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ABSTRACT

Thesingularity expansion method (SEM) has been applied to determine

natural resonances of a perpendicular crossed wire structure parallel to

zn imperfect ground plane. To zccount for the finite conductivity of the

ground , the Fresnel reflection coefficient method has been used to follow

the trajectories of the nat’ural resonances as the conductivity and relative

pennittivity of the ground vary.
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I. INTRODUCl!ION

The general problem of the electromagnetic interaction of wire

structures and external sources of excitation has been of interest for

many years [1,2]. In a series of studies completed in recent years the

progression has been as follows: the single isolated cylinder in free

space in the frequency domain [3], a perpendicular crossed wire struc-

ture in free space in the frequency domain [4], a non-perpendicular

set of crossed wires in free space in the frequency domain

of a cylinder [6] and a set of perpendicular crossed wires

singularity expansion method (SEM) [8], a cylinder [9] and

[5], a study

[7] using the

a set of per-

pendicular crossed wires [10] over a perfectly conducting ground plane

using image theory and SEM. Recently two studies of a cylindrical

scatterer have considered different effects of the ground: in the first

the effects of a close proximity perfectly conducting ground plane-on

the circumferential distribution of currents [11] have been studied, and

in the second the effects of a finite conducting ground have been studied

using SEM and Fresnel reflection coefficients [12]. Finally preliminary

studies were performed to analyze the crossed wire and the cylinder over

the finite conducting ground using the Sommerfeld formulation [13, 14, 15]

in thefrequency domain [16]. Simultaneously, others were applying trans-

mission theory to gain information on this same problem [17].

The problem considered in this study is that of determining th-e

behavior of the natural resonances in SEM for a set of perpendicular

crossed wires over an imperfect ground using the Fresnel reflection

coefficient method. While the technique has inherent limitations, trends
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can be established that are of value in themselves as well as providing

guidelines for more correct formulations; e.g., a Soumerfeld treatment.

o



II. FORMULATION

This analysis deals with the interaction of a set of perpendicular

crossed wires whose plane is parallel to an imperfect ground. The effect

of the ground on the wire structure is approximated by the Fresnel reflec-

tion coefficient method. SEM is used to follow the trajectories of the

natural resonances as the ground conductivity (ug) and the relative

ground permittivity (Er) varY. In analyzing the scattering problem, thin

wire approximations are utilized. That is, the wires are required to

satisfy the following:

(1) the current--andcharge densities are constant around the
periphery of the-wire cross section,

(2) the axial currents are zero at the free ends of the wires,

a)
(3) Ik\a <c 1

(4) a << ~

where k is the propagation constant defined by 2n/wavelength, a is the

radius of the wire, and ~ is the length of the wire.

Graves [7] has applied Pocklington theory to a set of orthogonal

crossed wires, Figure 2-1. If, in the method of moments solution to the

thin wire Pocklington type integral equations, sinusoidal pulse expansions

are used for the unknown current distributions and delta testing functions

are used, relatively simple results are obtained that are equivalent to

the following. If the current distribution on a filament is assumed sinus-

oidal, exact—analytical expressions for the accompanying field components

are [18]

. 1
r21 “ i(?) = ~Tcs

[
1’(~1) G(*,?l) - 1’(+2) G(?,~2)

1

(2.1)

for the axial electric field where s is the complex Laplacian frequency,

S = u + j~o;the current filament extends from ?l to ?2, I’ is the axial
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Figure 2-1. The orthogonal crossed wire configuration over
a ground plane.



derivative of the current and

The corresponding radial component of the electric field is

/

p21 . m) = /21A ‘“{?2L “

[

(?-:2)1’(~2) G(+,~2)

- (:-:l)l’(F1) G(?,?l)
1

-s

[

1(:2) (I=21)G(T,:2)

1}
-1(:1)(/:-;l\)G(:,:l)— (2.2)

c

and p21 is the radial variable or the perpendicular distance from the axis

of the current filament to the field point.

To derive the system of equations for the current distribution on the

crossed wires by the method of moments the various wires are divided into

segments. The current on the kth segment of the mth wire is

Imk(x)
[

= aksinh- s(x~l - x)/c
1 [

+ ak+lsinh s(x-Q/c
1

(2.3)

[
sinh s(~+i - \)/c]

..=

It follows that ‘k is the axial current at the point x = xk where x is a

general variable along any given wire.

For crossed wires in free space the procedure is as follows. Assume

currents Ilk(y) and 12k(x) flow on the–wires in Figure 2-1. Substituting

(2.3) into (2.1) and (2.2) leads to electric field expressions that can be

evaluated at points on the conducting structure. For example, a current

zone on wire 1 will induce an axial field at other zones on wire 1 through

(2.1) and an axial field (as far as wire 2 is concerned) at zones on wire

2 through (2.2). The total axial field at each element due to the induced

currents is set equal to (-~incide~lt)tangentat a discrete set of match
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points along each wire, and solutions for the a’s may be obtained. In the

●’
remainder of this report the field contributions (2.1) and (2.2) are called

primary scattered (p.s.) excitation terms.

The effects of a perfect ground plane may be accounted for by introducing

image currents (parallel to the ground plane and opposite in direction to

the object currents) and calculating their E-field contributions at match

points on the crossed wire structure. A modification on the G functions in

(2.1) and (2.2) is necessary due to the distance factor now depending on the

height above the ground, but the procedure is straight forward [10]. In the

perfect ground plane problem the tangential component of the incident field

is now added to the two p.s. terms ~ two image terms to produce a total

tangential E field on the wires that equals zero. The image terms are

referred to as secondary scattered (s.s.) terms.

Riggs and Shumpert [12] have recently studied the problem of a cylinder
01

over an imperfect ground by modify%ng the image term. The modification is

a multiplicative factor on the image term that equals the Fresnel reflection

coefficient for a non-magnetic, finite conducting ground with conductivity

agand relative permittivity Er. Limitations do exist in this approach:

the Fresnel reflection coefficients are derived for incident plane waves,

thus the “scattered” field at the interface between the lossy ground and

free space should approximate a plane wave. Sarkar and Strait [15] have

studied this method in the frequency domain and observed that their results

are within 10% of the Sommerfeld fo~ul.ation ii the dipole was at least–

(0.25A/~) above the ground.

Consider the geometry of Figure 2-2. The current at S2’ contributes

to the scattered field at S2 due to the p.s. term and due to the S.S. term.

Since the discussion is limited to axial currents only the axial field

8
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Figure 2-2. The geometry for the primary and secondary scattered
fields along one wire,
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component from 52’ will contribute to the p.s. and S.S. terms. It follows

therefore that S.S. field lies in the plane Of incidence, and the Fresnel

reflection coefficient becomes (19)

(cr+X) sin Y(sz,sj) -~
4

~A..
(Cr +X)-COS2 $(s2,s;) (2.4)

(cr+x) sin VJ(S2,S;) + I/(E= + x) - COS2 *(S*, S$

where x - 120 Tag , y = g ,~fn ~(s2, ~,j) ~

*

.

c 12

T + hz

The particular sign associated with RPA depends on the choice of the direction

of the reflected field (Riggs and Shumpert use one convention and this study

uses a different one, hence our reflection coefficient differs by a multi-

plicative factor, -1). In the limit as ag+=, image theory aridthe reflection

method become the same.

The crossed wire problem is geometrically more complex but can be

treated by the reflection method. Consider the currenc element at s;; see

Figure 2-3. The ground scattered field is neither parallel nor perpendicular

to the incident plane. Thus the axial field Esl(si) is resolved into

terms, Esl(s;)ll and E~l(s~)l , that are parallel and perpendicular to—

incident plane, respectively. Similarly, the radial field component,

two

the

Ep(s~), is resolved into parallel and perpendicular terms. First, Ep(s;)

is projected into the S2,S1 plane or

S2,S1

‘P (si) = Ep(s~) sin G ;

see Figures 2-3 and 2-4. Then the components of EPS2 ‘sl(s{) perpendicular

and parallel to the incident plane are found, Figure 2-4. Finally, the

components of EsL(sl) are defined; see Figure 2-5.

1

1
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Figure 2-4. The geometry for the axial field secondary
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Figure 2-5. The geometry for the radial field secondary scattered
term.
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The total scattered field in the plane of incidence at the scattering

point is

and the total reflected “parallel” field at SI is

[
RPA EO(si)~l- E=l(s~)/\]

Similarly the total reflected “perpendicular” field at S1 is

In (2.5) and (2.6)

(2.5)

(2.6)

RPA=-
(cr + X)sin $(S~,Si) - i (Er~ x)-cos2 $(sz,si)l (2.7)

(Cr+ X)sln +GJz,si} +~(’tr+ X)-COS2 $(SZ,Si)

RPE =
sin ~S*3Si] -T/(.r + X)-COS2 4(s,,s[) ‘ (2.8)

sin $(Sz,Si) + -i(er+ x)-~os2 $4s2,s;)’

The total scattered field at a point on wire 2, e.g. S2, can now be

written as the vector sum of

primarJs2’s~)
1) ;

2);” (s2,s;)
primary

3) E
secondary(s2’s~)

4) z
secondary(s2’s~)

Item 1 and 2 are simply the

scattered term of Riggs and

(see Figure 2-2)

(see Figure 2-3)

(see Figure 2-2)

(see Figure 2-3)

free space terms. Item 3 is the secondary

Shumpert while item 4 is the combination of

(2.5) and (2.6). The tangential component of (this resultant vector plus

the incident field) is set to zero. Thus, a system of linear equations



for the unknown curren~expansion coe[flclents is produced in th-c-form

7(s) T(s) = E(s)

=
where Z(s) is the square matrix of

of–the a’s(see 2.3), and ~(s) is a

(2.9)

the system, ~(s) is the column matrix

column matrix whose elements are the

particular values of the incident field components.

Since the techniques of SEM are well-documented [6,7,8,9,11,12], the

details will not be repeated. The problem of int-crestis the behavior of

the natural resonances as the ground parameters, Og and Sr, vary. To find

the natural resonances, the non-trivial solutions to

det ~(s) = O (2.1!3)

must be found. Various techniques may be applied (6,7,10); in this study

the Muller iteration is used.
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. III. RESULTS AND CONCLUSIONS

The geometry of the problem is defined in Figure

the parameters chosen are

h/L = 0.2, L/a = 20.0, .L{/!tl= 0.5, Li + .LI

.

2-1. In particular,
●’

The trajectories of the first six natural resonances are determined as the

ground conductivity varies from 120 S to 0.001 S, and the relative permittivity

of the ground varies from 1 to 35. Note that since all resonances, s, are

scaled by a factor L (or normalized to unit length), ag as it appears in (2.4),

(2.7), and (2.8) is scaled by the factor L; thus the ground conduccivi~ies

appearing are in S. Table 3-1 and Figure 3-1 give the comparison between the

results of this study for a high conductivity (120S) and Cr equal one (1) to

a previous study of the crossed wires over a perfectly conducting ground [IO],

The observed differences, mainly in the real parts, can be attributed to two

factors: 1) the distance factors on the image terms [10] in the secondary
g\ !

scattered terms are defined in a slightly different way; 2) the conductivity

,.*is not infinite. Figures 3-2 through 3-7 present families of curves exhibiting

the results of this study. The point x on each figure is the image theory

[10] location of the resonance. Also on each figure is the location of the

ofree-space resonance, . . Consider Figure 3-2: each curve on this figure

represents the trajectory of sy,l,l resonance for a particular choice of

~(L,5,10,20,35). The points on a given curve represent the value of the

sy,l,l resonance on the particular Cr curve for values of Q~ (A = 120, B = 10,

C=l, D=O.1, E=O.01, F=O.001 S).

Several conclusions can now be drawn. a. For a highly conducting ground

(- 120 S) the resonance location is relatively independent of the Er value and,

in fact, approaches the image theory result in each case. b. For an cr = 1.0,

as the ground conductivity approaches zero the resonance

16
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TABLE 3-1

Complex Natural Resonances for Crossed Wire Structure

(l{+tl=L = 2!22,L/a = 20, L{/Ll = 0.5, h/L = 0.2)

resonance perfect ground

Sy,l,l -0.0513 +j2.361

as,l -0.0898”+ j2.592

sy,l,2 -0.1021 +j3.769

sy,2,2 -0.3909+ j5.740

sy,3,1 -0.6691 + j7.581

as,3 -0.6478 + j8,034

imperfect ground

‘g
‘120SCr=l

-0.0759 + j2.3420

-0.1246 + j2.5619

-0.1296 + j3.7450

-0.4659 + j5.7155

-0.7816 + j7.5489

-0.7579 i-j8.003

17



.
m

as,3 . x

sy,3, i a x
1

sy,2,2 @ x

1,

sy~,l,2 “ x

as,l . x

Sy,l,l ● x
1 1 1 I I , t 1 I

I #

-.90 -.80 -.?0 ‘.60 -.50 “,40 -.30 -20 -.!0

6L/c

8.0

7.0

6.0

e

<

5.0

4.0

3.0

Figure 3-1. A comparison of the natural resonances by image theory and the Fresnel reflection method
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location approaches the free space value. c, For large Er values, the

trajectory of a resonance covers less of the complex plane as u varies,,
8

Theeu~ves_of_.Riggs and Shumpert exhibit the same behavior but for a very

different shape parameter (L/a = 200 in their study).

._
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