Two cases depending on whetheér or not e equals ¢
o}

EOU(t—-x/c)exp(—X/Xo), 0<y<h

T > td) is given by (for v # h)

o
Two different series representations are obtained for the field
and current density distributions. The one to be used for late times (t, >
Lo-
~ 21 T e
Z t
)
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will be considered
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The representation appropriate for early times (1 << td) is given by
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‘ (n)
E x & £ \? V| ool
H ==2e XOU(T) ) (__;> +(_4_I_> -
z Z : T Tt
o n=—o T
ib ’ ”
t(n) 2 t(n)
d d
I 1 - erf R
t 4t
: X
E, [ty e % w
(O+Eo E>Ex “wz \t. /] °© vy x _Z (2n + 1 - y/B) x (1)
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t(ﬁ)
1 dy (n)
tr td‘j T Tat td -1
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‘ 3 B, & (td>2 % s |- e Egng_ Tt
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Based on Equations 20 and 21 several curves are presented in Figures 17 -
21,for y=0, 0.5h, and various tr/td' At very early (T << td) and late
(t >> td) times, Equations 20 and 21 can be approximated with only one or two
terms corresponding to small m's and n's. With this approximation and the
curves in Figures 17 - 21 , the anéiytical behaviors of the field and current

‘densities can be obtained and ére summarized in Table 8.
@ eleg = e, > 1

Two different series representations are obtained for the field

and current density distributions. The one to be used for late times (td >T>>
X

t;,td) is given by (for y # h) ©
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TABLE 8.

FIELD AND CURRENT DENSITY FOR UNIT-STEF SGURCE FIELD FOR o

F@, g =0, By SE ,
4 2 1 1 "o
¢z 3x10 'mho/m, x_ 3 200 m, AND x_/h > 1007
Local Maximum Late Time Value
tic i i
Quantity Location o Time to Reach (t e ) Condition
v/h Maximum (t) dx,, T e
Hz Monotonically increasing. At .
5 1> %“i 0 early time, the larger v/h 7 any t [t
o is, the fasgter it increases. (trtd-)
vih = 0 ~ 0 Nane
3 P ~ v ]_ (ALY B Y wed
(0 g 5?) By tg \?
NAl Monotonically increasing (-E—- % tr/td < 4/9
a 1 r 4
1>Fs = t_ Vi 2| t t t
) ) e ot
d tdy 9
Monotonically increasing, t /td < 0.1
- reach ~ 1 at or before 0.5 t r
A a
% h O
5 /
(0+ED_B_€)E 6(t ./t ) 0.09 t, v /ty 2 0.5
JT . 1 a
o
Monotonically increasing, t /td < 0.1
1 reach ~ 1 at or before 0.5 t oAy
1> Ly = dy
h = 2 . ~3
A O z) t
3 td (1 h 0.09 tdy —f‘r > 0.5
d by
+ _ 2 2 2 -1 7
t = Lt }_-—- h = h — LY ' = | -— =
dy g -y/n) uoh” (1 -y/n)%, W) = hJl = EZ exp(-x/x ), € ax A

*
Same as HZ/HO of Tables 4 and 5.
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+ 2 Z » - e - T e
m=1 /3-4t£m2w2/td wmtr Yty
X
l/ - —
o) tr : Xo td y
——— —_— —— —_— ' — -—
<O+€ at>Ex hZ \t e ES N
o d r
(22)
- - - + +
-9 czo (-1)"mr sin(mwry/h) € rntr ” t e_me _ €Wty ! e_me
- . +
=1 “/l - 4t£_m2w2/td wpty ‘ UJmtr
-2 _ X
Eo Xo 1 tl':
A I ¢
<c-+e Py >Ey T © U(T tty) 1+ -1 e
o r
- +
@ m -W T -w_T H
+ 2 Z (-1) cos (mmy/h) (1 -¢ewt)e mo (1 - ¢ w+t Je o + =
m=1 f 2 2 rmryr rmr Xo
1- 4t;m w /td

-+

where w; = < 1 //la-4t;m2ﬂ2/td >/(2t£).

The representation appropriate for early times (i.e., for T up to several

té) is given by

Eo €r ) %% . (n) ) Zt; Ton
HZ Sl —— z U<t— té ) x {e 1 E%T- +
o Ve - 1 n=-c 7 - ° T
T'
1 T - 2t; T'nA
Tt f © BT A (23)
rr o () r
ty
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, {n)
by

- X - =Y
3 *o T (2n+1-y/h) 2ty (n) (n) .
: (c-!-e E)EX =~ Ee. e ereoé(f—té )+0U(T—t1’: )
n=-~ |2n+1-y/h| y 4
X
Eo £r %5 020 : (n)
+ 5 —_— (2n+1-y/h)U(t-t! ) x (23)
ZhZ0 ve -1 n=—e £y
T !
ty 2¢! Ton 1 T td 2t; T'n
—z—~ P __} 1
N ¢ AT R [ Tt © ST A
yn T rr t,(n) yn
Ly
'ti(n)
2 _ty
H £_E X o 2t
(o+ag—t>a =Z+E —T——e ° ] e rG(T té(m)
J %5 Ver-l n=-x y
L S
E t e -2 X 2t} o
o) _d r o r .('ﬂ)>
Thz (t'> e -1°¢ e _Z U(T Cey J°
o] r T n=-~-co

T € T
yn T T yo
* I0(2'1:' >+ e -2 1T Il(Zt‘)
T r yn T

where, as defined in Equation 16, t'(n) =/((2n+ l)h—y)z(er—-l) /c,

L = 1
T =(T2._t,(n)2 > 5 g ot =(T,§ ) t.(n>z>/2_
yn yn ty

ty
In the series representation in Equation 23, one can see that every

term (i.e., with a specific n) is exactly the same as Equation 19, if h is
replaced by 2n+1-v/h (i.e., ti': by tt':;n) » bty by td(2n+l—y/h)2, also).
The terms with n = #m, m=1,2,3,., .., can be considered respectively the
m—-th reflection from the y=h and y=0 planes. That is, the field and
current density distributions of the present case can be constructed from
the solutions represented by Equation 19. As is obvious from Equation 23,

the smaller t is, the fewer terms are required for the calculations.
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‘ At very late times (lOBtd > T >> t;, td), one can see from Equation 22 that

the field and current density distributions approach the following values:

-
E X
H, Z_O_e ° - 3
2
o (trtd)
U
_ X 1 7
‘Eo %o ( 4 /ZX
<G+€¥>EX Pof7 e T o (24)
o r
_ X
X
9 . o o
<0+€ 8t>Ey YTz e

which are the same as those for the case with €. = 1, as expected. To obtain
the late~time behaviors, one can also use Equation 23, especially when
‘ ) t1': >> t;, in which case only a few terms are needed. However, if t't << t]':,

one needs many terms to obtain the late-time behaviors.
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(2) ele_=¢e_>1.

For this case,’one finds that the w- 1ntegrals are of the forms
of Equatlon 12,but with cz = o° M€ (1-—5 ) + 3mu oB - l/x . The 1ntegrands
have poles at the zeros of 51nh(§h) whlch are now at w = jB(2t )

( /l-ln:'(z —h/x )/(Bt)),m—012...,butnobranchpomts.

By deformlng the integration path, one gets the following representations for

the field and current densities.

.
- e o
, ZVO X | (-1) cos(mny/h)U(x tty)
H = e z X
z hZz B / 2 9 5
(1+s J) Y 1- 4ty ( - h/x )/ (B ty)
—w_T € -w_ T € +
xle ™ 1- wie' l-e ™1 - LI
-1 mr 1 mr
- X m
- © - : _ gt
v 5 . ZVO xo (-1) mw sin{mry/h)U(z tty)
o+ e 3t EX— 7 e Z ' X
R'zBs w1l S 4o @2n? - n2/x2)/ (82t
r . o d
(13)
~ +
~w T €, _ —w T €. +
x| e 1i- wt!]-e 1 - wot!
e -1 mr e -1 mr
r r
_ m
- o - — !
5 ZVO X (-1) cos(mmy/h)U(T tty)
g+ e T Ey = =5 e X
h“Z B m=0 ~ ., 22 2.2 2
o (1+6m0) v/l 4tr(m T b /xo)/(B td)

where t, = h/c, and t‘y = (h-y) er—l /c.

(2
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As in quation 8, the infinite responses (i.e., §-functions) at T=t{:y
in Equation 15 are not included. Equation 15 reduces to Equation 13 when
SIS 1, as expected. Fiom Equation 15, one observes that only a couple of
terms with smaller Re(w;)'s are required for good approximations to the field
quantities when T >> Zt;, td. But, when 1 < 2t;, the series representation
of Equation 15 does not converge at all and one has to seek for alternmative

representations.

An alternative representation can be obtained by expressing the hyper-
bolic functions in Equation 12 in terms of exponential functions, using the
Taylor expansions and then applying the techniques used to get Equation 8.

The results are given as follows (for T > téy’ of course):

, _ X BT
A < £y > 2 %, 2t zio )
H =—/ 1| < e e ' Ut ) x
z hZo tr A= Yn
srB erB 4t]’: .
S B T el e iy e S I iy e P TS
Bt yn
dx
X _ BT
< 2 > Vo %5 Zt}': ozo 2
o+e -] = e e Ut ) x
ot / 'x hzz e YD
o
td(2n+l—y/h) €rB'L' 4t;
X - [(Z—B)er—Z:IIl(AA) + 1+ 5 IZ(AA)
yn yn B tdx
-X _ B
B v t € B X 2t =
d > z o d o r 2
<U+E_E — - — e e ZU(T )y %
ot /'y R 4(e_ - 1)3/2 n=—e 0
o T
(2-B)e -2 4t
x r __B{:4 r I (AA)
£ 2 2 o
r B t
: dx
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-+

. _B r yn
2 1+ . ' IZ(AA) (16)

s mr A+ s/l , - (2o @2 (o) _
where AA BTyn 1+ 4tr/(B thO) /(Ztr), Tyn T tty and tty

/((Znﬂfl)h-?y )2(er-l)‘/c. From the above equation, one can see that the
smaller T is, the fewer terms are required for the calculations. In Equation
16, the infinite responses at 1 ='té§n) (i.e., 6(1-—t;§n)), etc.) are not

shown.

To derive Equations 15 and 16, it has been assumed that R > 2 (i.e.,
B > 0). The results for the situation with 2 > R > 0 are different. However,
for most of the practical situations, R >> 2 and the approximations B = 1,

1+ 4t;/(32tdxo) = 1 can always be made to simplify Equations 15 and 16.

In the series representation of Equation 16, one can see that every

term (i.e., with a specific n) is exactly the same as Equation 8, if t;:;n) is
replaced by t!. That is, in addition to the diffusion and Cerenkov processes,

t
the field and current density distributions are determined by the bounces

between y=0 and y=h planes. And, the field and current density distribu-
tions of the present case can be easily constructed from the solutions
represented by Equation 8. One set of example curves given for'ti‘:/t]': = 0.2

€.= 10 and y=0 is presented in Figure 13. The ti':/t;' value given for this
example is relatively small. Thus, as can be seen from Figure 13, one needs
severél bounces to reach the late-time behaviors of HZ/HO + 1, (cr+e -a—> Ex/ -
Jo -+ 0, (0'+ £ —g—g
However, when t;/té is large, one does not need many bounces to reach those

)Ey/JO+O which can be implied from Equation 15 when T >> t]':_, ty-

late-time values., .
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as funCthnS of "L‘/t' for x /h > ?.OO, a}: = 10 and t‘/;:' = 0.2,

for the simulator w1th Ty > @5 0y =0, gl =g E ) E
v cS(ct—x)exp( x/x ). Here H o =hl =V, (hZ )"lexp(-x/x ),
= (n /e ) =y crhz, té h»’a - /c, t;‘c " so(ey—l}/c,
£! /t' =ty /t' = (td/t )2 T = th/cg
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IV. UNIT-STEP SOURCE FIELD

In the last section, the field and current density disgributions for two
special simulator geometries with a 6—function source field Ei = Voﬁ(ct-x) X
exp(-x/xo) have been obtained. In this section, the corresponding distribu-
tions for. the same special simulator geometries, but with a unit-step source

field Ei = EOU(t - x/c)exp(—x/xo), will be sought.

For the simulator with a unit-step source field, one finds that the
(w,k)~domain solutions are still given by Equations 5 and 6, except that ﬁi
has a new value Eoﬁ(k - w/c + j/xo)/(jw). The (t,x)-domain solutions can
then be calculated from the inverse Fourier-transform integrals, the second
equation of Equation 1. Due to the presence of the term §(k-uw/c + j/xo),
the k-integral can be easily performed. To calculate the remaining w-integrals,
one can either deform the integration paths as was done in Section III or

compute convolution integrals of the form

J' Fl(T')U(TfT')dT' A H

— o

where Fl is the solution with a §-function source field.

From Section III, it is observed that for the situations of practical
interest the approximations R ='uoocx0-*w, B=1~-2/R-+ 1 and T/tde + 0 can
always be used. That is, the field and current density distributions in a
simulator with a source field centaining the factor exp(—x/xo) can be. approxi-
mated with exp(—x/xo) times the distributions derived for a source field which
does not contain this factor (i.e., L ©), This argument will now be applied
throughout this section to simplify the calculations. The approximated solu-

tions are presented as follows.

- - e = e _ _ -
A, 0y =0, =0, € €, £, Ex EOU(t x/e)exp( x/xo), vy <h

. The two cases will be considered depending on whether or not ¢

equals to €,e
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For this case, the following expressions for the field and

current .density distributions at y=0 are obtained.

L o B
y .o <&2+_4f_2 G
z Z TT . Tt
o T
£ \E ' t "i—
d d o
(tr> l—erf< 41_) e U(r)
1 ta
2 ——
(ore, 25 . o t_d<t_r> s
\(j EO ot X hZo 2t \ 11T
(17)
x
L _ s
t t X
d d o]
+<tr> l—erf( A ) e U(t)
_t_é .
HZ Eo<td>1/2—4r_xo
<U+EO§:‘>Ey~~X—O-+——hZ Py e e U(r) x

where erf (z) is the error function defined as

. K _ 2
erf(z) =—J epdp

%

The field and current density distributions at an arbitrary y < h can be

calculated by simply replacing h and ty in Equation 17 with (h-y) and tdy'

4




Based on Eduation 17, several curves are presented in Figures 14— 16
for various tr/td' At very early and late times (defined respectively by
T << td and T >> td), Equation 17 can be simplified by using the asymptotic
approximations for the error function and retaining only one or two terms in
the equation. From the simplified equation‘and the curves in Figures 14 - 16,

one can summatrize the behaviors of the field and current densities in Table 6.

@) efe =c_>1

In section III, it was mentioned that some S-function responses
have to be added to Equation 8 to obtain complete solutions for this simulator
gebmetry with a é-function source field. These &-function responses are Now

given as below.

1
_ e
_ v, e 2t! ‘
H, — —— e 6(1—1:&)
¢ oz /e -1
o °r
1
_
3 Vo Zt; 7
‘ L . L et 1 ot
(U%—E St >EX : o e od {1 tt) + er806 (t ttﬁ (18)
! . R t'
' ] o] 1 ) 2t; ' |
-+ —_— : —_— = - L 1 — 1
(c £ Bt)jEy - sr_-l e‘ [06(1 tt) + areOS (T tt)

By using the combination of Equations 8 and 18 for Fl in the convolu-
tion integrals, the following expressions for the field and current density

distributions at y=¥O are obtained:

X T
E £ T x T 2t!
i M P e e
o sr-l T
o
(e_-1) (1 2t!
r r 1 12 42 '
T J e LN T A te dr
Tr ot T
i
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Figure 14. Hz/Hé at y=0 as a function of T/td for XO/h > 200 and various tr/t
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TABLE 6. FIELD AND CURRENT DENSITY FOR UNIT—STEP. SOURCE FIELD AT y=0 FOR

EN

00,0, €, E,=E_y X 2 200 m, > 3x lO—Amho/m AND anhizoof
i XL L [+] O a

. ek ) R ) , S
Quantity First Maximum First Minimum Lgte Time Value Condi tion
T Value T Value tdxo > T 2> tr’ td
ty t.\?
" tgz T2 0'5(;EA 0.5 t, | Less than 1.5 1 Lty 2 4
Bz d ( 4t
' — Tt
¢ Monoctonically increasing g t /t, <4
r d
t t t \% (e, /t )%:,Value
d d r d r 4
(a+€ -a——)E 3 2T2% t, 1>ty L £ \% tltg By
A 0 3t/ x d > 0.5(t,/c )" ( d )
b8t % 4
J0 . tr .
Monotonically increasing tr/td <3
7 Fall to 1/e of
( 3y k% 0.09 ¢, 3 tr/td the maximum at t /td 20.5
d+eo§€)Ey T ~ 0.5 t3
J! . 0
o
Fall to 1/{2e)
L] t 3 *
0.5 t, 0.5 at 95 L t./ty £ 0.01
L 2 - . -1 -1 )
by = ugoh™s & 50/0, HO——Eoexp(—x/xo)Zo , Jé =h TH, tdXD = X,

*
See Figures 14 - 16, referred to the local maximum and minimum.

*¥e
For 0.5 > tr/td > 0.01, the behaviors are between the tabulated extreme situations.,

- . o e A e . — e
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£!
t

R S
5 X 2t!
= ~ _ 1 R |
(o%—e 8t> EX E e e [e 805(T tt) + oU(T tt)J
- x -
E £ X t t!
e ) e e [ /A
o s:r—l T2__1:1,:2 r
T'
e -1 ¢t £y - Zt; 1 5 5
+ = e I ls5vY 17 -t dr'
e t 142t t
T o Ty2 _ t,Z r
t t
' (19)
L S S T
" E t . \"° (e_-2) x t!
9 - o (_d o r et
<O4‘E 3t )Ey X + 2hZ <t' > (e_-1) e € Uz tt) X
[¢} T
£
I l‘ /TZ t,2 + T T I l' /TZ__t,Z
o] Ztr t Er-Z /7?~——§ 1 Ztr
T - té
1
Eo 2t]':
—_— - \i
+ — €€, € S(T tt)
T
The results at an arbitrary y < h can be calculated by replacing h, td and té

in Equation 19 with (h-vy), tdy and té(l-—y/h), respectively.

Equation 19 involves integrals of Bessel's functions which in principle
can be evaluated by numerical integrations. However, instead of going through
this complicated, time-consuming process, only the asymptotic approximations
of Equation 19 at early and late times will be analyzed, from which together
with the results for the 8-function source field case (see Table 3 and Figures
5 ~- 7), the approximate behaviors of the field and current density distribu-

tions are summarized in Table 7.
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TABLE 7. TIELD AND CURRENT DENSTTY FOR UNIT-STEP SOURCE FIELD FOR 0, = 0,=0, €] =€,=6=€ €,

40 x ez 10, 0 » 3x 10"4mho/m, x’O > 200 m AND x /b z 200"
Initial Value Late Time Value Approximate Behavior
Quantity at for Between t
= g1 '
T = tt t‘,lxo> T > tr, tes td and the Latg Time
tl
, t '
EZL i Zt]':‘ At * Monotonically increasin
H' Ye_ e Tt ] 7 &
o T T
1 F 1 [V SN e i | £ e :
% 3 MOTLOTONACaLLY 1NCTredsSing,
: ( 4 1{"a 1
—_— i P ;, iy ~ .
(0+5 g_)E . 1+o{e c 5 reach (Ed/tr) at approximately
ot X T T d v '
- T B tens of t! or tens of t/,
' Jo -c'/2e") tr o r : ¢
. xe t T whichever is larger
t 71 ¥ .
/ \ l(_g\’i( te \ Same as that of H_/H_ of
ste 2o u 2\t Ly 2 ©
\ ot / v \*r/ \ r/ 0 Table 3 (i.e., results due to
J'
o —té/(flté) a §—function source field)
X e .
t. _ \ _ 2 22 2 . - . -1
tr EO/G', tr e:o(x-:r /o, td = uocrh . tt = h (er)/c L L HO = hJO = EOZ0 exp(-—x/xo).
And the S-function responses at té are excluded . tdxo = 1, 0%
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£€=€

Two cases depending on whetheér or not e equals ¢
o}

EOU(t—-x/c)exp(—X/Xo), 0<y<h

T > td) is given by (for v # h)

o
Two different series representations are obtained for the field
and current density distributions. The one to be used for late times (t, >
Lo-
~ 21 T e
Z t
)

NIN

will be considered
o)
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The representation appropriate for early times (1 << td) is given by
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‘ (n)
E x & £ \? V| ool
H ==2e XOU(T) ) (__;> +(_4_I_> -
z Z : T Tt
o n=—o T
ib ’ ”
t(n) 2 t(n)
d d
I 1 - erf R
t 4t
: X
E, [ty e % w
(O+Eo E>Ex “wz \t. /] °© vy x _Z (2n + 1 - y/B) x (1)
0 r n=-—= ’
t(ﬁ)
1 dy (n)
tr td‘j T Tat td -1
xJ5E\= ) e +11 - erf —— /| l2n + 1 - y/n]
. (n)
S 5 - X @\ _ fay
‘ 3 B, & (td>2 % s |- e Egng_ Tt
(c-l-eo E) Ey’“ ;; +BZ - el U(T)Xn}_m L - 5—_; + 4T2 e

Based on Equations 20 and 21 several curves are presented in Figures 17 -
21,for y=0, 0.5h, and various tr/td' At very early (T << td) and late
(t >> td) times, Equations 20 and 21 can be approximated with only one or two
terms corresponding to small m's and n's. With this approximation and the
curves in Figures 17 - 21 , the anéiytical behaviors of the field and current

‘densities can be obtained and ére summarized in Table 8.
@ eleg = e, > 1

Two different series representations are obtained for the field

and current density distributions. The one to be used for late times (td >T>>
X

t;,td) is given by (for y # h) ©
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-1
e = U —
the simulator with Oy > @y G0, €55€ EX==Eoexp(Hxle)U(t-x/c). Here, Hé = EOZO exp( X/XO)

1
Z, = (UO/EO) s b 60/0, ty = U oht, T =€ x/c.



normalized J}

A

y/heo ' ' y/h=0 -

Lr/t'd :
=e.5 - N ;
5 g4 L
; =
£
5
|
‘ 0.1 \ o
[ &
J////
o W | | .

Figure 18. (a) J_/J', (b) (t,/t )J_/JI' at y=0 as functions of v/t, for x_/h > 200 and variocus t_/t,, for
Yy O a vy o a e} - I a
] [+4] ™= == ‘e = — - = —
the simulatOflwlth Ty * @5 0y =0, € zo, Ex Eoexp( x/xD)U(E x/c). Here, Jy (04-50 5T )Ey,
' — — = = = - —
JO EO(hZO) exp{ X/xo), Z, (uofeo) , b 50/0, tq uooh , T = t-%x/c.

i 1 ' : I S B fe’t:w B+ ‘--',‘tﬂﬁfﬂ‘ﬂﬂ'*iu‘



€5

y/h=058

normalized H,
—

normalized  H,

N
1

@%__l ! E— @L | |

7 (a) T/t ! a (b) ity | :

1
Figure 19. (a) HZ/H‘;, (b) (td/t Py /Hé at y/h = 0.5 as functions of T/td for Xolh > 200 and various tr/td’
._>

r) 1
for the simulator with o =g , S = Eoexp (+x/xo)U(t~x/c). Here, Hc') = EOZO P

1
(x/x Y, 2 = (i fe ) ¢t =¢e /Jo, &
o o o o ’ r o d 0 ?

T — . Y J
~—~ L= X5,



. -“——_

75

normalized  J,
—

y/h=05

20l

o ’ _ |

G (a) /g

normalized J,

y/h=05

g P
Figure 20. (a) (¢ /t)7J f30, (b) (cy/t)"J /30 at y/h = 0.5 as functions of t/ty for x_/h > 200 and

various tr/td’ for the simulator with Gy + @y 0150, B =, Ei - Eoexp(~x/xo)U(t ~ x/(:}..

- 3 _ -
Here, Jx = (o+ €0 DE )Ex’ J(’) = ED(hZO) 1exp(—x/xo), zo = (uolec)lﬁ’ £ =

T = t-xfc.

2
r Eofcr, td ucdh 5 -

..'f‘

- vy



a5

545, — — 30 - e
y/h=05 y/h=0:5
20 —
o =
g 1/l = @01 -
% 18 | A
2 A e
18 —
H
@1
0.5 7 /4= 075
! i | 1 / O e
%] 15}
@5 :
’ (a) T/t ' a (b) /g
Figure 21.

ks '
(a) (td/tr) Jy/JO, (b) (td/tr)Jy/J; at y/h = 0.5, as functions of T/td for xG/h > 200 and
various tr/td, for the simulator with Gy T, 0170, B e, £ Eoexp(-X/XO)U(t—X/C)-

2

9 1
Here, J = (o+ — )E ' = F -1 - = 3 = =
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TABLE 8.

FIELD AND CURRENT DENSITY FOR UNIT-STEF SGURCE FIELD FOR o

F@, g =0, By SE ,
4 2 1 1 "o
¢z 3x10 'mho/m, x_ 3 200 m, AND x_/h > 1007
Local Maximum Late Time Value
tic i i
Quantity Location o Time to Reach (t e ) Condition
v/h Maximum (t) dx,, T e
Hz Monotonically increasing. At .
5 1> %“i 0 early time, the larger v/h 7 any t [t
o is, the fasgter it increases. (trtd-)
vih = 0 ~ 0 Nane
3 P ~ v ]_ (ALY B Y wed
(0 g 5?) By tg \?
NAl Monotonically increasing (-E—- % tr/td < 4/9
a 1 r 4
1>Fs = t_ Vi 2| t t t
) ) e ot
d tdy 9
Monotonically increasing, t /td < 0.1
- reach ~ 1 at or before 0.5 t r
A a
% h O
5 /
(0+ED_B_€)E 6(t ./t ) 0.09 t, v /ty 2 0.5
JT . 1 a
o
Monotonically increasing, t /td < 0.1
1 reach ~ 1 at or before 0.5 t oAy
1> Ly = dy
h = 2 . ~3
A O z) t
3 td (1 h 0.09 tdy —f‘r > 0.5
d by
+ _ 2 2 2 -1 7
t = Lt }_-—- h = h — LY ' = | -— =
dy g -y/n) uoh” (1 -y/n)%, W) = hJl = EZ exp(-x/x ), € ax A

*
Same as HZ/HO of Tables 4 and 5.
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+ 2 Z » - e - T e
m=1 /3-4t£m2w2/td wmtr Yty
X
l/ - —
o) tr : Xo td y
——— —_— —— —_— ' — -—
<O+€ at>Ex hZ \t e ES N
o d r
(22)
- - - + +
-9 czo (-1)"mr sin(mwry/h) € rntr ” t e_me _ €Wty ! e_me
- . +
=1 “/l - 4t£_m2w2/td wpty ‘ UJmtr
-2 _ X
Eo Xo 1 tl':
A I ¢
<c-+e Py >Ey T © U(T tty) 1+ -1 e
o r
- +
@ m -W T -w_T H
+ 2 Z (-1) cos (mmy/h) (1 -¢ewt)e mo (1 - ¢ w+t Je o + =
m=1 f 2 2 rmryr rmr Xo
1- 4t;m w /td

-+

where w; = < 1 //la-4t;m2ﬂ2/td >/(2t£).

The representation appropriate for early times (i.e., for T up to several

té) is given by

Eo €r ) %% . (n) ) Zt; Ton
HZ Sl —— z U<t— té ) x {e 1 E%T- +
o Ve - 1 n=-c 7 - ° T
T'
1 T - 2t; T'nA
Tt f © BT A (23)
rr o () r
ty
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, {n)
by

- X - =Y
3 *o T (2n+1-y/h) 2ty (n) (n) .
: (c-!-e E)EX =~ Ee. e ereoé(f—té )+0U(T—t1’: )
n=-~ |2n+1-y/h| y 4
X
Eo £r %5 020 : (n)
+ 5 —_— (2n+1-y/h)U(t-t! ) x (23)
ZhZ0 ve -1 n=—e £y
T !
ty 2¢! Ton 1 T td 2t; T'n
—z—~ P __} 1
N ¢ AT R [ Tt © ST A
yn T rr t,(n) yn
Ly
'ti(n)
2 _ty
H £_E X o 2t
(o+ag—t>a =Z+E —T——e ° ] e rG(T té(m)
J %5 Ver-l n=-x y
L S
E t e -2 X 2t} o
o) _d r o r .('ﬂ)>
Thz (t'> e -1°¢ e _Z U(T Cey J°
o] r T n=-~-co

T € T
yn T T yo
* I0(2'1:' >+ e -2 1T Il(Zt‘)
T r yn T

where, as defined in Equation 16, t'(n) =/((2n+ l)h—y)z(er—-l) /c,

L = 1
T =(T2._t,(n)2 > 5 g ot =(T,§ ) t.(n>z>/2_
yn yn ty

ty
In the series representation in Equation 23, one can see that every

term (i.e., with a specific n) is exactly the same as Equation 19, if h is
replaced by 2n+1-v/h (i.e., ti': by tt':;n) » bty by td(2n+l—y/h)2, also).
The terms with n = #m, m=1,2,3,., .., can be considered respectively the
m—-th reflection from the y=h and y=0 planes. That is, the field and
current density distributions of the present case can be constructed from
the solutions represented by Equation 19. As is obvious from Equation 23,

the smaller t is, the fewer terms are required for the calculations.
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‘ At very late times (lOBtd > T >> t;, td), one can see from Equation 22 that

the field and current density distributions approach the following values:

-
E X
H, Z_O_e ° - 3
2
o (trtd)
U
_ X 1 7
‘Eo %o ( 4 /ZX
<G+€¥>EX Pof7 e T o (24)
o r
_ X
X
9 . o o
<0+€ 8t>Ey YTz e

which are the same as those for the case with €. = 1, as expected. To obtain
the late~time behaviors, one can also use Equation 23, especially when
‘ ) t1': >> t;, in which case only a few terms are needed. However, if t't << t]':,

one needs many terms to obtain the late-time behaviors.
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