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Abstract

A source-region EMP simulator with a source sheet at a distance h
above the ground and a conducting medium in between is investigated.
The simulated magnetic field and the total current density (conduction
plus displacement currents) are explicitly calculated for two cases of
simulator media: (a) only one uniform medium below the source surface,
and (b) a perfectly conducting ground; and for two special simulator
electric source fields: (a) Vo6(ct-x)exp(-x/xo), and (b) EoU(t-x/c)X
exp(-x/xo).
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I. INTRODUCTION AND SUMMARY

The EMP environment of a nuclear source region is different from that

outside such a source region. In the source region, there is a Compton

current source throughout and the air has a nonlinear tihe-varying conduc-

tivity. These additional features make the”EMP simulation for the source

region considerably more difficult. In Reference 1, several simulators

have been suggested for producing some, but not all, of the desired source-

region features. One such simulator is to use a distributed source sheet

at a distance h above the ground and to fill up the region in between with

a medium of constant conductivity. At the source sheet, one may specify a

tangential magnetic field (Reference 2) or a tangential electric field.

The latter source specification is exclusively treated in the present report.

From the engineering point of view, the electric source field can be realized

by an array of slats excited by a set .ofpulsers triggered in an appropriate

sequence

The

shown in

infinite

(Reference 3).

theoretical model of the simulator and the coordinate system are

Figure 1. The idealized model assumes the simulator to have an

extent in both the x- and z-directions. This is a reasonable

assumption if the region to be simulated is at some distance away from the

edges of a finite–sized simulator. The medium permittivities and conductivities

are assumed constants, and the tangential electric field is specified at the

source surface y=h.

In the following sections, the relationship between the source fidd

(distributed or discrete) and the simulated field will first be formulated

in terms of Fourier integrals. Based on this relationship, the simulated

field will be explicitly calculated for two special simulator media: (a)

only one uniform medium below the source surface, and (b) the lower medium

is perfectly conducting; and for two special simulator source fields:

(a) Vod(ct-x)exp(-x/xo) , and (b) EoU(t-x/c)exp(-x/xo) . The factor
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● exp(-x/xo) and the (et – x)-variation in the source field are introduced to

simulate the decaying and propagating properties of the Compton source

current propagating away from the blast. The impulse response can also

be used to calculate the response of an excitation field of the form

f(t-x/c)exp(-x/xo) by convolution. The case with f(tJx/c) = U(t-x/c)

given in this report is a~ example. The”solutions of a single-medium

simulator can also be used to construct the solutions of a two-medium

simulator by a superposition of the direct illumination and subsequent

reflections at the medium interface and the source surface, an example of

which is the simulator with a perfectly conducting lower medium considered

in this report.

The results of this report are expressed in terms of formulas, figures

( )and tables of the normalized Hz, a+.s & Ex and
( )
ci+c~ E These three

Y“
quantities are the driving terms in determining the effects of the El@ on

a test object (Reference 4) and thus.are generally the quantities to be

simulated.

From the results, it can be concluded

(a) exp(–x/xo) appears as an overall

the case where x
o
= =, under most

that

factor times the result for

practical situations,

(b) for a single-medium simulator with c=co, the responses are

determined by diffusion,

(c) when e > so, Cererdiovphenomenon is important, and

(d) at late times, the responses are independent of the medium

permittivity.

‘ The simulated Hz that can be generated by the type of simulator discussed

in this report are summarized in the fcllowing two tables. The detailed

descriptions of Hz,

can be easily found

and other quantities such as
( )
u+c~ E and

x ( )
a+s~ E

Y
in the text.

5



.

Hz/Ho AT y=~ FOR SIMULATORS WITH Vo6(ct– x)exp(-x/xo) SOURCE FIELDT

“Medium Parameters Approximate Behaviors

. rise time = tenths of t
d

‘1=E2=E0 ● fall time = several times of rise time

‘l=02=a
‘ peak value s 3 tr/td

● late time value-= O

‘1=E2=E “ ● switched on at t:

= &rEo ~ }()E
o

● peak value s 0.5

(at T between t; and t~+0.3td)

‘l=u2=o ● late time (T > lotd, lot:) value = O

. rise time = tenths of t
d

‘2+*
w peak value = 1, or 6 trltd,

‘1
= ~o, g = ~

1 whichever is larger

“ late time (-c> td) value ~ 1

‘2+* ● initial value at t’ < 0.5“

‘1
=s=&rEo>lo E ● sudden jumps at T

o ~ (2n+l)t~, n= 0,1,2...

‘l=o
● late time (T > 10t’ 10td) value = 1

r’

?H
= V exp{-x/xo)/(hZo), t = Eo/o, td = yoah2,

0.0 K

t’ = h~fc, t’ = io(zr-l)fo, ~ = t-x/c
t r

. .

a

—

-...

m
6



Hz/H; AT y=O FOR SIMULATORS WITH EoU(t -x/c) exp(-x/xo) SOURCE FIELD~

Medium Parameters Approximate Behaviors

. monotonically increasing when tr/td < 4

0 pass a local maximum = 0.5(tr/td)~ at

‘1=E2=E0
T = td, and a local minimum < 1.5 at

‘1=52=0 T = 0.5 tr, then become monotonically

increasing, when tr/td ? 4

0 late time value = J4T/(ntr)

‘1=E2=E
. jump from O to = < exp(-O.5t~/t~) at ~=t~

= &rEo ~ 10 E
● mmotonically increasing

o

‘l=02=o
“ late time value ~ 44T/(7rtr)

+ m,
‘2

● monotonically increasing from O at T = O

=E=E‘1 2 0

ol=u
● late time value = T/(tr/td)%

● jump from O to = @exp(-O.’5t~/t~) at T=t~

‘2+m ● monotonically increasing

‘1 = ‘2 = ‘oEr ● sudden jumps at -c= (2n+l)t~, n= 0,1,2,...

‘I=o %
● late time value = -c/(trtd)

Erzlo

‘H; = Eoexp(-x/xo)/Zo, tr =
2

cola,
‘d

= pooh , t; = h~/c,

t; = Eo(Er-l)/CL

7
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II. GENERAL FORMULATION

The model of the simulator under consideration is shown in Figure 1 , in

which the x-axis is the propagation direction and y=h is the source plane with

a specified tangential electric field. The space below the source plane is

divided into cwo regions: region 2 is the ground with conductivity a2 and

permittivity E2, and region 1 is filled with material with conductivity ‘J1

and perrnittivityEl. Both Ul, El and 02, C2 are assumed to be constant.

To find the field distributions in regions 1 and 2, one may use the

Fourier-transfom technique. The Eransform pair is defined as follows:

.

i(u,k) = ~
!/

F(t,x)e‘jwtejbdtdx

c1 C2 (1)

Here, “ ‘“ is used to indicate the quantity in the transformed {w,k) domain
a

and Cl, C2, ;1, ~2 are the appropriate contours for the transform integrals.

Since all quantities are z-independent, only Ex, EY and Hz are the non-

.“-.-

vanishing field components, which can be calculated by solving the following

differential equations derived from Maxwell’s equations:

(o. +“iu=.)~.. = jkfi-

d’,, ~iz+
dy

(i=l,2), with-the bo~lndary

(2)
J. Y L

( 2
w Poci - k2 - jugoui )iiz=o

conditions that ‘

.. .
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(a) 2X, iz are continuous at y=O,

(b) ix equals the known field distribution ~e at y=h,
x

(c) All field components become vanishingly small as y + -m.

In the above equations, the subscript i=l,2 denotes quantities respectively

in regions 1,2; ~.
-e

is the permeability for both regions; and E is the Fourier
x

transform of specified E: at the source plane.

Equations 2 are solved in a straightforward ma”nnerand the following

(u,k)-domain quantities are obtained.

(a) In region 1 (h ~y LO):

8Z = Alcosh(~ly) + B1sinh(~ly)

(crl+-jucl)iy = _jkAlcosh(cly)+ jkB1sinh(cly)

(b) In region 2 (y sO):

(IS2+juc2)~x = c2A2e
G2Y

?2Y
(a2 +jo&2)~y = jkA2e

Here,

(3)

(4)

(~l+j~=1)(u2+j~E2) -e
‘1 = ‘2 = ~Jo2 Ex

+jus2)sinh(Clh) + C2(ul+josl)cosh(C1h)



.

o-

(i= 1,2)

with Re(C2) ~ O.

From the (w,k)-domain solutions 3 and 4 one can obtain che desired

(t,x)-domain solutions by evaluating the appropriate inverse Fourier-transform

integrals. In the next sections, several special cases will be considered.

. ,. .

I
I
I

.,

0=
10



III. IMPULSE SOURCE FIELD

In this section the consideration is restricted to the following special

cases:

(a) 01 = cr2= 0, El = E2 = s, E:= Vo6(ct-x)exp(-x/xo)

(b) cr2+0> ‘: = Vo6(ct-x)exp(-x/xo)

Case (a) can be realized by applying an impulse source field immediately above

the ground, while case (b) assumes that the ground is perfectly conducting.

The impulse response due to the source of the”form 6(ct-x)exp(-x/xo) can be

used to calculate the response of any excitation field of the form f(ct-x) X

exp(-x/xo) by convolution. The case of unit step source field will be

considered in the next section.

The

obtained

A.

B.

solutions for the above

from Equations 3 and 4,

foro1=D2=u, E1=

two cases in the (w,k)-domain can be easily

namely

e
‘2 =E,E = V 6(ct-x)exp(-x/xo), y ~h

X,o

ij = i:(o+juE)c
-le-<(h-y)

(O+jws)ix = i~(o+jus)e-c(h-y)

(O+jME)~y = ~~(o+juE)jk~
-le-~(h-y)

<Z=kz 2- ~ MOE + jw~oo, Re(L) ZO

-e
E = Vo6(k-w/c + j/xo)/c
x

for 02 A m, Ee = Vo6(ct-x)exp(-x/xo), Ul=o, Cl=s, O~y”~h
x

fiz= i:(o+jwE)c ‘l(sinh(<h))-lcosh (cy)



—

(o-1-jw)ii = fi~(o+jms)(sinh(Lh) )-lsinh(Cy)
x

(o+jw)ii = ~~(o+jws)jk~ ‘l(iinh(Gh))-lcosh (Cy)
Y

<2 =k2- 2m POE + juvoo, ie = Vo5(k– w/c + j/xo)/c
x

Using the second equation of Equation 1, one can calculate the

domain fields from their corresponding (w,k)-domain solutions given

(6)

(t ,x)-

above.

Due co the presence of the term 6(k-u/c + jfxo), one can easily perform the

k-integrals to reduce the Lwo-dimensional Fourier integrals to one-dimensional

integrals, the evaluation of which generally requires some contour deforma-

tions in the complex w-planes. Here, the evaluation will be performed for

the special cases (a) and (b) described above.

A. ‘u‘1 2=o’ ‘1= Z2=E’ ‘:
= Vo6(Ct-X)eXp(-X/Xo), y ~h

For this case,

whether or not s equals

two different situations may arise depending on

the free-space permittivity Eo.

For this case, one finds from Equations 1 and 5 that all the

u- integrals are of the following form:

/.

- jwpoo(l-2/R) - l/x~ (h-y)
fl(w)e eju~du

c1

o—.

where T = t- x/c, R = Uoocxo and Cl is the integration contour. Obviously,
-1

the integrand of the above integral has a branch point at -j(c/xO)(R- 2) .

A branch cut can be drawn from this point to infinity along the imaginary

axis, so that in the proper Riemann sheet Re (~ )jupoo(l-2/R) - l/x~ LO.

The integration path Cl can then be deformed to either the upper or lower

complex ti-plafie.The value of the original integral then becomes a

.,~

o



summation of residues at the poles and an integral along the

After carrying out this procedure, one obtains the following

the field distributions:

branch cut.

expressions for

1
v ( )(

5 Bt t

-) -

‘td Bt:x - $

‘d
t

Hz=+—
rd+ 1 – 4T e o

l-;+ 4*2 BR2 e
e 0 u(r)

o mTB

()i“+’o$)’x=k $ ‘:2:;x0:% u(T)
o

( 3t Btrtd ~
xl- -J+————

27
+—

4T2 BR2 )

(7)

x
o

x

\
3Btrtd B2t t2

+
rd

2T2 8T3

where Z. = ~po/Eo is the free-space impedance, tr = Zo/a is the relaxation

time, t
d

= ~oohz and t
dxo

= !JOux:are, respectively, the diffusion times for

the distances h and Xo, B = 1 - 2/R = 1 - 2(poocxo)
-1

, and U(T) is the unit-

step function. Although Equation 7 gives the field and current density only

at y= O, one can directly obtain the field and current distributions at an
2

arbitrary y < h by simply replacing h and td with (h-y) and td(l-ylh) .

To derive Equation 7 it has been assumed that R > 2, i.e., B > 0.

B < O), one can show that all three quantities becomeWhen 2 ~R~O (i.c.~ _

infinite at a finite h. This is due to the fact that the s~urce field is

13



unrealis~ic in that it increases exponentially in the negative x-direction,

and the conductivity of the medium is not large enough to damp the infinitely

large fields created by the infinitely large source field at Xlxo + -CV.

However, for the source region to be simulated, one expects that x is in
o

the order of 200-300 meters. The R-value will then be larger than 2 if the
-5

conductivity of the simulator is larger than 3 x 10 mho/m which is a relatively

low conductivity. Thus, .from a pracrical point of view the case O ~R ~ 2

can be excluded.

An examination of Equation 7 shows that the field and current densiCies

become infinitely large as -i+ cvat a finite x, say x=O. Th%s arises because

the source field goes as exp(-x/xo) and this tnfini.telylarge source field

at x + –~ will diffuse into the finite-x region as T + m. However, for a

simulator, h is of 1 to 2 me~ers, i.e., xo/h 2 100. If one is mainly

interested in khe range of T up to 102tdB or even 103tdB, ~ is still too

small to allow this unrealistic phenomenon to occur.

The field and total currenk density are presented in Figures 2, 3, and 4

for xo/h = 200, 10; Lrjtd = 10, 5, 1, 0.5, 0.25, 0.01; and for T up to a few

‘d“
As can be seen, the results are quite different for Xofh = 200 and 10.

The case for xo/h = 200 is more realistic for source region simulation and,

thus, its corresponding curves are more interesting. For xo/h ~ 100, xo~200m,

G ~ 3x10-4mho/m , and -c< 102td, one can approximate Equation 7 by
2

setting B = L, R + CQ,~~~dxo + O and retaining only one or two terms for the

field and current distributions.

From the approximate equation and the curves in Figures 2,3 and 4, one

obtains the following approximate and accurate expressions for the field and

current densities in Tables 1 and 2, In the tables, the rise and fall times

are respectively the ~-values where the peak value and I/e of the peak value

are obtained. When 0.01 < tr/td < 0.5, one expects the behaviors of the field

and current densities to be somewhat between the tabulated extreme situations.

● ✿

...-
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0

0

xO/h= 200

—.— X@/h= 10

(o) 1
T/td

2

Figure 2. (a) Hz/HO, (b) (td/tr)HZ/HO at Y=O as functions

for the simulator with al= rsz= 0, El= E2=E0,

(hZo)-l, 20 = (Po/sO)2, tr = So/U, td
2

= UOIJh, T

xO/h=200

—

r
— xO/h= 10

1 ‘“
\
tr/l*

~10

i

I

i II

0
(b)

of ~jtd for xo/h =200 and

E:= V08(et- x)exp(-x/xo).

= t-xlc.

T/td

1

10, and various tr/td,

Here, Ho=VoeICp(-X/xo) X
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0
(a)

.5
rltd

80

m

-20

1

r

xO/h = 2QI@
—.— xO/h= 10- ~

trlt~
---=10

j’

I

0 .5
T/t(j

(b)
1

Figure 3. (a) Jx/Jo, (b) (td/tr)Jx/Jo at Y=O as functions of ~/td for xO/h = 200 and 10, and various

Cr/td , for the simulator with ul=u2=u, El= ~2=E , E~LVo&(c~- x)exp(-xlxo) .
Here, Jx =

%X, Jo=Voexp(-x/xo)(h2Zo)-1, Zo=(Uo/Eo;%, tr=eo/o, td=pouh2,(U+EC at T=t-x/c.
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40

&

0

-20

1
- x./h=2@0

xO/h=10

w

I

0 0,25
T/id

(a)
0.5

I
—xO/h= 200

—.. . x8/h=10

,.

- I

t;/td

\

= 10

- \

I

5.

‘“ /\

,/&

l’

1
.,. t /td = 10,5,1

\:,./

—//
-.

I

0 0,125
T/t~

(b)
0.25

functions of ~/td for xo/h=200 and 10, andFigure 4. 3f2J (J at y=O as“(a)(td/tr)%Jy/Jo, (’o) (td/tr) ~ ~

various trlt

!!

, for the simulator with UIC 02=0, CI=S2=E0, E: = Voa(ct–x)exP(-x/xo). Here!

Jy= (u+eo~).E J =Voexp(-x/xo)(h2Zo)-1, Zo=(Uo/so)%, tr=eo/u, td=voUh2, T=t-x/c.
Y’ o
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● -”TABLE 1. FIELD AND CURRENT DENSITY FOR E_/t= s 0.01 (oh ~ lo-zmho)-;
iu

Quantity Peak Value

H/i.

I

+

Voe ‘o
Ho=—

hZ~
-_

Voe %
J .—
0

h2Zo

0.5

0.17 td 0.7 td 0.9

x-— I

O.l-td 0.4 td
Voe x

Jo=—
h2Zo

1

3(tr/td)~

i-
tr = Colo>-. .<d = Uouhz, U1 ‘~ ‘0, C = ~ ‘E

2 12
~, Ee = Vo6(ct-x)exp (nx/xo),

x z 200, 0 ~ 3X lo-4mho/~, y=o, 2X
o T < ‘dxo = ‘OuxO’ xofh ~ 100.

TABL~ 2. FIELD AND CURRENT DENSITY FOR t#d z 0.5

(4x10-3mho z uh)t

Normalizing
Factor

Fall Time I Peak Value
I

,,
Quantity Rise Time

x-—

Voe ‘C
Ho=—

hZo

several I
HJH

0
0.09 td tenths 3.3@r/td)

of t
d

x-—

0.1 td 14(t#d)(O-I-E )o ~ Ex/Jo Voe ‘o
Jo= —

h2Z
o
_x

Voe
~

Jo=—
h2Zo

0.06 td

I ,’

,,0.08 td 80(tr/td)
3/2

0.05 td

‘Same as that of Table 1.

●
18



(2) Clco = &r > 1 —

The u-integrals to be evaluated are of the form

c1

2
where c =

(
~2UoEo(l-cr) + jmpoa(l-2/R) - I/x: ) , Re(Z) LO, and ~ is the

integration path. The branch points are at j(2t~) (‘1 1 i ~1 + 4t~/(B2tdx~))~

where t’ = &o(cr-l)/a. A branch cut is drawn between these two branch p~ints,
r

so that Re(C) ~ O along ~l. By a proper deformation of the contour ~1 the

following expressions for the field and current density distributions at y=O

are obtained:

x BT—— -—
v

()

%
‘d

x 2L’

1( )

crB
Hz =$ ~ e 0 e r 1- 1 (A)

2(sr-1) o0 r
,,

ErB

r

4t ‘

+ 2(E -1)
1+

r

1‘2’:0 M ‘l(A) ‘(’-’;)

x BT_— _—

( )

H v
‘d crB x 2C;

~ E =$–-~~~
o

cl+E
3/2 e

e x
:. , Y. h 20 r 4(Er-1)

(

~1
( )]

4t’
2-B-%-+1+

r
10(A)

r B2tdx
o



—

( )/ 4t;
+ 2B-2+~ 1+

&r

‘2:’%* 11(’)

where A = B ml
t ~ + 4t~(B2t’xo) /

‘1 (2t:), t~z= h2(sr-1)/c2 = tdt~,

and In(A) is the modified Bessel function of the first kind of order n.

In Equation 8, the responses of the form.d(~-t~) andd’(-r-t~) aC

T = t; have been omitted. They should be included if one uses the above

results for the calculation of the field and current density by convolution

due to an arbitrary source field f(ct-x), such as a unit step U(ct -x),

which will be considered in the next section.

To derive Equation 8 it has been assumed that R > 2 (i.e., B > O). The

case where 2 > R ~ O is of no practical interest, as has been discussed before,—

since x = 200-300 meters.
0

Another point to be mentioned is that Equation 8 shows that, in addition

to diffusion, the Cerenkov process also plays an important role. This should

be borne in mind when a medium with & ~ co is used in a simulator with the

source field propagating at a speed faster than c/~.

Based on Equation 8, several curves are presented in figures 5, 6, and 7

for xo/h = 200, 10; (td/t~)%= td/t~ = 10, 5, 1, 0.5, 0.1, 0.05. In the

figures, Er = 20 is used. From Equation 8, one can see that the field and

current densities do not change m,uchfor 40 > ~r ~ 10 (say, within a factor.

of 2), once td/t~ is fixed. Thus , these curves can also be used for a simulator

with 10 < Er ~ 40. As can be seen, Equation 8 is extremely complicated.—

However, for the practical situation with x = 200- 300m, u ~ 3x10-4mho/m
0.

and s = 10-40, one can generally approximate Equation 8 by setting B = 1 and
r.

I
I

I

I

I

I
,.

I
i.

1+ 4tJ/(Bztdx ) = 1, :..Jthe early– and late-time (defined respectively by

_..2t~and~ rt’2 >> 2t’ ) approximations are obtained as follows:

o
20
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0

0.25

0

Figure 5.

5’ Xo/h=2@0

1

I I

Ir!1

:U_

0 1 (a) 2 3 T/td 4 5

l\
xO/h=200

‘- —-xo/h=l@

—
.—. —.— . .

0.1 .—.—.
.— -—-— -—’
I

0.05
._. — -—. —. —-

—

0.1
0.05

0 (b) 10 20
T/t. (j 30 40

,.

(a) Hz/HJ, (b) (t~/t~)Hz/Ho at y=O as functions of r/td for

Xo/h= 200 and 10, Sr= 20, and various t~/t~, for the simulator

‘=Vo6(ct-x)exp(-x/xo) .witho =U =0, c ‘E =C=GrEo, Ex
12 12

Here H
k

o =Voexp(-x/xo)(hZo)-l, Zo=(po/co) , td=~ouh2<

t; = h~/c, t:=so(&r-l)/u, t;/tj=td/t~=(td/t:)fi,~ ‘t-x/c.
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xo/h= 200 and 10, E~=20 and various t~/t~, for the simulator

with o =a =cr, c =E =E=Er&o, Ee=V 6(ct-x)exp(-x/x ). Here
2a

12
Jx =.(O:E ~)E

x 2° -1
x’ Jo=Voexp(-x/xo)(h Zo) , Z. = (Uo/E~)%,

‘d
=Poo$ t;= h~/c, t; = co(Er-l)/O, t~/t~ = td/t: =

(@;)+, T = t - x/c. (Note, the difference in Jx/Jo between

xo/h=200 and 10 is small for t~/t~ ~ 1).
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If, furthermore, T >> td, one has

()

‘dl+.~-—
v

‘d
x 4T

Hz=#-~e. Oe
0

312 +
‘d

( ) u

V. ~ td -G_
O+EL E

o~— ——
at x

e e
17zo 2G T

(11)

Equation 11 is similar to Equation 7 when T >> tr, td, B + 1, R2 + ‘n. Thus ,

at very late times, one expects that the diffusion is the dominant process.

From Figures 5,6,7 and Equations 8, 9, 10 and 11.,one can summarize

the approximate behaviors of the field and current quantities in Table 3.

For(o + s(a/~t))Ex/Jo with s ? ‘d/t~ .> 1 and (a + S(@)Ey/Jo with

5 ; td/t; ~ 2, the behaviors are expected to be approximately between

tabulated extreme situations.
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TAULE 3 r FIELD AND CURRENT DENSITY FOR E ~ 10-40, X. 2 2oom,
r

G ~ 3 x 10–4mho/m, xo/h ? 3-OO”P

Quantity

( )u+E~E
x

Jo

r( )
*

U+E+
Jo

Rise Time (Tr)

t;+o.s td ~ T > t;
r—t

t’
t

Fall Time Peak Value

I

8 td 0.5

8t ‘
r

o.5td/t:

0,5 td 1

I

(td/t:)3/16

+ ,

0.3 Cd 0.002 t~/c~2exp(-0.5 td/c~)

several t; -0,025 td/t~exp(-0.5 td/t~)

CondLtion

(tdhy= ‘ = t;lt;;
‘d’tt

1 2 Ed/t;

*For 0.1 : td/t;,
( )
U+E ~ Ey/Jo is in the order of (Hz/Ho) x (h/xo), which is very small

For td/t~ ? 5, the peak value has a maximum = 0.15, at td/t~ x S.

t
‘d

= MoGh2, t; = h~ (c, t; = GO(E -l)/u, U1=U2=U, S1=e2=~=sreo, E; = Voti(ct-x)exp(-x/xo),
-c

Ho = hJo = Vo(hZo)-lexp(-x/xo),
T < ‘dxo

= uoux~, y=O, and the &%unction r~sponses at T = t; are excluded.

a. .....——._ ● .0.—.. .-
‘,,



B.
.02+m’ ‘1=0’ ‘l=E’ %

= Vod(ct - x)exp(-x/xo), ()~y:h

Two cases will be considered depending on whether or not s equals Eo.

(1) E = E.

From Lquations 1 and 6 it is seen that all the u-integrals are of

the form

“f fl(u)L-l(sinh(Ch)) ‘1cosh(?y)e30Tdw

and il (12)

~ f2(~)(sinh(ch)) -lsinh(Cy)e’uTd~

where ~=”~, and~lis theintegration path. T’neintegrands
o

have poles at the zeros”of sinh(<h), (
22

i.e., at u = j m n
)- h2/x~ /(tdB),

m=0,1,2,... , but no branch points, The integration path El can then

be deformed

2V0
——

‘Z – hZoB

x-

e

and the following results are obtained:

x.—

e ‘0 Y (-l)m:yd(mwh)
~.o mo

...%

( )
-2V - < m

oO+E ‘E=——— e
Oatx

~ (-l)mmn sin(mny/h) x
h2ZoB

‘=1 m2T2 h2,x2

(

m2n2

)

OT
-h2/x~ tr – B ~

x 1-
B

e U(T)
‘d

27
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x

‘[
~2m2

( )

-2V0 “ < “
~ (-l)mcos(m ‘/h)

-h2/xj tr

O+S2E=— e 1-
Om y

)

x

h2ZoB
1 + amo B ~

~.o

.0.-,.

where d is the Kronecker delta function, which is zero when m # O, unity
mo,

when m = O. From Equation 13 one observes that when T > td one requires

only a couple of terms with small m’s to obtain good approximations for

the field and current density. But, when O,~T << td, one can see that

the series representation of Equation 13 converges very slowly and one has

to look for alternative representations.

One alternative representation good for O ~ T << td can be obtained

by deforming the original integration path El to the lower half plane, and

the following expressions are obtained.

( 3t
1+

Btrtf)
x l-$+—

BR2 4T2‘)

T x
1, — _—

( )
()

H V. trt~ 2 ‘tdx ‘O
‘E =$---—

0
O-I-E 3e

e U(T) x
Oaty

o 2h2Z nB’r
o
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03

~=.m () )(3t ~t(n) (n)
2T ~+ 1

1+ +-— —-
‘d

)

2++++ +

BR ‘tdx BR2
2T

o TR

‘1
Et (n)

3Btrt:n) B2trt$n)2 - ~
“ +

2T2” - 8T3 e
(14)

(n)

‘here %y
= td(2n+l-y/h)2. As is obvious from Equation 14, when -r< td,

one needs only a couple of terms with small n’s to get good approximations for

the field and current density distributions.

To derive Equations 13 and 14, it has been assumed that R > 2 (i.e., B > O).

The situation with R ~ 2 will be excluded from the discussion since it is of

no practical interest.

From Equations 13 and 14, one finds that the fields and current densities

are determined by the diffusion process and the bounce between y = O and y = h

●
planes. Based on Equations 13 and 14, several curves for xo/h = 200; 10;

trltd = ‘1,0.3, 0.1, 0.08, 0.03, 0.01; y/h = O, 0.5 are presented in

Figures 8-12, for T up to td. Cf course, one is mainly interested in the

case with xo/h = 200 so that R >> 2, and B = 1. From the figures, one caa

see that all quantities reach their maximums in a few tenths of t
d“

In this

range of T, Equation 14 is a good representation for the field and current

density. Actually, one needs only the term with n = O for the region

+ z y/h < 1, and possibly, the term with n = 0,-1 for the region ~ > y ~ O

to get good estimates.of the three field quantities. That is, one needs o~Lly

to consider the dir,ect“illumination” for the region relatively far away from

the ground plane y = O, and possibly has .toinclude the first reflection from

y = O for the region close to the ground plane. And, definitely, for these

n = 0,-1 terms, one can approximate them further, similar to what has been

done on Equation 7 for the case (A-l).

Based on these ~onsiderations and the curves in Figures 8-12 , the

field and current densities are obtained and summarized in Tables 4 and 5.
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●
TABLE 4. FIELD AND CURRENT DENSITY AT y/h= O FOR 02 + ~, T < tdx =

Uocrx~,0123x 10-4mhO/riI,xo~200m AND xo/h ~ 100t
o

Quantity
Rise Time Fall Time
(in td) (in td)

Peak Value Condition

0.5 does not fall 1 tr/td ~ 0.01

0.09 0.5* 6.6 tr/td ().5: tr/td

0.1 0.25 6(tr/td)
%

tr/td: 0.01

0.05 0.08 160(tr/td)3/2 0.5 : tr/td

i-t =
r &o/o,

‘d
= pooh2,

(
Cr+c

)
lEX=O, E:=o at Vo6(ct-x)exp(-x/xo) .

*
Here, the fall time is the ~-value where Hz/Ho reduces to approximately
unity.

TABLE 5. FIELD AND CURRENT DENSITY AT 1 > y/h ~ 0.5 FOR U2 + =,

xo/h 2 100, AND al 2 3 XIO-4mho/m, X. 2 200 mT

Quantity
Rise Time Fall Time

(in tdy) (in tdy)
Peak Value Condition

H 0.5 does not fall 1 tr/tdy < 0.01

f

()

-3 t=

0.09 0.5* 3.3~ 1- ; 0.5 $ —
‘d tdy

( — — — —)
~ Ex

0.17 0.7
a+E

0.9(1-y/h)-2 tr/tdy : 0.01

0 at
Jo

0.06 0.1
()

1451- ;-4 0.5 ~ L

( )y
‘E

0.1
0+s

o at

0.4
‘(ih-i )-3

,r,tdy , i

J
o

0.05
008 ‘o(:y’2(’-:r5 ‘*5 s ~

5- 2
tdy

= td(l - y/h) = pou(h - y)2, E; = Vo6(ct-x)exp(-x/xo), T < tdx
o

*
Here,”the fall time is the ~-valuewhereH /H

Zo
reduces to approximately unity.
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,

For this case,

of Equation 12,but with C2 =

1

one finds Chat the u-integrals.

m2floco(l-sr) + jtipooB– l/x~.

are of the forms

The integrands

have poles at the zeros of sinh(ch) which are now at w = jm~ = jB(2t~)
-1 ~

( Ifl. 4t;(m2m2 - h2/x~)/(B2~d) ) , m=0,1,2 >.**Y buc no branch points.

By ~eforming the integration path, one gets the following representations for

the field and current densities.

x’_—, -
2V0 (-l)mcos(mny/h)U(-c-t~y)

Hz=—
hZoB e ‘0 f“ x

m=o-(l+6mo) l-4t~(m2m2 - h2/x~)/(B2td)

[(–W;’r “+
& )(-oJmT &

Xe 1-*UJ; -5? 1-++’
E
r

r-l ‘mtr
)1

-1

x

x-—

‘( )
-270 X. m (-l)mmr sin(mwy/h)U(~-t~y)

u“+&& ~ .—
x e 1 x

h2ZoB ~=1
1 - 4t;(m%2 - h2/x~)/(B2td)

‘(

+
-MmT &

)(

-umT E
e l-~w~t~ -e 1

r +,
- -’”mtr

r E
r )]

x_—

(. )
-2V0 X. - (-l)mcos(mny/h)U(-t-t~y)

0,+s+ E =— e
Y 1

h2ZoB
x

‘=0 (l+6mo) J1 - 4t~(m2m2 - h2/x~)/(B2td)

where t
t
= h/c, and t’

ty
= (h-y)~/c.
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As in Equation 8, the infinite responses (i.e., d-functions) at ~=t’
ty

in Equation 15 are not included. Equation 15 reduces to Equation 13 when

E + 1,
r as expected. From Equation 15, one observes that only a couple of

terms with smaller Re(u~)’s are required for good approximations to the field

quantities when T >> 2t~, td. But, when T 5 2t’ the series representation
r’

of Equation 15 does

representations.

An alternative

not converge at all and one has to seek for alternative

representation can be obtained by expressing the hyper-

bolic functions in Equation 12 in terms of exponential functions, using the

Taylor expansions and then applying the techniques used to get Equation 8.

The results are given as follows (for T > t’
ty ‘

of course):

1[ 1ErB crB

r

4t;
x 1- 10(AA) + ‘r

2(&r - 1) — ll(AA)2(Er-1) 1+B2t T
dxo ‘n

( a
) ()

V. td ~
B

r

4t’ -

‘+EX ‘x=~~
r

4(Er-1) 1+ 2 e
r

o B ‘dx
o

x BT_-
X q
0
e ; U(T2) x

n.-.w yn

td(2n+l-y/h)
x

~yn

( a
)

Hz

‘+E= ‘y=<-

X I (2-B)Er-2

Er

I[(2-B)cr- 12 I1(A.A)+

%m’z(”)~
o

x BT
V. td

_— .—
ErB x 2t; a

o— —
3/2 e e ~ U(T2 ) x

h2Zo ‘~ 4(Er-l)
ynn.–m

(El+
4t;

2 2
B ‘dx

o 110(AA)
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(2B-2)cr+2

r“

4t’
-t l+2r~ 11(AA) .,

E
r

B ‘dx
‘yn

o

B

()

4t: 2T2 -T2
-—
,2 l+B2t .2. n 12(AA)

dxo Tyti
‘1

where AA = BT 1 + 4t~/(B2t
‘-”( )

‘(ti)2‘and t’(n) s
dxo) /{2t:)J ‘Yn = ~2-ttyyn ty

smaller T is, the fewer terms are

16, the infinite responses ac T =

(16)

. .

the above equation, one can see that the

re~uired for the calculations. In Equation

d(~-t~~)),etc.) are nott’(n) (i.e.,
ty

shown.

To derive Equations 15 and 16, it has been assumed that R > 2 (i.e.,

B>O). The results for the situation with 2 ~ R ~ O are different. However,
—.

for most of the practical situations, R >> 2 and the approximations B = 1,
.

1 + 4t~/(Bztdxo) = 1 can always be made to simplify Equations 15 and 16.

In the series representation of Equation 16, one can see that every

term (i.e., with a specific n) is exactly the same as Equation 8, if t,(n) is
ty m

replaced by t:. That is, in addition to the diffusion and Cerenkov processes,

the field and current denstty distributions are determined by the bounces

between y=O and y=h planes. And, the field and current density distribu-

tions of the present case can be easily constructed from the solutions

represented by Equation 8. One set of example curves given for t~lt~ = 0.2

E = 10 and y=O is presented in Figure 13,r The t~ft~ value given for this

example is relatively small. Thus , as can be seen from Figure 13, one needs,

several bounces to reach the late-time behaviors of Hz/Ho + 1, (o+c~)Ex/

Jo + o, (o+= ~)EY/Jo+O which can be implied from Equation 15 when T >> t;, td.

However, when k~/t-~is large, one does not need many bounces to reach those

late-time values.

3,8

0
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Iv. UNIT-STEP SOURCE FIELD

In the last sectton, the field and current density distributions for two

special simulator geometries with a A–function source field E: = Vo6(ct-x) x

exp(-x/xo) have been obtained. In this section, the corresponding distribu-

tions for the same special simulator geometries, but with a unit-step source

field E: = EoU(t - x/c)exp(–x/xo) , will be sought.

For the simulator with a unit-step source field, one finds that the

(u,k)-domain solutions are s~i.11given by Equations 5 and 6, except that ~e
x

has a new value Eod{k - u/c + j/xo)/(ju). The (t,x)-domain solutions can

then be calculated from the inverse Fourier-transform integrals, the second

equation of Equation 1. Due to the presence of the term 6(k-m/c + j/xo),

the k-integral can be easily performed. To calculate the remaining u-integrals,

one can either deform the integration paths as was done in Section 111 or

compute convolution Integrals of the form

I
m

F1(~’)U(~–~’)dd
-m

%

where F
1

is the solution with a 6-function source field.

From Section 111, it is observed that for the situations of practical

interest the approximations R = Poocx +~, B = 1- 2/R + I and ~/td
o Xo + O can

always be used. That is, the field and current density distributions in a

simulator with a source field containing the factor exp(-x/xo) can be approxi-

mated with exp(-x/xo) times the distributions derived for a source field which

does not contain this factor (i.e.,

throughout this section to simplify
‘.

tions are presented as follows.

A.
‘l=G2=o’ ‘l=E2=&’

x +CD). This argument will now beo
the calculations. The approximated

Ee = EoU(t-x/c)exp(-x/xo), y ~h
x

The two cases will be considered depending on whether or nor &

equals to co.

applied

solu-

0

., 40



(1) E = E.

●
✎

For this case, the following expressions for the field and

current density distributions at y=O are obtained.

H=%l[(:r<*~]:* r

(17)

‘d X

()

1 _—

( )

HE 4
‘d -z x

0+s ok Ey =$+$ — e e 0 U(T) x
o -ir’r

o

( t tt
x

rd
J+—

1 - 2T ~T2
)

where erf(z) is the error function defined as

j

z 2
erf(z) = ~ e–p dp

60

The field and current density distributions at an arbitrary y < h can be

calculated by simply replacing h and td in Equation 17 with (h-y) and t
dy“

● 41



Based on Equation 17, several curves are presented in Figures 14-16

for various tr/td. At very early and late times (defined respectively by ●T<<t ~ and T ~~ td) , Equation 17 can be simplified by using the asymptotic

approximations for the error functiionand retaining only one or two terms in

the equation. From the simplified equation and the curves in ?igures 14 - 16,

one can kurmuarizethe behaviors of the field and current densities in Table 6.

(2) E/Eo= Cr > 1

In section 111, it was mentioned that some d–function responses

have to be added to Equation 8 to obtain complete solutions for this simulator

geometry with a

given as below.

Hz :

cS-functionsource field. These A–function responses are now

_&

(;+’k)’y : ~~~e2t:[U’(’-tl’+‘.’o’’(T-tL)]
r-

By using the combination of Equations 8 and 18 for F1 in the convolu-

tion integrals, the following expressions for the field and current density

distributions at y=O are obtained:

I

(18)
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Quantity

(U+c )~E
OatX

J:

(g+c 9$’0 at

J’
o

TABLE 6. FIELD AND CURRENT DENSITY FCIRUNIT-s~Ep SOURCE FIELD AT Y=CI FOR

‘1
=u2=a, El =E2=E0, XOZ200 m, a~3~10-4mho/m AND xo/h~200t

First Maximumk First Minimum*

T Value 7 Value

‘d
tr %

td ~ T ~~ 0.5

u
~

0.5 tr Less than 1.5

Monotonically increasing

Monotonically increasing

Fall to l/e of
0.09 td 3 tr/td the maximum at

T - 0.5 td

0.5 td 0.5
Fall to l/(2e)

at T . 9.5 t
d

Late Time Value

‘dxo > ‘t >> tr,t
c

o

Condition

trltd ? 4

trltd ~ 4

trltd ?0.5

trltd ~ 0.01

f
‘d

= pouh2, t= = Eolch N:= Eoexp(-x/xo)z~l, ~; = ~-lHl
0’ ‘dxo

= Lloox:

*
See Figures 14 - 16, referred Lo the local maximum and minimum.

**
For 0.5 > tr/td > 0.01, the behaviors are between the tabulated extreme situations,

.0 ●.- .-—_.. _____,_.,._.,__-_ —..— —— .- ——.
...—.
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e
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Er&06(T - t;) + au(T - t;)

1

x.—
E. Cr x

+ 2hzo J; e
0 U(T - t:) ‘

r-’
I

& -1
+J--

E t’
rr f

T

t;

+
‘d

m t
e

t

2Tt‘
r

‘1

()
%

( )
H E. td (&r-2) -~

o+s~ E =:+—
Y. 2hZo ~ (cr- 1) e

r

(19)
-i--—
2t’
r

e U(T -t:) X

t;
-—

E Zt’
+ 0

~~ ‘rco e r MT-t:)

The results at an arbitrary y < h can be calculated by replacing h, td and t;

in Equation 19 with (h-y), t
dy

and t~(l-y/h), respectively.

Equation 19 involves integrals of Bessel’s functions which in principle

can be evaluated by numerical integrations. However, instead of going through

this complicated, time-consuming process, only the asymptotic approximations
“a

of Equation 19 at early and late times will be analyzed, from which together

with the results for the 6-function source field case (see Table 3 and Figures

5 - 7), the approximate behaviors of the field and current density distribu-

tions are summarized in Table 7.
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TABLE 7: FIELD AND CURRENT DENSITY FOR UNIT-STEP SOURCE FIELD FOR 01= a2=U~ E1=E2=~=Er=O*

41)~g~lo, a z 3x 1.0-4mho/m, X. z 200 m AND xo/h ~ 200+
r

,.

Initial Value Late Time Value Approximate Behavior

Quantity at for Between t’
t

~=tl
llxo

>T>>tl
t r’ ‘;’ ‘d

and the Late Time

t’

H
t

-q

(-)

4T
$

< ~e
Monotonically increasing

Irt

Monotonically increasing,

[

a
,,

($r[’++(+r]
~;r reach-(cd/tr)

‘:tgr:i::’”‘+E= ‘x—
J:

tens of t;

-t:/(2t;) r
whichever is larger

(

). *(;j(,+*) ~
Same as that of Hz/Ho of

u+c~ E
— Table 3 (i.e., results due to

J;
-t;/ (Zt;) a b–function source field)

Xe

+t ~,z
= Eo/U, t; = EO(E -l)/u, td = uouhz, ~

r r
= h2(cr)/c2 = Edt; , H: = hJ~ = EoZ~lexp(-x/xo).

And the b-function responses at t; are excluded .
‘dx

= Boux:.
o

0



i

B.
‘z+m’ ‘l=o’ ‘l=&’

E; = EoU,(t-x/ c)exp(-x/xo), O ~ y < h

Two cases depending on whether or not c equals so will

(1) E=go

Two different series representations are obtained

and current density distributions. The one to be used for late

T > td) is given by (for y # h)

1 x_—

()

Et4x
Hz ~~ ~ e

I

0 U(T) &
o d r

m

+ 2 ~ (-l)mcos
~.1 (

‘d——
6t ()

l_*+l+

r h:

m27i2T_—

)

‘dme

()

‘d
h 1 - m2T2t

r

be considered.

for the field

times (tdx >
0

()
$_L

( )
E. t x

u+~ ~ E x— — I‘d y
03tx hzo t: e

‘U(T) ~h-
r

(20)

( )
H 2E0 - ~

~ + E ~- E E!#+— U(T) ~
(-l)mcos(mmy/h) ~

02ty hZ e
o 1+6o m.() mo

[

xl )
m2n2t -

r
e

‘d

The representation appropriate for early times (T << td) is given by
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.,

0,

x

()
%_—

[ )
E’Ld x

~Ex’~~
0

rs+s e U(T) x ~ (2n+l-y/h)X
Oat, o r n=-m

(21)
i

Based on Equations 20 and 21 several curves are presented in Figures 17- ● .

(= << td) and late?.l,forY=o, 0.5h, and Vartms ‘r/cd. AC very early

(T >> td) times, Equations 20 and 21 can be approximated with only one or two

terms corresponding to small m’s and n’s. With this approximation and the

curves in Figures 17 - 21 , the analytical behaviors of the field and current

densities can be obtained and are summarized in Table 8.

Two different series representations are obtained for the field

and current density distributions. The one to be used for late times Itdx >-c>>

t~,td) is given by (for y’+ h) o

—

-.

.,,-
. ..
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TABLE 8. FIELD AND CURRENT DENSITY FOR UNIT-STEP SOURCE

Quantity

(0+: )L EX
o at

J;

Location

Y/h

FIELD FOR 02

xo/h 2 100+

+ -, al ‘U, E1=EO,

Local Maximum Late Time Value

Value
Time to Reach

Maximum (’c) (‘dxo
> ~. >> t

r’td )

Monotonically increasing. At
T

early time, the larger yfh

is, the faster it increases. (tFtA)$

=0

Monotonically increasing
I

Monotonically increasing,

reach - 1 at or before 0.5 td

1

6(tr/td)
I

0.09 td
I

Monotonically increasing,

reach - 1 at or before 0.5 tdV

t
‘dy

= td(l-y/h)2 = Po~h2(l-y/h)2, H; = hJ~ = Eoz~lexp(-x/xo), tdx = Uoux: .
0

*
Same as Ez/IIo of Tables 4 and 5.

● o

—-—— ~ .. —.—— . ..__ ....__ ... -.__. -

Condition

any tr/td

None

trlt < 4/9
dy -

t
4

+>—

dy
-9

tr/td s 0.1

trltdy ~ 0.1

t
=? 0.5

‘dv
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cu+t -1
(-l)mcos(m~y/h) cromtr-l ~-om~ _
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m.1
1 – 4t;m%td

u-t W+t
mr mr )!

x-—

( ) ()Eo” tr % X.
o+ E~E=— —

x hZo td e
U(’r - t;y) Y_

(22)

(
-.

2: (-l)mmn sin(mny/h) ‘r”mtr-l e-omT _

m=1
1- 4t~m2n2/td

W-t “
mr

x

( a
)

E. ‘~
cr+c~E=—

Y hZo e

w
(-l)mcos(mny/h)

l-4t~m27i2/td
((1 -
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eru~tr)e -
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EfJt-l -LdmT
rmr

+ e
Lot
mr )1

+)1-iomT H
(1 - cru~tr)e +?

x
o

—\

where w‘=( ,, =$/td ),(2,:,.
m

is given by ‘,.

The representation appropriate for early times (i.e.

t;)

x_—
E

_—
E Xm

H=greO
z

‘o ~ ).1
T-t’(n) x e z~:,o(>)~ U(

tyn.-m r

T’

T

Y for T up to several

r r ‘t,(n)
\ rl

ty 1
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~, (~)
x.— _JY-

( a )u+s~ Ex=Eoe
(2n+ 1- /h)

‘0 ~j_m ,2n+ ~_ ;,h, ~ ‘t; [ErEo6@t$))+ou(T -@]

x-—
E. er x~

+ 2hZo 4X e 0 ~ (2n+l-y/h)U(~-t$)) X

r
n.–a

(23)

t,(n)

(“”w, ‘>+’0 ,-.e-:. ~ ,-%. - %;n))o n=-m
r

~(”)E59+J— — ( )1T

x I
02t’E-2TT=lqr r yn

(n) =~((2n+l)h-y)2(@ /c,where, as defined in Equation 16, t’

( )
~2._ti(n)2 % and =? =

(
.:3- @J2 ~

‘yn = ty yn )ty “

In the series representation in Equation 23, one can see that every

term (i.e., with a specific n) is exactly the same as Equation 19, if h is

replaced by 2n+l-y/h (i.e., t; by t’
(n)

td by td(2n+l–y/h)2, also).ty ‘
The terms with n = *m, m=l,2,3,. . ., can be considered respectively the

m–th reflection from the y=h and y= O planes. That is, the field and

current density distributions of the present case can be constructed from

the solutions represented’by Equation 19. As is obvious from Equation 23,

the smaller T is, the fewer terms are required for the calculations.

.

0
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9 At very late times (103td -> ~ >> t! , td), one can s= from Equation 22 thatr
the field and current density distributions approach the following values:

x_—
E x

Hz : $e 0 T ~
o (trtd)2

x

( )
E-x

cr+E : E : —
o

Y h; eo

(24)

which are the same as those for the case with Er= 1, as expected. To obtain

the late-time behaviors, one can also use Equation 23, especially when

t: >> t;, in which case only a few terms are needed. However, if t: << t:,

one needs many’terms to obtain the late–time behaviors.
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,

For this case,

of Equation 12,but with C2 =

1

one finds Chat the u-integrals.

m2floco(l-sr) + jtiuooB– l/x~.

are of the forms

The integrands

have poles at the zeros of sinh(ch) which are now at w = jm~ = jB(2t~)
-1 ~

( Ifl. 4t;(m21T2 - h2/x~)/(B2~d) ) , m=0,1,2 >.**Y buc no branch points.

By ~eforming the integration path, one gets the following representations for

the field and current densities.

x’_—, -
2V0 (-l)mcos(mny/h)U(-C-t~y)

Hz=—
hZoB e ‘0 f“ x

m=o-(l+6mo) l-4t~(m2m2 - h2/x~)/(B2td)

[(–W;’r “+
& )(-oJmT &

Xe 1-*UJ; -5? 1-++’
E
r

r-l ‘mtr
)1

-1

x

x-—

‘( )
-270 X. m (-l)mmr sin(mwy/h)U(~-t~y)

u“+&& ~ .—
x e 1 x

h2ZoB ~=1
1 - 4t@? - h2/x~)/(B2td)

‘(

+
-MmT &

)(

-umT ‘z
e l-~w~t~ -e 1

r +,
- -’”mtr

r E
r )]

x_—

(. )
-2V0 X. - (-l)mcos(mny/h)U(-t-t~y)

0,+s+ E =— e
Y 1

h2ZoB
x

‘=0 (l+6mo) J1 - 4t~(m2m2 - h2/x~)/(B2td)

where t
t
= h/c, and t’

ty
= (h-y)~/c.

36

..

●
“—

●
✎✎



As in Equation 8, the infinite responses (i.e., d-functions) at ~=t’
ty

in Equation 15 are not included. Equation 15 reduces to Equation 13 when

E + 1,
r as expected. From Equation 15, one observes that only a couple of

terms with smaller Re(u~)’s are required for good approximations to the field

quantities when T >> 2t~, td. But, when T 5 2t’ the series representation
r’

of Equation 15 does

representations.

An alternative

not converge at all and one has to seek for alternative

representation can be obtained by expressing the hyper-

bolic functions in Equation 12 in terms of exponential functions, using the

Taylor expansions and then applying the techniques used to get Equation 8.

The results are given as follows (for T > t’
ty‘

of course):

1[ 1ErB crB

r

4t;
x 1- 10(AA) + ‘r

2(&r - 1) — ll(AA)2(Er-1) 1+B2t ‘C
dxo ‘n

( a
) ()

V. td ~
B

r

4t’ -

‘+EX ‘x=~~
r

4(Er-1) 1+ 2 e
r

o B ‘dx
o

x BT_-
X q
0
e ; U(T2) x

n.-.w yn

td(2n+l-y/h)
x

~yn

( a
)

Hz

‘+ETt ‘y=<-

X I (2-B)Er-2

Er

I[(2-B)cr- 1
2 II(M) +

%JV’2(”)1
o

x BT
V. td

_— .—
ErB x 2t; a

o— —
3/2 e e ~ U(T2 ) x

h2Zo ‘~ 4(E r-l)
ynn.–m

(El+
4t;

2 2
B ‘dx

o 1

10(AA)
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(2B-2)cr+2

r“

4t’
-t l+2r~ 11(AA) .,

E
r

B ‘dx
‘yn

o

B

()

4t: 2T2 -T2
-—
,2 l+B2t .2. n 12(AA)

dxo Tyri
‘1

where AA = BT 1 + 4t~/(B2t
‘-”( )

‘(ti)2‘and t’(n) s
dxo) /{2t:)J ‘Yn = ~2-ttyyn ty

smaller T is, the fewer terms are

16, the infinite responses ac T =

(16)

. .

the above equation, one can see that the

re~uired for the calculations. In Equation

d(~-t~~)),etc.) are nott’(n) (i.e.,
ty

shown.

To derive Equations 15 and 16, it has been assumed that R > 2 (i.e.,

B>O). The results for the situation with 2 ~ R ~ O are different. However,
—.

for most of the practical situations, R >> 2 and the approximations B = 1,
.

1 + 4t~/(Bztdxo) = 1 can always be made to simplify Equations 15 and 16.

In the series representation of Equation 16, one can see that every

term (i.e., with a specific n) is exactly the same as Equation 8, if t,(n) is
ty m

replaced by t:. That is, in addition to the diffusion and Cerenkov processes,

the field and current denstty distributions are determined by the bounces

between y=O and y=h planes. And, the field and current density distribu-

tions of the present case can be easily constructed from the solutions

represented by Equation 8. One set of example curves given for t~lt~ = 0.2

E = 10 and y=O is presented in Figure 13,r The t~ft~ value given for this

example is relatively small. Thus , as can be seen from Figure 13, one needs,

several bounces to reach the late-time behaviors of Hz/Ho + 1, (o+c~)Ex/

Jo + o, (o+= ~)EY/Jo+O which can be implied from Equation 15 when T >> t;, td.

However, when k~/t-~is large, one does not need many bounces to reach those

late-time values.
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Iv. UNIT-STEP SOURCE FIELD

In the last sectton, the field and current density distributions for two

special simulator geometries with a A–function source field E: = Vo6(ct-x) x

exp(-x/xo) have been obtained. In this section, the corresponding distribu-

tions for the same special simulator geometries, but with a unit-step source

field E; = EoIJ(t- x/c)exp(–x/xo) , will be sought.

For the simulator with a unit-step source field, one finds that the

(u,k)-domain solutions are s~i.11given by Equations 5 and 6, except that ~e
x

has a new value Eod{k - u/c + j/xo)/(ju). The (t,x)-domain solutions can

then be calculated from the inverse Fourier-transform integrals, the second

equation of Equation 1. Due to the presence of the term 6(k-m/c + j/xo),

the k-integral can be easily performed. To calculate the remaining u-integrals,

one can either deform the integration paths as was done in Section 111 or

compute convolution Integrals of the form

I
m

F1(~’)U(~–~’)dd
-m

%

where F
1

is the solution with a 6-function source field.

From Section 111, it is observed that for the situations of practical

interest the approximations R = Poocx +~, B = 1- 2/R + I and ~/td
o Xo + O can

always be used. That is, the field and current density distributions in a

simulator with a source field containing the factor exp(-x/xo) can be approxi-

mated with exp(-x/xo) times the distributions derived for a source fieM which

does not contain this factor (i.e.,

throughout this section to simplify
‘.

tions are presented as follows.

A.
‘l=G2=o’ ‘l=E2=&’

x +CD). This argument will now beo
the calculations. The approximated

Ee = EoU(t-x/c)exp(-x/xo), y ~h
x

The two cases will be considered depending on whether or nor &

equals to co.

applied

solu-

0

., 40



(1) E = E.

●
✎

For this case, the following expressions for the field and

current density distributions at y=O are obtained.

HAj[(3W~]:* r

(17)

‘d X

()

1 _—

( )

HE 4
‘d -z x

0+s ok Ey =$+$ — e e 0 U(T) x
o -ir’r

o

( t tt
x

rd
J+—

1 - 2T ~T2
)

where erf(z) is the error function defined as

j

z 2
erf(z) = ~ e–p dp

60

The field and current density distributions at an arbitrary y < h can be

calculated by simply replacing h and td in Equation 17 with (h-y) and t
dy “

● 41



Based on Equation 17, several curves are presented in Figures 14-16

for various tr/td. At very early and late times (defined respectively by ●T<<t ~ and T ~~ td) , Equation 17 can be simplified by using the asymptotic

approximations for the error functiionand retaining only one or two terms in

the equation. From the simplified equation and the curves in ?igures 14 - 16,

one can kurmuarizethe behaviors of the field and current densities in Table 6.

(2) E/Eo= Cr > 1

In section 111, it was mentioned that some d–function responses

have to be added to Equation 8 to obtain complete solutions for this simulator

geometry with a

given as below.

Hz :

cS-functionsource field. These A–function responses are now

_&

(;+’k)’y : ~~~e2t:[U’(’-tl’+‘.’o’’(T-tL)]
r-

By using the combination of Equations 8 and 18 for F1 in the convolu-

tion integrals, the following expressions for the field and current density

distributions at y=O are obtained:

I

(18)
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Figure 14. Hz/H~ at y=O as a function of ~/td for xo/h ~ 200
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t = Eolo, t
r d

= vouh2, T = t–X/c.

/’”1

/
1

0
(b)

5 ID
rltd
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Here, H’ =
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tr/td, for the simulator with

Eoexp(-x/xo)Z~l, Zo= (Uo/co)%,
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(u+.o$#Ey, J’
o

(b) Jy/J~ at Y=O as functions of ~/td for xo/h ~ 200 and various tr/td,

with Ul=oz=o, EI=E =Eo, Ee = Eoexp(–x/xo)U(t–x/c) .
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Here, J =

= Eo(hZo)-lexp(-x/xo), 20 = (~o/co)%, tr=~o/o,
2 Y

Ed= uouh ,1 = t–x/c.



Quantity

(U+c )~E
OatX

J:

(g+c 9$’0 at
J’
o

TABLE 6. FIELD AND CURRENT DENSITY FCIRUIUT-STEP SOURCE FIELD AT Y=CI FOR

‘1
=u2=a, El =E2=E0, XOZ200 m, a~3~10-4mho/m AND xo/h~200t

First Maximum* First Minimum*

T Value 7 Value

‘d
tr %

td ~ T ~~ 0.5

()
~

0.5 tr Less than 1.5

Monotonically increasing

Monotonically increasing

Fall to l/e of
0.09 td 3 tr/td the maximum at

T - 0.5 td

0.5 td 0.5
Fall to l/(2e)

at T . 9.5 t
d

Late Time Value

‘dxo > ‘t >> tr,t
c

o

Condition

trltd ? 4

trltd ~ 4

trltd ?0.5

trltd ~ 0.01

f
‘d

= pouh2, t= = Eolch N:= Eoexp(-x/xo)z~l, ~; = ~-lHl
0’ ‘dxo

= Lloox:

*
See Figures 14 - 16, referred Lo the local maximum and minimum.

**
For 0.5 > tr/td > 0.01, the behaviors are between the tabulated extreme situations,

.0 ●.- .-—_.. _____,_.,._.,__-_ —..— —— .- ——.
...—.
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e
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Er&06(T - t;) + CIU(T- t;)

1

x.—
E. Cr x

+ 2hzo J; e
0 U(T - t:) ‘

r-’
I

& -1
+J--

E t’
rr f

T

t;

+
‘d

m t
e

t

2Tt‘
r

‘1

()
%

( )
H E. td (&r-2) -~

~+s~ E =:+—
Y. 2hZo ~ (cr- 1) e

r

(19)
-i--—
2t’
r

e U(T -t:) X

The results at an arbitrary y < h can be calculated by replacing h, td and t;

in Equation 19 with (h-y), t
dy

and t~(l-y/h), respectively.

Equation 19 involves integrals of Bessel’s functions which in principle

can be evaluated by numerical integrations. However, instead of going through

this complicated, time-consuming process, only the asymptotic approximations
“a

of Equation 19 at early and late times will be analyzed, from which together

with the results for the 6-function source field case (see Table 3 and Figures

5 - 7), the approximate behaviors of the field and current density distribu-

tions are summarized in Table 7.
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TABLE 7: FIELD AND CUHRENT DENSITY FOR UNIT-STEP SOURCE FIELD FOR 01= a2=u, e1=E2=~=ErEo*

41)~g~lo, a ~ 3x 1.0-4mho/m, X. z 200 m AND xo/h ~ 200+
r

,.

Initial Value Late Time Value Approximate Behavior

Quantity at for Between t’
t

~=tl
llxo

>T>>tl
t r’ ‘;’ ‘d

and the Late Time

t’

H
t

-q

(-)

4T
$

< ~e
Monotonically increasing

Irt

Monotonically increasing,

[

a ,,
($r[’++(+r]

~;r reach-(cd/tr)

‘:tgr:i::’”‘+E= ‘x—
J:

tens of t;

-t:/(2t;) r
whichever is larger

(

). *(;j(,+*) ~
Same as that of Hz/Ho of

u+c~ E
— Table 3 (i.e., results due to

J;
-t;/ (Zt;) a b–function source field)

Xe

+t ~,z
= Eo/U, t; = EO(E -l)/u, td = vouhz, ~

r r
= h2(cr)/c2 = Edt; , H: = hJ~ = EoZ~lexp(-x/xo).

And the 6-function responses at t; are excluded .
‘dx

= Boux:.
o

0



i

B.
‘z+m’ ‘l=o’ ‘l=&’

E; = EoU,(t-x/ c)exp(-x/xo), O s y < h

Two cases depending on whether or not c equals so will

(1) E=go

Two different series representations are obtained

and current density distributions. The one to be used for late

T > td) is given by (for y # h)

1 x_—

()

Et5x
Hz ~~ ~ e

I

0 U(T) &
o d r

m

+ 2 ~ (-l)mcos
~.1 (

‘d——
6t ()

1_2L+l+

r h:

m2m2~_—

)
‘dme

()

‘d

h 1 - m2T2t
r

be considered.

for the field

times (tdx >
0

()
$_L

( )
E. t x

u+~ ~ E x— — I‘d y
03tx hzo t: e

‘U(T) ~h-
r

(20)

( )
H 2E0 - ~

0 + E ~- E E #+— U(T) ~
(-l)mcos(mmy/h) ~

02ty hZ e
o 1+6o m.() mo

[

xl )
m2n2t -

r
e

‘d

The representation appropriate for early times (T << td) is given by
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,
.,

0,

x

()
%_—

[ )
E’Ld x

~Ex’~~
0

rs+s e U(T) x ~ (2n+l-y/h)X
Oat, o r n=-m

(21)
i

Based on Equations 20 and 21 several curves are presented in Figures 17- ● .

(= << td) and late?.l,forY=o, 0.5h, and various ‘r/Cd. AC very early

(T >> td) times, Equations 20 and 21 can be approximated with only one or two

terms corresponding to small m’s and n’s. With this approximation and the

curves in Figures 17 - 21 , the analytical behaviors of the field and current

densities can be obtained and are summarized in Table 8.

Two different series representations are obtained for the field

and current density distributions. The one to be used for late times Itdx >-c>>

t~,td) is given by (for y’+ h) o

—

-.

.,,-
. ..
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‘=Eoexp(-x/xo)U(t–x/c). Here, H: = Eoz~lexP(-x/xo)the simulator with U2 -~ ~, U1=O, G1=EO, Ex

%
Z. = (Uo/&o) , tz = Co/U, td = Uouh2, T = t – X/C-
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the simulator with U2 + CO,
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TABLE 8. FIELD AND CURRENT DENSITY FOR UNIT-STEP SOURCE

Quantity

(0+: )L EX
o at
J;

Location

Y/h

IJ ~ 3x lo-~mho/m, x ~ ~ 200 m, AND

I

FIELD FOR 02

xo/h 2 100+

+ -, al ‘U, E1=EO,

Local Maximum Late Time Value

Value
Time to Reach

Maximum (’c) (‘dxo
> ~. >> t

r’td )

Monotonically increasing. At
T

early time, the larger yfh

is, the faster it increases. (tFtA)$

=0

Monotonically increasing
I

Monotonically increasing,

reach - 1 at or before 0.5 td

1

6(tr/td)
I

0.09 td
I

Monotonically increasing,

reach - 1 at or before 0.5 tdv

t
‘dy

= td(l-y/h)2 = Po~h2(l-y/h)2, H; = hJ~ = Eoz~lexp(-x/xo), tdx = Uoux: .
0

*
Same as Ez/Ilo of Tables 4 and 5.

● o

—-—— ~ .. —.—— . ..__ ....__ ... -.__. -

Condition

any tr/td

None

trlt < 4/9
dy -

t
4

+>—
dy

-9

tr/td s 0.1

trltdy ~ 0.1

t
=? 0.5

‘dv
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cu+t -1
(-l)mcos(m~y/h) cromtr-l ~-om~ _
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e

m.1
1 – 4t;m%td

u-t W+t
mr mr )!

x-—

( ) ()Eo” tr % X.
o+c~E=— —

x hZo td e
U(’r - t;y) Y_

(22)

(
-.

2: (-l)mmn sin(mny/h) ‘r”mtr-l e-omT _

m=1
1- 4t~m2n2/td

LO-t “
mr

x

( a
)

E. ‘~
cr+c~E=—

Y hZo e

w
(-l)mcos(mny/h)

l-4t~m27i2/td
((1 -
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eru~tr)e -

+ +
EfJt-l -LdmT
rmr

+ e
Lot
mr )1

+)1-iomT H
(1 - cru~tr)e +?

x
o

—\

where w‘=( ,, L-Q7Atd ),(2,:,.
m

is given by ‘,.

The representation appropriate for early times (i.e.

t;)

x_—
E

_—
E Xm

H=greO
z

‘o ~ ).1
T-t’(n) x e z~:,o(>)~ U(

tyn.-m r

T’

T

Y for T up to several

r r ‘t,(n)
\ rl

ty 1
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~, (~)
x.— _JY-

( a )u+s~ Ex=Eoe
(2n+ 1- /h)

‘0 ~j_m ,2n+ ~_ ;,h, ~ ‘t; [ErEo6@t$))+ou(T -@]

x-—
E. er x~

+ 2hZo 4X e 0 ~ (2n+l-y/h)U(~-t$)) X

r
n.–a

(23)

t,(n)

(“”W, ‘>+’0 ,-.’5. ~ ,-%. - %;n’)o n=-m
r

~(”)E59+J— — ( )1T

x I
02t’E-2TT=lqr r yn

(n) =~((2n+l)h-y)2(@ /c,where, as defined in Equation 16, t’

( )
~2._ti(n)2 % and =? =

(
.:3- @J2 ~

‘yn = ty yn )ty “

In the series representation in Equation 23, one can see that every

term (i.e., with a specific n) is exactly the same as Equation 19, if h is

replaced by 2n+l-y/h (i.e., t; by t’
(n)

td by td(2n+l–y/h)2, also).ty ‘
The terms with n = *m, m=l,2,3,. . ., can be considered respectively the

m–th reflection from the y=h and y= O planes. That is, the field and

current density distributions of the present case can be constructed from

the solutions represented’by Equation 19. As is obvious from Equation 23,

the smaller T is, the fewer terms are required for the calculations.

.

0
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9 At very late times (103td -> ~ >> t! , td), one can see from Equation 22 thatr
the field and current density distributions approach the following values:

x_—
E x

Hz : $e 0 T ~
o (trtd)2

x

( )
E-x

cr+g : E : —
o

Y h; eo

(24)

which are the same as those for the case with Er= 1, as expected. To obtain

the late-time behaviors, one can also use Equation 23, especially when

t: >> t;, in which case only a few terms are needed. However, if t; << t:,

one needs many’terms to obtain the late–time behaviors.
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