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ABSTRACT
The singularity expansion method (SEM) has been applied to determine
natﬁral resonances of # perpendicular crossed wire structure parallel to
an imperfect ground plane. To account for the finite conductivity of the
ground, the Fresnel reflection coefficient method has been used to follow
the trajectories of the nathral resonances as the conductivity and relative

permittivity of the ground vary.
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I. INTRODUCTION

The general problem of the electromagnetic interaction of wire
structures and external sources of excitation has been of interest for
many years [1,2]. In a series of studies completed in recent years the
progression has been as follows: the single isolated cylinder in free
space ih the frequency domain t3], a perpendicular crossed wire struc-
ture in free space in the frequency domain [4], a non-perpendicular
set of crossed wires in free space in the frequency domain {5], a study
of a cylinder [6] and a set of perpendicular crossed wires [7] using the
singularity expansion method (SEM) [8], a cylinder [9] and a set of per-
pendicular crossed wires [10] over a perfectly conducting ground plane
using image theory and SEM. Recently two studies of a cylindrical
scatterer have considered different effects of the ground: in the first
the effects of a close proximity perfectly conducting ground plane-on
the circumferential distribution of currents [11] have been studied, and
in the second the effects of a finite conducting ground have been studied
using SEM and Fresnel reflection coefficients [12]. Finally preliminary
studies were performgd to anaiyze the crossed wire and the cylinder over
the finite conducting ground using the Sommerfeld formulation {13, 14, 15]
in the-frequency domain [16]. Simultaneously, others were applying trans-
mission theory to gain information on this same problem [17].

The problem considered in this study is that of determining the
behavior of the natural resonances in SEM for a set of perpendicular
crossed wires over an imperfect ground using the Fresnel reflection

coefficient method. While the technique has inherent limitations, trends



can be established that are of value in themselves as well as providing

guidelines for more correct formulations; e.g., a Sommerfeld treatment.
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II. FORMULATION

This analysis deals with the interaction of a set of perpendicular
crossed wirés whose plane igiparallélrtohén impeffect gfound. The effect
of the ground on the wire structure is approximated by the Fresnel reflec-
tion coefficient method; SEH’is used to follow the trajectories of the
natural resonances as the ground conductivity (Og) and the relative
ground permittivity (e,) vary. In analyzing the scattering problem, thin
wire approximations are utilized. That is, the wires are required to
satisfy”tbehﬁollpwing: B

(1) the current and charge densities are constant around the
periphery of the wire cross section,

(2) the axial currents are zero at the free ends of the wires,
(3) ]kla << 1
(4) a << &
where k is the propagation constant defined by 2n/wavelength, a is the
radius of the wire, and % is the length of the wire.
Graves [7] has applied Pocklington theory to a set of orthogonal

crossed wires, Figure 2-1. If, in the method of moments solution to the

thin wire Pocklington type integral equations, sinusoidai pulse expansions
are used for the unknown current distributions and delta testing functions
are used, relatiyel?7§iﬁp}e ré;ul;;wére ébtained Ehat are gquivalent to

the fol}owingr If the current d;stribution on a filament is assumed sinus-

oidal, exact—analytical expressions for the accompanying field components

are [18]

I'(F)) G@E,ED - 1'(F) 6(F, )| (2.1)
for the axial electric field where s is the complex Laplacian frequency,

s = o + jw; the current filament extends from ¥} to ¥,, I' is the axial
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Figure 2-1. The orthogonal crossed wire configuration over
a ground plane.
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derivative of the current and
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The corresponding radial component of the electric field is

ey - L T |G 6ELE)
o - EEPINED G(?,?I)J

-s 1) (F-F,e@E,E) -1(?1><1'{-’£1|)c(?,?1)J ' (2.2)
c .

and p,, 1s the ;é@ial variable or the perpendicular distance from the axis
of the current filament to the field point.

Torderivé the system of equations for the c;rfeﬁt distribution on the
crossed wires by the method of moments the various wires are divided into

segments. The current on the kth segment of the nth vire is

Imk(x) = aksinﬁﬁ[s(xk+l - x)/c] + Gk+lsinh[s(x—xk)/cJ (2.3)

sinh {s(xkﬂ - xK)/c]

It follows that %, is the axial current at the point x = xy where x is a
general variable along any given wire.

For crossed wires in free space the procedure is as follows. Assume
currents Iy, (y) and I, (x) flow on the wires in Figure 2-1. Substituting
(2.3) into (2.1) and (2.2) leads to electric field expressions that can be
evaluated at points on the conducting structure. For example, a current
zone on wire 1 will induce an axial field at other zones on wire 1 through
(2.1) and an axial field (as far as wire 2 is concerned).at zones on wire

2 through (2.2). The total axial field at each element due to the induced

currents is set equal to (‘Eincident)tangent at a discrete set of match



points along each wire, and solutions for the a's may be obtained. 1In the
remainder of this report the field contributions (2.1) and (2.2) are called
primary scattered (p.s.) excitation terms.

The effects of a perfect ground plane may be acéounted for by introducing
image currents (parallel to the ground plane and opposite in direction to
the object currents) and calculating their E-field contributions at match
points on the crossed wire structure. A modification on the G funétions in
(2.1) and (2.2) is necessary due to the distance factor now depending on the
height above the ground, but the procedure is straight forward [10]. In the
perfect ground plane problem the tangential component of the incident field
is now added to the two p.s. terms plus twdiimage terms to produce a total
tangential E field on the wires that equals zero. The image terms are
referred to as secondary scattered (s.s.) terms.

Riggs and Shumpert [12] have recently studied the problem of a cylinder
over an imperfect ground by modifying the image term. The modification is
a multiplicative factor on the image term that equals the Fresnel reflection
coefficient for a non-magnetic, finite conduct{ng ground with conductivity
cg and relative permittivity €. Limitations do exist in this approach:
the Fresnel reflection coefficients are derived for incideqt plane waves,
thus the "scattered" field at the interface between the lossy ground and
free space should approximate a plane wévé; Sarkar and Stra;t [15} ha;é
studied this method in the frequency domain andiobserved thét their results
are within 10% of the Sommerfeld formulation if the dipoie was at least
{0.25 X ﬁ[EE) above the ground.

Consider the geometry of Figure 2Z~2. The current at 52' contributes
to the scattered field at s, due to the p.s. term and due to the s.s. term.

Since the discussion is limited to axial currents only the axial field



Figure 2-2. The geometry for the primary and secondary scattered
fields along one wire.



component from 82' will contribute to the p.s. and s.s. terms. It follows
therefore that s.s. field lies in the plane of incidence, and the Fresnel

reflection coefficient becomes (19)

(e + X)sin ¥(s9,s4) - \[iet + X)-cos? w(sz,sg) (2.4)
(e, + X)sin Wsp,s3) + Ve, + X) - cos? v(sy, s))

RPA = -

2
where X =120 w0, , vy = s ,sin W(s,, sj) = b '

—£ c 8,-55}? '
" ‘\/(2 32) + h?
2

The particular sign assoclated with RPA depends on the choice of the direction

of the reflected field (Riggs and Shumpert use ome convention and this study
uses a different one, hence our reflection coefficient differs by a multi-
plicative factor, -1). 1In the limit as Og> @, image theory and the reflection
method become the same.

The crossed wire problem is geometrically more complex but can be
treated by the reflection methoé. Consider the current element at si; see
Figure 2-3. The ground scattered field is neither parallel nor perpendicular
to the incident plane. Thus the axial field Esl(si) is resolved into two
terms, Esl(si)lt and Esl(sih_' that are parallel and perpendicular to the
incident plane, respectively. Similarly, the radial field component,

Ep(si), is resolved into parallel and perpendicular terms. First, Ep(si)
is projected into the $538) plane or

52

s8]
E, (si) = Ep(si? sin &

see Figures 2-3 and 2-4. Then the components of Epsz’sl(si) perpendicular
and parallel to the incident plane are found, Figure 2-4. Finally, the

components of Eg1(s]{) are defined; see Figure 2-5.

10
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Figure 2-4. The geometry for the axial field secondary
scattered term.
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The total scattered field in the plane of incidence at the scattering .

point is
(s = Eau o))
and the total reflected 'parallel" field at sliis
ReA [E, (1)) - Egy(ep)) ] (2.5)
Similarly the total reflected "perpendicular" field at sy is
RPE[Ep(si)L + Esl(si)_l_] (2.6)

In (2.5) and (2.6)

RPA _ (er + X)sin ¢(sz,si) - Y (epgt X)—-c052 w(sz,sif (2.7)

(e + X)sin ¥isp,sf) +V (e + X)=cos? ¥(sp,s])

epg - Sin Wsyss) =V, + 0 -cos? y(sz,sD) (2.8)

v }
sin ¥sp,s}) +'\([(cr + X) - cos? ¥(sy,81) ‘

The total scattered field at a point on wire 2, e.g. S,s can now be

written as the vector sum of

1) gprimary(s2’sé) (see Figure 2-2)
+

2) Eprimary(sz’si) (see Figure 2-3)

3) Esecondary(SZ’Sé) (see Figure 2-2)
-

4) Esecondary(SZ’si) (see Figure 2-3)

Item 1 and 2 are simply the free space terms. Item 3 is the secondary
scattered term of Riggs and Shumpert while item 4 is the combination of
(2.5) and (2.6). The tangential component of (this resultant vector plus
the incident field) is set to zero. Thus, a system of linear equations

Q
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for the unknown current expansion coefficients is produced in the form

Z(s) J(s) = E(s) (2.9)

where E(s) is the square matrix cf the systen, J(s) is the column matrix

~of the a's(see 2.3), and E(s) is a column matrix whose elements are the

particular values of the incident field components.

Sinéé”;he techﬁiquesréf éﬁM are wgll-documented [6,7,8,9,11,12], the
details will not be repeated. The problem of interest is the behavior of
the natural resonances as the ground parameters, Og and €., vary. To find
the ﬁatural resonances, the non~trivial solutions to

det 7(s)‘ =0 (2.10)

must be found. Various techniques may be applied (6,7,10); in this study

the Muller iteration is used.

15



III. RESULTS AND CONCLUSIONS

The geometry of the problem is defined in Figure 2-1. 1In particular,

the parameters chosen are
h/L = 0.2, L/a = 20.0, 2{/8) = 0.5, ¢} + &, = 205 = L.

The trajectories of the first six natural resonances are determined as the
ground conductivity varies from 120 SrtcVO.OOI S, and the relativeipermittivity
of the ground varies from 1 to 35. ©Note that since all resonances, s, are
scaled by a factor L (or normalized to unit length), Og as 1t appears in (2.4),
(2.7), and (2.8) is scaled by the factor L; thus the ground conductivities
appearing are in S. Table 3-1 and Figure 3-1 give the comparison between the
results of this study for a high condUctiviﬁy (lZOSj and € equal one (1) to
a previous study of the crossed wires over a perfectly conducting ground [10].
The observed differences, mainly in the real parts, can be attributed to two
factors: 1) the distance factors on the image terms [10] in the secondary
gscattered terms are defined in a slightly different way; 2} the conductivity
is not infinite. Figures 3-2 through 3-7 present families of curves exhibiting
the results of this study. The point x on each figure is the image theory
[10] location of the resonance. Also on each figure is the location of the
free-space resonance,(E) . Consider Figure 3~2: each curve on this figure
represents the trajectory of sy,1l,l resonance for a particular choice of
e.(1,5,10,20,35). The points on a given curve represent the value of the

sy,1,1 resonance on the particular €. curve for values of ¢, (A = 120, B = 10,

g
C=1, D=0.1, E=0.01, F=0.001 S).
Several conclusions can now be drawn. a. For a highly conducting ground

{~ 120 S) the resonance location is relatively independent of the €. value and,

r

in fact, approaches the image theory result in each case. b. For an € = 1.0,

as the ground conductivity approaches zero the resonance

16
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TABLE 3~1

Complex Natural Resonances for Crossed Wire Structure

(81 + 21 =L = 22,, L/a = 20, 21/21 = 0.5, h/L = 0.2)

resonance ... ..perfect ground imperfect ground
ag = 120 8 g, = 1
sy,1,1 ~ -0.0513 + j2.361 -0.0759 + 32.3420
as,1 7 Z0.0898 + §2.592 —0.1246 + §2.5619
sy,1,2 -0.1021 + 33.769 -0.1296 + j3.7450
sy,2,2 ~0.3909 + 35.740 -0.4659 + 3§5.7155
sy,3,1 ~0.6691 + 3j7.581 -0.7816 + j7.5489
as, 3 -0.6478 + 38.034 ~0.7579 + 48.003

17
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values, the

location approaches the free space value. c. For large €

trajectory of a resonance covers less of the complex plane as Og varies.
The curves of Riggs and Shumpert exhibit the same behavior but for a very

differént Shépe parameter (L/a = 200 in their study).
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